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Abstract 21 

Background. Regular population surveys are crucial for the evaluation of conservation measures 22 

and the management of critically endangered species such as the Bornean orangutans. Uncrewed 23 

aerial vehicles (UAV) are useful for monitoring orangutans by capturing images of the canopy, 24 

including nests, to monitor their population. However, manually detecting and counting nests from 25 

UAV imagery is time-consuming and requires trained experts. Computer vision and deep learning 26 

(DL) for image classification offer an excellent alternative for orangutan nest identification.  27 

Methods. This study investigated DL for nest recognition from UAV imagery. A binary dataset 28 

(“with nest” and “without nest”) was created from UAV imagery from Sabah, Malaysian Borneo. 29 

The images were captured using a fixed-wing UAV with a complementary metal-oxide 30 

semiconductor camera. After image augmentation, 1624 images were used for the dataset and 31 

further split into 70% training, 15% testing and 15% validation for model performance evaluation, 32 

i.e. accuracy, precision, recall and F1-score. Four DL models (InceptionV3, MobileNetV2, 33 

VGG19 and Xception) were trained to learn from the labeled dataset and predict the presence of 34 

nests in new images.  35 

Results. The results show that out of… (how many variants you had at the beginning??) 36 

InceptionV3 has the best model performance with more than 99% accuracy and precision, while 37 

VGG19 has the lowest performance. In addition, gradient-weighted class activation maps were 38 

used to interpret the results, allowing visualization of the regions used by InceptionV3 and VGG19 39 
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for classification. This study demonstrates the potential of integrating DL into orangutan 40 

conservation and suggests that future research should focus on automatic nest detection to improve 41 

UAV-based monitoring of orangutans. 42 

 43 

 44 

Introduction 45 

All three orangutan species (it is worth to know - please mention them) living on Borneo and 46 

Sumatra have been listed as ‘Critically Endangered’ on the International Union for Conservation 47 

of Nature (IUCN) Red List since 2016, due to significant population declines (Ancrenaz et al. 48 

2023). These population declines are primarily driven by habitat loss, degradation, and 49 

fragmentation, along with retaliation killings due to conflicts with humans (Ancrenaz et al. 2023). 50 

In Sabah, Malaysian Borneo, several measures have been introduced to protect orangutans, 51 

including forest restoration in degraded areas (Mansourian et al. 2020), expanding totally protected 52 

areas to 30%, and committing to sustainable timber production (Simon et al. 2019). Additionally, 53 

the 10-year Sabah Orangutan Action Plan (2020-2029) was developed to ensure the species' long-54 

term viability in the region (Sabah Wildlife Department, 2020). Continuous monitoring is 55 

crucial to assess population trends and evaluate the effectiveness of these conservation efforts 56 

(Piel et al. 2022).   57 

Orangutans are primarily found in lowland tropical rainforests (how many elevations?) , 58 

where they spend most of their time in the forest canopy (Manduell et al. 2012). They construct 59 

new nests each day, with juveniles relying on their mothers to build them (Permana et al. 2024). 60 

These nests are used for both night-time sleeping and daytime resting (Casteren et al. 2012). Since 61 

observing orangutans directly is difficult due to the dense canopy and their elusive nature, 62 

researchers often monitor populations by counting nests, which serve as reliable indicators of their 63 

presence (Kuhl et al. 2008; Santika et al. 2019). Population estimates are derived from nest 64 

densities (nests per km²), which are converted into orangutan numbers using established statistical 65 

methods (Ancrenaz et al. 2005; Kuhl et al. 2008; Pandong et al. 2018).  66 

Orangutan nests are distinct from those of other animals. Orangutans typically build their 67 

nests in the upper canopy, around 11-20 meters above the ground (Casteren et al. 2012), and the 68 

nests are about 100 cm wide to accommodate their large body size (Kamaruszaman et al. 2018). 69 

The nest’s base is made from thick branches, with thinner branches twisted and bent but not fully 70 

broken. This partial break, known as a "greenstick fracture," is unique to orangutan nests (Casteren 71 

et al. 2012). Leaves are added to form a flat sleeping platform. Orangutan nests are usually oval 72 

and asymmetrical, with the long axis oriented towards the tree trunk (Biddle et al., 2014). While 73 

most nests are built in the upper canopy, they can also be found at branch ends or close to the main 74 

tree stem (Rayadin and Saitoh 2009). 75 

Various methods are used to count orangutan nests, including ground-based nest surveys 76 

(Pandong et al. 2018; Santika et al. 2019), helicopter surveys (Ancrenaz et al. 2005; Payne 1988; 77 

Simon et al. 2019), and the latest technology involving uncrewed aerial vehicles (UAVs) or drones 78 

(Hanggito 2020; Milne et al. 2021; Wich et al. 2015). Among these methods, drones are becoming 79 

A

b

s

t

r

a

c

t 

G

u

i

d

a

n

c

e 

– 

r

e

m

o

v

e 

t

h



increasingly important as they are relatively inexpensive compared to helicopters and can capture 80 

images or time-lapse video from the forest canopy, allowing many hard-to-access areas to be 81 

studied (Wich and Koh 2018). In contrast to ground and helicopter surveys, where nests are 82 

detected through direct field observations, drone imagery requires careful examination of each 83 

image on a computer to identify nests. As nests decay, the fresh green foliage withers and turns 84 

brown, making them stand out more clearly against the surrounding green canopy in the images 85 

(Figure 1). During manual nest identification, each nest is marked or labelled and then counted 86 

across all images. This allows researchers to calculate nest density, which can be used to estimate 87 

the orangutan population size.  88 

To classify the images, it is important to consider the canopy classification perspective. 89 

