

Comparative analysis and relationship of tensiomyographic and isokinetic muscle contractile assessments of rectus abdominis and erector spinae in bodybuilding trainees with nonspecific low back pain

Young-Chul Kim¹, Jooheon Jee^{Corresp., 2}, Sihwa Park^{Corresp. 3}

¹ Department of Physical Education, Inha University, Incheon, Republic of South Korea

² Department of Physical Therapy, Sahmyook University, Seoul, Republic of South Korea

³ Research Institute of Sports and Industry Science, Hanseo University, Seosan, Chungcheongnamdo, Republic of South Korea

Corresponding Authors: Jooheon Jee, Sihwa Park

Email address: jhhuns1116@naver.com, slim@korea.ac.kr

Background: Bodybuilding training places a significant load on the lumbar region, making it prone to nonspecific low back pain (NSLBP). This study aimed to examine the associations between tensiomyography (TMG) parameters—contraction time (Tc), relaxation time (Tr), delay time (Td), maximum displacement (Dm), and sustain time (Ts)—and isokinetic performance measures, including peak torque (PT) and work per repetition (WR), in trunk muscles of bodybuilding trainees with NSLBP. **Methods:** A total of 150 participants were allocated to control group ($n = 60$) and NSLBP group ($n = 90$). Pain severity from NSLBP was evaluated using the Numerical Pain Rating Scale and the Roland-Morris Disability Questionnaire. Muscle function in the rectus abdominis and erector spinae of the trunk was assessed using TMG and an isokinetic dynamometer.

Results: This study revealed that the parameters assessed using TMG and isokinetic equipment were lower or indicated greater weakness in the NSLBP group compared to the control group. Tc, Tr, and Td showed negative correlations with PT and WR, whereas Dm and Ts were positively associated. The NSLBP group demonstrated significantly longer Tc, Tr, and Td, along with lower Dm, Ts, PT, and WR values. These findings suggest that TMG variables, which assess muscle function at rest, are associated with the torque parameters measured by isokinetic dynamometry during movement. Bodybuilding trainees with a history of NSLBP exhibit impairments in both static and dynamic muscle function, indicating the need for stability-focused interventions during training.

1 Title page

2 **Comparative analysis and relationship of**
3 **tensiomyographic and isokinetic muscle contractile**
4 **assessments of rectus abdominis and erector spinae**
5 **in bodybuilding trainees with nonspecific low back**
6 **pain**

7 Short title: "TMG and isokinetic dynamometry"

8

9 Young-Chul Kim¹, Jooheon Jee^{2*} and Sihwa Park^{3*}

10 ¹ Department of Physical Education, Inha University, Incheon, Republic of South Korea

11 ² Department of Physical Therapy, Sahmyook University, Seoul, Republic of South Korea

12 ³ Research Institute of Sports and Industry Science, Hanseo University, Seosan, Republic of
13 South Korea

14

15 Young-Chul Kim

16 Department of Physical Education, Inha University, #100, Inha-ro, Michuhol-gu, Incheon 22212,
17 Republic of South Korea

18 Tel.: +82-10-7150-1411

19 E-mail address: youngchul071@inha.edu

20 ORCID: 0009-0004-8137-0923

21

22 Corresponding author:

23 Jooheon Jee

24 Department of Physical Therapy, Sahmyook University, #815, Hwarang-ro, Nowon- gu, Seoul,
25 01795, Republic of South Korea

26 Tel.: +82-10-3447-8869

27 E-mail address: jhhuns1116@naver.com

28 ORCID: 0000-0001-6367-5281

29

30 Corresponding author:

31 Sihwa Park

32 Research Institute of Sports and Industry Science, Hanseo University, 46 Hanseo 1-ro, Haemi-
33 myeon, Seosan 31962, Republic of South Korea

34 Tel.: +82-10-7150-1411

35 E-mail address: slim@korea.ac.kr

36 ORCID: 0000-0001-6256-9970

37 **Abstract**

38 **Background:** Bodybuilding training places a significant load on the lumbar region, making it prone to
39 nonspecific low back pain (NSLBP). This study aimed to examine the associations between
40 tensiomyography (TMG) parameters—contraction time (Tc), relaxation time (Tr), delay time (Td),
41 maximum displacement (Dm), and sustain time (Ts)—and isokinetic performance measures, including peak
42 torque (PT) and work per repetition (WR), in trunk muscles of bodybuilding trainees with NSLBP.
43 **Methods:** A total of 150 participants were allocated to control group ($n = 60$) and NSLBP group ($n = 90$).
44 Pain severity from NSLBP was evaluated using the Numerical Pain Rating Scale and the Roland-Morris
45 Disability Questionnaire. Muscle function in the rectus abdominis and erector spinae of the trunk was
46 assessed using TMG and an isokinetic dynamometer.

47 **Results:** This study revealed that the parameters assessed using TMG and isokinetic equipment were lower
48 or indicated greater weakness in the NSLBP group compared to the control group. Tc, Tr, and Td showed
49 negative correlations with PT and WR, whereas Dm and Ts were positively associated. The NSLBP group
50 demonstrated significantly longer Tc, Tr, and Td, along with lower Dm, Ts, PT, and WR values. These
51 findings suggest that TMG variables, which assess muscle function at rest, are associated with the torque
52 parameters measured by isokinetic dynamometry during movement. Bodybuilding trainees with a history
53 of NSLBP exhibit impairments in both static and dynamic muscle function, indicating the need for stability-
54 focused interventions during training.

55

56 **Keywords:** Nonspecific low back pain, Trunk flexor, Trunk extensor, Contraction time, Maximum
57 displacement

58

59 **Introduction**

60 Nonspecific low back pain (NSLBP) is the most prevalent form of low back pain (LBP), accounting for
61 approximately 90–95% of all cases (Howarth et al., 2024; Imamura et al., 2016; Jiang et al., 2024). Unlike
62 specific LBP, NSLBP lacks a clear pathological cause and is often linked to risk factors such as obesity,
63 sedentary lifestyles, repetitive trunk flexion and rotation, and improper heavy lifting (Alshehri et al., 2024).
64 These multifactorial influences contribute to the onset and persistence of NSLBP (Maher et al., 2017;
65 Shmagel et al., 2016).

66 Bodybuilding has become a popular activity across age groups, focusing on physical aesthetics through
67 intensive resistance training (Huebner et al., 2022). In essence, bodybuilding involves stimulating the body

68 through various weight training methods to achieve an ideal level of development, thereby promoting
69 physical and mental self-fulfillment (Huebner et al., 2022). Despite its benefits, bodybuilding carries a high
70 risk of musculoskeletal injuries, including muscle strains, tendinitis, and NSLBP (Jiang et al., 2024). These
71 risks are exacerbated when training exceeds an individual's physiological capacity (Chaput et al., 2011).
72 The hypertrophic effects of resistance training are primarily attributed to the enlargement of fast-twitch
73 muscle fibers (Huebner et al., 2022; Gehrig et al., 2010). While initial studies employed invasive muscle
74 biopsies (Loell et al., 2011), recent advancements favor non-invasive assessment techniques (Kandwal et
75 al., 2024). Among these, tensiomyography (TMG) and isokinetic dynamometry are widely recognized for
76 their reliability in evaluating muscle function. Unlike MRI and surface EMG—which are costly or susceptible
77 to noise (Campanini et al., 2020), TMG and isokinetic tests offer selective, non-invasive, and repeatable
78 measures of muscle contractility (Toskić et al., 2019). These methods offer the advantage of selectively
79 evaluating specific muscles, high versatility, and the capability for continuous measurements. Furthermore,
80 the scientific assessment of variables derived from these tools has facilitated their widespread application
81 in various practical settings (Tous-Fajardo et al., 2010).

82 TMG assesses muscle contractile properties via external stimulation without requiring voluntary
83 contraction, enabling the analysis of muscle hypertrophy and atrophy through five key parameters, offering
84 a thorough assessment of static muscle function (Lohr et al., 2018). Its reliability and precision have made
85 it widely utilized in both research and clinical practice. Conversely, isokinetic dynamometry evaluates
86 muscle strength across controlled velocities and contraction modes, allowing the analysis of torque and
87 power output. By measuring the muscle moments' ratio, it is possible to identify potential issues within the
88 targeted muscle groups (Yahia et al., 2011). Isokinetic measurements are well-regarded for their reliability
89 and precision (Mueller et al., 2011; Paul & Nassis, 2015) and are frequently utilized for assessing dynamic
90 strength to understand the mechanical profiles of skeletal muscles, including those of the trunk regions (Van
91 Damme et al., 2013).

92 **Despite their independent clinical applications, the correlation between TMG and isokinetic measures**
93 **has not been thoroughly explored.** Furthermore, limited research has examined trunk muscle characteristics
94 related to NSLBP in bodybuilding populations. Therefore, this study aimed to investigate the presence of
95 NSLBP in individuals who engage in regular and periodic weight training. The participants were
96 categorized based on the presence or absence of NSLBP, and the study also aimed to analyze potential
97 differences in TMG and isokinetic muscle contractility between the groups.

98

99 **Materials & Methods**

100 **Participants**

101 To identify cases of NSLBP, a standardized clinical assessment protocol was implemented. This process
102 included a structured interview, physical examination, and red flag screening, based on established
103 guidelines for diagnosing NSLBP (Delitto et al., 2012; Maher et al., 2017). All 150 participants were young
104 adults (aged 19–25 years) who had engaged in bodybuilding training for at least one year, with a minimum
105 training frequency of four sessions per week. Each participant underwent an individual assessment
106 conducted by a licensed physical therapist specializing in musculoskeletal disorders. The clinical interview
107 collected information on the presence, onset, duration, and characteristics of LBP. Participants were
108 specifically asked about pain location, intensity, aggravating and relieving factors, and possible training-
109 related causes. Any reports of radiating pain, numbness, tingling, or muscle weakness in the lower
110 extremities were documented for differential diagnosis. A standardized physical examination assessed
111 lumbar range of motion, local tenderness, and pain provocation during movement. Neurological screening
112 included muscle strength, sensory function, and deep tendon reflexes. Special tests such as the straight leg
113 raise and Slump test were performed to evaluate possible neural involvement. Participants were also
114 screened for red flag symptoms indicative of serious pathology, including a history of malignancy,
115 unexplained weight loss, prolonged corticosteroid use, recent trauma, persistent night pain, or fever.
116 Individuals presenting with any red flag indicators were excluded from the NSLBP group and referred for
117 further medical evaluation such as herniated disc, spondylolysis, spondylolisthesis, spinal stenosis, or facet
118 joint syndrome. Additionally, exclusion criteria included smoking, alcohol consumption, current
119 pharmacological or physical therapy treatment, or any surgical procedures within one year before
120 enrollment.

121 Sample size estimation was performed using G*Power software (version 3.1.9.7, Heinrich-Heine-
122 University Software, Germany with the following parameters: effect size = 0.5, α = 0.05, power = 0.95,
123 and allocation ratio = 1 (Kang, 2021). A minimum of 174 participants was determined to be necessary; 208
124 were recruited to accommodate a 20% attrition rate (Sedgwick, 2013). Of the 208 participants initially
125 recruited for the study, 58 were excluded due to not meeting the inclusion criteria or for personal reason
126 After applying exclusion criteria, 150 participants were enrolled and assigned to either the control (n = 60)
127 or NSLBP (n = 90) group. Throughout the one-month experiment, there were no dropouts from either the
128 CON group or the NSLBP group, leading to the final analysis based on data from 60 participants in the
129 CON group and 90 in the NSLBP group.

