

Does reef crest zone selection influence *Acropora palmata* (Lamarck, 1816) fragment survival and growth?

Amanda Ramos Romero^{1,2}, Patricia González-Díaz^{1,3}, Gabriela Aguilera Pérez¹ and Anastazia T. Banaszak²

- ¹ Centro de Investigaciones Marinas, Universidad de La Habana, La Habana, Cuba
- ² Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
- ³ Harte Research Institute for Gulf of Mexico Studies, Texas A&M University, Corpus Christi, TX, United States of America

ABSTRACT

In this study, we evaluated the effects of the crest zones on the survival and growth of Acropora palmata fragments in four sites differentially impacted by multiple natural and anthropogenic stressors. The crests are in the northwest (Playa Baracoa and Rincón de Guanabo) and the south-central region (El Peruano and Mariflores in Jardines de la Reina National Park) of Cuba. We established a field-based experiment with 50 fragments placed in each crest, 25 fragments in the back crest zone and 25 in the fore crest zone, parallel to the shoreline. The water flow intensity was estimated in both crest zones, using the dissolution of plaster discs as an indicator. The survival and growth of fragments were significantly influenced by site-specific and microhabitat conditions. The survival of the A. palmata fragments was high (survival probability: >0.6) in all four crests. Fragments placed in the fore crest zone (p = 0.02) exhibited higher survival than those in the back crest zone. The growth rates were slower $(-1.5 \text{ to } 7.3 \text{ cm year}^{-1})$ than those previously recorded for wild A. palmata colonies and were negatively affected (estimate = -6.1; p = 0.004) in the fore crest zone. The dissolution of the plaster discs did not indicate a marked gradient of water flow between the crest zones, during April and June, but it was significantly higher (p = 0.03) in the fore crest zone in December at El Peruano and Mariflores crests, indicating temporal variations during the monitoring periods. The dissolution of plaster discs, as a proxy for water flow, did not have a significant effect on fragment survival between zones. However, when the dissolution was below approximately 68%, growth declined slightly; above this threshold, growth increased, possibly by higher inferred water flow. At higher levels of water flow (dissolution of the plaster discs), the positive effect of temperature on growth was attenuated (p = 0.007), suggesting that under strong water flow heat may be dissipated. These results highlight the importance of conducting small-scale pilot studies to identify the microhabitat conditions and to select effective restoration sites. We recommend that future restoration efforts should integrate local ecological knowledge with in situ environmental measurements to enhance coral fragment survival and growth, and to improve the long-term success of restoration interventions under variable and changing reef conditions.

Submitted 7 April 2025 Accepted 7 October 2025 Published 14 November 2025

Corresponding author Anastazia T. Banaszak, banaszak@cmarl.unam.mx

Academic editor John Berges

Additional Information and Declarations can be found on page 14

DOI 10.7717/peerj.20303

© Copyright 2025 Ramos Romero et al.

Distributed under Creative Commons CC-BY 4.0

OPEN ACCESS

Subjects Ecology, Marine Biology, Zoology

Keywords Acropora, Crest zones, Field experiment, Fragments, Restoration, Water flow

INTRODUCTION

The reef-building coral *Acropora palmata* (Lamarck, 1816) is listed as Critically Endangered by the International Union for Conservation of Nature (IUCN) since 2008 (*Aronson et al.*, 2008). Currently, *A. palmata* populations are considered not resilient enough to recover naturally due to the impact of various anthropogenic and natural factors such as water pollution, fishing pressure, coral diseases and increases in ocean temperature (*Jackson et al.*, 2014; *Dutra et al.*, 2021). As a consequence, restoration programs have been implemented as a strategy to recover *Acropora* spp. populations throughout the Caribbean (*Ladd et al.*, 2018; *Boström-Einarsson et al.*, 2020).

Coral reef restoration initiatives aim to halt the decline in coral cover, and recover the structural complexity of reefs, ecological functions and ecosystem services, thereby supporting its resilience (*Lirman & Schopmeyer*, 2016; *United Nations Environment Assembly UNEA*, 2019). However, when a system has undergone shifts beyond its natural state, restoring it to its original condition may be impractical or even unfeasible (*Rinkevich*, 2014). In such cases, restoration efforts should prioritize the development of alternative systems that fulfill desired ecological attributes while sustaining the goods and services formerly provided by the original system (*Jackson & Hobbs*, 2009).

Most coral restoration studies have focused on evaluating the survival and growth of outplanted coral fragments. Outplanted corals generally exhibit high survival rates (66%), with *Acropora* spp. reaching up to 90%. Most restoration projects (60%) last from 12 to 18 months and an average area of approximately 100 m² (*Young, Schopmeyer & Lirman, 2012*; *Bayraktarov et al., 2020*). These findings suggest that most restoration initiatives are implemented at relatively small temporal and spatial scales. Nevertheless, successful long-term efforts, extending up to three or even 12 years, have shown increases in coral cover, and fish diversity and abundance (*Bayraktarov et al., 2020*; *Boström-Einarsson et al., 2020*).

Despite these efforts, restoration practitioners have prioritized maximizing the number of outplanted corals, while overlooking the implementation of experimental designs that could support restoration to optimize reef recovery (*Ladd, Burkepile & Shantz, 2019*). A disconnect remains between the ecological knowledge generated and its practical application in the selection of restoration sites (*Miller, 2002; Shaver & Silliman, 2017*). Site selection is often based on logistical or qualitative criteria, without considering measurable environmental and ecological variables such as temperature, input of nutrients, water flow, habitat structure, sedimentation, benthic composition, and herbivory or corallivory processes, despite their potential influence on the performance of outplanted fragments (*Hein et al., 2017; Ladd et al., 2018*).

Improving restoration practices for threatened coral species requires identifying the environmental conditions that influence coral growth and mortality. Furthermore, quantifying the magnitude of these effects is critical for informing targeted management and conservation strategies (*Enochs et al.*, 2014). Among these drivers, wave energy constitutes a fundamental physical force determining reef function and ecology (*Madin & Connolly*, 2006; *Simonson et al.*, 2021). Wave breaking increases the water level, establishing a pressure

gradient that drives flow across the reef (*Lowe et al.*, 2009). In reefs, the wave dissipation can be high (86% in crests, *Ferrario et al.*, 2014) due to the complexity of the substrate (*Monismith et al.*, 2015; *Rogers et al.*, 2016). Reef crests exposed to wave action retain less pollutants, have higher recruitment rates, and exhibit faster coral growth (*Sebens*, 1991). Waves increase water movement, influencing calcification, morphology, photosynthesis, respiration, and particle capture by the corals (*Dennison & Barnes*, 1988; *Patterson*, *Sebens & Olson*, 1991; *Lesser et al.*, 1994).

The coral A. palmata is adapted to high energy environments (*Done, 1982*; *D'Antonio, Gilliam & Walker, 2016*) such as reef crests. The direction and distribution of its branches, morphology, and growth vary depending on waves and water movement. These adaptive strategies of the A. palmata colonies minimize the damage caused by wave force and improve coral survival (*Graus, Chamberlain & Boker, 1977*; *Precht & Miller, 2007*). Our aim was to determine if outplanting *Acropora palmata* fragments in two zones of the reef crest influenced their growth and survival.

