

1 **Pelvis-Trunk coordination strategies differ across preparatory court movement distance**
2 **during tennis forehand**

3 Xiangwei Meng ^{Equal first author, 1}, Youngsuk Kim ^{Equal first author, 2}, Shuai Wang ², Ming Li ^{Corresp., 3},
4 Sukwon Kim ^{Corresp., 2}

5 ¹School of Sports and Health, Guizhou Medical University, Guiyang, Guizhou, China

6 ²Physical Education, jeonbuk national university, Jeonju, Jeollabukdo, Republic of South Korea

7 ³School of Education and Sports Science, Yangtze University, Jingzhou, Hebei, China

8 Corresponding Authors: Ming Li, Sukwon Kim

9 Email address: lming36@163.com, rockwall@jbnu.ac.kr

10 **Abstract**

11 **Objectives:** To examine the effects of on-court movement distances on pelvis-trunk coordination
12 during forehand strokes. **Methods:** Eighteen male college tennis athletes participated in this study. A

13 one-way repeated-measures ANOVA with Statistical Parametric Mapping was used to determine
14 differences in pelvis-trunk coordination in the transverse plane across the three movement
15 distancesconducted, and Pearson's correlation analysis was used to determine the relationships
16 between each of the four pelvis-trunk coordination features on the dominant and non-dominant side

17 and racket speed. **Results:** Significant differences were observed for different movement distances in
18 the non-dominant pelvis-trunk continuous relative phase (CRP) during 23-41% of the acceleration
19 phase ($p=0.016$, $F_{2,34}=5.901$) and in the dominant pelvis-trunk CRP during 76-100% of the acceleration
20 phase ($p=0.016$, $F_{2,34}=5.946$). For the minimum distance, significant correlations with racket speed
21 were found in the mean CRP ($r=-0.889$, $p=0.001$) and peak CRP ($r=-0.488$, $p=0.04$) for the non-
22 dominant side, and the mean CRP ($r=-0.478$, $p=0.045$) for the dominant side. Regarding medium
23 distances, significant correlations with racket speed were observed for the non-dominant side in the
24 mean CRP ($r=-0.493$, $p=0.037$), peak CRP ($r=-0.628$, $p=0.005$), and maximum positive CRP slope
25 ($r=0.477$, $p=0.046$). For the dominant side, significant correlations with racket speed were noted for
26 peak CRP ($r=0.551$, $p=0.018$) and maximum positive CRP slope ($r=0.514$, $p=0.029$). At the maximum
27 distance, significant correlations with racket speed were identified for the dominant side in the
28 maximum positive CRP slope ($r=0.580$, $p=0.012$) and maximum negative CRP slope ($r=0.566$,
29 $p=0.014$); however, there was no significant difference in racket speed at impact when approaching
30 from different distances. **Conclusion:** These findings underscore the critical role of pelvis-trunk

Commented [A1]: I am not too fond of titles in conclusion format. I think the title should indicate the objective of the study. But it is only an opinion

Commented [A2]: Explain in one or two lines what the striking protocol consisted of, before discussing the statistics.

Commented [A3]: Indicate distances in brackets

31 coordination in enhancing racket speed, particularly under varying task constraints. Coaches and
32 players should focus on developing adaptable coordination strategies for optimizing performance
33 across different movement distances.

34 **Keywords:** CRP, SPM, Coupling, Variations, Tennis, Distance-dependent

35 **Introduction**

36 In modern tennis, the forehand is the most commonly executed stroke^{1,2}, with more than 80% of
37 shots during a match occurring while the player is moving^{3,4}. A key challenge when
38 performing the forehand is the court distance players must cover rapidly to intercept and successfully
39 return their opponent's shot^{3,4}. Both tennis coaches and players agree that without efficient court
40 movement, even the most skilled strokes lose their effectiveness⁵. However, despite its significance,
41 limited research has examined the mechanics of court movement or explored perception-action
42 coupling in tennis forehands. Giles and Reid⁵ investigated how move speed impacts stroke
43 kinematics in professional male and female players. they found that female players reduced their
44 preparatory trunk rotation by 14% when moving at high move speeds, whereas male players
45 maintained similar racket head speed. Unfortunately, this study focused solely on kinematic variations
46 in isolated joints or segments during specific events, without exploring the relationship between these
47 variations and racket speed.

48 Pre-impact racket speed is a primary predictor of the ball speed
49 generated by a tennis stroke^{6,7}. Previous research has predominantly examined the relationship between
50 biomechanical parameters of individual joints or segments, such as the shoulder⁸, the trunk^{9,10}, and
51 pelvis¹¹ and racket speed. However, body segments are mechanically linked, meaning the movement
52 of one segment induces predictable movements in connected joints, creating a coupling effect within
53 the kinematic chain¹². the sequence or timing of movements also means that contributions to
54 movement outcomes are a factor in biomechanical contributions. Furthermore, analyzing only isolated
55 segments or event-specific kinematics may offer an incomplete understanding of the motor control
56 strategies required for executing complex movements that involve the coordination of multiple
57 segments¹³.