130

131 ***Experimental design***

132 This case-control study was conducted from March to December 2024. The study followed the Transparent
133 Reporting of Evaluations with Nonrandomized Designs statement (Des Jarlais et al., 2004) and complied
134 with the Sex and Gender Equity in Research guidelines (Heidari et al., 2016). The investigation adhered to

135 the ethical standards outlined in the declaration of Helsinki (Williams, 2008). Ethical approval was granted
136 by the Institutional Review Board of Hanseo University (HS22-05-03). Prior to participation, all subjects
137 received detailed explanations of the study's purpose and procedures and provided written informed
138 consent. Double blinding was maintained throughout data collection. Daily logs were used to monitor
139 dietary intake and physical activity to control for external variables.

140

141 ***Measurement methods***

142 *Body composition and demographics*

143 Age and sex were self-reported. Height was measured using a digital stadiometer (BMS 330, BioSpace,
144 Seoul, Korea), and body composition was assessed using Dual-Energy X-ray Absorptiometry (DEXA),
145 whole-body scan (TSX-303A, Toshiba Medical Systems Corporation, Tokyo, Japan) with participants in a
146 supine position after a 10-hour fasting period. The DEXA scan was performed quickly to minimize
147 radiation exposure (Jee, 2019; Smith-Bindman, 2010). Body mass index was also calculated using the
148 weight-to-height ratio formula. Waist and hip circumferences were measured using standardized protocols
149 to calculate the waist-to-hip ratio (Park et al., 2024).

150

151 *Pain intensity related to NSLBP*

152 NSLBP was operationally defined as non-specific, localized low back pain in the absence of neurological
153 deficits, serious structural pathology, or red flag symptoms. The participants' pain intensity levels were
154 evaluated using the Numerical Pain Rating Scale (NPRS; 0–10 cm). On this scale, 0 indicates "no pain,"
155 while 10 represents "the worst imaginable pain." Participants were instructed to select the number that best
156 described their current pain. The NPRS has been demonstrated to be a reliable, valid, and responsive tool
157 for measuring pain intensity in individuals with chronic LBP (Ibrahim et al., 2020; Sarafadeen et al., 2020).
158 In this study, the level of pain-related disability associated with NSLBP was also evaluated using the
159 Roland-Morris Disability Questionnaire (RMDQ), a self-reported assessment tool (Roland & Morris,
160 1983). The RMDQ is concise and easy for patients to complete, demonstrating strong validity, internal
161 consistency, and responsiveness (Roland & Fairbank, 2000; Stratford et al., 1996). The RMDQ consists of
162 24 items, each qualified with the phrase "because of my back pain," specifically attributing the disability
163 to back pain experienced in the past 24 hours (Ren & Kazis, 1998). Scores are calculated by summing up
164 the number of items checked. The total score ranges from 0 (no disability) to 24 (maximum disability)
165 (Roland & Fairbank, 2000). In this study, the Cronbach's α coefficient between the duration of NSLBP and
166 the NPRS was found to be 0.866, while the coefficient between the duration of NSLBP and the RMDQ was
167 analyzed as 0.703.

168

169 *Measurement for calorie input and output*

170 All participants were instructed on how to use a dietary camera AI system (DoingLab Inc., Seoul, Korea)
171 to photograph the meals they prepared for consumption each day (Park et al., 2024). The system
172 automatically calculated the calorie intake from the images, and these data were transmitted daily to a
173 designated researcher for evaluation. The data were then analyzed weekly, with the average of the data
174 from the final 4 weeks used for analysis. Additionally, participants' daily physical activity levels were
175 recorded and quantified using the International Physical Activity Questionnaire - Short Form (Cheng,
176 2016). Participants completed the questionnaire each week during the experimental period, based on their
177 physical activity records. Daily calorie expenditure was calculated using metabolic equivalent-minutes, and
178 the data were used to compute the average weekly physical activity levels, which were subsequently
179 analyzed based on the accumulated data.

180

181 *Tensiomyographic trunk muscle tone measures*

182 A digital TMG displacement sensor (TMG-BMC Ltd., Ljubljana, Slovenia) with a spring constant of 0.17
183 N/mm was positioned perpendicular to the muscle belly of the rectus abdominis (RA) at approximately 5
184 cm intervals on both the left and right sides of the navel (Park et al., 2024) as shown in Fig.1A. Additionally,
185 it was placed on the lumbar erector spinae (ES) at the interspace between the L3 and L4 vertebrae (Lohr &
186 Medina-Porqueres, 2021) as shown in Fig.1B. Two adhesive electrodes (Axelgaard Manufacturing Co.
187 Ltd., Pals Platinum Neuro-Stimulation Electrodes, Model 895,220, 50 × 50 mm) were positioned
188 equidistant from the sensor, with an inter-electrode distance of 3 cm.

189 Near here Fig. 1

190

191 The optimal measurement point, located at the thickest part of the muscle bulk approximately 2 cm lateral
192 to the dorsal midline, was identified through visual orientation and palpation during both voluntary and
193 elicited contractions (Lohr et al., 2020). Once the optimal measurement point was located, the sensor and
194 electrode positions were marked with a dermatological pen to ensure precise relocation (Lohr & Medina-
195 Porqueres, 2021). A single square-wave monophasic 1 ms stimulation pulse was delivered using an
196 electrical stimulator (TMG-S1, TMG-BMC Ltd., Ljubljana, Slovenia) with an initial stimulation current of
197 30 mA. To determine the individual maximal twitch response amplitude, the stimulation current was
198 progressively increased by 10 mA increments (Piqueras-Sanchiz et al., 2020). Inter-stimulus interval of \geq
199 10 sec was maintained between successive measurements to prevent fatigue and potentiation. The two
200 highest twitch responses observed on the displacement graph for each participant were recorded and
201 averaged for subsequent analysis (Tous-Fajardo et al., 2010). The primary variables under consideration
202 are the maximum displacement (Dm), which measures the maximum distance (in mm) the muscle moves

203 during contraction, and the contraction time (Tc), which represents the time (ms) it takes for the muscle to
204 contract from 10% to 90% of Dm. Stimulation commenced at an initial intensity of 20 mA and was
205 incrementally raised by 10 mA steps until the maximum Dm value was achieved as shown in Fig. 1C.
206 Before conducting the measurements, participants were instructed to rest in bed for 5 min to ensure muscle
207 relaxation. Subsequently, the recorded values were documented and subjected to analysis. In addition, this
208 study examined sustain time (Ts), relaxation time (Tr), and delay time (Td). Td refers to the time taken to
209 reach 10% of the maximum Dm. Ts represents the duration the muscle stays in the contraction phase at
210 50% of Dm before entering the relaxation phase. Tr indicates the time it takes for the muscle to transition
211 from 90% of Dm to 50% during relaxation (Dahmane et al., 2001). Lastly, Vc, the contraction velocity for
212 the muscle, was calculated as $Dm / (Tc + Td)$. The right and left values of all variables were presented, and
213 then all were averaged and analyzed.

214

215 *Isokinetic trunk muscle concentric contraction measures*

216 Isokinetic trunk extension and flexion (TEF) tests were utilized to evaluate the moments of the trunk
217 muscles, as outlined by García-Vaquero and colleague (2020). These tests were performed using an
218 isokinetic dynamometer (Fig. 2A), which maintains a constant speed during muscle contractions, enabling
219 precise and reliable measurements of force and performance. From a practical perspective, isokinetic
220 dynamometer-based muscle assessment methods are considered valid and highly reliable (Warneke et al.,
221 2025), with correlation coefficients of 0.93–0.99 for peak force values and 0.91–0.96 for total workload
222 values (Ben Moussa Zouita et al., 2018; Guilhem et al., 2014). Trunk flexion typically exhibits a range of
223 motion between 40° and 60° (Fig. 2B), with an average of 45°, whereas trunk extension generally ranges
224 from 20° to 35° (Fig. 2C), with an average of around 25° (Morini et al., 2008).

225 Near here Fig. 2

226

227 In this study, participants completed a comprehensive stretching and warm-up routine prior to testing.
228 The TEF assessments were conducted using the HUMAC®/NORM™ Testing and Rehabilitation System
229 (CSMi, Stoughton, MA, USA). During the isokinetic TEF concentric contraction tests, participants stood
230 with their iliac crests aligned to the dynamometer axis and stabilized using knee, lumbar, and chest pads to
231 ensure proper alignment and minimize extraneous movements. The testing protocol began with an
232 isokinetic resistance set at 90°/sec, during which participants performed 4 practice repetitions followed by
233 8 test repetitions. After a 1-min rest interval, the resistance was adjusted to 30°/sec, and participants
234 performed an additional 4 practice repetitions followed by 4 test repetitions. For analysis, the study focused
235 on key metrics, including peak torque (PT) and peak torque normalized to body weight (PTBW), as well as
236 work per repetition (WR) and work per repetition normalized to body weight (WRBW).

237

238 **Statistical analysis**

239 Statistical analysis was conducted using GraphPad Prism 10.4.2 software (GraphPad Software, Boston,
240 MA, USA). Descriptive statistics, including the mean and standard deviation, were used to summarize the
241 data. The normality of variable distribution was assessed using the Kolmogorov–Smirnov test before
242 analysis. For variables that did not meet normality assumptions, homogeneity was evaluated using the
243 Mann-Whitney U test. The analysis was carried out in three key steps. First, Cronbach's α was calculated
244 to assess the internal validity of the questionnaire used in this study. Second, Pearson correlation analysis
245 was performed to examine the relationship between TMG and isokinetic muscle function, with a correlation
246 matrix created for clarity. Correlation coefficients were classified as excellent (≥ 0.90), good (0.75–0.90),
247 average (0.50–0.75), or poor (< 0.50) (Koo & Li, 2016). Third, to compare TMG and isokinetic muscle
248 function between CON and NSLBP groups, an independent t-test was used for normally distributed data,
249 while the Mann-Whitney U test was applied to non-normally distributed data. Effect sizes for parametric
250 measures were categorized as small (0.2), moderate (0.5), or large (0.8), while for non-parametric measures,
251 thresholds of 0.1, 0.3, and 0.5 were used, following Fritz et al. (2012). Statistical significance was set at p
252 ≤ 0.05 .

253

254 **Results**255 **Demographic and physical characteristics**

256 As shown in Table 1, there was no statistically significant difference in age between the CON and NSLBP
257 groups.

258 Near here Table 1

259 Regarding sex distribution, the CON group consisted of 36 males and 24 females, while the NSLBP
260 group included 62 males and 28 females. When sex was quantified (male = 1, female = 2) for statistical
261 comparison, no significant difference was observed between the groups. None of the participants reported
262 smoking or alcohol consumption. In addition, there was no significant difference in training duration
263 between the groups. As also shown in Table 1, the basal metabolic rate, daily dietary intake, and physical
264 activity level were not significantly different between the two groups. The groups were classified based on
265 the presence or absence of NSLBP, and a quantitative analysis of its duration including NPRS and RMDQ
266 scores revealed a significant difference between the groups.