MATERIALS AND METHODS

Study area

The study was carried out in four shallow reef crests in Cuba. Two of them are in the northwest region, in Playa Baracoa, Artemisa Province (23°03′20″N, 82°33′10″W) and Rincón de Guanabo, La Habana Province (23°10′23.63″N, 82°05′57.46″W). The other two, Mariflores (20°46′17.46″N, 78°53′44.34″W) and El Peruano (20°50′46.74″N, 79°1′4.32″W) lie to the south of the central region of Cuba, in Jardines de la Reina National Park (Fig. 1). These crests differ in distance from shore, abundance, and diversity of species such as fish and sea urchins, anthropogenic stressors, management and protection (*Pina-Amargós et al.*, 2014; *Rey-Villiers, Sánchez & González-Díaz, 2021; Ramos et al.*, 2024).

The reefs in the northwestern region are impacted by their proximity to the capital city and to coastal development (González-Díaz et al., 2018; Ramos et al., 2024). Pollution from heavy metals and fertilizers, street runoff, the Almendares and Quibú rivers and Havana Bay are the main anthropogenic factors that affect reefs near the city (González-Díaz, De la Guardia & González-Sansón, 2003; Rev-Villiers et al., 2020; Rev-Villiers, Sánchez & González-Díaz, 2021; Ramos et al., 2024). The Playa Baracoa crest is located approximately 230 m from the shoreline and 2 km east of Santa Ana River where untreated wastewater from a local educational institution (Latin American School of Medicine with an average annual enrollment of 10,000 students) is released (Ramos et al., 2024). Rincón de Guanabo is a marine protected area (Protected Natural Landscape/seascape similar to category V IUCN) located 800 m from the coastline. However, there is no effective management plan for this crest. The crest is nearly three km east of an oil drilling and extraction area (Boca de Jaruco thermoelectric power station), but data on nutrient load or pollutants (e.g., hydrocarbons) are either absent or unavailable. In these crests, coral cover is low (<17%) and algal cover is high (>87%) (Ramos et al., 2024). Fish biomass is low (\sim 12 g m⁻²), due to subsistence fishing (Duran et al., 2018; Gil-Agudelo et al., 2020).

On the other hand, Mariflores and El Peruano crests are located approximately 80 km from the main island of Cuba in the Jardines de la Reina National Park. This National

Figure 1 Location of crests where the experiments were undertaken. The map of Cuba shows Playa Baracoa (circle), Rincón de Guanabo (square), Mariflores (star) and El Peruano (triangle) crests. Map data©2024 Google Earth, Image Landsat/Copernicus, Data SIO, NOAA, US Navy, NGA, GEBCO; Image©2024 Airbus; Image©2024 Maxar Technologies.

Park has low human impact and is in good condition in terms of conservation (*Beyer et al.*, 2018). It has been classified as an oligotrophic system where nutrient input is due to organic matter from mangroves, muddy sediments, and open waters such as the Gulf of Ana María and the Caribbean Sea (*Pina-Amargós, Figueredo-Martín & Ross, 2021*). In Jardines de la Reina National Park, the reef crests are characterized by *A. palmata* cover ranging from 22% to 45%, algal cover between 22% and 49%, and *Diadema antillarum* densities of 0.3 to 4.7 ind m⁻² (*Hernández-Fernández, López & Sotolongo, 2016*). Fish abundance is high due to the absence of overfishing (*Pina-Amargós, Figueredo-Martín & Ross, 2021*). According to *Pina-Amargós et al.* (2014), the crests showed high abundances of commercially important fish species, including *Epinephelus striatus* (15–65 cm in length, 0.2 \pm 0.02 ind 1,000 m⁻²), *Lutjanus cyanopterus* (25–85 cm, 0.2 \pm 0.03 ind 1,000 m⁻²), and *L. apodus* (10–55 cm, 53.2 \pm 2.2 ind 1,000 m⁻²). Large herbivorous fish were also present, such as *Scarus guacamaia* (45–115 cm, 0.1 \pm 0.02 ind 1,000 m⁻²) and *Sc. coelestinus* (39–105 cm, 0.08 \pm 0.003 ind 1,000 m⁻²).

Experimental design

Along the crest, we identified two zones relative to the breaking wave and parallel to the shoreline: the fore zone, where wave breaks first, and the back zone, the opposite side of the crest, where the energy of the wave is dissipated by the fore zone (Fig. 2). To estimate water flow intensity in the fore and back crest zones we used the dissolution of plaster discs (or 'clod cards' *Doty*, 1971) as an indicator (*Jokiel & Morrissey*, 1993). On each crest, we placed eight plaster discs weighing approximately 144 g each. Four plaster discs were placed parallel to the shoreline in the fore crest zone and another four were placed in the back crest zone. The discs were mounted on steel rods 10 cm off the substrate using a

Figure 2 Drone image of (A) Mariflores and (B) El Peruano crests which lie to the south of the central region of Cuba, in Jardines de la Reina National Park. The yellow crosses represent the *Acropora palmata* fragments placed in the fore and back crest zones and the red dashed arrows show the direction of waves breaking on each crest. Photo credit: Noel Lopez Fernandez.

wire. The plaster discs were kept for 48 h in Playa Baracoa and Rincón de Guanabo crests, during April and June 2023, respectively. Whereas in El Peruano and Mariflores crests, the discs were placed twice, in December 2022 and April 2023, for 48 h. An exception was in December in Mariflores when the discs were retrieved after 24 h for logistical reasons. Once the discs were removed, they were left to dry and reweighed. The weight lost from each plaster disc provided an indicator of energy on each crest zone.

To test the effect of the crest zones associated with the water flow gradient on the survival and growth of A. palmata fragments, we established a field experiment. The fragments were collected from randomly selected colonies within each study crest. They were cut with forceps from the apical portions of different branches of several colonies, exhibiting a roughly rectangular shape and lacking secondary branching. These fragments were subsequently outplanted onto the same reef crest as the parental colonies, rather than in a common garden. A total of 50 fragments with a size (width and height) between one and seven cm were placed in each crest, 25 fragments in the back and 25 in the fore crest zones, one m apart each and parallel to the shoreline (Fig. 2). The A. palmata fragments were attached to the substrate with epoxy (KLIPTON ACUAPLAST) and each was labeled and monitored over time. The depth at which the A. palmata fragments were placed varied among crests and between zones within each crest. In Playa Baracoa, the depth is approximately 1.5 m and in Rincón de Guanabo, around 2 m, in both zones. In El Peruano, the depth is one m in the back crest zone and 2.5 m in the fore crest zone, while in Mariflores, the back crest zone has a depth of approximately one m and the fore crest zone about 1.8 m.