58 In many sports, high-speed upper extremity movements require coordination that transfers forces
59 from the lower extremities through the pelvis and trunk to the upper body. Axial rotation of the pelvis
60 and trunk in the transverse plane is considered a critical link in whole-body coordination, a concept
61 supported by practitioners who emphasize training the trunk and core musculature. Less skilled athletes
62 often exhibit “blocked” (unison pelvis and trunk rotation)

Commented [A4]: Very long sentence. I think it could be divided

63 during high-effort movements, such as overarm throwing or striking. However, as skill
64 improves, this may transition to “differentiated” rotation¹⁴. These early qualitative observations have
65 produced mixed findings in biomechanics, motor development, and motor control research, as axial
66 rotations of the pelvis and trunk depend on various factors such as skill level, stance, and task
67 constraints. Sequential axial rotation of the pelvis and trunk over a short period is typically small and
68 has not consistently been observed in highly skilled professional athletes, such as in baseball pitching¹⁵
69 or the full golf swing^{16,17}. Similar variations in pelvis-leg transverse plane coordination have been
70 reported in professional soccer players during kicking¹⁸. In summary, while sequential coordination
71 between the upper and lower extremities is generally strong in maximum-effort movements, the role

72 sequential/differentiated pelvis and trunk axial rotation (a.k.a. the X-factor in golf
73 ¹³⁾ remains unclear across many sports.

74 Multiple studies on the golf swing and regression analyses of large groups of golfers have demonstrated

75 Given the gaps identified in the literature, this study aimed to examine how different movement
76 distances affect pelvis-trunk coordination. Another secondary aim was to investigate the
77 relationship between coordination features and racket speed during the forehand stroke. As movement
78 distance increases, the system is expected to require more resources to respond to perturbations, so we
79 hypothesize that this would result in significant differences in the pelvis-trunk coordination pattern,
80 with greater variability, and that a larger number of coordination features would show significant
81 correlations with racket speed.

82 Materials and Methods

83 Participants

84 Eighteen male college athletes (age: 23.6 ± 2.2 years, body mass: 75.1 ± 6.5 kg, height: $175.2 \pm$
85 6.8 cm, and experience: 10.9 ± 3.1 years) from a local college tennis team participated in this study.
86 The athletes had an International Tennis Number (ITN) ≥ 4 , meeting the ITN standards, and trained
87 for 20 hours per week. To meet the inclusion criteria, each participant was required to have completed
88 a minimum of six years of structured tennis training and competition. Additionally, all participants
89 were required to be in good health, with no current or chronic injuries in the past six months. To ensure
90 adequate statistical power of 80%, the required sample size was calculated using G*Power software
91 (version 3.1.9.7). The repeated-measures analysis indicated that at least 18 participants were needed,
92 with parameters set at $\alpha = 0.05$, $\beta = 0.8$, and $r = 0.70$. This study adhered to the principles outlined in
93 the Declaration of Helsinki. The study protocol was explained to all participants, and written informed

Commented [A5]: Better to use the Latin term i.e.

Commented [A6]: Space

Commented [A10]: Terms are joined. Revise throughout the document

Commented [A11]: Nothing was said about this second objective in the introduction. Include a paragraph

Commented [A12R11]:

Commented [A13]: Improve

94 consent was obtained. The protocol was approved by the Jeonbuk National University Institutional
95 Review Board and conducted in accordance with relevant guidelines and regulations (JBN2022-04-
96 008-002).

97 **Protocol**

98 To minimize the effects of learning and fatigue on the formal experiments, all participants visited
99 the laboratory twice. During their first visit, demographic variables were recorded, and a maximum
100 movement distance test was conducted. Participants first completed a specific warm-up program,
101 which included five minutes of low-intensity sideways and acceleration runs, followed by at least ten
102 minutes of groundstrokes at submaximal speed. After the warm-up, the maximum movement distance
103 test was performed. In this test, participants self-selected a distance and executed forehand strokes
104 using crossover step footwork, directing the ball toward the center of a circle with a 1-meter diameter
105 positioned above the ball machine. All participants followed a standardized down-the-line stroke
106 protocol⁵, and adopted an open stance for varying movement distances. Consistent with previous
107 studies, a ball machine (The Tennis Ball Machine PRO, Seoul, South Korea) delivered new balls
108 (Wilson TRAINER) with a standard rotation and speed (25.3 ± 0.4 m/s) to the same stroke position
109 through machine speed model setting for each participant^{1,10}. To replicate the environment of a real
110 competition, the circle was placed approximately 6 meters from the participant and 1.3 meters above
111 the ground, reflecting the attacking shots scenarios and the net
112 height. The distance was gradually increased in half-length increments from the ground to the left or
113 right greater trochanter of the femur for each participant
114 until they could no longer effectively execute the forehand stroke technique or
115 maintain accuracy. The maximum movement distance was recorded, and the mean of five trials was
116 used to determine three distances: (a) 100%, (b) 75%, and (c) 50% of the maximum movement distance,
117 reflecting the different preparatory court movement task constraints ([Figure 1a](#)). In this study, the
118 average maximum movement distance was 3.47 ± 0.21 meters.

119 Formal experiments were conducted after a minimum of 48 hours. Participants were instructed to
120 avoid caffeinated beverages for at least eight hours prior to the trial. All participants were tested at the
121 same time of day and were required to wear their own tennis shoes and use their own rackets during
122 the test to minimize the influence of external factors on stroke performance. A single researcher applied
123 57 reflective markers²² (14 mm; Biomech Marker Set, OptiTrack, Corvallis, OR, USA) to specific
124 anatomical landmarks on the participants' bodies ([Figure 1b](#)). A 15-segment model was created,
125 including the feet, shanks, thighs, pelvis, trunk, head, bilateral upper arms, forearms, and hands.

Commented [A14]: Sounds reiterative...Put here and remove from above

126 Additionally, four markers were placed on the tennis racket, positioned at the 3 o'clock and 9 o'clock
127 positions on the racket head and shaft to capture its trajectory¹⁰. The same warm-up program from the
128 first laboratory visit was performed to ensure all participants had a similar stroke feeling as in a match
129 scenario and adapted to the markers attached to their bodies. To minimize learning effects, the ball
130 was placed in the machine at random intervals unknown to the participants. They were instructed to
131 stroke the ball with maximum effort, aiming for accuracy by hitting the circle with down-the-line
132 strokes. The first five successful strokes at each distance were included for further analysis. Participants
133 rested for more than two minutes between trials, or until they reported no fatigue, to ensure they
134 maintained their initial performance levels. After each stroke, participants promptly returned to the
135 starting position. The impact height was adjusted according to the position of each participant's hip
136 joint by adjusting the launch angle of the machine^{1,10}.

