

The association of maternal pre-pregnancy body mass index with macrosomia: a birth cohort study from China (#117489)

1

First submission

Guidance from your Editor

Please submit by **12 Jun 2025** for the benefit of the authors (and your token reward).

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the [guidance page](#)?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

2 Figure file(s)

4 Table file(s)

1 Raw data file(s)

1 Other file(s)

Custom checks

Human participant/human tissue checks

Have you checked the authors [ethical approval statement](#)?

Does the study meet our [article requirements](#)?

Has identifiable info been removed from all files?

Were the experiments necessary and ethical?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The association of maternal pre-pregnancy body mass index with macrosomia: a birth cohort study from China

Mingxin Yan Equal first author, 1, Yunbo Zhang Equal first author, 2, Doudou Zhao 2, 3, Yan Zhao 4, Danmeng Liu 3, Li Shan 3, Yang Mi 3, Leilei Pei Corresp., 2, Pengfei Qu Corresp. 2, 3, 5

¹ Institute for Hygiene of Ordnance Industry, Xi'an, China

² Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China

³ Translational Medicine Center Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China

⁴ The First Affiliated Hospital of Xi'an Jiaotong University Dermatology, Xi'an, Shaanxi, China

⁵ Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China

Corresponding Authors: Leilei Pei, Pengfei Qu

Email address: pll_paper@126.com, xinx13057@163.com

recruited 12,254
in this study 11438
drop out 1
rate 9.

Objective: To investigate the association between pre-pregnancy body mass index (BMI) and the risk of macrosomia through a preconception-early pregnancy-birth cohort in China.

Methods: From July 2018 to December 2021, we recruited a total of 12,254 women of childbearing age from the Northwest Women's and Children's Hospital of China. We collected basic demographic characteristics and lifestyle behavior information of the subjects through questionnaires and practical measurements, and conducted further follow-up for pregnancy outcomes. The study assessed the association of pre-pregnancy BMI with macrosomia using logistic regression models, and performed a linear trend test. Moreover, we utilized restricted cubic splines and polynomial regression to investigate the non-linear relationship of pre-pregnancy BMI with macrosomia.

Results: A total of 11438 subjects were included in this study and the prevalence of macrosomia among all infants was 5.64 per cent. The results indicated that, when compared to the normal weight group, the risk of macrosomia was higher in the overweight and obesity groups (overweight: (OR =1.66 (1.35-2.01)); obesity: (OR =1.66 (1.13-2.45))), and the risk of macrosomia was lower in the underweight group (OR =0.55 (0.41-0.73)). Additionally, similar findings were observed concerning the relationship between pre-pregnancy BMI and grade 1 macrosomia. The use of restricted cubic splines revealed that the prevalence of macrosomia/grade 1 macrosomia increased with rising pre-pregnancy BMI. Furthermore, when we stratified the data by covariates, the nonlinear relationship between pre-pregnancy BMI and macrosomia/grade 1 macrosomia persisted. The results of the polynomial regression showed a gradual increase in fetal birth weight with increasing pre-pregnancy BMI levels.

Conclusions: Pre-pregnancy overweight and obesity were associated with higher risks of

macrosomia. Therefore, it indicates that it may be possible to decrease the risk of macrosomia through preconception weight regulation.

Keywords: Pre-pregnancy BMI; Macrosomia; Grade 1 macrosomia; Underweight; Overweight; Obesity; Birth weight

1 **The association of maternal pre-pregnancy body mass index with macrosomia: a birth**
2 **cohort study from China**

3

4 Mingxin Yan ^{1,2†}, Yunbo Zhang ^{2†}, Doudou Zhao ^{2,3}, Yan Zhao ⁴, Danmeng Liu ³, Li Shan ³, Yang
5 Mi ³, Leilei Pei ^{2,*} and Pengfei Qu ^{2,3,5**}

6

7 ¹ Institute for Hygiene of Ordnance Industry, Xi'an 710065, China

8 ² Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong
9 University Health Science Center, Xi'an 710061, China

10 ³ Translational Medicine Center Northwest Women's and Children's Hospital, Xi'an 710061, China

11 ⁴ The First Affiliated Hospital of Xi'an Jiaotong University Dermatology, Xi'an 710061, China

12 ⁵ Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University,
13 Chaoyang, Beijing 100026, China.

14 *Corresponding author: Department of Epidemiology and Biostatistics, School of Public Health,
15 Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.

16 **Corresponding author: Translational Medicine Center Northwest Women's and Children's
17 Hospital, Xi'an 710061, China.

18 E-mail addresses: pll_paper@126.com (L. Pei), xinxi3057@163.com (P. Qu).

19 †These authors have contributed equally to this work

20 **Abstract**

21 **Objective:** To investigate the association between pre-pregnancy body mass index (BMI) and the
22 risk of macrosomia through a preconception-early pregnancy-birth cohort in China.

23 **Methods:** From July 2018 to December 2021, we recruited a total of 12,254 women of
24 childbearing age from the Northwest Women's and Children's Hospital of China. We collected
25 basic demographic characteristics and lifestyle behavior information of the subjects through
26 questionnaires and practical measurements, and conducted further follow-up for pregnancy
27 outcomes. The study assessed the association of pre-pregnancy BMI with macrosomia using
28 logistic regression models, and performed a linear trend test. Moreover, we utilized restricted cubic
29 splines and polynomial regression to investigate the non-linear relationship of pre-pregnancy BMI
30 with macrosomia.

31 **Results:** A total of 11438 subjects were included in this study and the prevalence of macrosomia
32 among all infants was 5.64 per cent. The results indicated that, when compared to the normal
33 weight group, the risk of macrosomia was higher in the overweight and obesity groups
34 (overweight: (OR=1.66 (1.35-2.01)); obesity: (OR=1.66 (1.13-2.45))), and the risk of macrosomia
35 was lower in the underweight group (OR=0.55 (0.41-0.73)). Additionally, similar findings were
36 observed concerning the relationship between pre-pregnancy BMI and grade 1 macrosomia. The
37 use of restricted cubic splines revealed that the prevalence of macrosomia/grade 1 macrosomia
38 increased with rising pre-pregnancy BMI. Furthermore, when we stratified the data by covariates,
39 the nonlinear relationship between pre-pregnancy BMI and macrosomia/grade 1 macrosomia
40 persisted. The results of the polynomial regression showed a gradual increase in fetal birth weight

41 with increasing pre-pregnancy BMI levels.

