

# Genomics, population dynamics, immune evasion and resistance determinants foster the global dissemination of *Klebsiella pneumoniae* (#117348)

1

First submission

## Guidance from your Editor

Please submit by **19 May 2025** for the benefit of the authors (and your token reward) .



### Literature review article

Please read the 'Structure and Criteria' page to understand the reviewing criteria for this Literature review article.



### Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

## Files

Download and review all files from the [materials page](#).

5 Figure file(s)

2 Table file(s)



## Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. STUDY DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

## Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

### BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Is the review of broad and cross-disciplinary interest and within the scope of the journal?
- Has field been reviewed recently. Is there a good reason for this review (different viewpoint, audience etc.)?
- Introduction adequately introduces the subject and makes audience and motivation clear.

### STUDY DESIGN

- Article content is within the [Aims and Scope](#) of the journal.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.
- Is the Survey Methodology consistent with a comprehensive, unbiased coverage of the subject? If not, what is missing?
- Are sources adequately cited? Quoted or paraphrased as appropriate?
- Is the review organized logically into coherent paragraphs/subsections?

### VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Conclusions are well stated, linked to original research question & limited to supporting results.

- Is there a well developed and supported argument that meets the goals set out in the Introduction?
- Does the Conclusion identify unresolved questions / gaps / future directions?

# Standout reviewing tips

3



The best reviewers use these techniques

## Tip

**Support criticisms with evidence from the text or from other sources**

**Give specific suggestions on how to improve the manuscript**

**Comment on language and grammar issues**

**Organize by importance of the issues, and number your points**

**Please provide constructive criticism, and avoid personal opinions**

**Comment on strengths (as well as weaknesses) of the manuscript**

## Example

*Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.*

*Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).*

*The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.*

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

*I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC*

*I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.*

# Genomics, population dynamics, immune evasion and resistance determinants foster the global dissemination of *Klebsiella pneumoniae*

Bilal Aslam <sup>Corresp. 1</sup>, Sulaiman F Aljasir <sup>Corresp. 1</sup>

<sup>1</sup> Department of Veterinary Preventive Medicine, College of Veterinary Medicine Qassim University Buraydah, Buraydah, Saudi Arabia

Corresponding Authors: Bilal Aslam, Sulaiman F Aljasir  
Email address: b.aslam@qu.edu.sa, s.aljasir@qu.edu.sa

**Background:** According to the World Health Organization (WHO) *K. pneumoniae* is a critical public health concern and an established ESKAPE pathogen. Mounting incidence of MDR *K. pneumoniae* is worrisome across the globe. *K. pneumoniae* is an established ubiquitous pathogen and associated with various infections in a wide range of the hosts.

**Methods:** The Peer reviewed findings with given problem statements were thoroughly studied through literature review technique. Multiple antibiotic-resistance genes and virulence genes across various *Klebsiella* species were studied to explore their evolutionary dynamics and genetic diversity.

**Results:** Population dynamics revealed that the clonal group (CG) 258 and CG 14 are considered as global disseminated clones. The genome size (5.7 Mbps) of *K. pneumoniae* is reported to be larger than the other Enterobacteriaceae which allows *K. pneumoniae* to survive in diverse geo-graphical niches. It has adequate resistome and virulence machinery to evade the host immune system and establish the infection. Due to the emergence of resistant variants *K. pneumoniae* needs appropriate alternative control measures.

**Conclusion:** The current review described the characteristics features of *K. pneumoniae* which are the key players in making this organism as a credential pathogen. Additionally, it would be instructive and underpin the molecular insights that may aid in restraining this pathogen.

1 **Genomic, Population Dynamics, Immune Evasion and Resistance Determinants foster the**  
2 **competence and global dissemination of *Klebsiella pneumoniae***

3

4 Bilal Aslam & Sulaiman Aljasir

5 Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim

6 University Buraydah Kingdom of Saudi Arabia

7

8 \*Correspondence:

9 Bilal Aslam & Sulaiman Aljasir

10 Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim

11 University Buraydah Kingdom of Saudi Arabia

12 b.aslam@qu.edu.sa (B.A.); s.aljasir@qu.edu.sa (S.A.)

13 **Abstract**

14 **Background:** According to the World Health Organization (WHO) *K. pneumoniae* is a critical  
15 public health concern and an established ESKAPE pathogen. Mounting incidence of MDR *K.*  
16 *pneumoniae* is worrisome across the globe. *K. pneumoniae* is an established ubiquitous pathogen  
17 and associated with various infections in a wide range of hosts.

18 **Methods:** The Peer reviewed findings with given problem statements were thoroughly studied  
19 through literature review technique. Multiple antibiotic-resistance genes and virulence genes  
20 across various *Klebsiella* species were studied to explore their evolutionary dynamics and  
21 genetic diversity.

22 **Results:** Population dynamics revealed that the clonal group (CG) 258 and CG 14 are considered  
23 as global disseminated clones. The genome size (5.7 Mbps) of *K. pneumoniae* is reported to be  
24 larger than the other Enterobacteriaceae which allows *K. pneumoniae* to survive in diverse  
25 geographical niches. It has adequate resistome and virulence machinery to evade the host  
26 immune system and establish the infection. Due to the emergence of resistant variants *K.*  
27 *pneumoniae* needs appropriate alternative control measures.

28 **Conclusion:** The current review described the characteristics features of *K. pneumoniae* which  
29 are the key players in making this organism a credential pathogen. Additionally, it would be  
30 instructive and underpin the molecular insights that may aid in restraining this pathogen.

31

32

33 **1. Introduction**

34 The “golden era” of modern medicine in which antibiotics saved innumerable lives is eroded  
35 with the emergence of antibiotic resistance. *Klebsiella pneumoniae* is a recognized ESKAPE  
36 (*Enterococcus*, *Staphylococcus*, *Klebsiella*, *Acinetobacter*, *Pseudomonas*, *Enterobacter*)  
37 pathogen, a common cause of antibiotic-resistant hospital-acquired infections (HAIs) and  
38 community-acquired infections. It is a notorious pathogen associated with various types of  
39 severe infections and has inadequate treatment options. According to the World Health  
40 Organization (WHO), *K. pneumoniae* falls among critical public health threats (Wyres & Holt,  
41 2018) *K. pneumoniae* is a well-known resistant pathogen for its diversity and high incidence of  
42 antibiotic resistance genes (ARGs).