In Playa Baracoa, the experiment with *A. palmata* fragments was carried out in January 2022. The maximum heights and widths of the fragments were measured with a Vernier caliper at 0, 152, 279, and 453 days. In Rincón de Guanabo, the experiment began in January 2022, and the fragments were monitored at 0, 136, 261, and 433 days. In El Peruano, the experiment started in February 2022 and fragments were measured at 0, 172, 291, and

423 days. In Mariflores, the experiment began in February 2022, and the fragments were measured at 0, 168, 291, and 423 days. The number of fragments measured varied in each period, because some died, were detached from the substrate or were not found on the reef (due to human error) but were relocated in the following monitoring period.

The temperature was recorded every 30 min during the monitoring period using a data logger (HOBO UA-002-64 Pendant) deployed at Playa Baracoa and Rincón de Guanabo crests. In Jardines de la Reina, data were obtained from a logger located on a crest between El Peruano and Mariflores, as it was not possible to deploy loggers on each crest. The data logger records do not precisely align with the coral outplanting start date, either due to the unavailability of loggers at that time or because some units failed, resulting in the loss of temperature data. The mean monthly temperature was determined considering all records obtained every 30 min during each month.

Data analysis

Statistical analyses were conducted using the R program, created by the R Core Team (2016, version 4.0.5). The non-parametric Wilcoxon-Mann-Whitney test was used to test differences in the dissolution of the plaster discs between the crest zones. The median dissolution percentage was calculated from the four plaster discs in each zone. The Student t test (parametric) or the Wilcoxon-Mann–Whitney test (non-parametric) were used to determine differences in the initial size of the fragments between the back and fore crest zones. The Kruskal-Wallis test (non-parametric) and the Dunn post hoc test were used to determine differences in the initial sizes of the fragments between the four crests. A Cox regression model, $coxph(Surv(survival time, survival) \sim height + width, data =$ Data) was used to analyze whether the initial size of the fragments influenced survival, using the survival package (*Therneau & Grambsch*, 2000). The survival probability (s_p) of the fragments was evaluated using the nonparametric Kaplan-Meier estimator with the survminer package (Kassambara, Kosinski & Biecek, 2021). This estimator models survival probability over time by accounting for the exact timing of mortality events. It partitions the follow-up period into intervals defined by the occurrence of events (e.g., fragment mortality) and estimates the conditional survival probability for each interval. These conditional probabilities are then multiplied sequentially to obtain the cumulative survival function. This approach incorporates both time-to-event information and censored data.

The growth rate of the fragments was determined for both width and height during each study period, using the formula of *Mercado-Molina*, *Ruiz-Diaz & Sabat* (2014):

Growth rate =
$$\frac{(\text{initial size} - \text{final size})}{\text{time}}$$

where:

initial size: is the height and/or width(cm) of fragment at the beginning of each period. final size: is the height and/or width (cm) reached by fragments at the end of each period. time: is the number of days included in each study period.

We tested for homogeneity of variance and normality using Levene's and Shapiro–Wilk's tests, respectively (R package nortest). The growth rate data did not fit a normal distribution, and we performed a square root transformation. The t-Student (parametric) test was used

Table 1 Median dissolution percentages (%) and range (minimum, maximum) of the plaster discs located in the fore and back zones of the crests (PB, Playa Baracoa; RG, Rincón de Guanabo; Pr, El Peruano and Mf, Mariflores). The p value ≤ 0.05 indicates significant differences between the crest zones, indicated in bold.

Crest	Month		Dissolution percentage (%) & range (min, max)		
		Time (hrs)	Back zone	Fore zone	<i>p</i> -value
PB	April	48	63 (61, 69)	68 (57, 72)	0.6
RG	June	48	64 (61, 68)	60 (48, 62)	0.1
Pr	December	48	38 (32, 43)	49 (41, 50)	0.03
	April	48	89 (81, 93)	95 (85, 98)	0.3
Mf	December	24	28 (20, 29)	35 (29, 39)	0.03
	April	48	65 (61, 74)	67 (66, 74)	0.5

to determine differences in the growth rates between the back and fore crest zones. A generalized and linear mixed model was used to estimate the effect of: (1) the water flow represented by the dissolution of the plaster discs, (2) mean temperature in each period, (3) depth, (4) period, (5) crest zone and (6) crest site on fragment survival and growth rate, respectively with the lme4 package (*Bates et al.*, 2015). For this model the reference level for the crest site and zone factors were Mariflores crest and the back zone respectively, with an estimate value of 9.4. A segmented model was used to identify dissolution values from which the effect on growth begins to change using the segmented package (*Muggeo*, 2008).

RESULTS

Dissolution of the plaster discs

The dissolution of the plaster discs was similar between the fore and back crest zones from the northwestern and the central regions of Cuba during April and June. In El Peruano and Mariflores reefs, the dissolution of the plaster discs varied significantly (p = 0.03) between crest zones, during December. In El Peruano, the dissolution was 38% and 49% in the fore and back crest zones, respectively. In Mariflores, the dissolution of the plaster discs was lower than in El Peruano, at 35% in the fore crest zone and 28% in the back crest zone (Table 1).

Initial size of the fragments

The initial mean width and height of the fragments ranged from two to four cm and was similar between the fore and back crest zones of the reefs, except in Mariflores where the initial width of the fragments varied significantly (p = 0.003) between zones (Table S1). The initial size varied significantly across the four reefs (Table S2). The Cox regression model did not show an effect of the initial size of the fragments on the survival of fragments in the four reefs.

Table 2 The survival probability (s_p) of *Acropora palmata* fragments for the back and fore crest zones during the study periods in Playa Baracoa (PB), Rincón de Guanabo (RG), El Peruano (Pr) and Mariflores (Mf) reefs. The p value ≤ 0.05 indicates significant differences between the crest zones, indicated in bold.

	Time (days)	Survival probability		
Reef		Back	Fore	<i>p</i> -value
PB	76	0.9	0.9	0.3
	215	0.8	0.9	
	366	0.7	0.8	
	453	0.6	0.8	
RG	68	0.6	1	0.004
	199	0.4	0.8	
	347	0.3	0.7	
Pr	24	0.9	1	0.9
	110	0.8	1	
	232	0.7	0.6	
Mf	23	0.8	0.9	0.1
	107	0.7	0.9	
	232	0.7	0.9	

Survival

Overall, the survival probability of fragments was high ($s_p > 0.6$) in the four crests. The survival was similar among the four fore crest zones ranging from 0.9 to 0.6. However, survival varied significantly (p = 0.03) among the back crest zones. In this case, Rincón de Guanabo had the lowest ($s_p = 0.3$) survival at 347 days in the back crest zone (Table 2, Fig. 3). The generalized linear mixed model did not show a significant effect of dissolution of the plaster discs, mean temperature, depth, or period on fragment survival. However, the survival was positively influenced by the four fore zones (estimate = 5.3; p = 0.02), and Playa Baracoa (estimate = 6.2; p = 0.002) and El Peruano (estimate = 12.9; p = 0.0002) crests, and the interaction between the fore crest zone and the Rincón de Guanabo crest (estimate = 6.9; p = 0.03).