267

268 **Relationships between TMG and isokinetic TEF measures**

269 As illustrated in Fig. 3A, the Tc of the RA exhibited significant negative correlations with flexor PT ($r = -$

270 0.459), extensor PT ($r = -0.425$), flexor WR ($r = -0.420$), and extensor WR ($r = -0.438$). Similarly, the Tc
271 of the ES showed significant negative correlations with flexor PT ($r = -0.421$), extensor PT ($r = -0.331$),
272 flexor WR ($r = -0.259$), and extensor WR ($r = -0.340$) at 90°/sec. The Tr of the RA displayed significant
273 negative correlations with flexor PT ($r = -0.361$), extensor PT ($r = -0.356$), flexor WR ($r = -0.225$), and
274 extensor WR ($r = -0.293$), while the Tr of the ES showed significant negative correlations with flexor PT
275 ($r = -0.401$), extensor PT ($r = -0.339$), flexor WR ($r = -0.349$), and extensor WR ($r = -0.394$). The Td of the
276 RA was significantly negatively correlated with flexor PT ($r = -0.461$), extensor PT ($r = -0.380$), flexor WR
277 ($r = -0.408$), and extensor WR ($r = -0.342$). In addition, the Td of the ES exhibited significant negative
278 correlations with flexor PT ($r = -0.397$), extensor PT ($r = -0.248$), and extensor WR ($r = -0.353$), except for
279 flexor WR ($r = -0.126$, $p = 0.124$). In contrast, the Dm of the RA demonstrated significant positive
280 correlations with flexor PT ($r = 0.256$), extensor PT ($r = 0.277$), flexor WR ($r = 0.266$), and extensor WR
281 ($r = 0.305$). Likewise, the Dm of the ES showed significant positive correlations with flexor PT ($r = 0.281$),
282 extensor PT ($r = 0.316$), flexor WR ($r = 0.200$), and extensor WR ($r = 0.228$). Additionally, the Ts of the
283 RA exhibited significant positive correlations with flexor PT ($r = 0.296$), extensor PT ($r = 0.301$), flexor
284 WR ($r = 0.232$), and extensor WR ($r = 0.223$), like the Dm. The Ts of the ES exhibited significant positive
285 correlations with flexor PT ($r = 0.336$), extensor PT ($r = 0.209$), flexor WR ($r = 0.308$), and extensor WR
286 ($r = 0.195$). Examining the characteristics among these variables, it was observed that the PT and WR of
287 the TEF muscles at 90°/sec were higher when the Tc, Tr, and Td were shorter or lower, whereas they were
288 lower when Tc, Tr, and Td of the RA and ES were longer or higher. Meanwhile, the PT and WR of the TEF
289 muscles were lower when the Dm and Ts of the RA and ES were lower, but higher when Dm and Ts were
290 higher.

291 Near here Fig. 3

292 As shown in Fig. 3B, the Tc of the RA exhibited significant negative correlations with flexor PT ($r = -$
293 0.403), extensor PT ($r = -0.414$), flexor WR ($r = -0.315$), and extensor WR ($r = -0.287$). The Tc of the ES
294 showed significant negative correlations with flexor PT ($r = -0.170$), extensor PT ($r = -0.326$), flexor WR
295 ($r = -0.269$), and extensor WR ($r = -0.348$) at 30°/sec. The Tr of the RA displayed significant negative
296 correlations with extensor PT ($r = -0.281$), flexor WR ($r = -0.220$), and extensor WR ($r = -0.195$), except
297 for flexor PT ($r = -0.154$, $p = 0.060$). The Tr of the ES showed significant negative correlations with extensor
298 PT ($r = -0.323$), flexor WR ($r = -0.235$), and extensor WR ($r = -0.294$), except for flexor PT ($r = -0.096$, p
299 = 0.244). The Td of the RA exhibited significant negative correlations with flexor PT ($r = -0.271$), extensor
300 PT ($r = -0.341$), flexor WR ($r = -0.401$), and extensor WR ($r = -0.332$). In contrast, the Td of the ES showed
301 significant negative correlations with flexor PT ($r = -0.204$) and extensor PT ($r = -0.293$), except for flexor
302 WR ($r = -0.155$, $p = 0.058$) and extensor WR ($r = -0.064$, $p = 0.437$). Meanwhile, The Dm of the RA
303 demonstrated significant positive correlations with extensor PT ($r = 0.277$), flexor WR ($r = 0.266$), and

304 extensor WR ($r = 0.305$), except for flexor PT ($r = 0.045, p = 0.582$). The Dm of the ES also showed
305 significant positive correlations with flexor PT ($r = 0.204$), extensor PT ($r = 0.254$), flexor WR ($r = 0.177$),
306 and extensor WR ($r = 0.202$) at 30°/sec. The Ts of the RA was significantly positively correlated with flexor
307 PT ($r = 0.167$), extensor PT ($r = 0.402$), and extensor WR ($r = 0.341$), except for flexor WR ($r = 0.144, p =$
308 0.078). The Ts of the ES exhibited significant positive correlations with flexor PT ($r = 0.222$), extensor PT
309 ($r = 0.288$), flexor WR ($r = 0.220$), and extensor WR ($r = 0.198$). Analyzing the relationships among these
310 variables, it was observed that the PT and WR of the TEF muscles at 30°/sec were higher when the Tc, Tr,
311 and Td of the RA and ES were shorter or lower, whereas they were lower when Tc, Tr, and Td were longer
312 or higher. Conversely, the PT and WR of the TEF muscles were lower when the Dm and Ts were lower but
313 higher when Dm and Ts were higher. The validity of these findings was further confirmed through a
314 correlation matrix, examining multiple variables across each row and column between TMG measures and
315 isokinetic measures at 90°/sec and at 30°/sec.

316

317 ***Differences of TMG values***

318 As depicted in Table 2, the Tc of the RA was greater on both the left and right sides in the NSLBP group
319 than in the CON group, with a comparable pattern observed in the mean Tc. The Tc of the ES was higher
320 on both sides in the NSLBP group compared to the CON group, exhibiting a similar trend in the mean Tc.
321 The Dm of the RA was lower on both sides in the NSLBP group compared to the CON group, with a similar
322 pattern observed in the mean Dm. The Dm of the ES was lower on both sides in the NSLBP group than in
323 the CON group, showing a comparable trend in the mean Dm. The Ts of the RA was significantly lower on
324 both sides in the NSLBP group compared to the CON group, with a similar pattern observed in the mean
325 Ts. The Ts of the ES was also significantly lower on both sides in the NSLBP group than in the CON group,
326 exhibiting a comparable trend in the mean Ts.

327

Near here Table 2

328 The Tr and Td of the RA were significantly higher on both sides in the NSLBP group compared to the
329 CON group, with a similar pattern observed in the mean Tr and Td. The Tr and Td of the ES were also
330 significantly higher on both sides in the NSLBP group than in the CON group, exhibiting a comparable
331 trend in the mean Tr and Td. However, these differences were associated with a small effect size (≤ 0.1).
332 Meanwhile, as shown in Fig. 4A, the Vc of the RA was significantly lower in the NSLBP group compared
333 to the CON group. Similarly, the Vc of the ES was also significantly lower in the NSLBP group than in the
334 CON group (Fig. 4B).

335

Near here Fig. 4

336

337 ***Differences of isokinetic TEF torques***

338 As demonstrated in Table 3, the PT of the trunk flexor measured at 90°/sec was lower in the NSLBP group
339 compared to the CON group, with a similar pattern observed in PTBW. Likewise, the PT of the trunk
340 extensor was significantly lower in the NSLBP group than in the CON group, showing a comparable trend
341 in the PTBW. Meanwhile, the WR and WRBW of the trunk flexor were lower in the NSLBP group
342 compared to the CON group, but the differences were not statistically significant. In contrast, the WR and
343 WRBW of the trunk extensor were significantly lower in the NSLBP group than in the CON group.

344 Near here Table 3

345

346 As shown in Fig. 5A, the ratio of the PT of the trunk extensor to that of the trunk flexor was significantly
347 lower in the NSLBP group compared to the CON group, indicating that the trunk extensor in the NSLBP
348 group exhibited lower moments during force production. At 30°/sec, the PT and PTBW of the trunk flexor,
349 as shown in Table 3, were lower in the NSLBP group compared to the CON group. However, a statistically
350 significant difference was observed only in PTBW. In contrast, both the PT and PTBW of the trunk extensor
351 were significantly lower in the NSLBP group than in the CON group. Similarly, the WR and WRBW of
352 the trunk flexor were lower in the NSLBP group than in the CON group, though the difference was not
353 statistically significant. However, the WR and WRBW of the trunk extensor were significantly lower in the
354 NSLBP group. Additionally, as illustrated in Fig. 5B, the ratio of PT of the trunk extensor to that of the
355 trunk flexor was significantly lower in the NSLBP group, indicating reduced trunk extensor moment in this
356 group compared to the CON group.

357 Near here Fig. 5

358

359 **Discussion**360 ***Relationships between TMG factors and isokinetic TEF measures***

361 The primary aim of this study was to investigate the relationship between TMG and isokinetic measures in
362 the trunk muscles of bodybuilding trainees with and without NSLBP. Among the 150 participants, a
363 preliminary questionnaire indicated that 90 participants (60%) had NSLBP. However, a more detailed
364 assessment using the NPRS and RMDQ revealed that some degree of NSLBP was also present in the CON
365 group. This study has focused on TMG, an advanced method for assessing muscle function by measuring
366 radial displacement in response to electrical stimulation. Although TMG has operated on a similar
367 fundamental principle as mechanomyography, it is specifically designed for stimulated muscle contractions
368 and utilizes a unique mechanical sensor to detect radial displacement (Macgregor et al., 2018). However,
369 since TMG evaluated muscle properties in a static state, its role in assessing dynamic muscle function has

370 not been clearly established. Therefore, this study aimed to examine the relationship between TMG
371 parameters and variables obtained from isokinetic dynamometry, a widely used tool in sports medicine
372 area, to determine the functional significance of the five key components of TMG. The findings of this
373 study revealed significant negative correlations between the Tc, Tr, and Td of the RA and ES with PT and
374 WR of the trunk flexor and extensor.

375 When analyzing the general patterns of variables derived from TMG, the Tc of the RA and ES muscles
376 typically appears shorter in healthy muscles, whereas weaker muscles exhibit a relatively prolonged
377 response time (Bibrowicz et al., 2024). As shown in the results of this study, a shorter Tc, as observed in
378 datasets, reflects well-maintained neuromuscular control and responsiveness in the CON group, whereas a
379 prolonged Tc may indicate muscle fatigue, weakness, or impaired neuromuscular function in the NSLBP
380 group. Tr, defined as the time between 90% and 50% of muscle relaxation, reflects the speed of muscle
381 relaxation. A shorter Tr indicates faster muscle relaxation, which is generally associated with a normal
382 physiological state. In contrast, a prolonged Tr may suggest increased muscle fatigue, potential muscle
383 damage, or excessive muscle tension as similar results of this study. Td, defined as the time between the
384 electrical impulse and 10% of the contraction, represents neuromuscular response time. A shorter Td
385 indicates an appropriate neuromuscular response, whereas a prolonged Td suggests delayed neural
386 conduction or impaired muscle responsiveness (Simunić et al., 2011). As observed in the results of this
387 study, the shorter Td in the CON group indicates better neuromuscular control and responsiveness, whereas
388 the relatively prolonged Td in the NSLBP group may suggest muscle fatigue, weakness, or impaired
389 neuromuscular function. These findings suggest that when Tc, Tr, and Td of the RA and ES, as measured
390 by TMG in a static state, are slower or lower, the trunk flexor and extensor muscles can exhibit normal
391 muscle function during dynamic trunk contractions. Conversely, Dm and Ts of the RA and ES of TMG
392 parameters exhibited significant positive correlations with PT and WR of trunk flexor and extensor
393 performance. For Dm, a higher Dm reflects reduced muscle tension or increased flexibility, while a lower
394 Dm suggests heightened muscle stiffness or an increased risk of potential injury (Reeves et al., 2005;
395 García-García et al., 2013). It is not uncommon for Tc and Dm to change at uneven rates. In such cases, we
396 propose that the change in Tc, independent of Dm, is primarily influenced by variations in the contraction
397 rate, as indicated by Vc (Valencic & Knez, 1997). Ts, defined as the duration for which a twitch is sustained,
398 is measured as the time between 50% of Dm on either side of the twitch curve. A prolonged Ts reflects an
399 improved capacity to sustain muscle contraction, while a shorter Ts suggests increased muscle fatigue or
400 reduced endurance (Tous-Fajardo et al., 2010). In the present study, the CON group exhibited a longer Ts,
401 indicating superior neuromuscular control and responsiveness, whereas the shorter Ts observed in the
402 NSLBP group may suggest muscle fatigue, weakness, or neuromuscular dysfunction. Eventually, higher or
403 longer values of Dm and Ts, as measured by TMG, may indicate that the trunk flexor and extensor muscles

404 exhibit normal muscle function during dynamic contractions.