43 *K. pneumoniae* is not only a substantial health concern, but it is also known as the origin and  
44 disseminator of various ARGs like *bla*<sub>KPC</sub>, *bla*NDM-1, and *bla*OXA-48. From a resistance  
45 perspective, a resistant strain must have the ability to disseminate ARGs, it may be achieved  
46 through vertical transmission of ARGs or via horizontal transmission through mobile genetic  
47 elements (MGEs) like plasmids, integrons, insertion sequences (IS) and transposons (S. Navon-  
48 Venezia et al., 2017). Such discrete clinical apprehensions have transformed the research  
49 interests in *K. pneumoniae* (Aslam et al. 2022; Wyres & Holt, 2018)

50 During the last decade, *K. pneumoniae* has emerged as a substantial health concern due to the  
51 increasing incidence of MDR *K. pneumoniae* infections across the globe. Some *K. pneumoniae*  
52 strains known as hypervirulent (hypermucovisous) variants present an additional agitating  
53 mechanism of hyper-virulence due to the acquired virulence factors, first reported in Asia in the  
54 1990s and now has been reported all over the world. The share of *K. pneumoniae* in the crisis of  
55 antibiotic resistance is incalculable; the existing data advocates that it has a greater ecological  
56 range, significantly diverse composition of DNA, ARG diversity, and plasmid liability than the  
57 other Gram-negative bacilli (GNB) (Aslam, Khurshid, et al., 2021; K. L. Wyres et al., 2020).

58 *K. pneumoniae* infections need controlling measures such as prompt diagnosis, detection and  
59 containment of resistant variants, improved vaccine production, and use of alternative treatment  
60 approaches like phage or immunotherapy (Aslam, Arshad, et al. 2021; Aslam et al., 2018; K. L.  
61 Wyres et al., 2020; Xiao et al., 2016). However, all the above-mentioned containment measures  
62 still failed due to the diverse nature of *K. pneumoniae*.

63 Therefore, there is an urgent need for appropriate novel therapeutic and controlling measures. In  
64 this script, we present the taxonomic and genomic characteristic features of *K. pneumoniae*,  
65 which are the key players in making *K. pneumoniae* a credential pathogen. Further, we highlight  
66 the transmission mechanism, infection Biology, and Immune Evasion of *K. pneumoniae*.

67 **2. Rational** 

68 Antimicrobial resistance (AMR) is a pressing health threat across the globe and multi-drug-  
69 resistant pathogens challenged the global health system and modern medicine. Underline  
70 mechanisms that make bacteria resistant superbugs are crucial and essential to comprehend,  
71 which may play a vital role to address this global challenge. As an ESKAPE member *K.*  
72 *pneumoniae* pose a substantial health and economic burden worldwide. It has complex molecular  
73 mechanisms associated with resistance, virulence and immune evasion. A comprehensive and  
74 thorough recounting of these insights is critical to finding out the viable solution to this global  
75 health concern. Keeping in view the importance of the subject, the current script is set down for  
76 the scientific audience associated with medicine and researchers in the field of molecular biology  
77 and microbiology.

78 **3. Search Methodology:**

79 The Peer reviewed findings with given problem statements were thoroughly studied through  
80 literature review technique. Owing to this approach explicit insights, research gaps and future  
81 perspectives regarding the pathogen were identified and narrated in the script accordingly. The  
82 Electronic Databases (EDs) like Web of Science, ScienceDirect, Scopus, PubMed and Google  
83 Scholar etc. were navigated extensively to retrieve the relevant dataset with numerous keywords,  
84 for instance, *Klebsiella pneumoniae*, *population genomics*, *multi-drug-resistant K. pneumoniae*  
85 etc. All the listed EDs were navigated because of their scientific reputation and wide-ranging  
86 subject coverage. The meticulous scheme of study was not just assured the relevancy and  
87 articulacy but enhanced the precision of this chronicle.

88 **4. Taxonomy**

89 The genus *Klebsiella* is designated after the name of a German microbiologist named Edwin  
90 Klebs in 1885, who later described the species *Klebsiella pneumoniae* in 1887 (Martínez et al.,  
91 2004). The causative agent of opportunistic infections belongs to the family Enterobacteriaceae  
92 (Partridge et al., 2018). Historically, Friedlander identified a pathogen from the patient's lungs  
93 that died due to pneumonia (Ashurst & Dawson, 2018; Friedländer, 1882). Later in that decade

94 two scientists came up with descriptions for the Friedlander bacterium and named it *Hyalococcus*  
95 *pneumoniae* (Ashurst & Dawson, 2018). Klebsiella was first described by a patient suffering  
96 from rhino scleroma later this organism was named “Klebsiella rhinoscleromatis. In the post-  
97 antibiotic era, the most prominent and widely cited efforts were made by different scientists such  
98 as Cowan in 1960, Bascomb in 1971, Buchanan and Gibbons in 1974, Brenner 1977, Woodward  
99 1979, Izard1981, Bagley 1981 and Naemura in 1979 discovering and arguing the taxonomic  
100 position of previously discovered species, concluded different groups within the genus as, (i) *K.  
101 pneumoniae* including *K. ozaena* and *K. rhinoscleromatis* from clinical origin. (ii) *K. oxytoca*  
102 from environmental and clinical origin. (iii) *K. terrigena* and (iv) *K. planticola* from soil and  
103 botanical origin, respectively (Trevisan, 1887).

104 The phylogenetic analysis based on the 16SRNA subunit conducted in 2003, the Generic  
105 division of Klebsiella contains closely linked clusters. Klebsiella are much more related to each  
106 other than the neighboring bacterial clusters such as Serratia and Citrobacter (Boye & Hansen,  
107 2003). Based on the whole genome and gyrA sequences of *K. pneumoniae* clinical isolates, it  
108 split into three distinct species, *K. pneumoniae* (KpI), *K. quasipneumoniae* (KpII), and *K.  
109 variicola* (KpIII). Further, it has been demonstrated that *K. pneumoniae* (KpI) is mostly related  
110 to human infection (Holt et al., 2015). Substantial genetic divergence among the species, as  
111 indicated by the numerical values on the branches such as 8.89, 0.46, and 9.03, which measure  
112 the genetic distances or evolutionary changes. Species like *K. pneumoniae* and *K. oxytoca* are  
113 shown to cluster closely, suggesting a more recent common ancestry compared to more  
114 genetically distant species such as *K. variicola* and *K. mitogenesis*. This clustering indicates not  
115 only the evolutionary pathways of these bacteria but also their adaptation strategies to different  
116 environments or hosts (Fig 1A).