137 [\[Figure 1\]](#)

138 **Fig. 1.** Set up description: (a) marker spot position; (b) experiment environment simulation. The black
139 dotted line represents the maximum movement distance; the green dotted line represents the medium
140 movement distance; the red dotted line represents the minimum movement distance; and the arrow
141 represents the move direction.

142 **2.3 Data collection**

143 A motion capture system (OptiTrack, Natural Point, Inc., Corvallis, OR, USA) equipped with 13
144 high-resolution cameras was used to record the 3D trajectory of the reflective markers during the
145 forehand stroke motion at a frame rate of 240 Hz, from the start position until the return to the start
146 position. Static models were generated for each participant following a standing calibration trial to
147 determine individual body segment parameters. Reflective tape was applied to the tennis ball to
148 accurately capture the moment of impact.

149 **2.4 Data processing**

150 The raw data were imported into Visual 3D software (Professional 6.0; C-Motion Inc.,
151 Germantown, MD, USA) and low-pass filtered using a fourth-order, zero-lag Butterworth filter with a
152 cutoff frequency of 6 Hz^{22,23}. The pelvis and trunk rotation angles in the transverse plane were
153 calculated by the distal segment relative to the proximal segment using an X-Y-Z cardan rotation
154 sequence¹⁸. Specifically, the dominant pelvis angle was calculated as right thigh to pelvis, the non-
155 dominant pelvis angle was calculated as left thigh to pelvis, and trunk angle was calculated as pelvis
156 relative to trunk¹⁸. Angular velocities were calculated from the first-order derivatives of the angles
157 using Visual 3D software. For right-handed players, the right and left sides were defined as the
158 dominant and non-dominant pelvis and trunk, respectively. To standardize the data, global mediolateral

Commented [A15]: What angle is this? Could the authors show an image?

159 data for the two left-handed players were reversed, allowing all players to be analyzed as right-
160 handed²⁴.

161 The phase of interest was the period from the beginning of the forward rotation of the racket to
162 the moment of impact, defined as the acceleration phase. This phase was identified by analyzing the
163 trajectories of the markers on the racket head and the reflective markers on the ball²⁴; both stroke events
164 were visually inspected and confirmed using Visual 3D and video recordings. Additionally, the
165 resultant speed of the racket was computed in Visual 3D as the 3D resultant velocity of the
166 racket in three planes of motion at the one frame before impact^{1,10}.

Commented [A16]: Double space

Commented [A17]: improve

167 A custom MATLAB code (version R2022b; MathWorks, Natick, MA, USA) was used to compute
168 the non-dominant and dominant pelvis-trunk CRP curves. Consistent with a previous study of golf
169 swing¹³, CRP curves were established using four steps. First, joint data were normalized to 101 data
170 points corresponding to the acceleration phase. Second, a phase plane for each joint was created by
171 plotting the angle (θ) and angular velocity (ω), with values normalized to their relative minimum and
172 maximum, resulting in a range from -1 to 1. Third, the phase angle (ϕ) was calculated calculated at
173 each data point as $\phi = \tan^{-1}(\omega/\theta)$. Finally, the CRP angle was calculated as ϕ pelvis - ϕ trunk.

Commented [A18]: Repeated Word

174 A CRP value of 0° indicated that the two joints were moving in the same direction (“in-phase”),
175 while values of -180° or 180° indicated that the joints were moving in opposite directions (“out-of-
176 phase”). Positive CRP values signified that the trunk position was ahead of the pelvis, and a positive
177 slope denoted that the trunk was rotating faster than the pelvis, whereas a negative slope indicated the
178 opposite^{13,20}. Variability was calculated as the standard deviation of the CRP data points across the
179 acceleration phase for all trials and participants.

Commented [A19]: Change verb

180 Coordination pattern features

181 To evaluate the relationship between pelvis-trunk coordination and racket speed at impact, the
182 following features of the CRP were extracted: a) the mean value of the CRP, to quantify the average
183 difference in rotation movement between the pelvis and trunk segments; b) the peak value of the CRP,
184 to identify the timing of changes in the dynamic pelvis-trunk coordination pattern; c) the maximum
185 positive CRP slope, to measure the rate at which the trunk rotates faster than the pelvis; and d) the
186 maximum negative CRP slope (slope = $[Y_2 - Y_1]/[X_2 - X_1]$), to measure the rate at which the pelvis
187 rotates faster than the trunk. Four features were extracted from the CRP curves for both the non-
188 dominant and dominant sides. Microsoft Excel (version 2019; Microsoft Corp., Redmond, WA, USA)
189 was used for all feature extractions and calculations. To determine the relationship between inter-

190 segment coordination features and racket speed, players were categorized into two subgroups based on
191 more homogeneous racket speeds at impact observed at each movement distance.