405 The relationship between contractile properties and geometric changes during muscle contraction has
406 been analyzed using real-time brightness mode ultrasound to track instantaneous variations in
407 gastrocnemius muscle fascicle length (Simunić et al., 2011). Dick & Wakeling (2017) simultaneously
408 measured torque and geometric changes, revealing that tension is generated in synchronization with fascicle
409 length alterations. Furthermore, surface mechanomyography has been shown to effectively capture muscle
410 fiber expansion during contraction, demonstrating a strong correlation between mechanomyography
411 amplitude, torque oscillations, and fascicle length variations. These findings reinforce the concept that
412 muscle functions as a near-constant volume system, where fiber shortening is accompanied by thickening,
413 as reflected in muscle surface displacement and tendon tension (Macgregor et al., 2018). Moreover, while
414 TMG enables accurate and efficient muscle assessment, studies investigating the factors contributing to
415 muscle strength variations within TMG and their relationship with variables obtained through isokinetic
416 dynamometry remain limited. In other words, investigating the relationship between muscle surface
417 displacement tracking and isokinetic muscle contraction characteristics, and applying this approach to
418 NSLBP patients, could have potential applications in both sports' performance and rehabilitation. Based on
419 the previous studies, this study an analysis of the relationships among these variables revealed that at an
420 isokinetic angular velocity of 90°/sec, PT and WR of the TEF muscles were higher when Tc, Tr, and Td
421 were shorter or lower, whereas PT and WR were lower when Tc, Tr, and Td of the RA and ES were longer
422 or higher. Conversely, PT and WR of the TEF muscles were lower when Dm and Ts of the RA and ES were
423 lower but increased when Dm and Ts were higher. Similarly, at an isokinetic angular velocity of 30°/sec,
424 PT and WR of the TEF muscles were higher when Tc, Tr, and Td of the RA and ES were shorter or lower
425 and decreased when these parameters were longer or higher. Ultimately, it was observed that the correlation
426 patterns varied slightly depending on changes in isokinetic angular velocity.

427

428 ***Distinctive features of TMG factors and isokinetic TEF torques***

429 When individuals experience LBP, they naturally attempt to minimize discomfort by reducing their range
430 of motion and exerting less force. Non-specific LBP most commonly occurs when lifting heavy objects
431 such as bodybuilding training, and if left unaddressed, it may progress to chronic pain or structural
432 deformities (Price, 2021). As discussed earlier, TMG and isokinetic dynamometry are closely associated
433 and can be effectively utilized during the early stages of NSLBP. The findings of this study demonstrated
434 their utility in identifying the characteristics of individuals with and without NSLBP, thereby facilitating
435 appropriate interventions. In this study, the NSLBP group demonstrated significantly prolonged Tc, Tr, and
436 Td values for the RA and ES, whereas Dm, Ts, and Vc for both muscles were significantly reduced than
437 those of the CON group. Moreover, the NSLBP group exhibited significantly lower PT and WR in trunk

438 flexor and extensor, with a more pronounced deficit observed in the trunk extensor compared to the trunk
439 flexor. These findings suggest potential neuromuscular impairments in individuals with NSLBP (de
440 Oliveira Meirelles et al., 2020), highlighting the importance of targeted interventions to improve trunk
441 muscle function in the bodybuilding trainees.

442 Since LBP is inherently subjective and variable, accurately assessing its influencing factors—such as
443 physical, psychological, emotional, and environmental conditions—is crucial (Bláfoss et al., 2019). In this
444 study, although participants in the CON group reported no LBP prior to group classification, responses
445 from the back pain-related questionnaires revealed the presence of underlying, subclinical symptoms
446 indicative of potential LBP. According to previous studies, the primary causes of sports injuries include
447 excessive training, improper training methods, anatomical limitations, lack of flexibility, and muscle
448 imbalances, with lower back injury related to weight training consistently ranking among the top two injury
449 sites for weightlifters—accounting for 23% to 59% of all injuries—and most often associated with the squat
450 or deadlift (Ross et al., 2023). In the context of bodybuilding, injuries are often attributed to inadequate
451 exercise techniques, insufficient knowledge, poor instruction from trainers, and excessive tension (Bonilla
452 et al., 2022). In addition, among the various causes of back pain, weightlifters are commonly diagnosed
453 with muscle strains, ligament sprains, degenerative disc disease, disc herniation, spondylolysis,
454 spondylolisthesis, or lumbar facet syndrome. Standard treatments often fail to fully alleviate pain or prevent
455 recurrence. Since most athletes aim to continue weightlifting, effective management should emphasize
456 lifting-specific modifications, including improved technique and addressing mobility and muscular
457 imbalances (Ross et al., 2023). Bodybuilding is a form of physical training that systematically stimulates
458 the body through various methods to achieve optimal development, ultimately fostering both physical and
459 mental self-fulfillment. Given these characteristics, bodybuilding plays a significant role in the occurrence
460 and prevention of exercise-related injuries (Mangano et al., 2015). Considering the results of previous
461 studies alongside the findings of the present study, it is evident that training for bodybuilding places a
462 significant load on the muscles surrounding the trunk.

463 TMG and isokinetic dynamometry, both historically and currently utilized, provide valuable insights for
464 developing effective treatment strategies for the LBP patients (Park, 2020). Given that the trunk flexor and
465 extensor play a fundamental role in spinal support, integrating these two assessment tools to measure both
466 static and dynamic trunk muscle function may yield more clinically relevant findings, ultimately benefiting
467 patient outcomes. Even based on the results of this study alone, distinct characteristics were identified in
468 the static muscle function parameters measured by TMG when comparing the trunk muscles of patients
469 with lower back pain to those of healthy young participants without back pain. The primary variable in
470 TMG, Dm, measures the maximum muscle displacement during contraction, where a lower Dm may
471 indicate increased stiffness, muscle rigidity, or injury risk, while a higher Dm suggests lower muscle tension

472 or greater flexibility (Reeves et al., 2005; García-García et al., 2013). In this study, the Dm values derived
473 from the abdomen and back muscles were lower in the NSLBP group, while higher values were observed
474 in the CON group, aligning with the findings of previous studies (Yeom et al., 2023). Typically, Tc is
475 shorter in the absence of muscular impairments; however, it tends to be prolonged in the presence of muscle
476 fatigue, weakness, or neuromuscular control deficits (Bibrowicz et al., 2024). Consistent with the findings
477 of this study, Tc of the RA and ES was shorter on both the left and right sides in the CON group compared
478 to the NSLBP group, with a similar trend observed in the mean Tc. According to various studies, Ts
479 represents the duration for which Tc is maintained. A shorter Ts may indicate muscle fatigue or reduced
480 contraction endurance, whereas a longer Ts is considered indicative of better contractile capacity (Tous-
481 Fajardo et al., 2010). In the results of this study, the Ts values derived from the RA and ES were
482 significantly lower in the NSLBP group compared to the CON group, suggesting diminished muscle
483 function associated with lower back pain. Tr represents the time it takes for the muscle to transition from
484 90% to 50% of its maximal displacement during relaxation (Poggesi et al., 2005). A prolonged Tr may
485 indicate increased fatigue, muscle damage, or excessive tension, whereas a shorter Tr suggests quick
486 relaxation, typically reflecting a normal state. In this study, the Tr values derived from the abdomen and
487 back muscles were longer in the NSLBP group, while shorter values were observed in the CON group,
488 consistent with the findings of previous studies. In addition, Td represents the time required to reach 10%
489 of the Dm (Dahmane et al., 2001). A prolonged Td may indicate delayed nerve conduction or impaired
490 muscle response, whereas a shorter Td reflects an appropriate neuromuscular response time (Simunić et al.,
491 2011). In this study, the Td values derived from the RA and ES were longer in the NSLBP group, while
492 shorter values were observed in the CON group, aligning with the findings of previous studies. Meanwhile,
493 the Vc of a muscle, calculated as $Dm/(Tc + Td)$, is considered an indicator of muscle health, with lower
494 values suggesting potential issues within the muscle group and higher values indicating healthier muscles
495 (Valencic & Knez, 1997). In this study, the Vc values derived from the RA and ES were lower in the
496 NSLBP group compared to the CON group, confirming impairments in the RA and ES muscles that
497 constitute the trunk.

498 The isokinetic dynamometer revealed the degree of development of trunk extensors relative to trunk
499 flexors in the healthy control group without back pain (Yahia et al., 2011; Merati et al., 2004). In this study,
500 the PT and PTBW of the trunk flexor measured at 90°/sec were lower in the NSLBP group compared to the
501 CON group. Similarly, the PT and PTBW of the trunk extensor were significantly lower in the NSLBP
502 group than in the CON group. However, while WR and WRBW were lower in the NSLBP group compared
503 to the CON group, no significant differences were found in the flexors, whereas significant differences were
504 observed only in the extensors. These trends were similar at an isokinetic angular velocity of 30°/sec,
505 suggesting that NSLBP has a more pronounced detrimental effect on the trunk extensors than on the flexors.