117 The WGS revealed that KpI and KpII are equally virulent as both species have acquired the *K.  
118 pneumoniae* carbapenemase (KPC) gene and the New Delhi metal-lo-beta-lactamase-1 (NDM-1)  
119 gene (Long et al., 2017) (Figure 1B). With genome-wide average nucleotide identity ( $\geq 3\%$ ) these  
120 closely related phylogenetic species are collectively designated as *K. pneumoniae* species  
121 complex (KpsC) (Suzanne Bialek Davenet et al., 2014). Other KpsC included *K.  
122 quasipneumoniae* subsp. *similipneumoniae* (Kp4), *K. variicola* subsp. *Tropica* (Kp5) (Barbier et  
123 al., 2020), *K. quasivariicola* (Kp6), *K. africana* (Kp7) (Long et al., 2017). Like *K. pneumoniae*,  
124 *K. variicola* and *K. quasipneumoniae* are also commonly found bacteria in nosocomial infections

125 (Potter et al., 2018). These KpsC are emerging threats to hospitalized patients as they can acquire  
126 resistance plasmids from *K. pneumoniae* (Mathers et al., 2019; Rodríguez-Medina et al., 2019).  
127 The “Kp” term is usually used to describe seven phylogroups of the KpsC, while “*K.  
128 pneumoniae*” is designated for phylogroup Kp1 such as *K. pneumoniae* sensu stricto (Barbier et  
129 al., 2020). Phenomena for evolution “descent with modification” allows microbes of a  
130 population to adapt and survive within the vast range of habitat in exposure to selective or  
131 environmental pressure and severe use of antibiotics-induced selective pressure, which resulted  
132 in the geographical distribution of mutated clones (Pitout & Finn, 2010).

### 133 **5. Population dynamics**

134 Different mechanisms have been reported for subtyping the *K. pneumoniae*, MLST is the most  
135 widely used method which employs sequencing of seven core genes named rpoB, gapA, mdh,  
136 pgi, phoE, infB, and tonB to check variation within these genes and given numerical numbers to  
137 each different sequence alleles set the sequence type (ST) (Brisse et al., 2009). The closely  
138 related sequence types whose gene sequence differences occurred by point mutation and have a  
139 similarity of 90-98% are combined to form a clonal complex (CC) by using the eBURST  
140 program (Turner et al., 2007). Further, these CCs have been arranged into subsets called clonal  
141 groups (CGs) containing central genotypes along their single-locus variants (SLVs). The CGs are  
142 termed according to the central ST, which was selected for the definition like CG258 is named  
143 due to its central genotype i.e. ST258 (S Breurec et al., 2013). These clones are the main source  
144 of antibiotic resistance and are referred to as High-risk (HiR) clonal groups with the ability to  
145 transfer the resistance genes (Baker & Thomson, 2018). *K. pneumoniae* clonal group CG 258  
146 (ST258, ST11, 83 ST512) and CG14 (ST14 and ST15) are considered global disseminated health  
147 threats (S Breurec et al., 2013) (Figure 2). Recent reports have indicated that *K. pneumoniae*  
148 ST307 and ST147 are emerging global clones (Peirano et al., 2020), first reported in the USA  
149 with blaKPC-2 (Castanheira et al., 2013) and in Pakistan blaCTX-M-15 (Castanheira et al.,  
150 2013) and later appeared with blaOXA-48 (Ruiz-Garbajosa et al., 2016). After 2016 the  
151 recombination of hypervirulent (HvKP), carbapenem-resistant *K. pneumoniae* isolates produced  
152 a superbug of epidemic potential (Chen et al., 2004). Among these CG 23 contains K1-type  
153 hypervirulent isolates, whereas K2 type is scattered among various clonal groups immensely  
154 (Baker & Thomson, 2018). However, both K1 and K2 types are the most common HvKP with  
155 epi-demic potential (Brisse et al., 2009).

156 Other hypervirulent *K. pneumoniae* K-types included K5, K20, K54, and K57 (Yawei Zhang et  
157 al., 2016). All isolates within GC 23 are hypervirulent among these ST23, ST26, ST57, and  
158 ST163 are of epidemic potential (Yawei Zhang et al., 2016). Whereas the hypervirulence  
159 associated genes were generally encoded by MGEs, including the integrative conjugative  
160 element (ICE) (M. M. C. Lam et al., 2018). Two large resistance plasmids pLVPK from CG43  
161 (Peirano & Chen, 2020) and pK2044 from K1 types (Wu et al., 2009) contain hypervirulence  
162 signature genes, including rmpA and/or rmpA2 (regulators of the mucoid Phenotype), iro  
163 (salmochelin) and iuc (Aerobactin) siderophores (Wu et al., 2009).

164 Several plasmids are prevalent in different clonal groups like CG23, CG86, CG65, CG66, and  
165 CG380 (M. M. C. Lam et al., 2018). *K. pneumoniae* carbapenemases genes like blaKPC,  
166 blaNDM, and blaOXA and their dissemination within STs and various GCs is a substantial  
167 concern. Populations of CG 258 are considered a main vehicle for the pandemic expansion of  
168 blaKPC-harboring *K. pneumoniae* (Muñoz-Price et al., 2013) and blaNDM is frequently  
169 associated with ST11, ST14, ST147, ST149 and ST231 (Tängdén & Giske, 2015). While global  
170 dissemination of blaOXA-48-harboring *K. pneumoniae* is associated with mobile element  
171 Tn1999 (Poirel et al., 2012) and frequently prevalent in several STs e.g. ST11 and ST405, etc.  
172 (Fang et al., 2007). Isolates belonging to GC258 and ST258 & ST512 are the common cause of  
173 HAIs (Poirel et al., 2012), whereas isolates from GC 23, CG65, and CG86 are associated with  
174 invasive community-acquired infections (CAIs) (Decré et al., 2011; Muñoz-Price et al., 2013). A  
175 detailed description of various CGs along with their STs and virulence determinants etc. is given  
176 in Table 1.