Commented [A20]: It is not understood. Clarify

192 2.6 Statistical analysis

193 To test the hypothesis that movement distances have no effect on the pelvis-trunk CRP, the entire
194 time series was statistically examined using Statistical Parametric Mapping (SPM) one-way repeated-
195 measures ANOVA. Frist, the test statistics (SPM{F} and SPM{t}) were calculated. The F and t-
196 statistics are qualitatively the same as the effect sizes, and can be used as indicators of practical
197 significance. Random field theory was applied to control the Family-wise type I error rate via a
198 smoothness-dependent correction for multiple comparisons, with the family-wise type I error rate set
199 at 0.05. The critical threshold (F* or t*) is calculated, and if the test statistic trajectory exceeded the
200 critical thresholds, the null hypothesis was rejected, and the difference was considered statistically
201 significant. Finally, the p-value was calculated for each suprathreshold cluster. If a significant main
202 effect was identified, paired comparisons were conducted using SPM{t} tests with Bonferroni
203 corrections to determine the location of the differences. The alpha level for pairwise contrasts was
204 adjusted for the number of comparisons per dependent variable (N = 3, $\alpha = 0.017$). SPM analyses were
205 executed using the open-source code (www.spm1d.org) within the MATLAB software.

206 The normality of discrete CRP feature data was analyzed using the Shapiro-Wilk test, and all data
207 were confirmed to be suitable for parametric analysis. A one-way ANOVA was used to assess whether
208 racket speeds differed when the ball was impacted at the three movement distances. Pearson's
209 correlation analysis was conducted to examine the relationships between CRP features and racket
210 speed. All statistical analyses were conducted using SPSS (SPSS Inc., Chicago, IL, USA), and the
211 statistical significance level was set at $p < 0.05$.

212

213 Results

214 At impact, racket speed was 29.9 ± 4.7 m/s for the minimum movement distance, 30.4 ± 4.8 m/s
215 for the medium movement distance, and 29.2 ± 2.1 m/s for the maximum movement distance, with no
216 significant differences observed.

Commented [A25]: include p value

217 The mean and standard deviation of the non-dominant and dominant pelvis-trunk CRP curves
218 during the acceleration phase are presented in Figure 2. The results of the SPM one-way repeated-
219 measures ANOVA indicated a significant main effect of movement distance on the non-dominant
220 (Figure 2a, 23–41%, $p=0.016$, $F_{2,34}=5.901$) and dominant (Figure 2b, 76–100%, $p=0.005$,

221 $F_{2,34}=5.946$) pelvis-trunk CRP during the acceleration phase. However, post-hoc analysis using the
222 SPM{t} test revealed no significant differences in CRP curves between the non-dominant and
223 dominant pelvis-trunk across conditions.

224 Table 1 presents the correlation coefficients between pelvis-trunk coordination features and racket
225 speed at impact for different movement distances. Notably, three, five, and two CRP features were
226 significantly correlated with racket speed for the minimum, medium, and maximum movement
227 distances, respectively. At the minimum movement distance, significant correlations with racket speed
228 were observed for the mean CRP ($r = -0.889$, $p = 0.001$) and peak CRP ($r = -0.488$, $p = 0.04$) for the
229 non-dominant side, as well as for the mean CRP ($r = -0.478$, $p = 0.045$) for the dominant side. For the
230 medium movement distance, significant correlations with racket speed were found for the mean CRP
231 ($r = -0.493$, $p = 0.037$), peak CRP ($r = -0.628$, $p = 0.005$), and maximum positive CRP slope ($r = 0.477$,
232 $p = 0.046$) for the non-dominant side. Significant correlations were also observed for the peak CRP (r
233 $= 0.551$, $p = 0.018$) and maximum positive CRP slope ($r = 0.514$, $p = 0.029$) for the dominant side. At
234 the maximum movement distance, significant correlations with racket speed were identified for the
235 maximum positive CRP slope ($r = 0.580$, $p = 0.012$) and maximum negative CRP slope ($r = 0.566$,
236 $p = 0.014$) for the dominant side.

237 Figure 3 presents the mean and standard deviation of the CRP curves for two subgroups: (1) the
238 nine participants with the fastest racket speeds and (2) the nine participants with the slowest racket
239 speeds.

240 [Table 1]

241 [Figure 2]

242 **Fig. 2.** Non-dominant and dominant pelvis-trunk continuous relative phase (CRP) curves and standard
243 deviations in different movement distances during the acceleration phase; the black bar represents the
244 time and SPM statistics results during which the differences occurred

245 [Figure 3]

246 **Fig. 3.** Mean and standard deviation of the continuous relative phase (CRP) curves of the nine
247 participants with the fastest racket speed (solid line) and the other nine participants with the slowest
248 racket speed (dashed line) at different movement distances

249 Discussion

250 The findings of the present study supported several hypotheses, demonstrating that pelvis-trunk
251 The
252 findings of the present study supported several hypotheses, demonstrating that pelvis-trunk

253 coordination varied in transverse plane on both the dominant and non-dominant sides with changes in
254 movement distance. Furthermore, as movement distance increased, there was a disproportionate
255 change in the number of coordination features significantly correlated with racket speed.

Commented [A26]: Change term disproportionate... Proportion refers to something

256 Pelvis-trunk CRP at different movement distances

257 Consistent with our hypothesis, a significant main effect of movement distance on pelvis-trunk
258 CRP was observed. As movement distance increased, CRP values for non-dominant pelvis-trunk
259 coordination progressively decreased during the pre-acceleration phase, indicating a reduction in the
260 pelvis's posterior rotation position relative to the trunk. Conversely, CRP slopes for dominant
261 pelvis-trunk coordination progressively increased during the post-acceleration phase, suggesting that
262 the pelvis's anterior rotation was faster than the trunk's. These variations in pelvis-trunk
263 coordination patterns align with findings from a study by Giles and Reid ⁵, which examined the effect
264 of different entry speeds (analogous to movement distance in our study) on professional female players.
265 Their study reported a decrease in trunk rotation prior to ball impact. However, trunk rotation in
266 professional male players was unaffected by entry speed, likely due to differences in skill levels.
267 The college athletes in our study demonstrated hitting strategies resembling those of professional male
268 The college athletes in our study demonstrated hitting strategies resembling those of professional male players when performing a simpler task.
269 However, in more extreme tasks, the pattern of pelvis-trunk coordination contradicted the typical
270 proximal-to-distal sequence observed in the kinematic chain. The strategy for addressing the “degrees
271 of freedom problem” appeared to depend on the interaction between movement distance and expertise
272 level^{5,25,26}

Commented [A27]: Could you explain why this modification happens?