42 **Conclusions:** Pre-pregnancy overweight and obesity were associated with higher risks of
43 macrosomia. Therefore, it indicates that it may be possible to decrease the risk of macrosomia
44 through preconception weight regulation.

45 **Keywords:** Pre-pregnancy BMI; Macrosomia; Grade 1 macrosomia; Underweight; Overweight;
46 Obesity; Birth weight

47 **Introduction**

48 Fetal macrosomia, defined as a birth weight of $\geq 4000\text{g}$, is known to commonly prolong the
49 labor process, increase the rate of cesarean section, postpartum hemorrhage and puerperal
50 infections in mothers, and also lead to fetal injuries and asphyxia during delivery¹⁻³. Studies have
51 also shown long-term effects of macrosomia, including its influence on physical and intellectual
52 development during childhood and adolescence, as well as an increased risk of chronic diseases
53 such as hypertension and diabetes in adulthood⁴⁻⁷. Notably, developed countries have seen a rise
54 of 15% to 25% in macrosomia prevalence over the past few decades^{8,9}. Similarly, developing
55 countries like China have also witnessed a rise in macrosomia due to improved living conditions
56 and economic growth, with the prevalence increasing from 6.9% to 7.8% between 2007 and
57 2017¹⁰⁻¹². Given the significant social and personal burden of macrosomia, it is crucial to identify
58 its risk factors to develop primary prevention strategies.

59 This increase in macrosomia has coincided with changes in maternal pre-pregnancy BMI in
60 modern society. The prevalence of pre-pregnancy obesity among women of childbearing age in
61 the US has reached 22%, with a 69.3% increase over the past 10 years^{13,14}. In China, data from the

62 2002 China Nutrition and Health Survey revealed that the rates of overweight and obesity among
63 women of childbearing age reached 21.8% and 6.1%, respectively, and have been consistently
64 increasing^{15,16}. Some studies have suggested a potential association between elevated maternal pre-
65 pregnancy BMI and excessive fetal birth weight¹⁷⁻¹⁹.

66 For instance, a study from the ABCD Amsterdam cohort demonstrated a linear association
67 between pre-pregnancy BMI and the child's weight and BMI at 14 months of age. A one-unit
68 increase in pre-pregnancy BMI resulted in an increment of 29 g (95% CI 19 to 39) in weight and
69 0.041 kg/m² (95% CI 0.030 to 0.053) in BMI²⁰. Similarly, a study from the Rotterdam cohort
70 indicated that pre-pregnancy overweight or obesity resulted in a 1.30-fold and 1.74-fold increased
71 risk of developing large sizes for gestational age²¹. However, these studies lacked a specific focus
72 on the Chinese population and instead utilized international BMI standards. Even more
73 importantly, their pre-pregnancy height and weight data were based on self-reporting in
74 questionnaires. Another study in a Chinese population showed that women with pre-pregnancy
75 overweight and obesity were associated with a 1.99-fold and 4.05-fold risk of macrosomia,
76 respectively¹⁷, while a cohort study in Taiwan, China, showed that a 6- to 46-fold increase in the
77 risk of macrosomia for women with pre-pregnancy overweight and obesity²². Despite being
78 conducted on a Chinese population, their differences were still relatively large. In addition, a meta-
79 analysis highlighted inconsistent relationships between pre-pregnancy underweight and
80 overweight/obesity in offspring, emphasizing the need for further research¹⁹. Therefore, focusing
81 on the Chinese population, the effect of pre-pregnancy BMI on macrosomia needs to be further
82 explored in a large data and more rigorous design.

83 To address these issues, we established a birth cohort in northwest China to explore the
84 relationship between maternal pre-pregnancy BMI and macrosomia.

85 Methods

86 Study design and data sources

87 A total of 12,254 women of childbearing age were recruited into the preconception-early
88 pregnancy-birth cohort at Northwest Women's and Children's Hospital of China from July 2018 to
89 December 2021. To ensure uniformity and accuracy, a standardized and structured questionnaire
90 was used to conduct a face-to-face survey of study subjects by investigators using uniform criteria
91 and methods. Information on the birth of the newborn was collected according to the hospital
92 medical record system. In addition to surveying the pregnant women themselves, the relatives in
93 their family were also surveyed if necessary to enhance the accuracy of the information obtained.
94 The questionnaire included various aspects of information, such as diagnosis of pregnancy
95 outcome, sociodemographic characteristics, lifestyle, dietary nutrition and nutrient
96 supplementation during pregnancy, and reproductive history and maternal health. The
97 investigators, who are professionals ranging from front-line clinical and nursing staff to
98 researchers or graduate students, are uniformly trained. The survey results are subjected to rigorous
99 secondary quality control by professional auditors to ensure dual verification. This study was
100 conducted in accordance with the Declaration of Helsinki and was approved by the Medical Ethics
101 Committee of Beijing Obstetrics and Gynecology Hospital, Capital Medical University (Approval
102 Number: 2018-KY-003-02). All research participants were fully informed about the study content
103 prior to participation, obtained written consent, and signed informed consent forms.

Date on - - - and the End - - -

104 Inclusion criteria: Women of childbearing age who underwent pre-pregnancy check-ups at
105 the Northwest Women's and Children's Hospital of China from July 2018 to December 2021;
106 voluntary enrolment in the preconception-early pregnancy-birth cohort after obtaining informed
107 consent; and completeness of the relevant information. Exclusion criteria: Pre-pregnancy pre-
108 existing underlying illnesses that may have an impact on neonatal birth outcomes; and psychiatric
109 anomalies that hindered normal communication. Termination or withdrawal criteria: Request to
110 be withdrawn from the cohort for various reasons; and loss of follow-up during the study period,
111 serious illnesses, termination of pregnancy, or death. To ensure the final study's reliability and
112 validity, we excluded 89 mothers with missing pre-pregnancy weight/height and 38 with missing
113 covariates (parity, current GDM, fetal sex). Moreover, 624 participants were lost to follow-up,
114 and 65 others underwent terminations/abortions. After applying these exclusion criteria, we
115 included a total of 11,438 gestational mothers in the final study (Figure 1). *drop out rate--* 91

116 **Pre-pregnancy BMI assessment**

117 The pre-pregnancy BMI of the mothers in this study was calculated from the height and
118 weight values measured at the first antenatal visit (≤ 12 gestational weeks of pregnancy). We
119 carefully measured height (accurate to 0.1 cm) and weight (accurate to 0.01 kg) of the mothers,
120 who wore light clothing but no shoes. BMI was calculated as weight/height² (kg/m²). In previous
121 studies, it has been observed that pre-pregnancy height of pregnant women through questionnaires
122 tends to be overestimated and weight tends to be underestimated, resulting in underestimation of
123 BMI, which introduces information bias^{20,23}. In addition, relevant studies have shown that height
124 and weight measured at the first antenatal visit (≤ 12 gestational weeks of pregnancy) are highly

only one ref - 9.