## 177 **6. Genome composition**

178 *K. pneumoniae* genomes are vast in distribution (Holt et al., 2015), and the phylogenetic lineages  
179 of these organisms vary from each other by ~0.5% nucleotide divergence (Suzanne Bialek-  
180 Davenet et al., 2014). Most of the ecological and metabolic activities for the survival of *K.*  
181 *pneumoniae* are governed by ~2000 'core' (shared) genes, which are usually restrained by each  
182 strain. In addition to core genes 3500 accessory genes vary among different strains collected  
183 from a large pool of > 30,000 genes (Holt et al., 2015). Studies on pan-genome (core and  
184 accessory) revealed that genes encode an essential protein, 100,000 coding sequences with  
185 functions (Vernikos et al., 2015; Kelly L Wyres et al., 2020).

186 Overall, 13% of genes are associated with membrane transport, 19% of genes are related to  
187 carbohydrate metabolism and about 18% of genes play a role during metabolic pathways. The  
188 higher rate of diversity results in variable metabolic capacity (Blin et al., 2017). The genome size  
189 of *K. pneumoniae* is reported to be larger than the other Enterobacteriaceae which allows *K.*  
190 *pneumoniae* to survive in diverse geographical niches. Comparatively, the genome of *K.*  
191 *pneumoniae* is 5.7 Mbps in size, with 5455 protein coding genes that are larger than the *E. coli*  
192 genome ranging from 5.1 Mbp – 4915 genes, while the genome size of *E. cloacae* ranges from  
193 5.0 Mbps and 4680 genes (Figure 1B). DNA base composition remarkably plays an important  
194 role in assigning the taxa and species (Mann & Chen, 2010). Based on the G+C content ratio it  
195 has been estimated that *K. pneumoniae* core genes have a 58% GC ratio, because accessory  
196 genes originated from dis-tinct ancestors and GC content ranges between 20% to >70% (Holt et  
197 al., 2015; Kelly L Wyres et al., 2020). *K. pneumoniae* genome is reported to be more variable  
198 than other species like *E. coli*, it is suggested that it acquired its DNA from horizontal gene  
199 transfer (HGT) (McInerney et al., 2017). While performing the lowest common ancestor  
200 analysis, *K. pneumoniae* accessory genes have occupied >20 diverse genera acquired from donor  
201 organisms, that include members of the Enterobacteriaceae and bacteria from a diverse group,  
202 including *Acinetobacter*, *Burkholderia*, *Streptomyces*, *Vibrio*, *Xanthomonas*, and *Xylella* (Holt et  
203 al., 2015). Evidenced from different studies have shown HGT patterns of *K. pneumoniae*, which  
204 revealed the presence of similar plasmids as identified in *E. coli*, *E. cloacae*, *Enterobacter*  
205 *asburiae*, and *Citrobacter freundii* (Conlan et al., 2016; Martin et al., 2017; Sheppard et al.,  
206 2016).

## 207 7. Virulence factors

208 Capsule polysaccharide (CPS) is a pivotal physiological feature of *K. pneumoniae*, specifically  
209 tissue-invasive and hypermucovisous (hypervirulent) strains that provide protection against the  
210 immune system and thus help in the survival of the pathogen (Li et al., 2014). The thick capsular  
211 layer on *K. pneumoniae* surface protects it from opsonization, phagocytosis, and the action of  
212 neutrophils, macrophages, epithelial cells, and dendritic cells (Cortés, Borrell, et al., 2002;  
213 Evrard et al., 2010; Pan et al., 2011; Sahly et al., 2000). An increasing level of CPS material in  
214 *K. pneumoniae* serotypes like well-known hypervirulent strains K1 and K2 provide a steady  
215 escape from the neutrophil-mediated intracellular killing of the bacterium, resulting in abscess  
216 formation in the liver (Wu et al., 2010). The K1 serotype belongs to ST57 and ST23, which are

217 placed together in CG23 (Brisse et al., 2009). The STs with the K2 serotype are distributed  
218 mostly in CG375, CG380, and CG86 (Suzanne Bialek-Davenet et al., 2014).

219 The presence of RmpA regulator and aerobactin is a characteristic feature of hvKp, both are  
220 encoded by virulence harboring plasmids. In addition, yersiniabactin, which is an iron  
221 acquisition system is associated with specific hvKp strains as well. It is encoded by ICEKp1  
222 (integrative conjugative element Kp1). It is demonstrated that hypermucoviscosity has some  
223 association with antibiotic resistance as well. Hypermucoviscosity is more common in strains  
224 harboring blaSHV and blaTEM (Dong et al., 2022).

225 Capsule may play a significant role both outside and within the host, it helps to avoid desiccation  
226 in the atmosphere, prevents complement-mediated lysis or phagocytosis, and antibodies  
227 neutralization via releasing the capsular content (Clements et al., 2008; Cortés, Borrell, et al.,  
228 2002). In *K. pneumoniae* about 80 types have been reported based on antigenic diversity in  
229 capsules (Pan et al., 2008; Shon et al., 2013), K1 and K2 types are found to be resistant to  
230 phagocytes (Shon et al., 2013). These specified types may also have a crucial role in virulence as  
231 the K2 capsular type has often been detected in clinical iso-lates of urinary tract infections,  
232 pneumonia, and septicemia (De Jesus et al., 2015; Hennequin et al., 2012; Turton et al., 2008).

233 The kfu (Iron acquisition system) and PTS (Phosphoenolpyruvate sugar phosphotransferase  
234 system) serve as security pathways for the iron supply which is critically important in pathology  
235 associated with tissue-invasive *K. pneumoniae* (M. S. Lawlor et al., 2007). The siderophores  
236 including yersiniabactin, aerobactin, enterobactin, and salmochelin are iron chelators, these  
237 elements provide strength to *K. pneumoniae* against iron deficiency (Bachman et al., 2011).  
238 Aerobactin may serve as a virulence enhancer (Matthew S Lawlor et al., 2007) and has been  
239 reported to be responsible for more than 90% of the siderophore activities in hypermucovisous  
240 *K. pneumoniae*. Yersiniabactin has shown the ability to confer and maintain pneumonia and  
241 respiratory infection (Bachman et al., 2011).