Although nests made of branches and leaves can be distinguished from healthy trees as they decay 90 

over time (Casteren et al. 2012), a key challenge in using drone imagery to explore orangutan nests 91 

is that labeling nests from large volumes of image data still relies heavily on human experts, 92 

making the process tedious and time-consuming (Milne et al. 2021; Wich et al. 2015). Therefore, 93 

there is a need for an alternative method to identify nests from drone imagery that is as effective 94 

as, if not more effective than, human expertise for nest detection. 95 

 96 

 97 

 98 

Figure 1 Example images for a drone image with orangutan nests circled in red 99 

 100 

 101 

 102 

The integration of artificial intelligence (AI) into nest detection is a possible alternative to improve 103 

the efficiency of counting nests in drone image surveys. Machine learning (ML), is a branch of AI 104 

that enables computers to learn from a diverse array of data, recognize patterns and make decisions 105 

with minimal human intervention (Chahal and Gulia 2019). This study uses supervised learning, a 106 

category of ML in which algorithms are trained on labelled datasets to predict outcomes and 107 

recognize patterns. In contrast to unsupervised learning, supervised learning algorithms are trained 108 

with labelled data to learn the relationship between the inputs, i.e., features such as colour, texture, 109 

and shape of objects in aerial images, and the outputs i.e., labels indicating the presence or absence 110 

of orangutan nests in those images (Wang et al. 2016). The term "annotation" used to label the 111 

presence of orangutan nests on aerial images, is similar to the term "data labelling" in supervised 112 

ML, where the images of the nests need to be labelled and used as training data for model 113 

development. 114 

It is also important to note that the matrices used to evaluate the context of the ecological study 115 

and the ML model may be similar, e.g. accuracy and precision, but they differ in context. In an 116 

ecological study, accuracy is the difference between the sample estimates and the true population 117 

value (Hellmann and Fowler 1999). For example, the accuracy of species richness is the difference 118 

between the estimate of species richness based on sample data and the true species richness of the 119 



population or community being sampled. Whereas, precision is the difference between an estimate 120 

of species richness based on sample data and the significance of all possible estimates of species 121 

richness based on all possible samples of the same size from the sampled population or community 122 

(Hellmann and Fowler 1999). In calculations, accuracy is measured by the mean square error of 123 

the estimator and precision by the variance of the estimator. On the other hand, the ML model is 124 

evaluated by the true value [the actual number of true positives (TP), true negatives (TN), false 125 

positives (FP) and false negatives (FN) from a test set of the prediction] (Lebovitz et al. 2021). In 126 

most cases, the result of the evaluation of the model can be expressed in a layout table, the so-127 

called confusion matrix, in which the proportion of TP and TN can be calculated. Accuracy, for 128 

example, is the proportion of all classifications that were correct, whether positive or negative, and 129 

precision is the proportion of all positive classifications of the model that are actually positive. 130 

Since the model is calculated on the basis of ground truth, further evaluation matrices can be 131 

calculated, e.g. recall or True Positive Rate (TPR) and False Positive Rate (FPR), which is crucial 132 

for the evaluation of a model with an unbalanced data set. For example, where the number of 133 

instances in one class (e.g., positive cases) is significantly lower than that in another class (e.g., 134 

negative cases). 135 

Another subset of ML, often used in computer vision and image classification, is known as deep 136 

learning (DL) or deep convolutional neural networks (DCNN). DL has been used extensively for 137 

aerial images classification. Pearse et al. (2021), for example, have shown how DL models can 138 

classify tree species by learning complex visual features of tree species from aerial images with an 139 

accuracy of 92%, a sensitivity of 91% and a specificity of 94%. For monitoring orangutan 140 

population, Davies et al. (2019) combined LiDAR and behavioural data to reveal relationships 141 

between tree canopy structure and nest choice of orangutans in disturbed forests. 142 

DL models are well suited for image classification as the architecture uses multiple layers of neural 143 

networks consisting of perceptions to model complex data (e.g. images with different colour 144 

channels) by learning features from images and making predictions (Smith et al. 2018). Further 145 

details on how the DL model works can be found in Wang et al. (2016), Purwono et al. (2022), the 146 

protocol paper by Isawasan et al. (2023) and Madhavan & Jones (2024). In image processing, DL 147 

is widely used for image classification and object detection in ecological studies, such as species 148 

identification, animal behavior classification and species diversity estimation from camera traps, 149 

video and audio recordings (Christin et al. 2019). For orangutan studies, Guo et al. (2020) 150 

developed Tri-AI, an automatic recognition system that identifies 41 primates and four carnivores 151 

with 94% accuracy. In addition, Desai et al. (2023) developed an annotated database of apes in 152 

different poses which enables object recognition for behavioral studies of apes in zoos. 153 

Studies on orangutan recognition through computational methods to detect and count 154 

orangutan nests remain limited. Nest building, a unique daily behavior of orangutans for sleeping, 155 

offers valuable data for ecological monitoring, and by integrating DL techniques, it could enhance 156 

population monitoring efforts. Amran et al. (2023) initiated the study on the use of ML – Support 157 

Vector Machine (SVM) - in classifying the objects on the aerial images into branches, buildings 158 

and orangutan nests; Teguh et al. (2024) provided the most recent study (at the time of writing this 159 



manuscript) on orangutan detection using DL model, the You Only Look Once (YOLO) version 5 160 

with 414 labelled orangutan nests and achieved a precision of 0.973 and a recall of 0.949. However, 161 

Teguh et al. (2024) applied an object detection algorithm and demonstrated the effectiveness of a 162 

DL model, but this raises additional questions. For instance, YOLO typically identifies and 163 

classifies objects in a single step, but alternative classification algorithms may offer improved 164 

performance. As biologists and ecologists, it is crucial not to treat these tools as black boxes. This 165 

study focuses on interpreting the outputs to gain insight into how DL models 'visualize' image 166 

patterns and identify the features utilized by neural network layers to classify tree canopy patterns 167 

as 'with nest' or 'without nest.' Understanding this process is essential for accurate ecological 168 

interpretation. 169 

Therefore, this study aims to evaluate the effectiveness of different DL models in detecting 170 

orangutan nests from aerial images captured from two orangutan habitats in Sabah, Malaysia. More 171 

importantly, this study will visualize the model layers to understand how the features and 172 

characteristics of orangutan nests are ‘learned’ by the model. Specifically, the aim of this study is 173 

to create a labelled dataset of drone images containing the presence and absence of orangutan nests, 174 

and finally to develop and compare four DL models for detecting and predicting nest presence 175 

from drone images. Additionally, gradient-weighted class activation maps (Grad-CAM) were 176 

presented which can visualize the activation region used by the models to distinguish orangutan 177 

nests from the tree canopy. 178 

 179 

 180 

Materials & Methods 181 

Study site 182 

These drone surveys were conducted in Sepilok Virgin Jungle Reserve (VJR) and Bukit Piton 183 