125 consistent with pre-pregnancy height and weight²⁴. Therefore, by utilizing measured height and
126 weight in this study, we were able to minimize these biases and improve the accuracy of our
127 findings.

128 According to Chinese standards, pre-pregnancy BMI of mothers was categorized as
129 underweight ($BMI < 18.5 \text{ kg/m}^2$), normal weight ($18.5 \leq BMI < 24.00 \text{ kg/m}^2$), overweight ($24 \leq$
130 $BMI < 28.00 \text{ kg/m}^2$) and obesity ($BMI \geq 28 \text{ kg/m}^2$)²⁵. Meanwhile, based on the World Health
131 Organization (WHO) criteria, underweight ($BMI < 18.5 \text{ kg/m}^2$), normal weight ($18.5 \leq BMI <$
132 25.00 kg/m^2), overweight ($25 \leq BMI < 30.00 \text{ kg/m}^2$) and obesity ($BMI \geq 30 \text{ kg/m}^2$) were
133 redefined²⁶.

134 **Birth Outcomes**

135 The primary outcome in this study was macrosomia, defined as infants with a birth weight \geq
136 4000 g. Macrosomia was further classified into three grades²⁷, with Grade 1 representing infants
137 weighing between 4000-4499g, Grade 2 between 4500-4999g, and Grade 3 being infants with a
138 birth weight higher than 5000g²⁸.

139 **Covariates**

140 The main covariates in the study included sociodemographic characteristics, lifestyle
141 behaviors and clinical characteristics of mothers during pregnancy, which might be associated with
142 pregnancy outcomes^{29,30}. Sociodemographic characteristics included fetal sex (male, female),
143 parity (Nulliparous, Multiparous), maternal age (≤ 24 years, 25~29 years, 30~34 years, and ≥ 35
144 years), maternal education (high school or less, College/university and Postgraduate), maternal
145 ethnicity (Han and Other), family socioeconomic status (Poor, Moderate and Rich). To measure

146 the household economic level, we used principal component analysis, incorporating variables such
147 as monthly household income, monthly expenditure, housing type, household appliances, and
148 transportation, to construct a family wealth index and divided it into thirds as an indicator for poor,
149 medium, and rich households³¹.

150 Lifestyle behaviors included alcohol drinking before or during pregnancy (Yes, No), passive
151 smoking before or during pregnancy (Yes, No). Alcohol drinking included a variety of alcoholic
152 beverages (e.g. white wine, beer, red wine, etc.) before or during the whole pregnancy; Passive
153 smoking was defined as inhaling smoke for more than 15 min per day and at least one day per
154 week before or during pregnancy.

155 Clinical characteristics included cold/fever before or during pregnancy (Yes, No), folic acid
156 supplementation before or during pregnancy (Yes, No), current gestational diabetes mellitus
157 (GDM) (Yes, No). Folic acid supplementation before or during pregnancy means taking folic acid
158 from the first 3 months of pregnancy to the time of conception. Current GDM is diagnosed in the
159 middle of pregnancy according to Chinese criteria: Fasting plasma glucose (FPG) ≥ 5.1 mmol/L is
160 abnormal fasting glucose; 1-hour postprandial glucose ≥ 10.0 mmol/L is abnormal 1 hour glucose;
161 2-hour postprandial glucose ≥ 8.5 mmol/L is abnormal 2-hour glucose. Those with at least one of
162 the above indicators were diagnosed with GDM³².

163 **Statistical analyses**

164 In univariate analysis, categorical variables were expressed as frequencies (n) and
165 percentages (%) and compared between groups using the χ^2 test or Fisher's exact test. Quantitative
166 variables were presented as median and interquartile range (IQR) when non-normally distributed.

167 In multivariate analysis, we initially employed logistic regression models to examine the
168 correlation between pre-pregnancy BMI of mothers and macrosomia, accompanied by a linear
169 trend test. Subsequently, we investigated this relationship in various subgroups, stratified by
170 maternal age, maternal education, family wealth index, parity, current GDM, and fetal sex.
171 Additionally, we explored the association between pre-pregnancy BMI and the three different
172 grades of macrosomia. To ensure the robustness of the relationship between pre-pregnancy BMI
173 and macrosomia, we conducted three sensitivity analyses. Firstly, we substituted the China BMI
174 criteria with WHO BMI criteria to investigate the association between pre-pregnancy BMI and
175 macrosomia, replicating all the analyses. Secondly, for further validation, we utilized restricted
176 cubic splines with three knots to depict the potentially non-linear association between pre-
177 pregnancy BMI and macrosomia. Finally, we applied polynomial regression to assess the linear
178 relationship between pre-pregnancy BMI and birth weight. All statistical analyses were performed
179 using SAS version 9.4 and R version 4.2.0, and two-sided $P < 0.05$ indicated a significant
180 difference.

181 **Results**

182 **Baseline characteristics**

183 A total of 11438 subjects were included in this study, and pregnant women were divided into
184 four groups based on Chinese BMI criteria: underweight (15.69%), normal weight (67.74%),
185 overweight (13.59%) and obesity (2.98%) (Table 1). The subjects were predominantly aged 25-34
186 years (86.35%), college/university in education (75.88%), Han in ethnicity (98.61%), and
187 moderate in family wealth index (64.74%).

188 The study showed significant differences between different pre-pregnancy BMI groups in
189 age, education, wealth index, folic acid supplementation, parity, and current GDM, but no
190 statistically significant differences in ethnicity, drinking, passive smoke, cold/fever, and fetal sex.