242 Fimbriae is another significant virulence factor associated with infection and biofilm production,  
243 i.e., type 1, type 3, Kpc, and KPF-28 adhesins. Type 1 fimbriae serve as an initial factor in  
244 urinary tract infections (UTIs). However, it was reported that fimbriae have no role in the  
245 colonization of *K. pneumoniae* in the lungs or intestine (Struve et al., 2009). Type 3 fimbriae  
246 have a crucial role in biofilm but have no part in intestine or pulmonary infections. The types 1  
247 and 3 fimbriae both worked in a compensating way and have a significant role in the

248 colonization of *K. pneumoniae* and its biofilm-associated UTI (Struve et al., 2009). The fimbrial  
249 adhesins are frequently associated with hypermucoviscosity in *K. pneumoniae* and play a  
250 contributing role in biofilm production (Wu et al., 2010). The KPF-28 adhesins facilitate *K.*  
251 *pneumoniae* colonization in the mammalian intestine (Di Martino et al., 1996). It has been  
252 demonstrated that CF29K protein is prevalent in the CC23 and could be either directly associated  
253 with pyogenic liver abscess pathogenesis or related to a different virulence factor on that  
254 plasmid.

255 Outer membrane protein A (OmpA) is vital for pathogenesis and has also a major role in the  
256 immune evasion mechanism exhibited by *K. pneumoniae* in vitro and in vivo (March et al.,  
257 2011). The OmpA enables the *K. pneumoniae* for host invasion, serum resistance, and protection  
258 from lung collections (Sukumaran et al., 2003). However, OmpA is a target of neutrophil  
259 elastases and serum amyloid protein A, which are the components of the innate immune system  
260 of the host, leading to cell lysis and enhancing phagocytosis (Belaauouaj et al., 2000; Hari-Dass et  
261 al., 2005).

262 Lipopolysaccharide (LPS) is essential for the formation of the outer monolayer of the membrane  
263 in Gram-negative bacterial pathogen, lipid A moiety modification helps *K. pneumoniae* in the  
264 evasion from the innate immune system of the host. There may be some association between  
265 lipid A modification and antibiotic resistance in Klebsiella species (Llobet et al., 2015), however,  
266 more studies are needed to corroborate this hypothesis. For instance, Colistin causes the  
267 disruption of the outer membrane by interacting with lipid A. Primarily LPS modification  
268 followed by the addition of 4-amino-4-deoxy-L-arabinose to lipid A are the causes of colistin  
269 resistance in *K. pneumoniae*. This change is linked with operon pbgPE regulated by  
270 PmrAB/PhoPQ, which is determined through the insertional activation of the PhoQ/PhoP MgrB  
271 regulators.

272 Hospital and other health centers acquired infections due to *K. pneumoniae* led the investigators  
273 to figure out the contribution of different virulence factors in the progression of disease (De  
274 Jesus et al., 2015). These contributors are the fimbrial and non-fimbrial adhesins, a capsule,  
275 siderophores (particularly enterobactin), urease, lipopolysaccharide (LPS), serum resistance as  
276 well and biofilm formation (Clements et al., 2008; De Jesus et al., 2015; El Fertas-Aissani et al.,  
277 2013; Fuersted et al., 2012; Hennequin et al., 2012). On the other hand, enhancement of the  
278 features increasing invasion comprises other siderophores (Aerobactin and yersiniabactin),

279 catechol receptor, mucoid factor, and hypermucoviscosity (De Jesus et al., 2015; El Fertas-  
280 Aissani et al., 2013; Russo et al., 2011; Struve et al., 2008). *K. pneumoniae* shows a variety of  
281 fimbrial and non-fimbrial adhesins having the ability to recognize various cell receptors which in  
282 turn can enable it to attach the target cell surfaces (Struve et al., 2008). Fimbrial adhesins  
283 comprised of mannose-sensitive type 1 fimbria, type 3 fimbriae, and plasmid-encoded fimbriae  
284 designated as KPF-28, whereas CF29K is a non-fimbrial adhesins (Podschun & Ullmann, 1998;  
285 Schroll et al., 2010; Struve et al., 2008). Type 1 and type 3 fimbriae have frequently been  
286 reported in *K. pneumoniae* species, and cause UTIs and biofilm formation (El Fertas-Aissani et  
287 al., 2013; Schroll et al., 2010). Fimbrial adhesins are useful as these enhance the adherence  
288 capabilities of the pathogen. On the other hand, it can be disadvantageous in the way that it may  
289 trigger the immune system of the host indicating the opportunistic nature of *K. pneumoniae* (De  
290 Jesus et al., 2015).

291 The hypervirulent strain of *K. pneumoniae* contains high quantities of siderophores (Shon et al.,  
292 2013), which are encoded by genes including entB (enterobactin), iutA (Aerobactin), irp1-irp2-  
293 ybtS-fyuA (yersiniabactin) and iroN (ferric catecholates receptor) (Turton et al., 2008). Most  
294 investigated virulent genes include  (encoding uridine diphosphate galacturonate 4-  
295 epimerase), wabG (involved in the biosynthesis of the outer core lipopolysaccharide), ureA  
296 (related to the urease operon), magA (microviscosity-associated gene A), mrkD (type 3 fimbriae  
297 adhesion), allS (activator of the allantois regulon), kfuBC (iron-uptake system), rpmA (regulator  
298 of mucoid phenotype) and fimH (fimbrial gene encoding type 1 fimbrial adhesion) (Brisse et al.,  
299 2009; Gao et al., 2014). Additionally, acquired  $\beta$ -lactamase encoding genes increase the  
300 pathogenicity of *K. pneumoniae*; however, active infection is primarily dependent on a variety of  
301 host-dependent factors (El Fertas-Aissani et al., 2013).

## 302 **8. Naturally occurring resistance determinants**

303 All the genes that can confer antibiotic resistance when grouped are as resistors (Figure 2)  
304 (Wright, 2007). One of the schemes used for the classification of  $\beta$ -lactamases is molecular  
305 classification, based on the amino acid sequences and dividing them into class A, C, and D  
306 enzymes that utilize serine, whereas class B metallo-  $\beta$  lactamases require zinc for hydrolysis  
307 (Bush & Jacoby, 2010). Formerly, *K. pneumoniae* was the lone Gram-negative enteric bacterium  
308 that harbored a chromosome-encoded penicillinase (Arakawa et al., 1986). *K. pneumoniae*  
309 exhibits species-specific class A chromosome encoded  $\beta$ -lactamases which cause resistance

310 against ampicillin, carbenicillin amoxicillin, and ticarcillin (Lee et al., 2006). Overall, three  
311 different families including SHV, LEN, and OKP have been identified as the source of  
312 chromosome-based  $\beta$ -lactamases in *K. pneumoniae*, steer intrinsic resistance to ampicillin via the  
313 production of class A  $\beta$ -lactamase e.g. SHV, encoded by a core gene blaSHV (Holt et al., 2015).