Forest Reserve (FR) in Sabah, Malaysia (Fig 2.). Both reserves are under the management of the 184 

Sabah Forestry Department and are known habitats for orangutans. It is estimated that there are 185 

about 200 (100-300) orangutans in Sepilok (Ancrenaz et al. 2005) and 176 (119-261) orangutans 186 

in Bukit Piton (Simon et al. 2019). The Sepilok VJR covers an area of approximately 40 km2 and 187 

is characterized by lowland dipterocarp and heath forests (Ball et al. 2023). The reserve has been 188 

designated as a protected area where logging is strictly prohibited to keep the forest canopy intact. 189 

In contrast, Bukit Piton FR, which consists mainly of dipterocarp lowland rainforest and is about 190 

120 km2 in size, is severely degraded due to heavy logging and forest fires in the past. In 2008, a 191 

large-scale project was initiated to restore the forest for orangutans and the area was declared as a 192 

protected forest in 2012. Since then, the forest has slowly regenerated, with fast-growing tree 193 

species being used by the orangutans for nesting just three years after planting (Mansourian et al. 194 

2020). 195 

 196 

 197 

 198 

Fig 2. Location of Sepilok Forest Reserve and Bukit Piton Forest Reserve 199 



 200 

Study duration  201 

The Sepilok survey was conducted in July 2015 and covered an area of approximately 0.5 km2. A 202 

total of three flight missions were conducted to complete the survey with 1720 number of images. 203 

The Bukit Piton survey was conducted in January 2016 and covered an area of approximately 0.5 204 

km2 resulting in 1911 images. A total of 4 missions were flown to survey the area in January 2016. 205 

Both surveys were conducted in the morning on a sunny day (Temperature, Relative Humidity?). 206 

 207 

Equipment 208 

This study utilizes UAV imagery captured by a fixed-wing drone assembled by 209 

ConservationDrones.org using an FX-71 frame. A Canon Power Shot S100 digital camera with 210 

RBG CMOS sensor (type number usu. with code, made in what country?) was installed in the 211 

drone. The drone was flown at least 100 meters from the highest point, which was determined 212 

using the Digital Elevation Model (DEM). The time-lapse recordings were made in 3-second 213 

intervals. The DL models compared in this study solve a classification problem in which the 214 

models process the entire image as a target object instead of recognizing different objects from 215 

one image (Sharma 2019). The datasets were created by combining images from both locations 216 

and having four human experts examine them for nests, annotate them and categorize them into 217 

two binary classes, i.e. images with nests and images without nests. This binary classification is 218 

needed to train the model and determine whether an image contains an orangutan nest or not. The 219 

field study and the use of the drone for aerial images were conducted in 2014 with the permission 220 

of the Sabah Forestry Department under reference number (JPHTN/PP 100-22/4/KLT.11(44)). 221 

 222 

Pre-processing of the data and categorization 223 

Using the image classification task, the entire images were classified either into “with nest” or 224 

“without nest”. For images with multiple nests, the images were pre-processed by cropping out 225 

the nest and labelling it as "with nest". The total number of aerial drone images from both 226 

Sepilok and Bukit Piton is 406 images, which were further classified into two classes, i.e., with 227 

nest (162 images) and without nest (244 images) (Table 1).  228 

Nests from drone images have been identified by six orangutan field specialists, with more 229 

than two years of field experience in conducting ground and helicopter nest surveys. The 230 

identification of the orangutan nest at the same sites where drone images were captured is also 231 

consistent with the ground survey data which confirmed the presence of nests through direct 232 

observations. Then, the total number of images in each class was divided into three parts, also 233 

known as data splitting, with 70% of the total images used for training, 15% for validation and 234 

15% for testing or a 70:15:15 ratio (Figure 2). The ratio of data splitting is based on the amount of 235 

data used for training and evaluation, and reducing the size of the training dataset tends to result 236 

in a poorly performing model. Therefore, an international standard of computer vision and DL 237 

competition (Fei-Fei et al. 2009) was referenced, along with insights from previous studies (Khan 238 

and Ullah 2022; Ong and Hamid 2022). Data splitting enables the machine to use the training set 239 



to obtain the weights and biases for classification. The validation set helped to better generalize 240 

the models to new, unseen data and prevent over-fitting while the testing set is to assess the model’s 241 

performance. As the number of images was relatively small, each image was subjected to a rotation 242 

expansion of 0°, 90°, 180° and 270° and finally the number of images was increased by a factor of 243 

four (Ong et al. 2022; Chen et al. 2021), totaling to 1624 images used for the model development. 244 

 245 

 246 

Models development 247 

Model build-up 248 

To develop the DL models, the convolutional blocks of the pre-trained convolutional neural 249 

networks (CNNs) were unfrozen for retraining purposes (a process in which the weights and biases 250 

that the model learns from the ImageNet are unlocked for a customized task, i.e., orangutan nest 251 

classification). This was done for four DL architectures – InceptionV3, MobileNetV2, VGG19 and 252 

Xception – to optimize them for the specific task of identifying nests from aerial images, as 253 

described in Ong et al. (2022). The Keras DL Framework on an NVIDIA Tesla A100 Google 254 