Growth rates

The linear model showed that the growth rates were negatively affected (estimate = -6.1; p=0.004) in the fore crest zone. The rate of increase in the height of the fragments was four-fold higher in the back crest zone in Playa Baracoa (back: 2.9 ± 2.9 cm year⁻¹, fore: 0.7 ± 2.2 cm year⁻¹, p=0.03) and five-fold greater in Rincón de Guanabo (back: 3.7 ± 2.2 cm year⁻¹, fore: 0.7 ± 2.6 cm year⁻¹, p=0.02) relative to the fore crest zone during the third period. In El Peruano, the rate of increase in the width of the fragments was six-fold greater in the back crest zone (2.2 ± 1.8 cm year⁻¹) with respect to the fore crest zone (0.4 ± 2.2 cm year⁻¹). Similarly, in Mariflores, the rate of increase in the width of the fragments of the back crest zone (3.3 ± 2.6 cm year⁻¹) was significantly higher (p=0.03) than in the fore crest zone (1.1 ± 2.6 cm year⁻¹) during the first period. Also, in this crest the rate of increase in the width (back: 2.6 ± 1.8 cm year⁻¹, fore: -0.4 ± 2.6 cm year⁻¹,

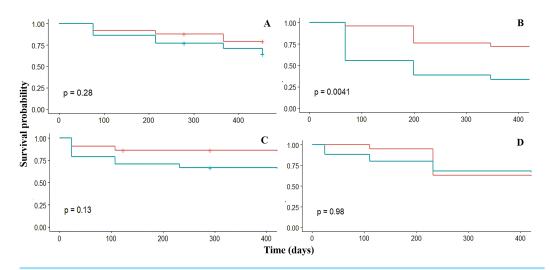


Figure 3 Kaplan–Meier estimated survival probabilities for fore (red) and back (blue) crest zones in Playa Baracoa (A), Rincón de Guanabo (B), Mariflores (C), and El Peruano (D) reefs. The p-value ≤ 0.05 indicates significant differences between crest zones.

p = 0.0002) and height (back: 2.6 ± 1.8 cm year⁻¹, fore: -1.1 ± 2.6 cm year⁻¹, p = 0.001) of the fragments was greater in the back crest zone with respect to the fore crest zone for the second period. However, the growth tended to be higher (p > 0.05) in the fore crest zone for some monitoring periods, except in Playa Baracoa (p < 0.006) and El Peruano (p < 0.02) crests during the first and second periods respectively, where the differences in growth were significant (Fig. 4, Table S3). Additionally, the interaction fore crest zone in Rincón de Guanabo (estimate = 8.6; p = 0.02) and El Peruano (estimate = 5.3; p = 0.04) crests had a positive effect on growth rates of the fragments.

The dissolution of the plaster discs positively influenced (estimate = 0.03; p = 0.008) the growth rates, with values above 68% associated to increased growth of the fragments (Fig. 5). Temperature promoted growth (estimate = 0.002; p < 0.001) during the second period. However, the interaction between dissolution and temperature was negative (estimate = -0.001; p = 0.007). The depth effect on growth depends on the crest site and zone. The interactions depth and El Peruano crest was positive (estimate = 8.6; p = 0.002), while the interaction between depth and the fore zones was negative (estimate = -0.009; p = 0.04).

Temperature

The mean temperature increased from 26.1 \pm 0.4 °C in January to 28.1 \pm 0.7 °C in May during the first period, in Playa Baracoa and Rincón de Guanabo crests. During the second period (June to September 2022) the mean temperatures were high at 29 and 30 °C. The maximum recorded temperature was 33.6 °C in June. The third period extended from October 2022 to March 2023, when the temperatures decreased, with a minimum temperature recorded of 24 °C (Figs. 6A and 6B). In Jardines de la Reina crests, the temperature was only recorded in July 2022 during the first period, when the mean temperature was 30.6 \pm 0.4 °C. During the second period (August to November 2022) the

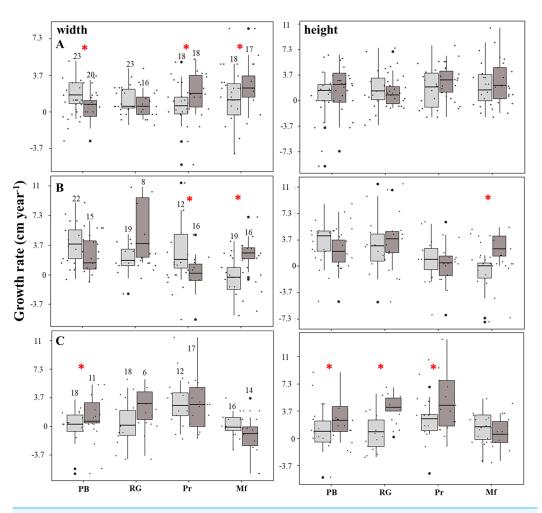


Figure 4 Growth rate of the fragments located on the fore (light gray) and back (dark gray) zone of the crests at Playa Baracoa (PB), Rincón de Guanabo (RG), El Peruano (Pr), and Mariflores (Mf) during (A) the first, (B) second, and (C) third study periods. The numbers above the bars indicate the total number of live fragments or those that were found during each period. The asterisks indicate significant differences between growth in the back and fore crest zones.

minimum temperature recorded was 28.6 °C in November and the maximum was 31.7 °C in September. During the third period (December 2022 to April 2023) the temperatures decreased till March. The minimum was 26 °C in February and March and the maximum was 32 °C in December (Fig. 6C). The average temperature was approximately 1 °C higher in Jardines de la Reina crests relative to the northwest crests.

DISCUSSION

Coral restoration is a practice that requires stronger integration between research and field practices. Effectiveness or success in coral restoration has been linked to two indicators: survival and growth of the coral fragments. Incorporating environmental factors and ecological processes into restoration planning is increasingly recognized as a fundamental component of successful restoration strategies for maximizing the outcomes

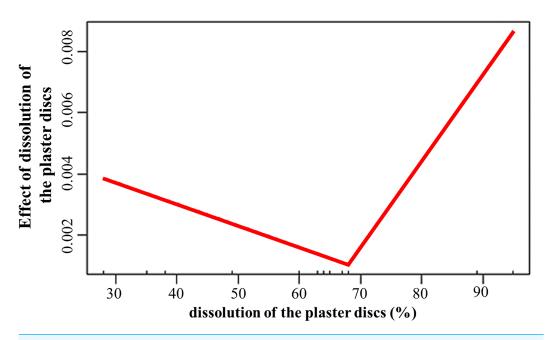


Figure 5 Effect of dissolution of the plaster discs on the growth rates of *Acropora palmata* fragments.

Full-size DOI: 10.7717/peerj.20303/fig-5

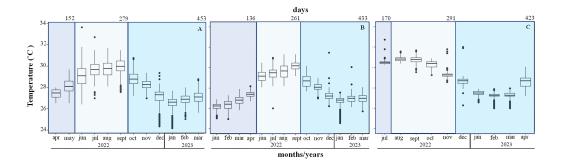


Figure 6 Mean seawater temperature (°C); mean ± Standard deviations (SD), in (A). Playa Baracoa, (B). Rincón de Guanabo and (C). Jardines de la Reina reefs. The blue bars represent the months corresponding to each study period. The numbers at the top indicate the number of days included in each monitoring period.