314 Two core locus OqxAB (efflux pump) and fosA (glutathione S-transferase) have also been  
315 detected in the *K. pneumoniae* chromosome using MGEs and distributed to other bacterial  
316 species. The wild-type gene expression of both loci is associated with resistance against  
317 fosfomycin i.e. fosA and quinolones i.e. OqxAB (Li et al., 2019).

318 In the mid-20th century, the use of Aminoglycosides was replaced by third-generation  
319 cephalosporins, carbapenems, and Fluoroquinolones (Doi et al., 2016), which resulted in a  
320 reduction of novel resistance mechanisms against aminoglycosides. However, the evolution of  
321 16S RNA Methylase (Poulikakos & Falagas, 2013) extended the resistance spectrum against all  
322 aminoglycosides (Srinivasan & Rajamohan, 2013). Whereas kpnEF (SMR-type efflux pump)  
323 developed strong resistance against tobramycin and spectinomycin (Naeem et al., 2016).  
324 Resistance to tobramycin, streptomycin, and spectinomycin is considered linked directly with the  
325 loss of KpnO porins. Mutations in rrs or rpsL, result in target modification augment the  
326 resistance patterns (Redgrave et al., 2014). Extensive use of fluoroquinolones after their  
327 discovery in the 1980s has directed quinolone resistance mechanisms (Ward-McQuaid et al.,  
328 1963). Right after the first use of nalidixic acid (Guerra et al., 1983) and norfloxacin (Guerra et  
329 al., 1983), *K. pneumoniae* developed a vast variety of resistance mechanisms against quinolones  
330 including target modification i.e. gyrA-gyrB subunits and parC-parE subunits of DNA gyrase  
331 topoisomerase IV (Martinez-Martinez et al., 1996), (Guillard et al., 2016). Other mechanisms  
332 include the expression of efflux pumps acrAB gene (Wong et al., 2015) and OmpK36 porins  
333 deficiency (Ping et al., 2007).

334 Polymyxins which perturbs bacterial membrane via cations (Ca<sup>+2</sup>/Mg<sup>+2</sup>) dislocation are  
335 considered as one of the last resort antibiotics against Enterobacteriaceae (Antoniadou et al.,  
336 2007). Resistance to colistin was initially reported in 2004 from Greece (Marchaim et al., 2011).  
337 Resistance against colistin mainly occurs due to mutation in lpxM and its regulator ramA,  
338 responsible for the maturation of lipid A (Marchaim et al., 2011), while the addition of amino  
339 arabinose results in neutralization of lipid A. Lipid A modification through TupA-  
340 like/glycosyltransferase and CrrAB is also an important resistance mechanism (Srinivasan et al.,

341 2012). Upregulated efflux expression via positive regulation of AcrAB-TolC and KpnEF (C.R.  
342 Lee et al., 2016) by the RarA transcription regulator is imperative. Most commonly the  
343 resistance to colistin develops via mgrB gene inactivation or point mutations in phoPQ, pmrAB,  
344 or crrAB (two-component regulator systems) (C.-R. Lee et al., 2016).

345 Additionally, resistance against first approved glyccylcyclines i.e. Tigecycline has also been  
346 reported (Nielsen et al., 2014) through modification in the 30S and the 16S ribosomal units and  
347 cell permeability (Villa et al., 2014). Other mechanisms include up-regulation of efflux pumps  
348 such as KpgABC (Ahn et al., 2016). The first mutation was detected in S10 (ribosomal protein)  
349 encoded by rpsJ, which reduces susceptibility, but their role in tigecycline resistance is unclear  
350 (Pitout et al., 2015).

### 351 **9. Plasmid-mediated antibiotic resistance**

352 In *K. pneumoniae* ARGs attained through horizontal gene transfer play a significant role in the  
353 acquisition of resistance as compared to chromosomal mutations. Such accessory genes are often  
354 plasmid-mediated; however, these may be incorporated into the bacterial chromosome. For  
355 instance, a strong promoter enables the mobile genetic variant of blaSHV with some point  
356 mutations to perform ESBL activity, which causes resistance against cephalosporins and even  
357 carbapenems (Liakopoulos et al., 2016). Accordingly, a few *K. pneumoniae* strains cart replicas  
358 of blaSHV, one core chromosomal gene, and other acquired plasmid variants directed by a robust  
359 IS26 promoter (Hammond et al., 2005).

360 *K. pneumoniae* can acquire resistance genes reside on plasmids and mobile elements (Bush &  
361 Jacoby, 2010; Calbo & Garau, 2015), like blaOXA (Evans & Amyes, 2014), blaPER, blaTLA  
362 and blaVEB (Philippon et al., 2016), rare genes blaGES and blaSFO (Ramirez et al., 2019; Yigit  
363 et al., 2001). During the 1960s two  $\beta$ -lactamase blaSHV-1 and blaTEM-1 were described in *K.*  
364 *pneumoniae* for the first time which conferred resistance to penicillin (Datta & Kontomichalou,  
365 1965). Later, the acquisition of blaTEM-3 unveiled resistance against mono-bactams and  
366 cephalosporins (Sirot et al., 1987).

367 In the early 2000's plasmid, plasmid-mediated blaCTX-M shifted the trends of *K. pneumoniae*  
368 infections to major hospital-acquired acute infections. It was documentation that metallo-enzyme  
369 named blaIMP-1 identified in *K. pneumoniae* displayed resistance to carbapenems. Among other  
370 carbapenemases acquired by *K. pneumoniae* including blaNDM-1, blaOXA-48 and blaKPC are

371 the most common and immensely disseminated resistance determinants in every continent (Naas  
372 et al., 2012).