Commented [A28]: Continue explaining this a little

285 Regarding the temporal region where the significant main effect of movement distance occurred,
286 the SPM statistics indicate that the non-dominant pelvis-trunk CRP adopted an in-phase coupling
287 strategy during the pre-acceleration phase (23-41%). This suggests a decrease in the pelvis-trunk
288 separation angle, which can be explained by the stretch-shortening cycle principle¹³. To counteract the
289 increased lateral momentum and ground reaction force generated by greater movement distances,
290 players delay the X-factor stretch²⁰.
291 In contrast, the dominant pelvis-trunk CRP was observed during the post-acceleration phase (76-
292 In
293 contrast, the dominant pelvis-trunk CRP was observed during the post-acceleration phase (76-100%).
294 The CRP curves reveal that the slope increases disproportionately compared to the absolute CRP value
295 as movement distance increases, suggesting that muscular strength may play a more critical role than
296 range of motion. This interpretation aligns with findings by Seeley, et al. ²⁷ who reported that
297 maintaining higher post-impact ball speeds was more dependent on peak joint angular velocity than on
298 peak joint angle, which disproportionately increased. The trunk as the distal link
299 in the kinetic chain during tennis strokes, exhibits minimal relative change compared to the pelvis. This
300 likely ensures stroke accuracy and maintains consistency in distal movement. These findings align with
301 the “leading joint hypothesis”, which emphasizes the importance of proximal joint coordination in
302 facilitating effective distal movements^{24,28}. Indeed, since the mean number of strokes required to obtain
303 five successful trials was 5.8 ± 0.6 and 5.9 ± 0.7 at the minimum and maximum movement distances,
304 respectively, accuracy was not negatively impacted by increases in movement distance. This may
305 explain why differences in dominant pelvis-trunk CRP at different movement distances were observed
306 prior to the stroke. The time-series data provided by the SPM approach highlight the role of non-
307 dominant and dominant pelvis-trunk coupling in adapting to task variations across different temporal
308 regions. We suggest that players, particularly those engaged in unilateral motor skills such as tennis,
309 should focus on strengthening core muscles, including the external oblique abdominal muscles, to
310 enhance the non-dominant side’s ability to initiate body rotation and maintain dynamic balance.
311 Further analysis revealed that coordination variability (standard deviation) in the dominant pelvis-
312 trunk was lower than in the non-dominant pelvis-trunk across different movement distances, consistent
313 with the findings of Brito, et al. ²⁹ regarding a 1.5 meters moving distance forehand stroke task. In
314 contrast, a study on golfer’s downswings by Choi, et al. ¹³ found smaller coordination variability in the
315 dominant pelvis-trunk compared to the non-dominant side. A possible explanation for this difference
316 is the absence of task constraints in the golf downswing. As movement distance increased, coordination
317 variability in both the non-dominant and dominant pelvis-trunk also increased, likely due to the

Commented [A29]: Explain further

Commented [A30]: Difficult to understand (explain better)

Commented [A31]: Explain further

Commented [A32]: Further explanation

Commented [A33]: Put better in parentheses. Use the citation in parentheses whenever possible

318 increased task demands on the system, which require more resources to achieve the task goal and
319 consequently greater variability for increased flexibility^{30,31}. However, Giles and Reid⁵ reported that
320 professional male players maintained stable trunk postures on both the non-dominant and dominant
321 sides as move speed increased, which could be attributed to skill level inconsistencies influencing the
322 results²⁵. Findings from golf support Newell's ecological dynamics theory, which posits that task
323 constraints (e.g., movement distance) and self-organization (e.g., skill level) should both be considered
324 when analyzing complex temporal and spatial actions³². Notably, smaller variability might result in a
325 more concentrated distribution of stress across tissues, potentially increasing cumulative loads on
326 internal body structures. This could contribute to mechanisms of repeated loading and high torsional
327 stress, leading to overuse injuries in the trunk and lower back of professional athletes^{30,33,34}. This
328 finding may inform injury prevention strategies, future prospective training research still need to
329 confirm this hypothesis. Players employing
330 varied techniques to develop racket speed while minimizing injury risk, such as different stances and
331 stroke directions may be used as potential application in the future.

Commented [A34]: There is an article whose objective is to analyze motor variability in the case of tennis using inertial sensors. Perhaps you can extract some information from that article at this point. In their case, they found greater variability in the trunk in the case of the forehand and backhand than in the case of the serve

<https://journals.sagepub.com/doi/abs/10.1177/17543371231156266>

Commented [A35]: To clarify, it is not understood. Or justify with some reference