Compute Engine (GPU) platform was used to train and evaluate the models. The models were 255 

trained with the Adaptive Moment Estimation (ADAM) optimizer, which improves the stability 256 

and efficiency of the training process and enables efficient learning (Shao 2024). Three learning 257 

rates (0.01, 0.001 and 0.0001) with 32 batches were analyzed. The training process was set to 50 258 

epochs, meaning that the model performed 50 complete iterations through the training dataset 259 

(Wang et al. 2016). Increasing the number of epochs allows the model to refine its parameters and 260 

could improve its performance. After developing the models, the performance of these models 261 

were evaluated using the four metrics of accuracy, precision, recall and F1-score (Table 2) (Hosin 262 

and Sulaiman 2015; Kumar 2020). In addition, the mean accuracy (number of correct 263 

predictions/total number of images) was compared between the models to test the significance of 264 

the four DL models. The code that used for the model development was publicly available at github 265 

with the link https://github.com/songguan26/Bornean-Orangutan-Nest-  266 

 267 

Activation map to distinguish orangutan nests from aerial images 268 

To gain further insight into how the neural network in the DL models can recognize the orangutan 269 

nest, Grad-CAM was used to visualize the area used by the neural network to classify the orangutan 270 

nest with a variety of normal tree canopy backgrounds. In general, one layer at a time was retrieved 271 

to extract low- and high-level features. The code that used for the model development was publicly 272 

available at github with the link https://github.com/songguan26/Bornean-Orangutan-Nest-  273 

Results 274 

Model performance 275 

Four DL models were attempted, and the images were trained, tested and validated for image 276 

classification tasks by classifying UAV images into “without nests” and images “with nests” 277 

categories. Fig. 3, shows the performance of the four models in predicting the images with presence 278 

https://github.com/songguan26/Bornean-Orangutan-Nest-
https://github.com/songguan26/Bornean-Orangutan-Nest-


or absence of nests. It can be seen that VGG19 performs lower than the other models. InceptionV3, 279 

MobileNetV2 and Xception were ranked first, second and third. The Shapiro-Wilk normality test 280 

was performed to assess the normality of the accuracy values for the models across three learning 281 

rates. The results are as follows: InceptionV3 (W = 0.75, p = 0.0000009), MobileNet (W = 0.99, 282 

p = 0.99), VGG19 (W = 0.95, p=0.566) and Xception (W=0.89, p=0.37). Based on these results, 283 

only InceptionV3 is not normally distributed (p < 0.05). Therefore, a non-parametric test, the 284 

Kruskal Wallis H-test, was used to compare the models based on their accuracy values across three 285 

LRs. The result of the Kruskal Wallis H-test shows no significant difference (i.e., at the threshold 286 

p-value <0.05) in the accuracy of the four models at three learning rates (H (3) = 6.751, p = 0.087). 287 

Additionally, as most of the models are normally distributed except InceptionV3 with a very small 288 

p-value, the model performance is presented in Fig.4 using the mean value to better represent the 289 

data. 290 

To assess the generalization capabilities of the model — its ability to make accurate 291 

predictions on new data (Caro et al. 2022) the training validation accuracy (TVA) and training 292 

validation loss (TVL) of the models across three learning rates on the test set were evaluated and 293 

presented in Table 2. The new data was validation splits (15%, in section methodology) that were 294 

never used in the model development. Although the epochs were set at 50, the early-stopping-295 

method was employed — to prevent overfitting and underfitting (Cai et al. 2022) causing the model 296 

computation to halt early once the validation accuracy did not improve (epochs indicated in X-297 

axis). The results of TVA and TVL (Table 3) show that LR 0.001 generally achieves a balance 298 

between efficient training and robust generalization across the models. Whereas, LR 0.01 risks 299 

instability and overfitting, which occurs when the model fits the training data too closely and failed 300 

to generalize to new data (Charilaou and Battat 2022). Meanwhile, LR 0.0001 results in slow or 301 

failed convergence and underfitting is shown by the poor performance of VGG19 model, which is 302 

incapable of learning the patterns in the training data (Jabbar and Khan 2015).  303 

In addition, the confusion matrix for each model is shown in Table 4 to visualize how well 304 

the classification model works by showing the correct and incorrect predictions made by the 305 

model, in comparison with the actual answer. The confusion matrix in binary classification consists 306 

of four components i.e. True positives (TP) is when the model correctly predicts the positive class; 307 

True negatives (TN) is when the model correctly predicts the negative class; False positives (Type-308 

1 error) is when the model incorrectly predicts the positive class and False negative (Type-2 error) 309 

when the model incorrectly predicts the negative class (Saito and Rehmsmeier 2015). InceptionV3 310 

at LR 0.01, LR 0.001 and Xception at LR 0.0001 have made all correct predictions.  Meanwhile, 311 

InceptionV3 and MobileNetV2 at LR 0.0001, Xception at LR 0.01 and LR 0.001, as well as 312 

VGG19 at all LR, have a Type-1 error in nest prediction. Whereas MobileNetV2 at LR 0.001 has 313 

a Type-2 error in nest prediction. 314 

 315 

 316 

 317 

 318 



Identification and visualization of input features 319 

Heatmaps illustrate which parts of an image the model considers important by highlighting them 320 

in warm colors such as yellow, orange and red. Due to the superior overall performance of 321 

InceptionV3, five convolutional layers of the InceptionV3 architecture covering the low- and high-322 

level features were used to visualize how the neural network identified the orangutan nest. Table 323 

5 shows some examples of the convolutional layers of InceptionV3 compared to the original image 324 

of a human. The most common 2D convolutional layer “Conv2d” (Khan 2019) is used to visualize 325 

the region used by the model for classification. The heatmaps derived from Conv2d_89 and 326 

Conv2d_90 highlighted the corners of the images and underlined subtle colors on the nest itself. 327 