506 These findings reflect the high activation of the ES muscles during multi-joint strength training exercises,
507 such as squats and deadlifts, commonly incorporated into exercise training programs (Cormie et al., 2011).
508 The flexion-to-extension ratio in all muscle groups serves as a valuable indicator for assessing muscle
509 damage or the potential risk of injury. Ben Moussa Zouita et al. (2018) reported that the maximum torque
510 ratio between the flexor and extensor muscles serves as an indicator of muscular joint balance. In this
511 regard, Merati et al. (2004) reported that at 90°/sec, the trunk flexion-to-extension ratio in a pain-free control
512 group of children was 0.89, whereas it was 1.00 in a group with low back pain. Similarly, Lee et al. (2012)
513 found that at 60°/sec, the trunk flexion-to-extension ratio in middle-aged adults with LBP was 0.57.
514 Conversely, Yahia et al. (2011) reported that at 90°/sec, the ratio was 0.85 in a group without chronic lumbar
515 pain, while it was 1.34 in those with chronic lumbar pain. Cohen et al. (2002) observed that at 60°/sec, the
516 ratio was 0.82 in a healthy control group but increased to 1.31 in individuals with LBP. The findings of our
517 study contrast with those of Merati et al. (2004) and Lee et al. (2012) but align more closely with the results
518 reported by Yahia et al. (2011) and Cohen et al. (Cohen et al., 2002). Specifically, at 90°/sec, the CON
519 group exhibited a trunk flexion-to-extension ratio of 0.96 ± 0.18 , whereas in the NSLBP group, it was 1.20 ± 0.36 , showing a statistically significant difference between groups ($Z = -4.421, p = 0.001, \eta^2 = 0.133$).
520 This finding suggests that individuals with NSLBP have weaker extensor muscles relative to flexor muscles.
521 Similarly, at 30°/sec, the CON group demonstrated a flexion-to-extension ratio of 1.02 ± 0.28 , while the
522 NSLBP group showed a ratio of 1.32 ± 0.49 ($Z = -3.843, p = 0.001, \eta^2 = 0.112$), further confirming that in
523 the presence of low back pain, the extensor muscles are weaker compared to the flexor muscles.
524

525 Ultimately, this study confirmed that trunk flexor and extensor muscle characteristics assessed using
526 TMG and isokinetic dynamometry effectively reflect the differences between bodybuilding trainees with
527 and without NSLBP. Specifically, the findings revealed an inverse relationship between the PT and WR of
528 the TEF muscles and the parameters Tc, Tr, and Td. Higher PT and WR values were associated with lower
529 Tc, Tr, and Td, whereas lower PT and WR values corresponded to higher Tc, Tr, and Td. Additionally, a
530 direct relationship was observed between PT, WR, and Dm and Ts, with higher PT and WR values linked
531 to increased Dm and Ts, and lower PT and WR values associated with decreased Dm and Ts. Furthermore,
532 individuals with NSLBP exhibited distinct muscle characteristics compared to healthy controls. They
533 demonstrated higher Tc, Tr, and Td values and lower Dm and Ts values in the RA and ES muscles.
534 Isokinetic strength assessments further indicated that the NSLBP group had reduced trunk flexor and
535 extensor strength compared to the control group, with extensor muscle weakness being more pronounced
536 than flexor muscle weakness.

537 However, our study has several limitations. First, the participants were exclusively bodybuilding trainees,
538 which may limit the generalizability of the findings. Second, the study was conducted on young adults in
539 their twenties who attended a single training center, and the relatively small sample size further restricts the

540 applicability of the results to a broader population. Considering these limitations, future research should
541 aim to examine the characteristics of non-invasive assessment tools across a more diverse and larger
542 population from multiple locations to enhance the validity and applicability of the findings.

543

544 **Conclusions**

545 Nonetheless, it is essential to recognize that this study has certain limitations, this study found a consistent
546 relationship between muscle tone using a TMG and the assessment of trunk flexor and extensor using an
547 isokinetic dynamometer. Additionally, it demonstrated a specific alteration in distinguishing between
548 impaired and unimpaired trunks' muscles due to NSLBP.

549

550 **Acknowledgments**

551 We gratefully acknowledge all the participants who took part in this study and support.

552

553 **References**

554 **Alshehri MA, van den Hoorn W, Klyne DM, Hodges PW. 2024.** Coordination of hip and spine in
555 individuals with acute low back pain during unstable sitting. *The Spine Journal: Official Journal of*
556 *the North American Spine Society* **24**(5):768–782. <https://doi.org/10.1016/j.spinee.2023.12.001>

557 **Ben Moussa Zouita A, Ben Salah FZ, Dziri C, Beardsley C. 2018.** Comparison of isokinetic trunk flexion
558 and extension torques and powers between athletes and nonathletes. *Journal of Exercise*
559 *Rehabilitation* **14**(1): 72–77. <https://doi.org/10.12965/jer.1835126.563>

560 **Bibrowicz K, Szurmik T, Kurzeja P, Bibrowicz B, Ogrodzka-Ciechanowicz K. 2024.** Pelvic tilt and
561 stiffness of the muscles stabilising the lumbo-pelvic-hip (LPH) complex in tensiomyography
562 examination. *PloS one* **19**(10): e0312480. <https://doi.org/10.1371/journal.pone.0312480>

563 **Bláfoss R, Aagaard P, Andersen LL. 2019.** Physical and psychosocial work environmental risk factors
564 of low-back pain: protocol for a 1 year prospective cohort study. *BMC Musculoskeletal*
565 *Disorders* **20**(1): 626. <https://doi.org/10.1186/s12891-019-2996-z>

566 **Bonilla DA, Cardozo LA, Vélez-Gutiérrez JM, Arévalo-Rodríguez A, Vargas-Molina S, Stout JR,**
567 **Kreider RB, Petro JL. 2022.** Exercise Selection and Common Injuries in Fitness Centers: A
568 Systematic Integrative Review and Practical Recommendations. *International Journal of*
569 *Environmental Research and Public Health* **19**(19):12710. <https://doi.org/10.3390/ijerph191912710>

570 **Campanini I, Disselhorst-Klug C, Rymer WZ, Merletti R. 2020.** Surface EMG in Clinical Assessment
571 and Neurorehabilitation: Barriers Limiting Its Use. *Frontiers in Neurology* **11**:934.
572 <https://doi.org/10.3389/fneur.2020.00934>

573 **Chaput JP, Klingenberg L, Rosenkilde M, Gilbert JA, Tremblay A, Sjödin A. 2011.** Physical activity
574 plays an important role in body weight regulation. *Journal of Obesity* 360257.
575 <https://doi.org/10.1155/2011/360257>

576 **Cheng HLH. 2016.** A simple, easy-to-use spreadsheet for automatic scoring of the international physical
577 activity questionnaire (IPAQ) short form. <https://doi.org/10.13140/RG.2.2.21067.80165>

578 **Cohen P, Chantraine A, Gobelet C, Ziltener JL. 2002.** Influence de la position de test sur l'évaluation
579 isokinétique lombaire [Influence of testing position on lumbar isokinetic measurements]. *Annales de
580 readaptation et de medecine physique : revue scientifique de la Societe francaise de reeducation
581 fonctionnelle de readaptation et de medecine physique* 45(1):12–18. [https://doi.org/10.1016/s0168-6054\(01\)00167-2](https://doi.org/10.1016/s0168-
582 6054(01)00167-2)

583 **Cormie P, McGuigan MR, Newton RU. 2011.** Developing maximal neuromuscular power: part 2 -
584 training considerations for improving maximal power production. *Sports Medicine (Auckland, N.Z.)*
585 41(2):125–146. <https://doi.org/10.2165/11538500-00000000-00000>

586 **Dahmane R, Valenčič V, Knež N, Eržen I. 2001.** Evaluation of the ability to make non-invasive
587 estimation of muscle contractile properties on the basis of the muscle belly response. *Medical &
588 Biological Engineering & Computing* 39(1):51–55. <https://doi.org/10.1007/BF02345266>

589 **de Oliveira Meirelles F, de Oliveira Muniz Cunha JC, da Silva EB. 2020.** Osteopathic manipulation
590 treatment versus therapeutic exercises in patients with chronic nonspecific low back pain: A
591 randomized, controlled and double-blind study. *Journal of Back and Musculoskeletal
592 Rehabilitation* 33(3):367–377. <https://doi.org/10.3233/BMR-181355>

593 **Delitto A, George SZ, Van Dillen LR, Whitman JM, Sowa G, Shekelle P, Godges JJ. 2012.** Low back
594 pain. *Journal of Orthopaedic & Sports Physical Therapy* 42(4):A1–A57.
595 <https://doi.org/10.2519/jospt.2012.0301>

596 **Des Jarlais DC, Lyles C, Crepaz N, TREND Group. 2004.** Improving the reporting quality of
597 nonrandomized evaluations of behavioral and public health interventions: the TREND
598 statement. *American Journal of Public Health* 94(3):361–366. <https://doi.org/10.2105/ajph.94.3.361>

599 **Dick TJM, Wakeling JM. 2017.** Shifting gears: dynamic muscle shape changes and force-velocity
600 behavior in the medial gastrocnemius. *Journal of Applied Physiology (Bethesda, Md.: 1985)* 123(6):1433–1442. <https://doi.org/10.1152/japplphysiol.01050.2016>

602 **Fairbank JCT, Pynsent PB. 2000.** The Oswestry Disability Index. *Spine* 25(22):2940–2953.
603 <https://doi.org/10.1097/00007632-200011150-00017>

604 **Fritz CO, Morris PE, Richler JJ. 2012.** Effect size estimates: current use, calculations, and
605 interpretation. *Journal of Experimental Psychology. General* 141(1):2–18.
606 <https://doi.org/10.1037/a0024338>

607 **García-García O, Cancela-Carral JM, Martínez-Trigo R, Serrano-Gómez V.** 2013. Differences in the
608 contractile properties of the knee extensor and flexor muscles in professional road cyclists during the
609 season. *Journal of Strength and Conditioning Research* **27(10)**:2760–2767.
610 <https://doi.org/10.1519/JSC.0b013e31828155cd>

611 **García-Vaquero MP, Barbado D, Juan-Recio C, López-Valenciano A, Vera-García FJ.** 2020.
612 Isokinetic trunk flexion-extension protocol to assess trunk muscle strength and endurance: Reliability,
613 learning effect, and sex differences. *Journal of Sport and Health Science* **9(6)**:692–701.
614 <https://doi.org/10.1016/j.jshs.2016.08.011>

615 **Gehrig SM, Koopman R, Naim T, Tjoakarfa C, Lynch GS.** 2010. Making fast-twitch dystrophic muscles
616 bigger protects them from contraction injury and attenuates the dystrophic pathology. *The American
617 Journal of Pathology* **176(1)**:29–33. <https://doi.org/10.2353/ajpath.2010.090760>

618 **Guilhem G, Giroux C, Couturier A, Maffiuletti NA.** 2014. Validity of trunk extensor and flexor torque
619 measurements using isokinetic dynamometry. *Journal of Electromyography and Kinesiology: Official
620 Journal of the International Society of Electrophysiological Kinesiology* **24(6)**:986–993.
621 <https://doi.org/10.1016/j.jelekin.2014.07.006>

622 **Heidari S, Babor TF, De Castro P, Tort S, Curno M.** 2016. Sex and Gender Equity in Research: rationale
623 for the SAGER guidelines and recommended use. *Research Integrity and Peer Review* **1**:2.
624 <https://doi.org/10.1186/s41073-016-0007-6>

625 **Howarth SJ, McCreath Frangakis E, Hirsch S, De Carvalho D.** 2024. Evaluating Test–Retest
626 Reliability and Measurement Error of the Lumbar Flexion Relaxation Ratio Within and Between Days.
627 *Measurement in Physical Education and Exercise Science* **28(4)**:401–410.
628 <https://doi.org/10.1080/1091367X.2024.2377101>

629 **Huebner M, Arrow H, Garinther A, Meltzer DE.** 2022. How Heavy Lifting Lightens Our Lives: Content
630 Analysis of Perceived Outcomes of Masters Weightlifting. *Frontiers in Sports and Active Living*
631 **4**:778491. <https://doi.org/10.3389/fspor.2022.778491>

632 **Ibrahim AA, Akindele MO, Bello B, Kaka B.** 2020. Translation, Cross-cultural Adaptation, and
633 Psychometric Properties of the Hausa Versions of the Numerical Pain Rating Scale and Global Rating
634 of Change Scale in a Low-literate Population with Chronic Low Back Pain. *Spine* **45(8)**:E439–E447.
635 <https://doi.org/10.1097/BRS.0000000000003306>

636 **Imamura M, Alfieri FM, Filippo TR, Battistella LR.** 2016. Pressure pain thresholds in patients with
637 chronic nonspecific low back pain. *Journal of Back and Musculoskeletal Rehabilitation* **29(2)**:327–
638 336. <https://doi.org/10.3233/BMR-150636>

639 **Jee YS.** 2019. The effect of high-impulse-electromyostimulation on adipokine profiles, body composition
640 and strength: A pilot study. *Isokinetics and Exercise Science* **27(3)**:163–176.