332 Relationship between CRP features and racket speed

333 When comparing the CRP curves with racket speed, a trend emerged indicating that players with
334 the fastest racket speeds adopted different pelvis-trunk coordination strategies on the non-dominant
335 side compared to those with the slowest racket speeds, particularly at the minimum movement distance.
336 For players with the slowest racket speeds, the trunk played a dominant role throughout the movement.
337 Conversely, for players with the fastest racket speeds, the pelvis dominated from 0% to the peak CRP,
338 while the trunk took over from the peak CRP to 100% during the acceleration phase. The mean CRP
339 showed a moderate to large negative correlation (Table 1) with
340 racket speed
341 suggests that players with the fastest racket speeds tend to exhibit a greater pelvis-trunk separation
342 angle and a longer backswing distance under simple task constraints. This phenomenon aligns with the
343 principle of the stretch-shortening cycle, where active muscles generate a powerful force during the
344 acceleration phase through concentric shortening when immediately preceded by counter rotation.
345 revered by an eccentric muscle action^{35,36}. Additionally, the correlation
346 coefficient for peak CRP on the non-dominant side ($r = 0.488$, Table 1) likely highlights the
347 importance of precise timing between the stretching and shortening phases in maintaining robust racket
348 speed during non-dominant pelvis-trunk coordination^{10,37}. These findings underscore the critical role
349 of non-dominant pelvis-trunk coupling in generating racket speed under lower task constraints. This
350 observation supports prior research emphasizing the non-dominant side's contribution to racket speed

Commented [A37]: I don't know if this thing of comparing the fastest with the slowest is entirely correct... Not indicated in the study objective

Commented [A38]: Delete point

Commented [A39]: It is bold to make this claim, considering that no EMG was used. Perhaps it should be clarified that this is an unconfirmed hypothesis

351 in sports such as table tennis and golf^{13,38}. Consequently, future research should focus on training
352 programs aimed at strengthening the rotational muscle groups of the non-dominant pelvis, which may
353 be a potential application to enhance racket speed and overall performance.

Commented [A40]: Space missing

354 At the medium movement distance, the increase in the number of coordination features showed a
355 At the medium movement distance, the increase in the number of coordination features showed a
356 The current study had several limitations. In terms of the study population, the selection of skilled
357 male athletes was limited to the one college. In addition, racket speed likely distortions by data
358 smoothing at the moment of impact. When interpreting the results of this study, it is important to
359 acknowledge that pelvis-trunk coordination represents just one component of the complex movements
360 involved in the tennis forehand. This study specifically focused on task constraints and did not consider
361 potential interactions with other factors, such as self-organizing and environment elements (e.g.,
362 unanticipated situations, fatigue). Given the dynamic nature of tennis, it is reasonable to hypothesize
363 that the ability to adapt to unanticipated scenarios and the physiological and psychological fatigue
364 associated with match play could influence pelvis-trunk coordination and its relationship to
365 performance. Individual variability in player strategies was not considered in many of the analyzed
366 variables. The decision not to evaluate players individually was made to identify broader trends in
367 pelvis-trunk coordination during forehand strokes, rather than focusing on specific strategies.
368 However, individual differences may play a critical role in performance outcomes. Future research
369 should investigate whether individual coordination patterns are linked to performance metrics, such as
370 racket speed, to deepen our understanding of how specific biomechanical factors contribute to optimal
371 performance.

Commented [A45]: I would set a future study objective more
related to what the authors themselves have done

374 **Conclusions**

375 This study highlights the complex relationship between pelvis-trunk coordination and racket
376 speed during tennis forehand strokes across varying movement distances. While racket speed remained
377 consistent across movement distances, significant variations in pelvis-trunk coordination were
378 observed, particularly during the acceleration phase. These variations were influenced by movement
379 distance, with distinct coordination features correlating with racket speed at each distance.
380 These findings emphasize the dynamic nature of coordination strategies in response to varying task
381 These findings emphasize the dynamic nature of coordination strategies in response to varying task

382 These findings emphasize the dynamic nature of coordination strategies in response to varying task
383 constraints and underscore the importance of core muscle activation for effective pelvis-trunk coupling.
384 The results also revealed that coordination variability increased with task demands, suggesting that
385 players require greater neuromuscular flexibility to maintain optimal performance at higher movement
386 distances. Furthermore, this study supports the notion that developing flexibility and coordination in
387 both non-dominant and dominant pelvis-trunk movements is essential for maximizing racket speed.
388 Coaches and players should focus on improving coordination strategies that can be applied across
389 different movement distances to optimize performance. Future research should investigate the impact
390 of individual differences in coordination patterns and their relationship to performance, particularly
391 under the complex and unpredictable conditions encountered during match play.

392 Key points

- 393 ● Movement Distance **Influences Pelvis-Trunk Coordination**: Significant changes in pelvis- trunk
394 coordination were observed as movement distance increased in skilled male player, particularly
395 during the pre- and post-acceleration phases, highlighting the adaptability of coordination
396 strategies to varying task demands.
- 397 ● Correlation Between Coordination Features and Racket Speed: Key coordination features, such as
398 mean and peak CRP values, were significantly correlated with racket speed at different movement
399 distances, emphasizing the role of pelvis-trunk coupling in generating higher racket speeds.
- 400 ● Confirmed Previous Reports of Increased Coordination Variability
401 : As movement distance increased, greater variability in
402 pelvis-trunk coordination was observed in skilled male player, indicating the necessity of greater
403 flexibility and neuromuscular strategies to sustain performance under higher task constraints.
- 404 ● Non-Dominant Peak CRP tended to be associated with faster
405 Racket Speed: Non-dominant side coordination, particularly the rotational speed of the trunk
406 relative to the pelvis in transverse plane, was tended to be associated with faster racket speeds,
407 especially under lower task constraints.

408 Acknowledgments

Commented [A46]: Why do you use capital letters? Does the journal ask for it?

409 The authors thank the Jeonju Tennis Association for their contribution to the recruitment of
410 participants and also thank Todd Pataky for all his help and advice in using statistical parametric
411 mapping.