191 **The association of pre-pregnancy BMI and macrosomia**

192 Overall, a total of 645 (5.64%) cases of macrosomia were found in all infants, including 576
193 cases (89.30%) of grade 1 macrosomia, 50 cases (7.75%) of grade 2 macrosomia, and 19 cases
194 (2.95%) of grade 3 macrosomia. Birth weight significantly differed among different pre-pregnancy
195 BMI groups, with higher rates in the overweight and obesity groups ($P < 0.001$). Among pre-
196 pregnancy BMI subgroups, including underweight, normal weight, overweight, and obesity
197 groups, stratified according to Chinese criteria, the incidence rates of macrosomia among infants
198 were 3.12%, 5.37%, 9.14%, and 9.09%, respectively ($P < 0.001$) (Table 2). Notably, the
199 overweight and obesity groups showed the highest prevalence of grade 1 macrosomia (Table 2).

200 After adjusting for all covariates using a logistic model, compared to the normal weight
201 group, the underweight group had a 0.55-fold decreased risk of macrosomia (OR=0.55 (0.41-
202 0.73)), while the overweight group (OR=1.66 (1.35-2.01)) and obesity group (OR=1.66 (1.13-
203 2.45)) had a 1.66-fold increased risk of macrosomia. The linear trend tests were significant,
204 indicating that the risk for macrosomia increased with the increment of pre-pregnancy BMI (Table
205 3). Similarly, compared to the normal weight group, the underweight group had a 0.57-fold
206 decreased prevalence of grade 1 macrosomia (OR=0.57 (0.42-0.76)), while the overweight group
207 (OR=1.62 (1.31-2.01)) and the obesity group (OR=1.55 (1.02-2.35)) had a 1.62-fold and 1.55-fold
208 increased prevalence of grade 1 macrosomia, respectively. Furthermore, when compared to the

Effect size?

209 normal weight group, the overweight group had a 2.80-fold increased prevalence of grade 2
210 macrosomia (OR=2.80 (1.47-5.32)), while the obesity group had a 3.46-fold increased risk of
211 grade 2 macrosomia (OR=3.46 (1.19-10.10)). The linear trend test indicated a progressive increase
212 in grade 1 and 2 macrosomia with increasing pre-pregnancy BMI (Supplementary Table S1).
213 Consistently, in different subgroups stratified by baseline covariates, the relationship between pre-
214 pregnancy BMI and macrosomia was directionally consistent, indicating good result stability
215 (Supplementary Table S2).

216 **Sensitivity analyses**

217 According to the BMI criteria proposed by the WHO, the rate of macrosomia decreased by
218 0.53-fold in the underweight group (OR=0.53 (0.40-0.71)), increased by 1.72-fold in the
219 overweight group (OR=1.72 (1.37-2.16)), and increased by 2.33-fold in the obesity group
220 (OR=2.33 (1.44-3.78)), in comparison with the normal weight group. The linear trend test results
221 were consistent with the results based on China criteria ($P < 0.001$) (Table 4). Using the restricted
222 cubic spline model, results suggested that BMI lower than 25 kg/m² was associated with a
223 decreased risk of macrosomia/grade 1 macrosomia, while BMI higher than 25 kg/m² was
224 associated with an increased risk of macrosomia or grade 1 macrosomia (Figure 2A and 2B). This
225 correlation remains stable in different subgroups stratified by covariates (Supplementary Figures
226 S1 and S2). Additionally, the results of the polynomial regression showed a gradual increase in
227 fetal birth weight with increasing pre-pregnancy BMI levels (Supplementary Figure S3).

228 **Discussion**

229 According to this mother-infant cohort study in Northwest China, we found a prevalence of

230 5.64% of macrosomia in all infants. Pre-pregnancy underweight was associated with a decreased
231 risk of macrosomia adjusting for all possible confounders by logistic regression, while pre-
232 pregnancy overweight and obesity were associated with an increased risk of macrosomia.
233 Moreover, we observed that the risk of macrosomia increased with quantitative pre-pregnancy
234 BMI. Through a variety of sensitivity analysis, this relationship still persisted, suggesting that pre-
235 pregnancy BMI is strongly associated with macrosomia.

236 In our cohort study, women with overweight and obesity had a 1.66-fold increased risk of
237 macrosomia, compared to the normal weight group. A 2008 prospective cohort study in Iran by
238 Sharifzadeh et al. confirmed that pre-pregnancy obesity was associated with an increased risk of
239 macrosomia³³. Clorado et al. based on the prenatal cohort found that for every 1 kg/m² increase in
240 maternal BMI before pregnancy, there was a 5.21 g increase in neonatal adiposity, a 7.71 g increase
241 in defatted weight, and a 0.12% increase in body fat percentage³⁴. Previous studies suggested that
242 pre-pregnancy overweight and obesity are important risk factors for pregnancy complications and
243 adverse perinatal outcomes^{35,36}. Our study results was consistent with some researches that also
244 focused on Chinese. In a Chinese cohort study that included 20,321 mothers and infants, pre-
245 pregnancy overweight and obesity increased the risk of macrosomia by 1.99-fold and 4.05-fold,
246 respectively¹⁷. Similarly, in another Chinese cohort study, pre-pregnancy overweight and obesity
247 increased the risk of macrosomia by 1.92-fold and 2.48-fold, respectively³⁰. A meta-analysis,
248 including 45 studies, showed that maternal pre-pregnancy overweight and obesity increased the
249 risk of macrosomia by 1.67-fold and 3.23-fold, respectively among infants¹⁹.

250 Several mechanisms have been proposed to explain the association between pre-pregnancy

251 overweight and obesity and macrosomia. First, pre-pregnancy overweight and obesity may lead to
252 the increased concentrations of glucose, amino acids and free fatty acids in the pregnant woman's
253 body, thereby increasing the risk of abnormal birth weight in the baby³⁷. Secondly, high pre-
254 pregnancy BMI may lead to an abnormal distribution of adipose tissue, disrupting metabolic and
255 immune functions, and affecting the intrauterine environment during pregnancy, resulting in fetal
256 dysplasia and the development of macrosomia³⁸. Additionally, studies confirm that adipose tissue
257 is resistant to insulin function, further amplifying the risk of fetal macrosomia^{39,40}.