373 Aminoglycosides on the other hand were frequently used during the early 1940s to late 1960  
374 which were then replaced by  $\beta$ -lactams such as cephalosporins and carbapenems as plasmid-  
375 mediated resistance determinants like *aph*, *ant*, and *aac* genes were identified against these  
376 antibiotics (Novan, 2017). Unfortunately, Plasmid-mediated aminoglycoside-resistant gene *armA*  
377 is identified, which encodes 16S rRNA methylase enzyme confers resistance to all classes of  
378 aminoglycoside. While other 16S rRNA methylase genes belong to the *NpmA* and *Rmt* family  
379 (Shen et al., 2020).

380 The very first plasmid-mediated quinolone resistance in *K. pneumoniae* described that *qnrA*  
381 encodes a pentapeptide repeat protein that is responsible for the resistance. Overall, the  
382 acquisition of plasmid-mediated resistant genes (PMQR) is associated with resistance to  
383 quinolones. These genes include *aac* (6')-I<sub>bcr</sub> (Bado et al., 2016; Fàbrega et al., 2009; Ruiz et al.,  
384 2012) which modifies quinolones in *K. pneumoniae* and *qnrA* genes whose product protects  
385 DNA gyrase and topoisomerase IV from quinolone inhibition in *K. pneumoniae*. PMQR genes  
386 modify quinolones in *K. pneumoniae* and pose a narrow spectrum of resistance but their presence  
387 augments resistance of *K. pneumoniae* harboring ESBL genes (Tóth et al., 2014). It has been  
388 observed in the clonal groups ST11, ST15, and ST147 (Antoniadou et al., 2007).

389 Plasmid-mediated polymyxin resistance in *K. pneumoniae* strains is also reported in China after  
390 the identification of the *mcr-1* harboring strains (Zowawi et al., 2015), which modifies lipid A  
391 through phosphoethanolamine transferase enzyme activity. Further-more, the recent emergence  
392 of hypervirulent colistin resistance *K. pneumoniae* is a major public health concern worldwide  
393 keeping in view the colistin as a last resort antibiotic against carbapenem resistance hvKp.  
394 However, it is worth mentioning here that *mcr-1* is not solely associated with colistin resistance.  
395 Other determinants including *mcr-2* to 7 and more recently *mcr-8* gene are also associated with  
396 colistin resistance in *K. pneumoniae*. Additionally, *mcr-7.1* which has 70 % amino acid  
397 similarity with *mcr-3* and *mcr-8.1* on a plasmid having IncFIA has been reported as a novel  
398 mobile genetic element from various parts of the world (Mmatli et al., 2022).

399 The CG 258 harboring *K. pneumoniae* carbapenemase (KPC) was first re-ported from the USA,  
400 and *blaKPC* genes reside in a unique Tn4401 transposon (Naas et al., 2012). Most *K.*  
401 *pneumoniae* plasmids cannot be typed by PCR-assisted replicon typing methods (Osborn et al.,

402 2000). However, many of these novel plasmids are considered to belong to the IncF plasmid  
403 family. Based on sequencing data FII replicons of large plasmid family IncFII can be  
404 characterized as FII<sub>I</sub>, FII<sub>Y</sub>, and FII<sub>IK</sub> specific groups (Kaplan et al., 2015). Plasmids also produce  
405 an ability to bypass the incompatibility effect where two in-compatible plasmids can reside in the  
406 same cell (Chen et al., 2013). This phenomenon is achieved when plasmids replicate using  
407 alternative replicons. *K. pneumoniae* strains undergo the recombination of homologous regions  
408 of FII<sub>IK</sub> replicons. Whereas ST258 was isolated from the USA in 2000 has blaKPC-2 along with  
409 blaKPC-3 encoded by IncFII<sub>IK</sub> and PKpQIL plasmids.

410 Phylogenetic studies of CG 258 have demonstrated that plasmids belonging to IncI2 are only  
411 present in clade II and pKpQIL were found in both clades I and II (Miriagou et al., 2010).  
412 Rearrangements of IncFII<sub>IK</sub> plasmids portions with IncR or IncN plasmids merged in a multi-  
413 replicon status have also been seen. Some other diverse plasmids have been described to have  
414 resistance genes like NDM metallo-lactamases (MBL), GES, and the carbapenem-hydrolyzing  
415 class D OXA  $\beta$ -lactamases (CHDL) and are disseminated in geologically distant *K. pneumoniae*  
416 strains. In Greece, plasmids carrying IncN1 blaVIM-1 were identified from different Klebsiella  
417 strains isolated from numerous hospitals containing distinct regions having several transposons  
418 and integrons (Poirel et al., 2013). The plasmid IncX3 is highly disseminated in *K. pneumoniae*  
419 as it acquires resistance genes including blaNDM-5, (Figure 2). It has been described that  
420 blaCTX-M genes are mostly associated with IncFII plasmids which are related to IncFII of *E.*  
421 *coli* and highly like plasmid IncFII having FIA replicon and the phage P1, adept of extra  
422 chromosomal replication by the IncY replicon and diverge from those carrying blaKPC  
423 (Dolejska et al., 2013). Plasmids including IncI1, IncR, and IncN are reported as of animal origin  
424 while they also acquired CTX-M-15 and CTX-M-1 (Zhu et al., 2009). The data suggests that  
425 ESBL-encoding plasmids are highly disseminated within Klebsiella and other  
426 Enterobacteriaceae. Interestingly, Strains of *K. pneumoniae* isolated from China were carrying  
427 pCTX-M-3 plasmid lacking ArmA (Zhu et al., 2009). Overall, taking into consideration IncFII<sub>IK</sub>  
428 plasmids, IncHI, IncI2, and IncN2 alongside novel replicons identified, resistance plasmids of *K.*  
429 *pneumoniae* are distinctive and differ from those which are identified in other members of the  
430 Enterobacteriaceae family (Shiri Navon-Venezia et al., 2017).