(*Hein et al.*, 2017; *Ladd et al.*, 2018). Our results suggest that the survival and growth of *A. palmata* fragments are influenced by specific environmental factors, including water flow, temperature, crest zone, crest, and local site conditions. These findings underscore the importance of incorporating small-scale environmental variability into restoration planning strategies.

The survival of the *A. palmata* fragments was high (Sp > 0.6) among the four crests. However, our findings indicate that fragment survival was significantly influenced by crest location, with the highest values at Playa Baracoa and El Peruano. The outcome at Playa Baracoa crest was unexpected given its exposure to multiple anthropogenic stressors and low *A. palmata* density (0.2 \pm 0.05 colonies m⁻²; *Ramos et al.*, 2024), conditions

that would normally be considered unfavorable for fragment establishment. This crest receives untreated wastewater from the Latin American School of Medicine. Although the specific nature and intensity of contamination at the site are not well characterized, anecdotal evidence and personal observations report that chemical odors from the school occasionally reach the crest (*Ramos et al.*, 2024). In addition, available water quality data indicate that reefs near Playa Baracoa are more contaminated than those near Rincón de Guanabo (*Rey-Villiers et al.*, 2020; *Rey-Villiers*, Sánchez & González-Díaz, 2021).

Nonetheless, Playa Baracoa crest harbors a relatively high density of the herbivorous sea urchin D. antillarum (19.3 \pm 14.4 ind 10 m $^{-2}$; González-Díaz & Suarez, 2024), which may contribute to algal regulation; and decrease algae-coral competition (McCook, Jompa & Diaz-Pulido, 2001). Although macroalgal cover is high (>75%), the assemblage includes not only fleshy macroalgae but also crustose coralline algae and other morpho-functional groups that play distinct ecological roles ($Ramos\ et\ al.$, 2024). In addition, the fragments were collected from colonies within the same crest where they were transplanted, to ensure local adaptation to the environmental conditions of the site.

On the other hand, El Peruano crest has more favorable conditions than the crests of the northwestern region. This crest remains well conserved with minimal human impact, and its nutrient input mainly comes from nearby lagoons, mangroves, sediments, and oceanic waters (Rey-Villiers, Sánchez & González-Díaz, 2021; Figueredo-Martín, López-Castañeda & Pina-Amargós, 2023). In this study, the higher survival observed in A. palmata fragments at El Peruano, compared to Mariflores, may be related to differences in environmental conditions between these two crests. El Peruano crest lies to the west from JRNP, while Mariflores is located toward the east. According to Hernández-Fernández & Bustamante López (2019), the western part of JRNP has the highest abundance of A. palmata, probably due to topographic differences between the west and east and the influence of regional current systems. The eastern part is closer to the mainland, and receives greater inputs of organic matter, nutrients and sediments from terrestrial sources. In contrast, the western part is more than twice as far from the mainland and may experience reduced terrestrial influence. These environmental contrasts may help explain the better survival outcomes in El Peruano crest.

Fragments placed in the fore crest zone exhibited higher survival than those in the back crest zone. However, the statistical model did not detect a significant effect of the dissolution of the plaster discs (proxy for water flow) on fragment survival between zones. Notably, the interaction between crest and zone was significant at Rincón de Guanabo, where survival in the fore crest zone was substantially greater than in the back crest zone, indicating that localized environmental conditions within each crest modulate fragment survival. The negative influence on survival of the fragments in the back crest zone in Rincón de Guanabo was possibly due to the high *Dictyota* cover (field observations). This macroalgae was removed at the beginning of the experiment but rapidly overgrew the fragments. *Van Woesik, Ripple & Miller (2018)* reported that a cover greater than 15% of *Dictyota* affects survival and growth of *A. cervicornis*, or habitat conditions that support *Dictyota* are not conducive to *Acropora* survival. This indicates that microhabitat characteristics at outplanting sites are critical determinants of fragment survival.

Overall, the growth rates recorded in this study were slower than those reported for wild *A. palmata* colonies, which typically range from 5 to 10 cm year $^{-1}$ (*Gladfelter, Monahan & Gladfelter, 1978*). The slow growth of outplanted fragments was similar to the rates recorded in storm-generated fragments, reported at 1.8 cm year $^{-1}$ (*Lirman, 2000*). The stress caused by hurricanes could be like the trauma induced by the collection and transplanting process, also known as initial transplantation shock (*Hughes, 1984*; *Forrester et al., 2012*; *Forrester et al., 2014*). In addition, fragment performance might be influenced by factors such as genotype, identity of the symbiont, fragment physiology, abiotic characteristics of the crest and temperature (*Lirman et al., 2014*; *Papke et al., 2021*). Negative growth rate recorded during some periods of the experiment is attributed to tissue loss caused by corallivory or bites by herbivorous fish.

The dissolution of the plaster discs did not indicate a marked gradient of water flow between the crest zones, during April and June, but it was significantly higher in the fore crest zone in December at El Peruano and Mariflores crests, indicating temporal variations during the monitoring periods. The statistical model demonstrated that water flow plays a significant role in fragment growth. Dissolution exerted a significant, threshold-dependent influence on growth: below approximately 68% dissolution, growth declined slightly, whereas above this threshold, growth increased with further water flow. This response suggests that moderate water flow may limit the fragment growth. However, once a critical level of hydrodynamic energy is surpassed, flow probably enhances nutrient delivery, gas exchange, increases nitrogen availability, enhances particle capture efficiency, sediment clearance, facilitates waste product removal, improves metabolism (photosynthesis, respiration) thereby promoting growth (*Dennison & Barnes*, 1988; Sebens & Johnson, 1991; Lesser et al., 1994; Grigg, 1998; Sebens et al., 2003).

The growth of *Acropora* spp. has been linked to the rate of change in sea surface temperature (*Crabbe*, 2007), with the highest growth rates recorded when temperatures range between 28 °C and 30 °C during the warmer months (*Shinn*, 1966; *Bak*, *Nieuwland & Meesters*, 2009). Similarly, our results showed a positive effect of temperature on fragment growth during the second monitoring period, when the highest average temperatures were recorded, 30 °C in the northwestern crests and 31 °C in those of Jardines de la Reina. However, this positive temperature effect was attenuated at higher levels of dissolution of the plaster discs, suggesting that under strong water flow, heat may be dissipated, and water movement probably becomes the primary driver of fragment growth (*Nakamura & Van Woesik*, 2001; *Finelli et al.*, 2006).