258 In our study, underweight mothers have a 0.55-fold decreased risk of macrosomia in
259 offspring, compared to mothers with the normal weight group. Past findings on the association
260 between pre-pregnancy underweight and macrosomia are inconclusive. Liu et al. systematically
261 reviewed 60 related studies and reported a negative association between low pre-pregnancy BMI
262 and macrosomia⁴¹. In a large cohort study of 105,768 mother-infant pairs, Li et al. demonstrated a
263 correlation between pre-pregnancy underweight and the occurrence of macrosomia, which
264 persisted after adjusting for covariates²⁹. However, a recent cohort study that included 2,210
265 women found no significant association between pre-pregnancy underweight and macrosomia²².
266 The discrepancy in the results may be due to the small sample size in this study. Our findings are
267 consistent with most current studies suggesting that pre-pregnancy underweight is associated with
268 a decreased risk of macrosomia. However, previous studies have shown that pre-pregnancy
269 underweight increased the risk of small-for-gestational-age (SGA) and low birth weight (LBW)¹⁹.
270 Therefore, it may be possible to decrease the risk of macrosomia by regulating weight before
271 pregnancy, but it should be kept within a certain range to prevent an increased risk of other adverse

272 pregnancy outcomes. Further studies should focus on the range of pre-pregnancy weight regulation
273 that decreases the risk of macrosomia without increasing the risk of other adverse pregnancy
274 outcomes.

275 Furthermore, we adopted restricted cubic splines to explore the association between pre-
276 pregnancy BMI and macrosomia. The results showed that as pre-pregnancy BMI increased, the
277 risk of macrosomia among infants progressively ascended. The results of the study remained stable
278 in the subgroups stratified by covariates. Moreover, polynomial regression was further used to test
279 the linear relationship between pre-pregnancy BMI and birth weight of infants. Maternal pre-
280 pregnancy BMI was found to be linearly related to neonate birth weight. These results of restricted
281 cubic splines and polynomial regression confirmed the effects of maternal pre-pregnancy body
282 mass index on neonate macrosomia, and were consistent with the conclusion of logistic regression.
283 From different perspectives, it was clear that the high correlation between pre-pregnancy BMI and
284 macrosomia was confirmed separately.

285 The present study has the largest advantage of its birth cohort design. Data collection through
286 follow-up interviews in conjunction with a hospital medical record system had a low rate of
287 missing visits and provided strong evidence of causal association. Moreover, we conducted a
288 comprehensive analysis using the Chinese and international standards of BMI respectively. In
289 addition, we utilized different statistical models, including logistic regression, restricted cubic
290 spline, and polynomial regression, to explore the relationship between the categorical and
291 continuous BMI with macrosomia.

292 However, there are several limitations in our study that warrant discussion. Firstly, we did

→ Please add discuss about dietary intake, stress, physical activity, exercise and complications during pregnancy including the frequency of antenatal care clinic...

293 not measure the correlation between gestational weight gain and macrosomia in pregnant women

294 Previous studies have indicated that pre-pregnancy BMI, rather than gestational weight gain, is

295 more closely correlated with neonatal birth weight⁴². Consequently, pre-pregnancy BMI has been

296 proposed as an independent predictor of birth weight⁴³. Secondly, even though we replaced the

297 data from the questionnaire with actual height and weight measurements taken during the first

298 antenatal visit (≤ 12 gestational weeks of pregnancy) to mitigate information bias, some

299 discrepancies with the true pre-pregnancy measurements may still exist. Furthermore, in the

300 stratified analysis, the sample size was insufficient in certain subgroups to thoroughly explore the

301 association between pre-pregnancy BMI and macrosomia. Therefore, further research with a larger

302 sample size is required to validate the findings. Finally, while we adjusted for numerous potential

303 confounders, there may still be some residual effects associated with unknown factors.

304 **Conclusions**

305 In conclusion, our study indicates that pre-pregnancy overweight and obesity are risk factors

306 for macrosomia, while pre-pregnancy underweight is also associated with macrosomia. Moreover,

307 the results confirm a significant linear trend in the relationship between the continuous pre-

308 pregnancy BMI and birth weight. These findings suggest that women may be able to potentially

309 decrease the risk of macrosomia by managing their weight before conception.

310 **Corresponding Authors:** Leilei Pei, PhD (pll_paper@126.com) and Pengfei Qu, PhD

311 (xinx3057@163.com). Department of Epidemiology and Biostatistics, School of Public Health,

312 Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Translational

313 Medicine Center Northwest Women's and Children's Hospital, Xi'an 710061, China.

314 **Author Contributions:** Drs Pei and Qu had full access to all the data in the study and take
315 responsibility for the integrity of the data and the accuracy of the data analysis. MXY, YBZ:
316 Writing – original draft. DDZ: Methodology, Investigation. YZ: Data curation, Investigation.
317 DML: Conceptualization, Supervision. LS: Investigation. YM: Investigation. LLP: Funding
318 acquisition, Supervision, Writing– review & editing. PFQ: Data curation, Writing– review &
319 editing.

320 **Conflict of Interest Disclosures:** None reported.

321 **Funding/Support:** This work was supported by the National Natural Science Foundation of China
322 (grant numbers 82103924 and 72174167);

323 **Acknowledgments:** We give sincerely thanks to Northwest Women's and Children's Hospital of
324 China for their efforts in diagnosing macrosomia. Particularly, we are grateful to all participants
325 and to the staff for their striving to collect data.

326 **References**

- 327 1. Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature
328 review. *Ann Nutr Metab.* 2015;66 Suppl 2:14-20.
- 329 2. Ouzounian JG. Shoulder Dystocia: Incidence and Risk Factors. *Clin Obstet Gynecol.*
330 2016;59(4):791-794.
- 331 3. Araujo Júnior E, Peixoto AB, Zamarian AC, Elito Júnior J, Tonni G. Macrosomia. *Best
332 Pract Res Clin Obstet Gynaecol.* 2017;38:83-96.
- 333 4. Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, Gillman MW. Gestational weight
334 gain and child adiposity at age 3 years. *Am J Obstet Gynecol.* 2007;196(4):322.e321-328.

335 5. Mu M, Wang SF, Sheng J, et al. Birth weight and subsequent blood pressure: a meta-
336 analysis. *Arch Cardiovasc Dis.* 2012;105(2):99-113.

337 6. Azadbakht L, Kelishadi R, Saraf-Bank S, et al. The association of birth weight with
338 cardiovascular risk factors and mental problems among Iranian school-aged children: the
339 CASPIAN-III study. *Nutrition.* 2014;30(2):150-158.

340 7. Ezegwui HU, Ikeako LC, Egbuji C. Fetal macrosomia: obstetric outcome of 311 cases in
341 UNTH, Enugu, Nigeria. *Niger J Clin Pract.* 2011;14(3):322-326.