In contrast, the nest was emphasized in the Conv2d_91 and Conv2d_92 heatmaps. In addition, the 328 

upper right corner of the image was emphasized in the heatmap derived from Conv2d_93. Based 329 

on the result, the neural network was able to identify the features of the nest – edge, shape and 330 

texture – reflected in the different intensities of warm color. As mentioned by LeCun et al. (2015), 331 

there were blocks of low and high feature extraction in InceptionV3. Fig. 5 shows an example of 332 

the original image used to extract the feature for classification. 333 

 334 

 335 

 336 

Discussion 337 

The increasing use of drones to monitor orangutan populations since when?? This would be 338 

interesting to know ..could be an excellent alternative to improve the monitoring and protection of 339 

orangutan populations. However, the enormous amount of data generated by UAV imagery, which 340 

needs to be identified and annotated by trained experts, poses a major time and labor-intensive 341 

challenge. What about the supporting facilities (equipment) as well as internet stability, where this 342 

is sometimes challenging for some developing countries? Therefore, this study was conducted with 343 

the aim of evaluating the feasibility of using computer vision and DL to classify orangutan nests 344 

from UAV imagery. 345 

This study is focused on image classification rather than on object detection (Sharma 2019). 346 

Specifically, it supports the second stage of the two-stage object recognition algorithm which in 347 

this case involves identifying the orangutan nest. The concept of two-stage detection consists of 348 

the first stage of detecting the object of interest (usually with the YOLO or SSD algorithm) and 349 

the second stage of a classifier by a DL algorithm (the DL models investigated in this study). 350 

Although many data scientists or ML engineers have proposed only the YOLO algorithm, which 351 

can solve both localization (detecting the position of the object of interest on an image) and 352 

classification in one step, detecting and classifying an orangutan nest on aerial images of tree 353 

canopies is a great challenge in reality (due to the very similar patterns of tree canopies) and 354 

requires a large number of aerial images as training data. 355 

The result of this orangutan nest recognition study is consistent with that of Chen et al. 356 

(2014), who integrated various AI methods, including ML, optimization algorithms and adaptive 357 

decision-making systems, to develop intelligent systems capable of performing complex orangutan 358 



nest detection tasks from UAV imagery. In addition, the current study on the use of DL 359 

architectures with feature extraction from the images has continued the study of Amran et al. 360 

(2023) who used hand-crafted feature extraction and multi-class classification with Support Vector 361 

Machines (SVM) for orangutan nest in Borneo. Although Teguh et al. (2024) attempted to use 362 

YOLOv5 and achieved a precision of 0.973 and a recall of 0.949 when recognizing the orangutan 363 

nest from the drone images, this study has shown that orangutan nest recognition can achieve 364 

higher accuracy and precision when using lower computational power (and focusing only on the 365 

classification task). In addition, this study has shown that unlike YOLO (single-stage recognition 366 

algorithm), the use of transfer learning (transferring weights and bias in the classification of 367 

ImageNet images to another classification task) also helps to overcome the problem of data scarcity 368 

associated with the lack of sufficient training examples. While counting nests from the ground is 369 

easier than locating and counting individual orangutans, drone surveys capture only a fraction of 370 

nests in aerial views. Nests under the canopy in dense forests are often missed, and fresh green 371 

nests or those in advanced decay stages are harder to detect in drone images. As a result, this may 372 

cause insufficient training data for model training. Please highlight the challenges when using the 373 

UAV imagery vs. with manual observation incl. counting?? 374 

So far, this study was the first to compare four state-of-the-art pre-trained DL models - 375 

InceptionV3, MobileNetV2, VGG19 and Xception. The data was further augmented and the 376 

hyperparameters were refined by training for nest recognition from UAV imagery, resulting in 377 

high accuracies (>96%). The model performance result is in line with Ong and Hamid (2022) and 378 

Ong et al. (2022), where InceptionV3 is the best model for this task, while VGG19 performs the 379 

worst. When comparing between the three learning rates, the learning rate (LR) of 0.001 achieved 380 

the optimal performance, with fewer problems related to overfitting and underfitting. InceptionV3 381 

with LR 0.001 performed well and delivered all correct predictions. 382 

It is worth noting that VGG19 performs the worst in this study, in contrast to other studies 383 

which showed that VGG19 performs better than InceptionV3 and MobileNet. A look at the layouts 384 

of VGG19 (Table 6) compared to InceptionV3 (Table 5) shows that VGG19 is not able to 385 

recognize the features of the orangutan nest, which could be the main reason for the poor 386 

performance. Nevertheless, there are previous studies that also show that VGG19 performs worse. 387 

This emphasizes the need to compare DL models for a specific task. 388 

To interpret the result of the computer vision system for the orangutan nest, the layers of the 389 

architecture with Grad-CAM were visualized, which to our knowledge is also the first report. 390 

Using Grad-CAM, the region of biases and weights defined by the perceptron within the DL 391 

architecture was able to highlight the shape and texture of the orangutan nest, which was later used 392 

in the classification block for classification. Considering the similarity of the present study to the 393 

task of classifying the canopy of a forest, this study result was compatible with that of Nezami et 394 

al. (2020), who used a multilayer perceptron (MLP) to classify tree species using aerial images 395 

generated from RGB and hyperspectral (HS) images and achieved an accuracy of 99.6% with the 396 

best 3D CNN classifier. Moreover, the result of this study in classifying tree canopy with and 397 

without orangutan nests is consistent with that of Huang et al. (2023), who used ResNet, 398 



ConvNeXt, ViT and Swin Transformer and achieved at least 96% accuracy in classifying tree 399 

species from aerial images. 400 

However, there are still many aspects that require further investigation and improvement. 401 

One of these is the quality of aerial images. As mentioned by Huang et al. (2023), the degradation 402 

of image quality and aerial images at different altitudes needs to be explored further. The key 403 

question for future study is to determine what altitude achieves the ideal balance between drone 404 

flight feasibility and image quality. In this study, for example, a fixed-wing drone with a Canon 405 

Power Shot S100 RGB CMOS sensor was used, which was flown at the highest point of the 406 

treetops at an altitude of 100 meters. The image quality could be improved by using a multi-rotor 407 