641 <https://doi.org/10.3233/IES-183201>

642 **Jiang Y, Xu Y, Kong X, Zhao E, Ma C, Lv Y, Xu H, Sun H, Gao X. 2024.** How to tackle non-specific
643 low back pain among adult patients? A systematic review with a meta-analysis to compare four
644 interventions. *Journal of Orthopaedic Surgery and Research* **19**(1):1. <https://doi.org/10.1186/s13018-023-04392-2>

645 **Kandwal A, Sharma YD, Jasrotia R, Kit CC, Lakshmaiya N, Sillanpää M, Liu LW, Igbe T, Kumari
646 A, Sharma R, Kumar S, Sungoum C. 2024.** A comprehensive review on electromagnetic wave based
647 non-invasive glucose monitoring in microwave frequencies. *Helijon* **10**(18):e37825.
648 <https://doi.org/10.1016/j.heliyon.2024.e37825>

649 **Kang H. 2021.** Sample size determination and power analysis using the G*Power software. *Journal of
650 Educational Evaluation for Health Professions* **18**:17. <https://doi.org/10.3352/jeehp.2021.18.17>

651 **Koo TK, Li MY. 2016.** A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for
652 Reliability Research. *Journal of Chiropractic Medicine* **15**(2):155–163.
653 <https://doi.org/10.1016/j.jcm.2016.02.012>

654 **Lee HJ, Lim WH, Park JW, Kwon BS, Ryu KH, Lee JH, Park YG. 2012.** The Relationship between
655 Cross Sectional Area and Strength of Back Muscles in Patients with Chronic Low Back Pain. *Annals
656 of Rehabilitation Medicine* **36**(2):173–181. <https://doi.org/10.5535/arm.2012.36.2.173>

657 **Loell I, Helmers SB, Dastmalchi M, Alexanderson H, Munters LA, Nennesmo I, Lindroos E, Borg K,
658 Lundberg IE, Esbjörnsson M. 2011.** Higher proportion of fast-twitch (type II) muscle fibres in
659 idiopathic inflammatory myopathies - evident in chronic but not in untreated newly diagnosed
660 patients. *Clinical Physiology and Functional Imaging* **31**(1):18–25. <https://doi.org/10.1111/j.1475-097X.2010.00973.x>

661 **Lohr C, Medina-Porqueres I. 2021.** Immediate effects of myofascial release on neuromechanical
662 characteristics in female and male patients with low back pain and healthy controls as assessed by
663 tensiomyography. A controlled matched-pair study. *Clinical Biomechanics (Bristol, Avon)* **84**:105351. <https://doi.org/10.1016/j.clinbiomech.2021.105351>

664 **Lohr C, Braumann KM, Reer R, Schroeder J, Schmidt T. 2018.** Reliability of tensiomyography and
665 myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in
666 healthy volunteers. *European Journal of Applied Physiology* **118**(7):1349–1359.
667 <https://doi.org/10.1007/s00421-018-3867-2>

668 **Lohr C, Schmidt T, Braumann KM, Reer R, Medina-Porqueres I. 2020.** Sex-Based Differences in
669 Tensiomyography as Assessed in the Lower Erector Spinae of Healthy Participants: An Observational
670 Study. *Sports Health* **12**(4):341–346. <https://doi.org/10.1177/1941738120917932>

671 **Macgregor LJ, Hunter AM, Orizio C, Fairweather MM, Ditroilo M. 2018.** Assessment of Skeletal

675 Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography. *Sports*
676 *Medicine (Auckland, N.Z.)* **48**(7):1607–1620. <https://doi.org/10.1007/s40279-018-0912-6>

677 **Maher C, Underwood M, Buchbinder R.** 2017. Non-specific low back pain. *Lancet (London, England)*
678 **389**(10070):736–747. [https://doi.org/10.1016/S0140-6736\(16\)30970-9](https://doi.org/10.1016/S0140-6736(16)30970-9)

679 **Mangano T, Cerruti P, Repetto I, Trentini R, Giovale M, Franchin F.** 2015. Chronic tendonopathy as
680 a unique cause of non traumatic triceps tendon rupture in a (risk factors free) bodybuilder: A case
681 report. *Journal of Orthopaedic Case Reports* **5**(1):58–61. <https://doi.org/10.13107/jocr.2250-0685.257>

683 **Merati G, Negrini S, Carabalona R, Margonato V, Veicsteinas A.** 2004. Trunk muscular strength in
684 pre-pubertal children with and without back pain. *Pediatric Rehabilitation* **7**(2):97–103.
685 <https://doi.org/10.1080/13638490310001654754>

686 **Morini S, Ciccarelli A, Cerulli C, Giombini A, Di Cesare A, Ripani M.** 2008. Functional anatomy of
687 trunk flexion-extension in isokinetic exercise: muscle activity in standing and seated
688 positions. *Journal of Sports Medicine and Physical Fitness* **48**(1):17–23.

689 **Mueller S, Mayer P, Baur H, Mayer F.** 2011. Higher velocities in isokinetic dynamometry: A pilot study
690 of new test mode with active compensation of inertia. *Isokinetics and Exercise Science* **19**(2):63–70.
691 <https://doi.org/10.3233/IES-2011-0398>

692 **Park S.** 2020. Theory and usage of tensiomyography and the analysis method for the patient with low back
693 pain. *Journal of Exercise Rehabilitation* **16**(4):325–331. <https://doi.org/10.12965/jer.2040420.210>

694 **Park S, Kim YC, Jee YS.** 2024. Plank exercise improves respiratory capacity through positive changes in
695 body composition, abdominis function, and autonomic nerves' activities. *European Journal of Sport
696 Science* **24**(3):330–340. <https://doi.org/10.1002/ejsc.12086>

697 **Paul DJ, Nassis GP.** 2015. Testing strength and power in soccer players: the application of conventional
698 and traditional methods of assessment. *Journal of Strength and Conditioning Research* **29**(6):1748–
699 1758. <https://doi.org/10.1519/JSC.0000000000000807>

700 **Piqueras-Sanchiz F, Martín-Rodríguez S, Pareja-Blanco F, Baraja-Vegas L, Blázquez-Fernández J,
701 Bautista IJ, García-García Ó.** 2020. Mechanomyographic measures of muscle contractile properties
702 are influenced by electrode size and stimulation pulse duration. *Scientific Reports* **10**(1):8192.
703 <https://doi.org/10.1038/s41598-020-65111-z>

704 **Poggesi C, Tesi C, Stehle R.** 2005. Sarcomeric determinants of striated muscle relaxation kinetics. *Pflugers
705 Archive: European Journal of Physiology* **449**(6):505–517. <https://doi.org/10.1007/s00424-004-1363-5>

707 **Price JW.** 2021. Osteopathic model of the development and prevention of occupational musculoskeletal
708 disorders. *Journal of Osteopathic Medicine* **121**(3):287–305. <https://doi.org/10.1515/jom-2020-0060>

709 **Reeves ND, Maganaris CN, Ferretti G, Narici MV. 2005.** Influence of 90-day simulated microgravity
710 on human tendon mechanical properties and the effect of resistive countermeasures. *Journal of*
711 *Applied Physiology (Bethesda, Md.: 1985)* **98(6):**2278–2286.
712 <https://doi.org/10.1152/japplphysiol.01266.2004>

713 **Ren XS, Kazis L. 1998.** Are patients capable of attributing functional impairments to specific
714 diseases? *American Journal of Public Health* **88(5):**837–838. <https://doi.org/10.2105/ajph.88.5.837>

715 **Roland M, Fairbank J. 2000.** The Roland-Morris Disability Questionnaire and the Oswestry Disability
716 Questionnaire. *Spine* **25(24):**3115–3124. <https://doi.org/10.1097/00007632-200012150-00006>

717 **Roland M, Morris R. 1983.** A study of the natural history of low-back pain. Part II: development of
718 guidelines for trials of treatment in primary care. *Spine* **8(2):**145–150.
719 <https://doi.org/10.1097/00007632-198303000-00005>

720 **Ross R, Han J, Slover J. 2023.** Chronic Lower Back Pain in Weight Lifters: Epidemiology, Evaluation,
721 and Management. *JBJS Reviews* **11(6):**e22.00228. <https://doi.org/10.2106/JBJS.RVW.22.00228>

722 **Sarafadeen R, Ganiyu SO, Ibrahim AA. 2020.** Effects of spinal stabilization exercise with real-time
723 ultrasound imaging biofeedback in individuals with chronic nonspecific low back pain: a pilot
724 study. *Journal of Exercise Rehabilitation* **16(3):**293–299. <https://doi.org/10.12965/jer.2040380.190>

725 **Sedgwick P. 2013.** Sample size: how many participants are needed in a trial? *BMJ (Clinical research*
726 *ed.)* **346:**f1041. <https://doi.org/10.1136/bmj.f1041>

727 **Shmagel A, Foley R, Ibrahim H. 2016.** Epidemiology of Chronic Low Back Pain in US Adults: Data
728 From the 2009-2010 National Health and Nutrition Examination Survey. *Arthritis Care &*
729 *Research* **68(11):**1688–1694. <https://doi.org/10.1002/acr.22890>

730 **Simunić B, Degens H, Rittweger J, Narici M, Mekjavić IB, Pišot R. 2011.** Noninvasive estimation of
731 myosin heavy chain composition in human skeletal muscle. *Medicine and Science in Sports and*
732 *Exercise* **43(9):**1619–1625. <https://doi.org/10.1249/MSS.0b013e31821522d0>

733 **Smith-Bindman R. 2010.** Is computed tomography safe? *New England Journal of Medicine* **363(1):**1–4.
734 <https://doi.org/10.1056/NEJMp1002530>

735 **Stratford PW, Binkley J, Solomon P, Finch E, Gill C, Moreland J. 1996.** Defining the minimum level
736 of detectable change for the Roland-Morris questionnaire. *Physical Therapy* **76(4):**359–368.
737 <https://doi.org/10.1093/ptj/76.4.359>

738 **Toskić L, Dopsaj M, Stanković V, Marković M. 2019.** Concurrent and predictive validity of isokinetic
739 dynamometry and tensiomyography in differently trained women and men. *Isokinetics and Exercise*
740 *Science* **27(1):**31-39. <https://doi.org/10.3233/IES-185152>

741 **Tous-Fajardo J, Moras G, Rodríguez-Jiménez S, Usach R, Doutres DM, Maffiuletti NA. 2010.** Inter-
742 rater reliability of muscle contractile property measurements using non-invasive

743 tensiomyography. *Journal of Electromyography and Kinesiology: Official Journal of the International*
744 *Society of Electrophysiological Kinesiology* **20(4)**:761–766.
745 <https://doi.org/10.1016/j.jelekin.2010.02.008>

746 **Valencic V, Knez N. 1997.** Measuring of skeletal muscles' dynamic properties. *Artificial*
747 *Organs* **21(3)**:240–242. <https://doi.org/10.1111/j.1525-1594.1997.tb04658.x>