342 8. Koyanagi A, Zhang J, Dagvadorj A, et al. Macrosomia in 23 developing countries: an
343 analysis of a multicountry, facility-based, cross-sectional survey. *Lancet.*
344 2013;381(9865):476-483.

345 9. Salihu HM, Dongarwar D, King LM, Yusuf KK, Ibrahim S, Salinas-Miranda AA. Trends
346 in the incidence of fetal macrosomia and its phenotypes in the United States, 1971-2017.
347 *Arch Gynecol Obstet.* 2020;301(2):415-426.

348 10. Zhao LJ, Li HT, Zhang YL, Zhou YB, Liu JM. [Mobile terminal-based survey on the birth
349 characteristics for Chinese newborns]. *Beijing Da Xue Xue Bao Yi Xue Ban.*
350 2019;51(5):813-818.

351 11. Huang J, Lu QG, Ouyang JY, Yang B, Chu XW, Mao LM. Relationship between pre-
352 pregnancy body mass index, pregnancy weight gain and neonatal birth weight and mode
353 of delivery. *China Maternal and Child Health.* 2013;28(08):1235-1238.

354 12. Liang H, Zhang WY, Li XT. Reference range of maternal body mass gain during pregnancy
355 in China based on the incidence of macrosomia - a multicenter cross-sectional study.

356 Chinese Journal of Obstetrics and Gynecology. 2017;52(03):147-152.

357 13. Kim SY, Dietz PM, England L, Morrow B, Callaghan WM. Trends in pre-pregnancy
358 obesity in nine states, 1993-2003. *Obesity (Silver Spring)*. 2007;15(4):986-993.

359 14. Chu SY, Kim SY, Bish CL. Prepregnancy obesity prevalence in the United States, 2004-
360 2005. *Matern Child Health J*. 2009;13(5):614-620.

361 15. Ma GS, Li YP, Wu YF, et al. [The prevalence of body overweight and obesity and its
362 changes among Chinese people during 1992 to 2002]. *Zhonghua Yu Fang Yi Xue Za Zhi*.
363 2005;39(5):311-315.

364 16. Lai JQ, Yin SA. [The impact of experience in bearing child on the body mass index and
365 obesity in women]. *Zhonghua Yu Fang Yi Xue Za Zhi*. 2009;43(2):108-112.

366 17. Feng P, Wang XY, Long ZW, et al. [The association of pre-pregnancy body mass and
367 weight gain during pregnancy with macrosomia: a cohort study]. *Zhonghua Yu Fang Yi*
368 *Xue Za Zhi*. 2019;53(11):1147-1151.

369 18. Ouzounian JG, Hernandez GD, Korst LM, et al. Pre-pregnancy weight and excess weight
370 gain are risk factors for macrosomia in women with gestational diabetes. *J Perinatol*.
371 2011;31(11):717-721.

372 19. Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X. Pre-pregnancy body mass index in relation to
373 infant birth weight and offspring overweight/obesity: a systematic review and meta-
374 analysis. *PLoS One*. 2013;8(4):e61627.

375 20. Mesman I, Roseboom TJ, Bonsel GJ, Gemke RJ, van der Wal MF, Vrijkotte TG. Maternal
376 pre-pregnancy body mass index explains infant's weight and BMI at 14 months: results

377 from a multi-ethnic birth cohort study. *Arch Dis Child.* 2009;94(8):587-595.

378 21. Ay L, Kruithof CJ, Bakker R, et al. Maternal anthropometrics are associated with fetal size
379 in different periods of pregnancy and at birth. The Generation R Study. *Bjog.*
380 2009;116(7):953-963.

381 22. Liang CC, Chao M, Chang SD, Chiu SY. Impact of prepregnancy body mass index on
382 pregnancy outcomes, incidence of urinary incontinence and quality of life during
383 pregnancy - An observational cohort study. *Biomed J.* 2020;43(6):476-483.

384 23. Stewart AW, Jackson RT, Ford MA, Beaglehole R. Underestimation of relative weight by
385 use of self-reported height and weight. *Am J Epidemiol.* 1987;125(1):122-126.

386 24. Mamun AA, Callaway LK, O'Callaghan MJ, et al. Associations of maternal pre-pregnancy
387 obesity and excess pregnancy weight gains with adverse pregnancy outcomes and length
388 of hospital stay. *BMC Pregnancy Childbirth.* 2011;11:62.

389 25. Hua X, Shen M, Reddy UM, et al. Comparison of the INTERGROWTH-21st, National
390 Institute of Child Health and Human Development, and WHO fetal growth standards. *Int
391 J Gynaecol Obstet.* 2018;143(2):156-163.

392 26. Obesity: preventing and managing the global epidemic. Report of a WHO consultation.
393 *World Health Organ Tech Rep Ser.* 2000;894:i-xii, 1-253.

394 27. Boulet SL, Salihu HM, Alexander GR. Mode of delivery and birth outcomes of
395 macrosomic infants. *J Obstet Gynaecol.* 2004;24(6):622-629.

396 28. Boulet SL, Alexander GR, Salihu HM, Pass M. Macrosomic births in the united states:
397 determinants, outcomes, and proposed grades of risk. *Am J Obstet Gynecol.*

398 2003;188(5):1372-1378.

399 29. Li G, Xing Y, Wang G, et al. Differential effect of pre-pregnancy low BMI on fetal
400 macrosomia: a population-based cohort study. *BMC Med.* 2021;19(1):175.

401 30. Sun Y, Shen Z, Zhan Y, et al. Effects of pre-pregnancy body mass index and gestational
402 weight gain on maternal and infant complications. *BMC Pregnancy Childbirth.*
403 2020;20(1):390.

404 31. Filmer D, Pritchett LH. Estimating wealth effects without expenditure data--or tears: an
405 application to educational enrollments in states of India. *Demography.* 2001;38(1):115-
406 132.

407 32. Ministry of Health of the People's Republic of China. People's Republic of China Health
408 Industry Standard-Diagnosis of gestational diabetes: WS 331-2011 [S]. Beijing: Ministry
409 of Health of the People's Republic of China, 2011.

410 33. Sharifzadeh F, Kashanian M, Jouhari S, Sheikhansari N. Relationship between pre-
411 pregnancy maternal BMI with spontaneous preterm delivery and birth weight. *J Obstet
412 Gynaecol.* 2015;35(4):354-357.