412 **References**

413 1 Landlinger, J., Lindinger, S. J., Stögg, T., Wagner, H. & Müller, E. Kinematic differences of
414 elite and high-performance tennis players in the cross court and down the line forehand.
415 *Sports Biomech* **9**, 280-295 (2010). <https://doi.org/10.1080/14763141.2010.535841>

416 2 Reid, M., Morgan, S. & Whiteside, D. Matchplay characteristics of Grand Slam tennis:
417 implications for training and conditioning. *J Sports Sci* **34**, 1791-1798 (2016).
418 <https://doi.org/10.1080/02640414.2016.1139161>

419 3 Fernandez, J., Mendez-Villanueva, A. & Pluim, B. M. Intensity of tennis match play. *Br J
420 Sports Med* **40**, 387-391; discussion 391 (2006). <https://doi.org/10.1136/bjsm.2005.023168>

421 4 Giles, B., Peeling, P. & Reid, M. Quantifying Change of Direction Movement Demands in
422 Professional Tennis Matchplay: An Analysis From the Australian Open Grand Slam. *J
423 Strength Cond Res* **38**, 517-525 (2024). <https://doi.org/10.1519/jsc.00000000000003937>

424 5 Giles, B. & Reid, M. Applying the brakes in tennis: How entry speed affects the movement
425 and hitting kinematics of professional tennis players. *J Sports Sci* **39**, 259-266 (2021).
426 <https://doi.org/10.1080/02640414.2020.1816287>

427 6 Lees, A. Science and the major racket sports: a review. *Journal of sports sciences* **21**, 707-
428 732 (2003).

429 7 King, M., Towler, H., Dillon, R. & McErlain-Naylor, S. A correlational analysis of
430 shuttlecock speed kinematic determinants in the badminton jump smash. *Applied Sciences* **10**,
431 1248 (2020).

432 8 Elliott, B., Takahashi, K. & Noffal, G. The influence of grip position on upper limb
433 contributions to racket head velocity in a tennis forehand. *Journal of applied biomechanics*
434 **13**, 182-196 (1997).

435 9 Iino, Y. & Kojima, T. Role of knee flexion and extension for rotating the trunk in a tennis
436 forehand stroke. *Journal of Human Movement Studies* **45**, 133-152 (2003).

437 10 Landlinger, J., Lindinger, S., Stögg, T., Wagner, H. & Müller, E. Key factors and timing
438 patterns in the tennis forehand of different skill levels. *Journal of sports science & medicine*
439 **9**, 643-651 (2010).

440 11 Iino, Y. & Kojima, T. Torque acting on the pelvis about its superior-inferior axis through the
441 hip joints during a tennis forehand stroke. *Journal of Human Movement Studies* **40**, 269-290
442 (2001).

443 12 Hirashima, M., Yamane, K., Nakamura, Y. & Ohtsuki, T. Kinetic chain of overarm throwing
444 in terms of joint rotations revealed by induced acceleration analysis. *Journal of biomechanics*
445 **41**, 2874-2883 (2008).

446 13 Choi, A., Lee, I. K., Choi, M. T. & Mun, J. H. Inter-joint coordination between hips and trunk
447 during downswings: Effects on the clubhead speed. *J Sports Sci* **34**, 1991-1997 (2016).
448 <https://doi.org/10.1080/02640414.2016.1149603>

449 14 Robertson, M. A. & Halverson, L. E. Developing children--Their changing movement: A
450 guide for teachers. *Lea & Febiger* (1984).

451 15 Chen, H. H., Liu, C. & Yang, W. W. Coordination pattern of baseball pitching among young
452 pitchers of various ages and velocity levels. *Journal of sports sciences* **34**, 1682-1690 (2016).
453 <https://doi.org/10.1080/02640414.2015.1133923>

454 16 Myers J, Lephart S, Tsai YS, Sell T, Smoliga J, Jolly J. The role of upper torso and pelvis
455 rotation in driving performance during the golf swing. *Journal of sports sciences* **26**, 181-188
456 (2008). <https://doi.org/10.1080/02640410701373543>

457 17 Kwon, Y. H., Han, K. H., Como, C., Lee, S. & Singhal, K. Validity of the X-factor
458 computation methods and relationship between the X-factor parameters and clubhead velocity
459 in skilled golfers. *Sports biomechanics* **12**, 231-246 (2013).
<https://doi.org/10.1080/14763141.2013.771896>

460 18 Augustus, S., Hudson, P. E. & Smith, N. The effect of approach velocity on pelvis and kick
461 leg angular momentum conversion strategies during football instep kicking. *Journal of sports
462 sciences* **39**, 2279-2288 (2021).

463 19 Chu, Y., Sell, T. C. & Lephart, S. M. The relationship between biomechanical variables and
464 driving performance during the golf swing. *Journal of sports sciences* **28**, 1251-1259 (2010).
<https://doi.org/10.1080/02640414.2010.507249>

465 20 Lamb, P. F. & Pataky, T. C. The role of pelvis-thorax coupling in controlling within-golf club
466 swing speed. *J Sports Sci* **36**, 2164-2171 (2018).
<https://doi.org/10.1080/02640414.2018.1442287>

467 21 Pataky, T. C. One-dimensional statistical parametric mapping in Python. *Comput Methods
468 Biomech Biomed Engin* **15**, 295-301 (2012). <https://doi.org/10.1080/10255842.2010.527837>

469 22 Li, M., Kim, Y., Zhu, B., Zhang, Z. & Kim, S. Impact of Playing Experience on the
470 Relationship between Basketball Release Velocity and Muscle Contraction Strength in Mid-
471 and Long-Distance Jump Shots. *Journal of Human Kinetics* **96** (2025).