UAV with better camera control. Image quality could also be improved by flying at a lower altitude 408 

where the camera is closer to the canopy and can capture more detail. However, this depends on 409 

the feasibility of the flight, where many factors determine the closest distance between the drone 410 

and the tree canopy, such as the availability of the crash sensor. With better image quality, further 411 

exploration can be conducted, such as classifying the nest decay stage of nests and increasing the 412 

ability to detect fresh green nests. Additionally, there is a need to augment both the quantity and 413 

diversity of aerial imagery to increase the robustness and subsequent generalization of the model. 414 

The diversity of the data could also include false positives and negatives in the training data to 415 

further improve the generalization of the model. Another important consideration is the 416 

deployment of the model to ensure its practical applicability. In the field for detecting and counting 417 

the number of orangutan nests. Additionally, building a model by local or regional dataset was 418 

always facing a challenge in generalizing good results for other similar datasets (e.g. by using the 419 

DL model in this study to predict aerial images from Indonesia). 420 

Many future studies will aim to improve the model, software and hardware. However, it is 421 

vital to ensure that these improvements consistently contribute to orangutan conservation. 422 

Streamlining orangutan survey and monitoring processes to be more cost and time efficient, 423 

alongside leveraging computer vision and DL models for automatic annotation of orangutan nests 424 

from aerial images, could significantly advance orangutan monitoring efforts. 425 

 426 

 427 

Conclusions 428 

The present study encourages further development of DL models for the automatic detection of 429 

orangutan nests from aerial UAV images. Further research and refinement in this area could lead 430 

to more accurate and efficient methods for identifying nests. Nevertheless, additional data sets, 431 

especially from different forest types used by orangutans, such as forest patches within plantations, 432 

timber plantations, logged and unlogged forests, are crucial to improve the generalization of the 433 

model in the field. In the future, other remote sensing data such as through partnerships with other 434 

agencies could be incorporated to obtain more imagery and make significant improvements in this 435 

area. 436 

 437 

 438 



Ethics statement 439 

The drone was deployed in the primary protection forest where no residents lived, and only images 440 

of the canopy were collected, so there was no risk to people's privacy. The field study and the use 441 

of the drone for aerial photography were conducted in 2014 with permission from the Sabah 442 

Forestry Department under reference number (JPHTN/PP 100-22/4/KLT.11(44)). 443 

 444 

 445 

Acknowledgements 446 

This research was funded in part by WWF-UK, WWF-Malaysia and ETIKA. The drone survey 447 

activities were funded by AREAS. We would like to express our thanks to Wiveca Soripin, Middle 448 

Kapis, Tinrus Tindok and William Joseph from the WWF- Orangutan team for their expertise in 449 

nest annotation. Additionally, we thank the 450 Sabah Forestry Department for permitting and 

supporting the survey activities. 451 

 452 

 453 

References 454 

 455 

Amran AA, On CK, Hung LP, Rossdy M, Simon D, See CS (2023) Bornean orangutan nests  456 

classification using Multiclass SVM. In 2023 IEEE Symposium on Computers & 457 

Informatics (ISCI):1-6 458 

Ancrenaz M, Gimenez O, Ambu L, Ancrenaz K, Andau P, Goossens B, Payne J, Sawang, A, 459 

Tuuga A, Lackman-Ancrenaz I (2005) Aerial surveys give new estimates for orangutans in 460 

Sabah, Malaysia. PLoS Biology 3(1). https://doi.org/10.1371/journal.pbio.0030003 461 

Ancrenaz M, Gumal M, Marshall A J, Meijaard E, Wich S, Husson S (2023) Pongo pygmaeus 462 

(amended version of 2016 assessment). The IUCN Red List of Threatened Species 2023: 463 

e.T17975A247631797 464 

Ball J, Hickman S, Jackson T, Jing K X, Hirst J, Jay W M, and Coomes, D. A. (2023). Accurate  465 

delineation of individual tree crowns in tropical forests from aerial RGB imagery using 466 

mask r‐cnn. Remote Sensing in Ecology and Conservation, 9(5), 641-655. 467 

https://doi.org/10.1002/rse2.332 468 

Biddle L, Deeming D, Goodman A (2014) Morphology and biomechanics of the nests of the 469 

common black bird Turdus merula. Bird Study 62(1):87-95. 470 

https://doi.org/10.1080/00063657.2014.988119 471 

Casteren AV, Sellers WI, Thorpe SK, Coward S, Crompton RH, Myatt JP, Ennos AR (2012) 472 

Nest-building orangutans demonstrate engineering know-how to produce safe, comfortable 473 

beds. Proceedings of the National Academy of Sciences, 109(18): 6873-6877 474 

Cai Y, Wang Z, Yao L, Lin T, Zhang J (2022) Ensemble dilated convolutional neural network 475 

and its application in rotating machinery fault diagnosis. Computational Intelligence and 476 

Neuroscience 2022: 1-14. https://doi.org/10.1155/2022/6316140 477 

 

https://doi.org/10.1371/journal.pbio.0030003
https://doi.org/10.1002/rse2.332
https://doi.org/10.1080/00063657.2014.988119
https://doi.org/10.1155/2022/6316140


Chahal A, Gulia P (2019), Machine learning and deep learning. International Journal of 478 

Innovative Technology and Exploring Engineering. 8(12), 2778-3075 479 

Charilaou P, Battat R (2022) Machine learning models and over-fitting considerations. World 480 

Journal of Gastroenterology, 28(5), 605–607. https://doi.org/10.3748/wjg.v28.i5.605 481 

Chen H, Guo S, Hao Y, Fang Y, Fang Z, Wu W, Li S (2021) Auxiliary diagnosis for Covid-19 482 

with deep transfer learning. Journal of Digital Imaging 34(2): 231-241. 483 

https://doi.org/10.1007/s10278-021-00431-8 484 

Chen Y, Shioi H, Montesinos CF, Koh LP, Wich S, Krause A (2014). Active detection via  485 

adaptive submodularity. In Proceedings of the 31st International Conference on Machine 486 