413 34. Starling AP, Brinton JT, Glueck DH, et al. Associations of maternal BMI and gestational
414 weight gain with neonatal adiposity in the Healthy Start study. *Am J Clin Nutr.*
415 2015;101(2):302-309.

416 35. McDonald SD, Han Z, Mulla S, Beyene J. Overweight and obesity in mothers and risk of
417 preterm birth and low birth weight infants: systematic review and meta-analyses. *Bmj.*
418 2010;341:c3428.

419 36. Dempsey JC, Ashiny Z, Qiu CF, Miller RS, Sorensen TK, Williams MA. Maternal pre-
420 pregnancy overweight status and obesity as risk factors for cesarean delivery. *J Matern
421 Fetal Neonatal Med.* 2005;17(3):179-185.

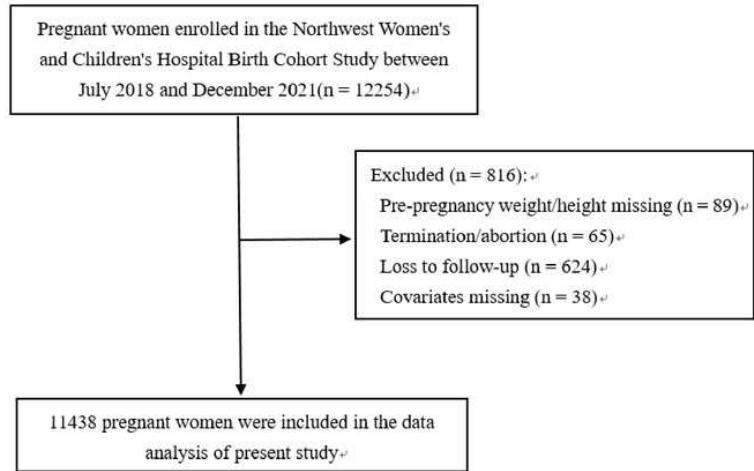
422 37. Hull HR, Thornton JC, Ji Y, et al. Higher infant body fat with excessive gestational weight
423 gain in overweight women. *Am J Obstet Gynecol.* 2011;205(3):211.e211-217.

424 38. Alberico S, Montico M, Barresi V, et al. The role of gestational diabetes, pre-pregnancy
425 body mass index and gestational weight gain on the risk of newborn macrosomia: results
426 from a prospective multicentre study. *BMC Pregnancy Childbirth.* 2014;14:23.

427 39. Agha M, Agha RA, Sandall J. Interventions to reduce and prevent obesity in pre-conceptual
428 and pregnant women: a systematic review and meta-analysis. *PLoS One.*
429 2014;9(5):e95132.

430 40. Vrachnis N, Belitsos P, Sifakis S, et al. Role of adipokines and other inflammatory
431 mediators in gestational diabetes mellitus and previous gestational diabetes mellitus. *Int J
432 Endocrinol.* 2012;2012:549748.

433 41. Liu P, Xu L, Wang Y, et al. Association between perinatal outcomes and maternal pre-
434 pregnancy body mass index. *Obes Rev.* 2016;17(11):1091-1102.


435 42. Abdel Moety GA, Gaafar HM, Ahmed AH. Maternal prepregnancy BMI and gestational
436 weight gain: which correlates more with neonatal birth weight? *Journal of Evidence-Based
437 Women's Health Journal Society.* 2013;3(3):122-126.

438 43. Moore VM, Davies MJ, Willson KJ, Worsley A, Robinson JS. Dietary composition of
439 pregnant women is related to size of the baby at birth. *J Nutr.* 2004;134(7):1820-1826.

440

Figure 1

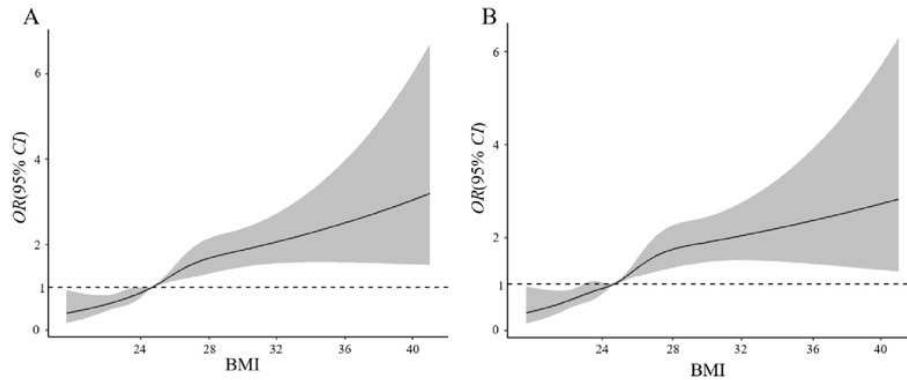

Figure 1 Flow diagram for the study cohort selection

Figure 1 Flow diagram for the study cohort selection

Figure 2

Figure 2 Association of pre-pregnancy BMI with macrosomia (A) and Grade 1 macrosomia (B).

Figure 2 Association of pre-pregnancy BMI with macrosomia (A) and Grade 1 macrosomia (B). Adjusted for maternal age, education level, ethnicity, family financial situation, drinking before or during pregnancy, passive smoke before or during pregnancy, cold/fever before or during pregnancy, folic acid supplementation before or during pregnancy, parity, current GDM, fetal sex.

Table 1(on next page)

Table 1 Comparison of baseline characteristics between the four pre-pregnancy BMI groups.

1 **Table 1** Comparison of baseline characteristics between the four pre-pregnancy BMI groups.