472 23 Li, M., Meng, X., Guan, L., Kim, Y. & Kim, S. Comparing the Effects of Static Stretching
473 Alone and in Combination with Post-Activation Performance Enhancement on Squat Jump
474 Performance at Different Knee Starting Angles. *Journal of Sports Science and Medicine* **22**,
769-777 (2023).

475 24 Buszard, T., Garofolini, A., Whiteside, D., Farrow, D. & Reid, M. Children's coordination of
476 the "sweet spot" when striking a forehand is shaped by the equipment used. *Scientific reports*
477 **10**, 21003 (2020). <https://doi.org/10.1038/s41598-020-77627-5>

478 25 Federolf, P., Reid, R., Gilgien, M., Haugen, P. & Smith, G. The application of principal
479 component analysis to quantify technique in sports. *Scandinavian journal of medicine &
480 science in sports* **24**, 491-499 (2014). <https://doi.org/10.1111/j.1600-0838.2012.01455.x>

481 26 Bernstein, N. The coordination and regulation of movements. *London: Pergamon Press*
(1967).

482 27 Seeley, M. K., Funk, M. D., Denning, W. M., Hager, R. L. & Hopkins, J. T. Tennis forehand
483 kinematics change as post-impact ball speed is altered. *Sports biomechanics* **10**, 415-426
484 (2011). <https://doi.org/10.1080/14763141.2011.629305>

485 28 Dounskaia, N. Control of human limb movements: the leading joint hypothesis and its
486 practical applications. *Exercise and sport sciences reviews* **38**, 201-208 (2010).
<https://doi.org/10.1097/JES.0b013e3181f45194>

487 29 Brito AV, Carvalho DD, Fonseca P, Monteiro AS, Fernandes A, Fernández-
488 Fernández J, Fernandes RJ. Shoulder Torque Production and Muscular Balance after Long
489 and Short Tennis Points. *International journal of environmental research and public health*
490 **19** (2022). <https://doi.org/10.3390/ijerph192315857>

491 30 Bartlett, R., Wheat, J. & Robins, M. Is movement variability important for sports
492 biomechanists? *Sports biomechanics* **6**, 224-243 (2007).
<https://doi.org/10.1080/14763140701322994>

493 31 Cazzola, D., Pavei, G. & Preatoni, E. Can coordination variability identify performance
494 factors and skill level in competitive sport? The case of race walking. *Journal of sport and
495 health science* **5**, 35-43 (2016). <https://doi.org/10.1016/j.jshs.2015.11.005>

503 32 Newell, K. M. Constraints on the development of coordination. *Motor development on*
504 *children: Aspects of coordination* (1986).

505 33 Abrams, G. D., Renstrom, P. A. & Safran, M. R. Epidemiology of musculoskeletal injury in
506 the tennis player. *British journal of sports medicine* **46**, 492-498 (2012).
<https://doi.org/10.1136/bjsports-2012-091164>

507 34 Davids, K., Glazier, P., Araújo, D. & Bartlett, R. Movement systems as dynamical systems:
508 the functional role of variability and its implications for sports medicine. *Sports medicine*
509 (*Auckland, N.Z.*) **33**, 245-260 (2003). <https://doi.org/10.2165/00007256-200333040-00001>

510 35 Fletcher, I. M. & Hartwell, M. Effect of an 8-week combined weights and plyometrics
511 training program on golf drive performance. *Journal of strength and conditioning research*
512 **18**, 59-62 (2004). [https://doi.org/10.1519/1533-4287\(2004\)018<0059:eoawcw>2.0.co;2](https://doi.org/10.1519/1533-4287(2004)018<0059:eoawcw>2.0.co;2)

513 36 Komi, P. V. Biomechanics and neuromuscular performance. *Medicine and science in sports*
514 *and exercise* **16**, 26-28 (1984).

515 37 Elliott, B. Biomechanics and tennis. *British journal of sports medicine* **40**, 392-396 (2006).
<https://doi.org/10.1136/bjsm.2005.023150>

516 38 Iino, Y. Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.
517 *Journal of sports sciences* **36**, 834-842 (2018).
<https://doi.org/10.1080/02640414.2017.1344777>

518 39 Athalye, V. R., Ganguly, K., Costa, R. M. & Carmena, J. M. Emergence of Coordinated
519 Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control. *Neuron* **93**, 955-
520 970.e955 (2017). <https://doi.org/10.1016/j.neuron.2017.01.016>

521 40 Dupuy, M. A., Motte, D. & Ripoll, H. The regulation of release parameters in underarm
522 precision throwing. *Journal of sports sciences* **18**, 375-382 (2000).
<https://doi.org/10.1080/02640410050074304>

523 41 Whiteside, D., Elliott, B., Lay, B. & Reid, M. A kinematic comparison of successful and
524 unsuccessful tennis serves across the elite development pathway. *Human movement science*
525 **32**, 822-835 (2013). <https://doi.org/10.1016/j.humov.2013.06.003>

526

527

528

529

530

532

533 **Figure Captions**

534 **Figure 1. Set up description: (a) marker spot position; (b) experiment environment simulation.**
535 **The black dotted line represents the maximum movement distance; the green dotted line**
536 **represents the medium movement distance; the red dotted line represents the minimum**
537 **movement distance; and the arrow represents the move direction**

538 **Figure 2.** Non-dominant and dominant pelvis-trunk continuous relative phase (CRP) curves and
539 standard deviations in different movement distances during the acceleration phase; the black bar
540 represents the time and SPM statistics results during which the differences occurred

541 **Figure 3.** Mean and standard deviation of the continuous relative phase (CRP) curves of the nine
542 participants with the fastest racket speed (solid line) and the other nine participants with the slowest
543 racket speed (dashed line) at different movement distances