Learning: 55–63 487 

Christin S, Hervet É, Lecomte N (2019) Applications for deep learning in ecology. Methods in 488 

Ecology and Evolution 10(10): 1632–1644. https://doi.org/10.1111/2041-210X.13256 489 

Davies AB, Oram F, Ancrenaz M, Asner GP (2019) Combining behavioral and LiDAR data to 490 

reveal relationships between canopy structure and orangutan nest site selection in disturbed 491 

forests. Biological conservation 232: 97-107. 492 

Desai N, Bala P, Richardson R, Raper J, Zimmermann J, Hayden B (2023) Open Ape Pose, a 493 

database of annotated ape photographs for pose estimation. Elife: 12 494 

Fei-Fei L, Deng J, Li K (2009) ImageNet: Constructing a large-scale image database. Journal of 495 

vision, 9(8): 1037-1037 496 

Guo S, Xu P, Miao Q, Shao G, Chapman CA, Chen X, Li B (2020) Automatic identification of 497 

individual primates with deep learning techniques. Iscience 23(8) 498 

Hanggito MS (2020) Development of an unmanned aerial vehicle-based orangutan population  499 

assessment and monitoring method for the multifunctional landscape of East Kalimantan,  500 

Indonesia Open Access Theses and Dissertations 501 

https://scholarworks.utep.edu/open_etd/3166   502 

Hellmann JJ, Fowler GW (1999) Bias, precision, and accuracy of four measures of species 503 

richness. Ecological applications, 9(3), 824-834 504 

Huang Y, Wen X, Gao Y, Zhang Y, Lin G (2023) Tree Species Classification in UAV Remote 505 

Sensing Images Based on Super-Resolution Reconstruction and Deep Learning. Remote 506 

Sensing, 15(11): 2942. 507 

Isawasan P, Abdullah ZI, Ong SQ, Salleh KA (2023). A protocol for developing a classification 508 

system of mosquitoes using transfer learning. MethodsX, 10, 101947. 509 

Jabbar HK, Khan ZR (2015) Methods to avoid over-fitting and under-fittting in supervised 510 

machine learning (Comparative study). Computer Science, Communication and 511 

Instrumentation Devices. 512 

Kamaruszaman SA, Nik Fadzly, Mutalib AH, Muslim AM, Atmoko SSU, Mansor M, Mansor A, 513 

Rupert N, Zakaria R, Hashim ZH, Sah ASR, Jamsari FF, Azman NM (2018). Measuring 514 

Orangutan nest structure using Unmanned Aerial Vehicle (UAV) and Image J. BioRxiv. 515 

https://doi.org/10.1101/365338 516 

https://doi.org/10.3748/wjg.v28.i5.605
https://doi.org/10.1007/s10278-021-00431-8
https://doi.org/10.1111/2041-210X.13256
https://doi.org/10.1101/365338


Khan MK, Ullah MO (2022) Deep transfer learning inspired automatic insect pest recognition. 517 

In Proceedings of the 3rd International Conference on Computational Sciences and 518 

Technologies. Jamshoro, Pakistan: Mehran University of Engineering and Technology : 519 

17-19.  520 

Khan AA (2019) What is Keras Conv2D https://medium.com/@arif_ali/what-is-keras-conv2d-521 

f234e48fde6 Accessed 3 June 2024 522 

Kühl H, Maisels F, Ancrenaz M, Williamson EA (2008) Best practice guidelines for surveys and  523 

monitoring of great ape populations occasional paper of the IUCN Species Survival 524 

Commission 36 (36). www.iucn.org/themes/ssc. 525 

Lebovitz S, Levina N, Lifshitz-Assaf H (2021) Is AI ground truth really true? The dangers of  526 

training and evaluating AI tools based on experts 'know-what." MIS quarterly 45, no. 3 527 

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553): 436-444 528 

Li J, Xu Q, Shah N, Mackey TK (2019) A machine learning approach for the detection and 529 

characterization of illicit drug dealers on instagram: model evaluation study. Journal of 530 

medical Internet research, 21(6), e13803. 531 

Madhavan S, Jones TM (2024). Deep learning architectures. The rise of artificial intelligence. 532 

IBM Developer. https://developer.ibm.com/articles/cc-machine-learning-deep-learning-533 

architectures/ Accessed on 18 September 2024 534 

Manduell K L, Harrison M E, and Thorpe, S. K. S. (2012). Forest structure and support 535 

availability influence orangutan locomotion in Sumatra and Borneo. American Journal of 536 

Primatology, 74(12), 1128-1142. https://doi.org/10.1002/ajp.22072 537 

Mansourian S, Vallauri D, France W (2020) Lessons learnt from 12 years restoring the 538 

orangutan’s habitat: the Bukit Piton Forest Reserve in the Malaysian State of Sabah. 539 

https://www.researchgate.net/publication/343609942 540 

Milne S, Martin JGA, Reynolds G, Vairappan CS, Slade EM, Brodie JF, Wich SA, Williamson 541 

N, and Burslem DFRP (2021). Drivers of Bornean orangutan distribution across a 542 

multiple-use tropical landscape. Remote Sensing, 13(3), 1–16. 543 

https://doi.org/10.3390/rs13030458 544 

Nezami S, Khoramshahi E, Nevalainen O, Pölönen I, Honkavaara E (2020) Tree species 545 

classification of drone hyperspectral and RGB imagery with deep learning convolutional 546 

neural networks. Remote Sensing 12(7):1070 547 

Ong SQ, Ahmad H, Majid AHA. (2021). Development of a deep learning model from breeding 548 

substrate images: a novel method for estimating the abundance of house fly (Musca 549 

domestica L.) larvae. Pest management science, 77(12), 5347-5355. 550 

Ong SQ, Nair G, Yusof UK, Ahmad H (2022) Community-based mosquito surveillance: an 551 

automatic mosquito-on-human-skin recognition system with a deep learning algorithm. 552 