Characteristics	N	Under weight	Normal weight	Overweight	Obesity	χ^2	P value
Patient number	11438	1795	7748	1554	341		
Maternal age group, years						174.342	<0.001
≤24	680	166(9.25)	403(5.20)	88(5.66)	23(6.74)		
25~29	5571	1010(56.27)	3773(48.70)	646(41.57)	142(41.64)		
30~34	4210	540(30.08)	2895(37.36)	630(40.54)	145(42.52)		
≥35	977	79(4.40)	677(8.74)	190(12.23)	31(9.09)		
Educational level						87.827	<0.001
Below high school	1298	185(10.31)	815(10.52)	231(14.86)	67(19.65)		
College/university	8345	1362(75.88)	5598(72.25)	1144(73.62)	241(70.67)		
Postgraduate	1795	248(13.82)	1335(17.23)	179(11.52)	33(9.68)		
Ethnicity						0.770	0.857
Han	11260	1770(98.61)	7623(98.39)	1532(98.58)	335(98.24)		
Other	178	25(1.39)	125(1.61)	22(1.42)	6(1.76)		
Family wealth index						64.902	<0.001
Poor	1374	215(11.98)	879(11.34)	206(13.26)	74(21.70)		
Moderate	7641	1162(64.74)	5154(66.52)	1092(70.27)	215(63.05)		
Rich	2449	418(23.29)	1715(22.13)	256(16.47)	52(15.25)		
Parity						79.455	<0.001
Nulliparous	8299	1437(80.06)	5590(72.15)	1042(67.05)	230(67.45)		
Multiparous	3139	358(19.94)	2158(27.85)	512(32.95)	111(32.55)		
Fetal sex						1.769	0.622
Male	5853	896(49.92)	3982(51.39)	805(51.80)	170(49.85)		
Female	5585	899(50.08)	3766(48.61)	749(48.20)	171(50.15)		
Drinking before or during pregnancy						1.908	0.592
Yes	371	62(3.45)	245(3.16)	49(3.15)	15(4.40)		
No	11067	1733(96.55)	7503(96.84)	1505(96.85)	326(95.60)		
Passive smoke before or during pregnancy						2.175	0.537
Yes	1771	291(16.21)	1173(15.14)	252(16.22)	55(16.13)		
No	9667	1504(83.79)	6575(84.86)	1302(83.78)	286(83.87)		
Cold/fever before or during pregnancy						0.729	0.866
Yes	2461	374(20.84)	1674(21.61)	341(21.94)	72(21.11)		
No	8977	1421(79.16)	6074(78.39)	1213(78.06)	269(78.89)		
Folic acid supplementation before or						273.051	<0.001 ^a

during pregnancy

Yes	11075	1795(100.00)	7385(95.31)	1554(100.00)	341(100.00)		
No	363	0(0.00)	363(4.69)	0(0.00)	0(0.00)		
Current GDM						270.862	<0.001
Yes	2796	285(15.88)	1789(23.09)	587(37.77)	135(39.59)		
No	8642	1510(84.12)	5959(76.91)	967(62.23)	206(60.41)		

2 ^a Fisher exact test.

Table 2(on next page)

Table 2 Relationship between macrosomia and pre-pregnancy BMI.

1 **Table 2** Relationship between macrosomia and pre-pregnancy BMI.

Pregnancy outcomes	N	Under weight	Normal weight	Overweight	Obesity	χ^2/ F	P value
Macrosomia, n (%)						65.855	<0.001
No	10793	1739(96.88)	7332(94.63)	1412(90.86)	310(90.91)		
Yes	645	56(3.12)	416(5.37)	142(9.14)	31(9.09)		
Grade 1 macrosomia	576	52(2.90)	373(4.81)	125(8.04)	26(7.26)	69.821	<0.001 ^a
Grade 2 macrosomia	50	3(0.17)	28(0.36)	15(0.97)	4(1.17)		
Grade 3 macrosomia	19	1(0.06)	15(0.19)	2(0.13)	1(0.29)		
Birth weight(g), Median (IQR)	11438	3230.00(3000.0 0,3500.00)	3330.00(3060.0 0,3600.00)	3400.00(3100. 00,3700.00)	3340.00(3060 .00,3670.00)	114.44 7	<0.001 ^b

2 ^a Fisher exact test; ^b Kruskal–Wallis test.

3 IQR, interquartile range.

Table 3(on next page)

Table 3 Association between pre-pregnancy BMI and macrosomia according to logistic regression analysis.

1 **Table 3** Association between pre-pregnancy BMI and macrosomia according to logistic regression
2 analysis.

Variable	Model 1	Model 2 ^a	Model 3 ^b
	<i>OR (95%CI), P</i>	<i>Adjusted OR (95%CI), P</i>	<i>Adjusted OR (95%CI), P</i>
Pre-pregnancy BMI			
Under weight	0.57(0.43~0.75), <0.001	0.56(0.42~0.75), <0.001	0.55(0.41~0.73), <0.001
Normal weight	1.00	1.00	1.00
Overweight	1.77(1.45~2.16), <0.001	1.79(1.47~2.19), <0.001	1.66(1.35~2.01), <0.001
Obesity	1.76(1.20~2.58), 0.004	1.80(1.22~2.64), 0.003	1.66(1.13~2.45), 0.010
<i>P</i> for trend	<0.001	<0.001	<0.001

3 ^a Model 2 used Model 1 and adjusted for maternal age, education level, ethnicity, and family financial situation. ^b

4 Adjusted for Model 2 and drinking before or during pregnancy, passive smoke before or during pregnancy, cold/fever

5 before or during pregnancy, folic acid supplementation before or during pregnancy, parity, current GDM, fetal sex.

Table 4(on next page)

Table 4 Effects of pre-pregnancy BMI on macrosomia based on the BMI criteria proposed by the WHO.

1 **Table 4** Effects of pre-pregnancy BMI on macrosomia based on the BMI criteria proposed by the
2 WHO.

Variable	Model 1	Model 2 ^a	Model 3 ^b
	<i>OR (95%CI), P</i>	<i>Adjusted OR (95%CI), P</i>	<i>Adjusted OR (95%CI), P</i>
Pre-pregnancy BMI			
Under weight	0.55(0.42~0.73), <0.001	0.55(0.41~0.73), <0.001	0.53(0.40~0.71), <0.001
Normal weight	1.00	1.00	1.00
Overweight	1.85(1.48~2.30), <0.001	1.87(1.50~2.33), <0.001	1.72(1.37~2.16), <0.001
Obesity	2.43(1.51~3.92), <0.001	2.48(1.54~4.02), <0.001	2.33(1.44~3.78), 0.001
<i>P</i> for trend	<0.001	<0.001	<0.001

3 ^a Model 2 used Model 1 and adjusted for maternal age, education level, ethnicity, and family
4 financial situation. ^b Adjusted for Model 2 and drinking before or during pregnancy, passive smoke
5 before or during pregnancy, cold/fever before or during pregnancy, folic acid supplementation
6 before or during pregnancy, parity, current GDM, fetal sex.