748 **Van Damme BB, Stevens VK, Van Tiggelen DE, Duvigneaud NN, Neyens E, Danneels LA. 2013.**
749 Velocity of isokinetic trunk exercises influences back muscle recruitment patterns in healthy
750 subjects. *Journal of Electromyography and Kinesiology: Official Journal of the International Society*
751 *of Electrophysiological Kinesiology* **23(2)**:378–386. <https://doi.org/10.1016/j.jelekin.2012.10.015>

752 **Warneke K, Keiner M, Wallot S, Siegel SD, Günther C, Wirth K, Puschkasch-Möck S. 2025.** The
753 Impact of Sample Size on Reliability Metrics Stability in Isokinetic Strength Assessments: Does Size
754 Matter? *Measurement in Physical Education and Exercise Science* 1-12.
755 <https://doi.org/10.1080/1091367X.2025.2494998>

756 **Williams JR. 2008.** The Declaration of Helsinki and public health. *Bulletin of the World Health*
757 *Organization* **86(8)**:650–652. <https://doi.org/10.2471/blt.08.050955>

758 **Yahia A, Jribi S, Ghroubi S, Elleuch M, Baklouti S, Habib Elleuch M. 2011.** Evaluation of the posture
759 and muscular strength of the trunk and inferior members of patients with chronic lumbar pain. *Joint*
760 *Bone Spine* **78(3)**:291–297. <https://doi.org/10.1016/j.jbspin.2010.09.008>

761 **Yeom S, Jeong H, Lee H, Jeon K. 2023.** Effects of Lumbar Stabilization Exercises on Isokinetic Strength
762 and Muscle Tension in Sedentary Men. *Bioengineering (Basel, Switzerland)* **10(3)**:342.
763 <https://doi.org/10.3390/bioengineering10030342>

764

765 **Table Legends**

766

Table 1 Demographic and physical characteristics.

Items	Groups		Z	p	η^2
	CON (n = 60)	NSLBP (n = 90)			
Age (years)	21.9 \pm 1.0	22.0 \pm 1.6	-0.476	0.634	0.003
Sex [†]	1.4 \pm 0.4	1.3 \pm 0.4	-1.117	0.264	0.008
Stature (cm)	170.8 \pm 8.6	172.1 \pm 8.5	-0.722	0.470	0.006
Weight (kg)	68.7 \pm 12.1	70.9 \pm 12.8	-1.040	0.298	0.008
Muscle mass (kg)	29.9 \pm 6.9	31.0 \pm 6.6	-0.946	0.344	0.007
Fat mass (kg)	15.7 \pm 3.5	15.1 \pm 5.1	-1.249	0.212	0.004
Percent fat (%)	23.4 \pm 6.4	21.9 \pm 7.5	-1.638	0.101	0.010
Lean mass (kg)	52.2 \pm 10.7	51.7 \pm 8.6	-0.146	0.884	0.001
Body mass index (kg/m ²)	23.6 \pm 2.6	23.9 \pm 2.7	-0.616	0.538	0.002
Waist-to-hip ratio	0.8 \pm 0.1	0.8 \pm 0.1	-0.649	0.516	0.002
Basal metabolic rate (kcal)	1544.3 \pm 244.6	1586.7 \pm 243.8	-1.109	0.267	0.007
Diet level (kcal)	2390.7 \pm 311.0	2440.1 \pm 266.5	-0.794	0.427	0.007
PA level (MET·min/week)	2110.1 \pm 742.0	2201.5 \pm 726.4	-0.599	0.549	0.004
Training duration (years)	3.1 \pm 0.7	2.9 \pm 1.1	-1.649	0.099	0.011
LBP duration (month)	0.1 \pm 0.2	4.8 \pm 2.2	-10.542	0.001	0.624
NPRS (scores)	0.6 \pm 0.3	4.7 \pm 1.0	-10.447	0.001	0.843
RMDQ (scores)	0.7 \pm 0.2	7.7 \pm 3.2	-10.372	0.001	0.648

[†]represents sex, with '1' and '2' indicating male and female. CON, control group; NSLBP, nonspecific low back pain group; PA, physical activity; LBP, low back pain; NPRS, Numerical pain rating scale; RMDQ, Roland-Morris disability questionnaire.

767

768

Table 2 Comparative results of tensiomyographic features between groups.

Items	Groups		Z	p	η^2
	CON (n = 60)	NSLBP (n = 90)			
Tc at left rectus abdominis	20.8 ± 7.9	30.3 ± 10.3	-5.247	0.001	0.196
Tc at right rectus abdominis	20.4 ± 8.1	29.8 ± 11.1	-5.141	0.001	0.175
mean Tc of rectus abdominis	20.6 ± 7.7	30.0 ± 10.4	-5.308	0.001	0.194
Tc at left erector spinae	21.2 ± 8.3	27.1 ± 7.0	-4.426	0.001	0.132
Tc at right erector spinae	20.9 ± 7.3	27.0 ± 8.3	-4.239	0.001	0.124
mean Tc of erector spinae	21.0 ± 7.1	27.1 ± 6.9	-4.685	0.001	0.154
Dm at left rectus abdominis	4.3 ± 1.7	3.2 ± 1.3	-3.699	0.001	0.112
Dm at right rectus abdominis	4.1 ± 1.8	3.1 ± 1.4	-3.022	0.003	0.081
mean Dm of rectus abdominis	4.2 ± 1.7	3.2 ± 1.3	-3.458	0.001	0.098
Dm at left erector spinae	5.8 ± 3.1	4.0 ± 1.9	-2.945	0.003	0.117
Dm at right erector spinae	5.9 ± 3.1	3.9 ± 1.9	-3.693	0.001	0.134
mean Dm of erector spinae	5.8 ± 3.1	3.9 ± 1.8	-3.395	0.001	0.128
Ts at left rectus abdominis	106.6 ± 28.1	88.9 ± 22.2	-3.729	0.001	0.111
Ts at right rectus abdominis	107.1 ± 34.2	89.7 ± 25.6	-3.046	0.002	0.079
mean Ts of rectus abdominis	106.9 ± 27.8	89.3 ± 21.1	-3.342	0.001	0.115
Ts at left erector spinae	103.5 ± 17.0	94.6 ± 22.9	-3.131	0.002	0.042
Ts at right erector spinae	104.3 ± 17.3	95.1 ± 29.5	-2.369	0.018	0.031
mean Ts of erector spinae	103.9 ± 16.5	94.9 ± 23.0	-3.054	0.002	0.044
Tr at left rectus abdominis	88.6 ± 17.9	106.2 ± 22.3	-5.147	0.001	0.149
Tr at right rectus abdominis	88.2 ± 17.2	105.6 ± 20.6	-5.381	0.001	0.166
mean Tr of rectus abdominis	88.4 ± 17.1	105.9 ± 21.1	-5.335	0.001	0.162
Tr at left erector spinae	102.5 ± 17.6	110.8 ± 13.6	-3.354	0.001	0.066
Tr at right erector spinae	100.3 ± 27.4	108.6 ± 17.4	-2.482	0.013	0.034
mean Tr of erector spinae	101.4 ± 18.1	109.7 ± 12.8	-3.158	0.002	0.068
Td at left rectus abdominis	7.7 ± 3.3	9.5 ± 2.8	-3.378	0.001	0.080
Td at right rectus abdominis	7.7 ± 3.1	9.3 ± 2.5	-3.115	0.002	0.067
mean Td of rectus abdominis	7.7 ± 3.0	9.4 ± 2.5	-3.666	0.001	0.083
Td at left erector spinae	7.3 ± 3.1	9.5 ± 3.4	-4.301	0.001	0.104
Td at right erector spinae	7.1 ± 3.6	9.6 ± 4.1	-3.514	0.001	0.083
mean Td of erector spinae	7.2 ± 3.2	9.6 ± 3.5	-4.063	0.001	0.104
Vc of rectus abdominis	0.1 ± 0.1	0.1 ± 0.1	-5.212	0.001	0.158
Vc of erector spinae	0.2 ± 0.1	0.1 ± 0.1	-4.630	0.001	0.165

All values represent mean ± standard deviation. CON, control group; NSLBP, nonspecific low back pain group; Tc, contraction time; Dm, maximum displacement; Ts, sustain time; Tr, relaxation time; Td, delay time; Vc, contraction velocity.

769

770

Table 3 Comparative results of isokinetic moments between groups.

Items	Groups		Z	p	η^2
	CON (n = 60)	NSLBP (n = 90)			
<u>Values at 90°/sec (Nm)</u>					
Flexor PT	216.5 ± 83.5	182.7 ± 51.5	-2.406	0.016	0.060
Flexor PTBW	319.7 ± 118.2	271.9 ± 99.8	-2.858	0.004	0.046
Extensor PT	224.5 ± 65.5	159.8 ± 48.0	-6.399	0.001	0.248
Extensor PTBW	332.1 ± 94.6	247.1 ± 82.4	-5.772	0.001	0.187
Flexor WR	190.8 ± 83.0	179.6 ± 57.8	-0.098	0.922	0.006
Flexor WRBW	278.8 ± 110.4	259.1 ± 91.4	-0.568	0.570	0.009
Extensor WR	199.9 ± 98.0	162.8 ± 59.8	-2.129	0.033	0.053
Extensor WRBW	290.3 ± 130.7	232.9 ± 86.6	-2.826	0.005	0.066
<u>Values at 30°/sec (Nm)</u>					
Flexor PT	190.5 ± 39.1	177.6 ± 53.3	-1.470	0.141	0.017
Flexor PTBW	281.3 ± 55.4	252.1 ± 66.7	-2.561	0.010	0.050
Extensor PT	195.3 ± 58.3	140.9 ± 35.3	-6.177	0.001	0.254
Extensor PTBW	287.4 ± 79.7	203.5 ± 56.7	-6.302	0.001	0.277
Flexor WR	183.0 ± 62.2	169.0 ± 48.6	-0.923	0.356	0.016
Flexor WRBW	268.7 ± 80.0	244.9 ± 77.6	-1.682	0.092	0.022
Extensor WR	191.0 ± 91.0	144.6 ± 28.0	-2.509	0.012	0.122
Extensor WRBW	278.7 ± 119.5	210.0 ± 53.5	-3.419	0.001	0.134

All values represent mean ± standard deviation. CON, control group; NSLBP, nonspecific low back pain group; PT, peak torque; PTBW, peak torque % body weight; WR, work per repetition; WRBW, work per repetition % body weight.

771

772

773 **Figure Legends**

774

775 **Figure 1.** Tensiomyographic rectus abdominis and erector spinae measurement scene

776

777 **Figure 2.** Isokinetic trunk flexor/extensor measurement scene

778

779 **Figure 3.** Correlation matrix of multiple variables across each row and column between TMG and
780 isokinetic measures. In A, a deeper shade of grey indicates a higher positive correlation (+1), while a shift
781 towards red hues suggests a negative correlation (-1) between TMG and isokinetic factors at 90°/sec. In B,
782 a deeper shade of grey signifies a higher positive correlation (+1), whereas a shift towards green hues
783 indicates a negative correlation (-1) between TMG and isokinetic measures at 30°/sec. Tc, contraction time;
784 Dm, maximum displacement; Ts, sustain time; Tr, relaxation time; Td, delay time; RA, rectus abdominis;
785 ES, erector spinae; PT, peak torque; PTBW, peak torque % body weight; WR, work per repetition; WRBW,
786 work per repetition % body weight.