Pest Management Science 78(10):4092–104. https://doi.org/10.1002/ps.7028 PMID: 553 

35650172  554 

https://medium.com/@arif_ali/what-is-keras-conv2d-f234e48fde6%20Accessed%203%20June%202024
https://medium.com/@arif_ali/what-is-keras-conv2d-f234e48fde6%20Accessed%203%20June%202024
http://www.iucn.org/themes/ssc
https://doi.org/10.1002/ajp.22072
https://www.researchgate.net/publication/343609942
https://doi.org/10.3390/rs13030458


Ong SQ, Hamid SA (2022) Next generation insect taxonomic classification by comparing 555 

different deep learning algorithms. Plos One 17(12), e0279094. 556 

https://doi.org/10.1371/journal.pone.0279094 557 

Pandong J, Gumal M, Alen L, Sidu A, Ng S, Koh LP (2018) Population estimates of Bornean 558 

orangutans using Bayesian analysis at the greater Batang Ai-Lanjak-Entimau landscape in 559 

Sarawak, Malaysia. Scientific Reports 10:1–11. https://doi.org/10.1038/s41598-018-560 

33872-3 561 

Payne J (1988). Orang-utan Conservation in Sabah (Report No. 3754). WWF-Malaysia, Kuala 562 

Lumpur. 274 pp. 563 

Pearse GD, Watt MS, Soewarto J,Tan AY (2021). Deep learning and phenology enhance large-564 

scale tree species classification in aerial imagery during a biosecurity response. Remote 565 

Sensing, 13(9): 1789. 566 

Permana AL, Permana JJ, Nellissen L, Prasetyo D, Wich SA, Schaik CPV, Schuppli C (2024) 567 

The ontogeny of nest-building behaviour in Sumatran orang-utans, Pongo abelii. Animal 568 

Behaviour, 211:53-67 .ISSN 0003-3472, https://doi.org/10.1016/j.anbehav.2024.02.018. 569 

Piel AK, Crunchant A, Knot IE, Chalmers C, Fergus P, Mulero-Pazmany M, Wich SA(2022) 570 

Non-invasive technologies for primate conservation in the 21st century. Int J Primatol 571 

43:133–167.https://doi.org/10.1007/s10764-021-00245-z 572 

Purwono P, Ma'arif A, Rahmaniar W, Fathurrahman HIK, Frisky AZK, ul Haq QM (2022) 573 

Understanding of convolutional neural network (cnn): A review. International Journal of 574 

Robotics and Control Systems, 2(4), 739-748 575 

Rayadin Y, Saitoh T (2009) Individual variation in nest size and nest site features of the Bornean 576 

orangutans (Pongo pygmaeus). American Journal of Primatology 71(5): 393-399. 577 

https://doi.org/10.1002/ajp.20666 578 

Riedler B, Millesi E, Pratje P (2010) Adaptation to forest life during the reintroduction process 579 

of immature Pongo abelii. International Journal of Primatology, 31(4): 647-663 580 

https://doi.org/10.1007/s10764-010-9418-2 581 

Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the ROC Plot 582 

When evaluating binary classifiers on imbalanced datasets. PLOS ONE 10(3): e0118432. 583 

https://doi.org/10.1371/journal.pone.0118432 584 

Simon D, Davies G, Ancrenaz M (2019) Changes to Sabah’s orangutan population in recent 585 

times: 2002–2017. PLoS ONE 14(7): 1–14 586 

Santika T, Wilson K, Meijaard E, Ancrenaz M (2019) The power of mixed survey 587 

methodologies for detecting decline of the Bornean orangutan. 588 

https://doi.org/10.1101/775064 589 

Sharma P (2019). Image classification vs. object detection vs. image segmentation. Analytics 590 

Vidhya. Available via Online. https://medium.com/analytics-vidhya/image-classification-591 

vs-object-detection-vs-image-segmentation-f36db85fe81. Accessed 14 October 2024 592 

Sabah Wildlife Department (2020) Orangutan action plan for Sabah 2020-2029. Kota Kinabalu, 593 

Sabah, Malaysia. 594 

https://doi.org/10.1371/journal.pone.0279094
https://doi.org/10.1038/s41598-018-33872-3
https://doi.org/10.1038/s41598-018-33872-3
https://doi.org/10.1016/j.anbehav.2024.02.018
https://doi.org/10.1002/ajp.20666
https://doi.org/10.1007/s10764-010-9418-2
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1101/775064
https://medium.com/analytics-vidhya/image-classification-vs-object-detection-vs-image-segmentation-f36db85fe81.%20Accessed%2014%20October%202024
https://medium.com/analytics-vidhya/image-classification-vs-object-detection-vs-image-segmentation-f36db85fe81.%20Accessed%2014%20October%202024


Smith J, Legg P, Matovic M, Kinsey K (2018) Predicting user confidence during visual decision 595 

making. Acm Transactions on Interactive Intelligent Systems 8(2), 1-30. 596 

https://doi.org/10.1145/3185524 597 

Teguh R, Maleh IMD, Sahay AS, Pratama MP, Simon O. Object detection of the Bornean 598 

orangutan nests using drone and YOLOv5. Int J Artif Intell ISSN, 2252(8938), 1641. 599 

Wang H, Lei Z, Zhang X, Zhou B, Peng J (2016). Machine learning basics. Deep learning, 98-600 

164. 601 

Wich S, Dellatore D, Houghton M, Ardi R, Koh L P (2015) A preliminary assessment of using 602 

conservation drones for Sumatran orangutan (Pongo abelii) distribution and density. 603 

Journal of Unmanned Vehicle Systems, 4(1): 45–52. https://doi.org/10.1139/juvs-2015-604 

0015 605 

Wich SA, Koh LP (2018) Conservation Drones: Mapping and Monitoring Biodiversity. Oxford 606 

University Press. 607 

 608 

https://doi.org/10.1145/3185524
https://doi.org/10.1139/juvs-2015-0015
https://doi.org/10.1139/juvs-2015-0015