The interaction between crest and zone was significant at Rincón de Guanabo and El Peruano, where growth rates in the fore crest zone was greater than in the back crest zone, indicating that localized environmental conditions within each crest modulate fragment growth. In Rincón de Guanabo, this may be explained by the high cover of *Dictyota* in the back crest zone, as noted previously, which can inhibit coral growth through space competition and shading (*Box & Mumby*, 2007). The significant interaction between depth and the El Peruano crest, as well as between depth and the fore crest zones on growth, suggests that local environmental conditions modulated by depth may play a key role in fragment growth. Although, depth alone did not influence fragment growth, it

probably affects key environmental variables such as light availability, water movement, and sediment accumulation, all of which are known to affect coral physiology and growth (*Baker & Weber, 1975; Pratchett et al., 2015*). Also, the growth rate can depend on water currents loaded with higher concentrations of nutrients, resulting from internal waves that are differentially distributed due to the bathymetry of the bottom (*Leichter, Stewart & Miller, 2003; Leichter, Deane & Stokes, 2005*). Nevertheless, further studies incorporating fine-scale measurements of these factors would be necessary to better understand their role in driving spatial variability in fragment performance.

CONCLUSIONS

Our study highlights the importance of incorporating fine-scale environmental variability into coral restoration planning. While overall survival of *A. palmata* fragments was high across sites, both survival and growth were significantly influenced by site-specific and microhabitat conditions. Growth responses further revealed complex interactions between temperature, water flow, and habitat. These findings underscore the need to move beyond broad site-level criteria and to systematically evaluate microhabitat conditions when selecting restoration sites. Future efforts should integrate ecological knowledge with *in situ* environmental measurements to optimize coral fragment survival and growth, and to improve the long-term success of restoration interventions under variable and changing reef conditions.

ACKNOWLEDGEMENTS

We thank Giuseppe Omegna and the crew of OFY, especially the diver's assistant Noel Lopez Fernández and Maydel Pérez Valle, Anthony Sardiñas, Fabian Pinas Amargos, Tamara Figueredo Martín and others who made this study possible.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

Amanda Ramos Romero was supported by a doctoral scholarship from the Consejo Nacional de Ciencia y Tecnología, México. Financial and logistical support were provided by Centro de Investigaciones Marinas, Universidad de La Habana, Ocean for Youth (OFY), and Sweet-Avalon. Funding was provided by the Harte Research Institute at Texas A & M University-Corpus Christi, The Ocean Foundation, the Environmental Defense Fund (EDF), and Posgrado en Ciencias del Mar y Limnología, UNAM, Mexico. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors: Consejo Nacional de Ciencia y Tecnología, México. Centro de Investigaciones Marinas. Universidad de La Habana.

Ocean for Youth (OFY).

Sweet-Avalon.

Harte Research Institute at Texas A & M University-Corpus Christi.

The Ocean Foundation, the Environmental Defense Fund (EDF).

Posgrado en Ciencias del Mar y Limnología, UNAM, Mexico.

Competing Interests

Anastazia T. Banaszak is a Section Editor for PeerJ.

Author Contributions

- Amanda Ramos Romero conceived and designed the experiments, performed the
 experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
 drafts of the article, and approved the final draft.
- Patricia González-Díaz conceived and designed the experiments, performed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Gabriela Aguilera Pérez performed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Anastazia T. Banaszak conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.

Field Study Permissions

The following information was supplied relating to field study approvals (*i.e.*, approving body and any reference numbers):

Field experiments were approved by the Ministerio de Ciencia, Tecnología y Medio Ambiente.

Data Availability

The following information was supplied regarding data availability:

The raw data are available in the Supplementary File.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.20303#supplemental-information.

REFERENCES

Aronson R, Bruckner A, Moore J, Precht B, Weil E. 2008. *Acropora palmata.* The IUCN Red List of Threatened Species: e.T133006A3536699

DOI 10.2305/IUCN.UK.2008.RLTS.T133006A3536699.en.

Bak RP, Nieuwland G, Meesters EH. 2009. Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata? *Bulletin of Marine Science* **84(3)**:287–294.

Baker PA, Weber JN. 1975. Coral growth rate: variation with depth. *Earth and Planetary Science Letters* **27(1)**:57–61 DOI 10.1016/0012-821X(75)90160-0.

- Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. *Journal of Statistical Software* 67(1):1–48 DOI 10.18637/jss.v067.i01.
- Bayraktarov E, Banaszak AT, Montoya P, Kleypas J, Arias-Gonzalez JE, Blanco M, Calle Triviño J, Charuvi N, Cortés Useche C, Galván V, García Salgado MA, Gnecco M, Guendulain García SD, Hernández Delgado EA, Marín Moraga JA, Fernanda Maya M, Mendoza Quiroz S, Mercado Cervantes S, Morikawa M, Nava G, Pizarro V, Sellares-Blasco RI, Suleimán Ramos S, Villalobos Cubero T, Villalpando MF, Frías-Torres S. 2020. Coral reef restoration efforts in Latin American countries and territories. *PLOS ONE* 15(8):e0228477 DOI 10.1371/journal.pone.0228477.
- Beyer HL, Kennedy EV, Beger M, Allen C, Cinner JE, Darling ES, Mark CE, Gates RD, Heron SF, Knowlton N, Obura DO, Palumbi SR, Possingham HP, Puotinen M, Runting RK, Skirving WJ, Spalding M, Wilson KA, Wood S, Veron JE, Hoegh-Guldberg O. 2018. Risk-sensitive planning for conserving coral reefs under rapid climate change. *Conservation Letters* 11:e12587 DOI 10.1111/conl.12587.
- Boström-Einarsson L, Babcock RC, Bayraktarov E, Ceccarelli D, Cook N, Ferse SCA. 2020. Coral restoration—a systematic review of current methods, successes, failures and future directions. *PLOS ONE* 15(1):e0226631 DOI 10.1371/journal.pone.0226631.
- Box S, Mumby P. 2007. Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. *Marine Ecology Progress Series* 342:139–149 DOI 10.3354/meps342139.
- **Crabbe MJC. 2007.** Global warming and coral reefs: modelling the effect of temperature on Acropora palmata colony growth. *Computational Biology and Chemistry* **31(4)**:294–297 DOI 10.1016/j.compbiolchem.2007.05.001.
- **D'Antonio NL, Gilliam DS, Walker BK. 2016.** Investigating the spatial distribution and effects of nearshore topography on *Acropora cervicornis* abundance in Southeast Florida. *PeerJ* **4**:e2473 DOI 10.7717/peerj.2473.
- **Dennison WC, Barnes DJ. 1988.** Effect of water motion on coral photosynthesis and calcification. *Journal of Experimental Marine Biology and Ecology* **115(1)**:67–77 DOI 10.1016/0022-0981(88)90190-6.
- **Done TJ. 1982.** Patterns in the distribution of coral communities across the central Great Barrier Reef. *Coral Reefs* **1**:95–107 DOI 10.1007/BF00301691.
- **Doty MS. 1971.** Measurement of water movement in reference to benthic algal growth. *Botanica Marina* XIV:32–35 DOI 10.1515/botm.1971.14.1.32.
- Duran A, Shantz AA, Burkepile DE, Collado-Vides L, Ferrer VM, Palma L, Ramos A, González-Díaz P. 2018. Fishing, pollution, climate change, and the long-term decline of coral reefs off Havana, Cuba. *Bulletin of Marine Science* 94(2):213–228 DOI 10.5343/bms.2017.1061.
- Dutra LX, Haywood MD, Singh S, Ferreira M, Johnson JE, Veitayaki J, Kininmonth S, Morris CW, Piovano S. 2021. Synergies between local and climate-driven impacts on coral reefs in the Tropical Pacific: a review of issues and adaptation opportunities. *Marine Pollution Bulletin* 164:111922 DOI 10.1016/j.marpolbul.2020.111922.