787

788 **Figure 4.** Differences of Vc (contraction velocity) in rectus abdominis and erector spinae factors. CON,
789 control group; NSLBP, nonspecific low back pain; ***, $p < 0.001$ between groups.

790

791 **Figure 5.** Differences of trunk extensor / flexor peak torques' ratio at isokinetic 90°/sec and 30°/sec. CON,
792 control group; NSLBP, nonspecific low back pain; ***, $p < 0.001$ between groups.

793

Figure 1

Figure 1

Tensiomyographic rectus abdominis and erector spinae measurement scene

Figure 2

Figure 2

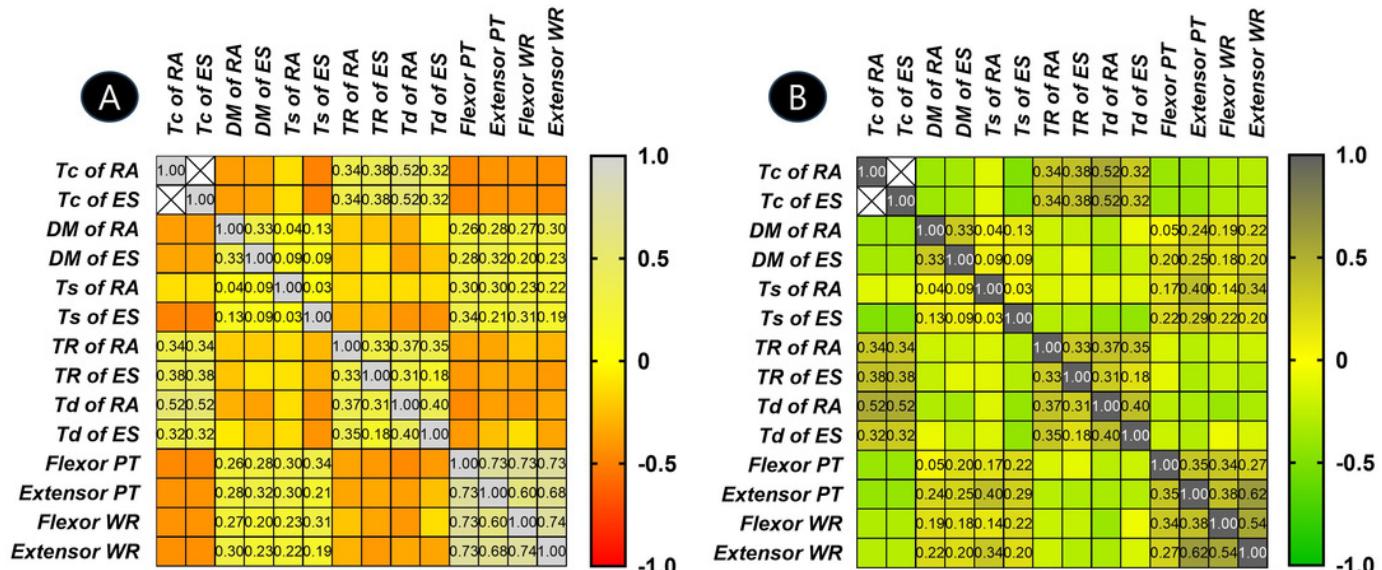

Isokinetic trunk flexor/extensor measurement scene

Figure 3

Figure 3

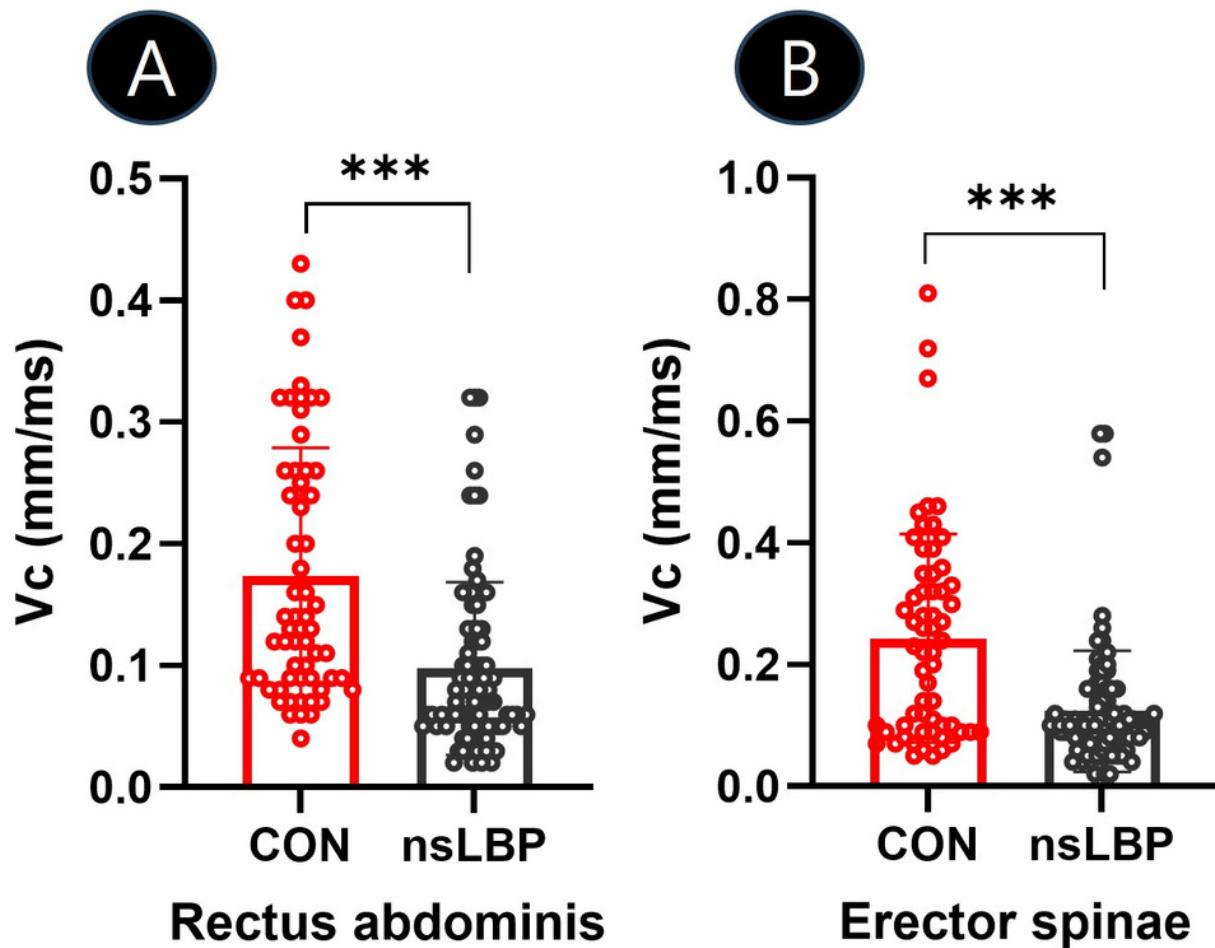

Correlation matrix of multiple variables across each row and column between TMG and isokinetic measures. In A, a deeper shade of grey indicates a higher positive correlation (+1), while a shift towards red hues suggests a negative correlation (-1) between TMG and isokinetic factors at 90°/sec. In B, a deeper shade of grey signifies a higher positive correlation (+1), whereas a shift towards green hues indicates a negative correlation (-1) between TMG and isokinetic measures at 30°/sec. Tc, contraction time; Dm, maximum displacement; Ts, sustain time; Tr, relaxation time; Td, delay time; RA, rectus abdominis; ES, erector spinae; PT, peak torque; PTBW, peak torque % body weight; WR, work per repetition; WRBW, work per repetition % body weight.

Figure 4

Figure 4

Differences of V_c (contraction velocity) in rectus abdominis and erector spinae factors. CON, control group; nsLBP, nonspecific low back pain; ***, $p < 0.001$ between groups.

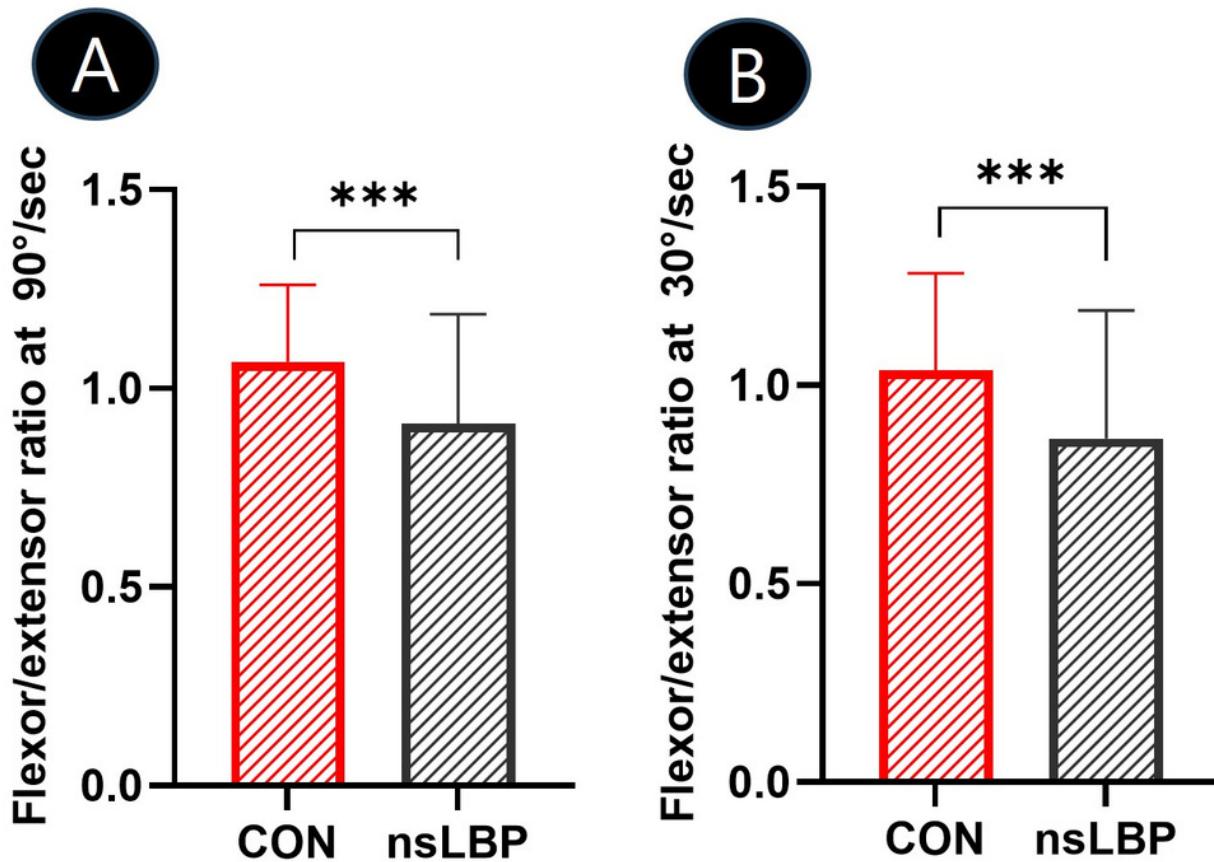


Figure 5

Figure 5

Differences of trunk extensor / flexor peak torques' ratio at isokinetic 90°/sec and 30°/sec.

CON, control group; nsLBP, nonspecific low back pain; ***, $p < 0.001$ between groups.