- Enochs IC, Manzello DP, Carlton R, Schopmeyer S, van Hooidonk R, Lirman D. 2014. Effects of light and elevated pCO2 on the growth and photochemical efficiency of *Acropora cervicornis*. *Coral Reefs* 33:477–485 DOI 10.1007/s00338-014-1132-7.
- Ferrario F, Beck MW, Storlazzi CD, Micheli F, Shepard CC, Airoldi L. 2014. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. *Nature Communications* 5:3794 DOI 10.1038/ncomms4794.
- **Figueredo-Martín T, López-Castañeda L, Pina-Amargós F. 2023.** Economic valuation of the Coral Reefs of Jardines de la Reina and Punta Francés National Parks, Cuba. In: *Coral reefs of Cuba*. Cham: Springer International Publishing, 395–413.
- Finelli CM, Helmuth BS, Pentcheff ND, Wethey DS. 2006. Water flow influences oxygen transport and photosynthetic efficiency in corals. *Coral Reefs* 25:47–57 DOI 10.1007/s00338-005-0055-8.
- Forrester GE, Ferguson MA, O'Connell-Rodwell CE, Jarecki LL. 2014. Long-term survival and colony growth of *Acropora palmata* fragments transplanted by volunteers for restoration. *Aquatic Conservation: Marine and Freshwater Ecosystems* 24(1):81–91 DOI 10.1002/aqc.2374.
- **Forrester GE, Maynard A, Schofield S, Taylor K. 2012.** Evaluating causes of transplant stress in fragments of *Acropora palmata* used for coral reef restoration. *Bulletin of Marine Science* **88(4)**:1099–1113 DOI 10.5343/bms.2012.1016.
- Gil-Agudelo DL, Cintra-Buenrostro CE, Brenner J, González-Díaz P, Kiene W, Lustic C, Pérez-España H. 2020. Coral reefs in the Gulf of Mexico large marine ecosystem: conservation status, challenges, and opportunities. *Frontiers in Marine Science* **6**:807 DOI 10.3389/fmars.2019.00807.
- **Gladfelter EH, Monahan RK, Gladfelter WB. 1978.** Growth rates of five reef-building corals in the northeastern Caribbean. *Bulletin of Marine Science* **28(4)**:728–734.
- González-Díaz P, González-Sansón G, Aguilar Betancourt C, Álvarez S, Perera O, Hernández L, Ferrer VM, Cabrales Y, Armenteros M, De la Guardia E. 2018. Status of Cuban coral reefs. *Bulletin of Marine Science* 94(2):229–247 DOI 10.5343/bms.2017.1035.
- González-Díaz P, De la Guardia E, González-Sansón G. 2003. Efecto de efluentes terrestres sobre las comunidades bentónicas de arrecifes coralinos de Ciudad de la Habana, Cuba. *Revista de Investigaciones Marinas* 24(3):193–204.
- **González-Díaz P, Suarez J. 2024.** Características poblacionales de *Diadema antillarum* (Philippi, 1845) (Echinoidea: Diadematidae) en arrecifes de la región noroccidental Cuba. *Revista de Investigaciones Marinas* **44(1)**:115–140.
- **Graus RR, Chamberlain JA, Boker AM. 1977.** Structural modification of corals in relation to waves and currents: reef biota. *Studies in Geology* **4**:135–153 DOI 10.1306/St4393.
- **Grigg RW. 1998.** Holocene coral reef accretion in Hawaii: a function of wave exposure and sea level history. *Coral Reefs* **17**:263–272 DOI 10.1007/s003380050127.
- **Hein MY, Willis BL, Beeden R, Birtles A. 2017.** The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. *Restoration Ecology* **25(6)**:873–883 DOI 10.1111/rec.12580.

- **Hernández-Fernández L, Bustamante López C. 2019.** Reclutas de corales en el Parque Nacional Jardines de la Reina, Cuba. *Revista de Investigaciones Marinas* **39(2)**:95–104.
- **Hernández-Fernández L, López CB, Sotolongo LBD. 2016.** Estado de Crestas de Arrecifes en el Parque Nacional Jardines de la Reina, Cuba. *Revista de Investigaciones Marinas* **36(1)**:79–91.
- **Hughes TP. 1984.** Population dynamics based on individual size rather than age: a general model with a reef coral example. *American Naturalist* **123**:778–795 DOI 10.1086/284239.
- Jackson JBC, Donovan M, Cramer K, Lam V. 2014. Status and trend of caribbean coral reefs: 1970–2012. In: Global coral reef monitoring network. Gland, Switzerland: IUCN.
- **Jackson ST, Hobbs RJ. 2009.** Ecological restoration in the light of ecological history. *Science* **325**(**5940**):567–569 DOI 10.1126/science.1172977.
- **Jokiel PL, Morrissey JI. 1993.** Water motion on coral reefs: evaluation of the clod card technique. *Marine Ecology Progress Series* **93**:175–181 DOI 10.3354/meps093175.
- **Kassambara A, Kosinski M, Biecek P. 2021.** survminer: Drawing Survival Curves using 'ggplot2'. R package version 0.4.9. *Available at https://CRAN.R-project.org/package=survminer*.
- **Ladd MC, Burkepile DE, Shantz AA. 2019.** Near-term impacts of coral restoration on target species, coral reef community structure, and ecological processes. *Restoration Ecology* **27**(5):1166–1176 DOI 10.1111/rec.12939.
- Ladd MC, Miller MW, Hunt JH, Sharp WC, Burkepile DE. 2018. Harnessing ecological processes to facilitate coral restoration. *Frontiers in Ecology and Environment* 16(4):239–247 DOI 10.1002/fee.1792.
- **Leichter JJ, Deane GB, Stokes MD. 2005.** Spatial and temporal variability of internal wave forcing on a coral reef. *Journal of Physical Oceanography* **35(11)**:1945–1962 DOI 10.1175/JPO2808.1.
- **Leichter JJ, Stewart HL, Miller SL. 2003.** Episodic nutrient transport to Florida coral reefs. *Limnology and Oceanography* **48(4)**:1394–1407 DOI 10.4319/lo.2003.48.4.1394.
- **Lesser MP, Weis VM, Patterson MR, Jokiel PL. 1994.** Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): diffusion barriers, inorganic carbon limitation, and biochemical plasticity. *Journal of Experimental Marine Biology and Ecology* **178(2)**:153–179 DOI 10.1016/0022-0981(94)90034-5.
- **Lirman D. 2000.** Fragmentation in the branching coral *Acropora palmata* (Lamarck): growth, survivorship, and reproduction of colonies and fragments. *Journal of Experimental Marine Biology and Ecology* **251**(1):41–57 DOI 10.1016/S0022-0981(00)00205-7.
- **Lirman D, Schopmeyer S. 2016.** Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. *PeerJ* **4**:e2597 DOI 10.7717/peerj.2597.
- **Lirman D, Schopmeyer S, Galvan V, Drury C, Baker AC, Baums IB. 2014.** Growth dynamics of the threatened Caribbean staghorn coral *Acropora cervicornis*: influence

- of host genotype, symbiont identity, colony size, and environmental setting. *PLOS ONE* **9(9)**:e107253 DOI 10.1371/journal.pone.0107253.
- **Lowe RJ, Falter JL, Monismith SG, Atkinson MJ. 2009.** Wave-driven circulation of a coastal reef–lagoon system. *Journal of Physical Oceanography* **39(4)**:873–893 DOI 10.1175/2008JPO3958.1.
- Madin JS, Connolly SR. 2006. Ecological consequences of major hydrodynamic disturbances on coral reefs. *Nature* 444(7118):477–480 DOI 10.1038/nature05328.
- McCook L, Jompa J, Diaz-Pulido G. 2001. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. *Coral Reefs* 19:400–417 DOI 10.1007/s003380000129.
- **Mercado-Molina AE, Ruiz-Diaz CP, Sabat AM. 2014.** Survival, growth, and branch production of unattached fragments of the threatened hermatypic coral Acropora cervicornis. *Journal of Experimental Marine Biology and Ecology* **457**:215–219 DOI 10.1016/j.jembe.2014.04.017.
- **Miller MW. 2002.** The importance of evaluation, experimentation, and ecological process in advancing reef restoration success. In: *Proceedings of the ninth international coral reef symposium*, *Bali*, 23-27, 977–981.
- Monismith SG, Rogers JS, Koweek D, Dunbar RB. 2015. Frictional wave dissipation on a remarkably rough reef. *Geophysical Research Letters* **42(10)**:4063–4071 DOI 10.1002/2015GL063804.
- **Muggeo VMR. 2008.** Segmented: an R package to fit regression models with broken-line relationships. *R News* **8**(1):20–25.
- Nakamura TV, Van Woesik R. 2001. Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. *Marine Ecology Progress Series* 212:301–304 DOI 10.3354/meps212301.
- Papke E, Wallace B, Hamlyn S, Nowicki R. 2021. Differential effects of substrate type and Genet on growth of microfragments of *Acropora palmata*. *Frontiers in Marine Science* 8:394 DOI 10.3389/fmars.2021.623963.
- Patterson MR, Sebens KP, Olson RR. 1991. In situ measurements of flow effects on primary production and dark respiration in reef corals. *Limnology and Oceanography* 36(5):936–948 DOI 10.4319/lo.1991.36.5.0936.
- **Pina-Amargós F, Figueredo-Martín T, Ross NA. 2021.** The Ecology of Cuba's Jardines de la Reina: a review. *Revista de Investigaciones Marinas* **41**(1):2–42.
- Pina-Amargós F, González-Sansón G, Martín-Blanco F, Valdivia A. 2014. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean. *PeerJ* 2:e274 DOI 10.7717/peerj.274.
- Pratchett MS, Anderson KD, Hoogenboom MO, Widman E, Baird AH, Pandol JM, Edmunds PJ, Lough JM. 2015. Spatial, temporal and taxonomic variation in coral growth—implications for the structure and function of coral reef ecosystems.

 Oceanography and Marine Biology: An Annual Review 53:215–295.
- **Precht WF, Miller SL. 2007.** Ecological shifts along the Florida reef tract: the past as a key to the future. In: Aronson RB, ed. *Geological approaches to coral reef ecology*. New York: Springer New York, 237–312.

- Ramos A, González-Díaz P, Banaszak AT, Perera O, Delgado FH, de León SD, Duran A. **2024.** Seventeen-year study reveals fluctuations in key ecological indicators on two reef crests in Cuba. *PeerJ* **12**:e16705 DOI 10.7717/peerj.16705.
- **R Core Team. 2016.** R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. *Available at https://www.R-project.org/*.
- Rey-Villiers N, Sánchez A, Caballero-Aragón H, González-Díaz P. 2020. Spatio temporal variation in octocoral assemblages along a water quality gradient in the northwestern region of Cuba. *Marine Pollution Bulletin* 153:110981 DOI 10.1016/j.marpolbul.2020.110981.
- **Rey-Villiers N, Sánchez A, González-Díaz P. 2021.** Stable nitrogen isotopes in octocorals as an indicator of water quality declive from the northwestern region of Cuba. *Environmental Science and Pollution Research* **28(15)**:18457–18470 DOI 10.1007/s11356-020-09956-x.
- **Rinkevich B. 2014.** Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? *Current Opinion in Environmental Sustainability* 7:28–36 DOI 10.1016/j.cosust.2013.11.018.
- Rogers JS, Monismith SG, Koweek DA, Torres WI, Dunbar RB. 2016. Thermodynamics and hydrodynamics in an atoll reef system and their influence on coral cover. Limnology and Oceanography 61(6):2191–2206 DOI 10.1002/lno.10365.
- **Sebens KP. 1991.** Effects of water flow on coral growth and prey capture. *American Zoologist* **31(5)**:A59–A59.
- Sebens KP, Helmuth B, Carrington E, Agius B. 2003. Effects of water flow on growth and energetics of the scleractinian coral *Agaricia tenuifolia* in Belize. *Coral Reefs* 22(1):35–47 DOI 10.1007/s00338-003-0277-6.
- **Sebens KP, Johnson AS. 1991.** Effects of water movement on prey capture and distribution of reef corals. *Hydrobiologia* **226**:91–101 DOI 10.1007/BF00006810.
- **Shaver EC, Silliman BR. 2017.** Time to cash in on positive interactions for coral restoration. *PeerJ* 5:e3499 DOI 10.7717/peerj.3499.
- **Shinn EA. 1966.** Coral growth-rate, an environmental indicator. *Journal of Paleontology* **40(2)**:233–240.
- Simonson WD, Miller E, Jones A, García-Rangel S, Thornton H, Mc Owen C. 2021. Enhancing climate change resilience of ecological restoration—a framework for action. *Perspectives in Ecology and Conservation* 19:300–310 DOI 10.1016/j.pecon.2021.05.002.
- **Therneau TM, Grambsch PM. 2000.** *Modeling survival data: extending the cox model.* New York: Springer.
- **United Nations Environment Assembly (UNEA). 2019.** Report of the United Nations Environment Assembly of the United Nations Environment Programme. Fourth Session (Nairobi, 11-15 2019). *Available at http://undocs.org/pdf?symbol=en/A/74/25* (accessed on 7 September 2020).
- Van Woesik R, Ripple K, Miller SL. 2018. Macroalgae reduces survival of nursery-reared Acropora corals in the Florida reef tract. *Restoration Ecology* 26(3):563–569 DOI 10.1111/rec.12590.

Young CN, Schopmeyer SA, Lirman D. 2012. A review of reef restoration and coral propagation using the threatened genus *Acropora* in the Caribbean and Western Atlantic. *Bulletin of Marine Science* **88(4)**:1075–1098 DOI 10.5343/bms.2011.1143.