431

432

433 **10. Infection Biology and Immune Evasion**

434 *K. pneumoniae* prevents the triggering of the host defense mechanism by covering its PAMPs  
435 from PRRs, immune globulins, and complement proteins. It prevents binding to both cells of  
436 innate and adaptive immunity (Paczosa & Mecsas, 2016). Activation of complement proteins by  
437 *K. pneumoniae* occurs in antibodies independent manner as it binds directly to Cq1 (Albertí et  
438 al., 1996; Alberti et al., 1993). Although *K. pneumoniae* also activates the complement classical  
439 pathway by binding of LPS to complement protein. However, this mechanism of activation was  
440 reported as less efficient as compared to Outer membrane proteins (Alberti et al., 1993). The  
441 complement system plays a crucial role in phagocytosis and clearance of *K. pneumoniae* by lung  
442 epithelial cells facilitated by the C3b complement protein (de Astorza et al., 2004). Mutation of  
443 capsular polysaccharides ultimately increases the C3b deposition which results in strong  
444 bactericidal activity complement proteins. While to avoid increased deposition of C3b O antigen  
445 and LPS of outer membrane work as shielding factor (Merino et al., 1992). Other than LPs and O  
446 antigen CPS also inhibits complement deposition (Álvarez et al., 2000) and inhibits binding of  
447 lung collectins SPA and SP-D to LPS. Studies conducted on mouse models strongly fortify the  
448 argument that CPS plays a crucial role in *K. pneumoniae* virulence (Willsey et al., 2018) by  
449 inhibiting the binding of Polymyxins and CAMP therefore, it has been stated that resistance to  
450 Polymyxins is directly proportional to the amount of CPS produced by *K. pneumoniae* (Campos  
451 et al., 2004). Another mechanism to invade CAMPs and Polymyxins includes modification in  
452 Lipid A structure (Llobet et al., 2008). The absence of palmitate, 4-amino-4-deoxy-L-arabinose,  
453 phospho-ethanolamine, and 2-hydroxy myristate from Lipid A structure results in loss of  
454 virulence in mouse models (Kidd et al., 2017; Llobet et al., 2011; Mills et al., 2017). But  
455 something worth mentioning here is that the role of CPS in virulence is indirect as level CPS  
456 depends upon 2-hydroxylation and switches on the status of late acyltransferases lpxM and lpxL  
457 respectively (Llobet et al., 2011).

458 It has been reported that *K. pneumoniae* invades the effect of antibiotics and the immune system  
459 by penetrating epithelial cells (Clements et al., 2007). However, further research on this  
460 phenomenon revealed that the engulfment of *K. pneumoniae* by host epithelial cells is a defense  
461 mechanism (Clements et al., 2007). *K. pneumoniae* CPS agonistically activates the TLRs  
462 especially the TLR4 function which results in an enhanced inflammatory effect as no. of TLR4  
463 and TLR2 increase in epithelial cells because of *K. pneumoniae* infection (Cortés, Álvarez, et al.,

464 2002). The host immune system also produces anti-CPS immunoglobulins which activate the  
465 secretion of neutrophil extracellular traps (NETs), which upon release kills *K. pneumoniae* in  
466 extracellular space (Regueiro et al., 2009). Phosphatidylserine is known as eat me signal for  
467 macrophages, however their reduced expression of neutrophils because of their infection  
468 ultimately inhibits their phagocytosis (Diago-Navarro et al., 2018) and leads them towards  
469 necroptosis and inhibits efferocytosis of neutrophils (Amulic et al., 2012). Subsets of dendritic  
470 cells are also activated by *K. pneumoniae* (Jondle et al., 2018). While structures including CPS,  
471 LPS, and porins, induce their maturation (Jondle et al., 2018). Inside macrophages *K.*  
472 *pneumoniae* controls the phagosome maturation and 10 h after *K. pneumoniae* infection  
473 programmed cell death of macrophages usually occurs (Van Elssen et al., 2010) Interestingly,  
474 there is no evidence that CPS augments the *K. pneumoniae* survival inside macrophages, as CPS  
475 mutants do not affect intracellular survival patterns, supported by the fact that *K. pneumoniae*  
476 inhibits its CPS production once it gets inside the cell (Van Elssen et al., 2010). The plasticity of  
477 macrophages allows them to have physiological and phenotypical characteristics. As studies  
478 have demonstrated the M2 macrophage presence in mouse infection models, while the  
479 elimination of M2 macrophages results in efficient clearance of pathogen (Mills et al., 2017).  
480 High levels of IL-10 during *K. pneumoniae*-triggered pneumoniae result in an anti-inflammatory  
481 effect (Fevre et al., 2013). IL-10 cytokines are used to control the activation of cells involved in  
482 innate immune response and are secreted by various immune cells (Yoshida et al., 2000). To  
483 counter this *K. pneumoniae*-induced anti-inflammatory affect mediated by IL-10 host immune  
484 system regulates IFN $\gamma$  production (Gabryšová et al., 2014). Reports also claim the direct  
485 association between CPS and high levels of IL-10 fortifies the pathogenicity of *K. pneumoniae*.  
486 While mice infected with mutant CPS do not have high IL-10 concentrations (Gabryšová et al.,  
487 2014). NF- $\kappa$ B (transcription factor) upon stimulation of a TLR4/2-MyD88 signaling pathway  
488 controls various anti-Klebsiella responses (Yoshida et al., 2001). Here CPS came into play by  
489 inhibiting the engulfment of *K. pneumoniae* by epithelial cells resulting in limited NF- $\kappa$ B  
490 activation which in turn further sup-presses the production of IL8, ICAM1, and human defensins.  
491 In deubiquitinase cylindromatosis (CYLD) negative host cells Klebsiella infection quickly  
492 followed by production of IL8 this happens because in (CYLD) positive cells *K. pneumoniae*  
493 hijacked the (CYLD) thus inhibits NF- $\kappa$ B signaling (Bengoechea & Sa Pessoa, 2019). Studies  
494 have shown CPS mutants are unable to activate the EGFR pathway, while CPS wild strain does

495 (Bengoechea & Sa Pessoa, 2019). However, their activation is indirect and TLR4-dependent  
496 (Moranta Mesquida et al., 2018). *K. pneumoniae* inhibits the production of inflammatory  
497 mediators and defensins by inactivating the MAPK-by-MAPK phosphatase-1 (MKP-1). As  
498 MAPKs p38, ERK and JNK play important roles in the inflammatory response. The production  
499 of (MKP-1) during infection is mediated by activation of NOD1, while inhibition of IL8 from  
500 epithelial cells is governed by the synergistic effect of MKP-1 and CYLD (Regueiro et al.,  
501 2011). Studies have confirmed the CPS-independent anti-inflammatory role of OmpA during  
502 *Klebsiella pneumoniae* infections (Tomás et al., 2015).

503 Enterobactin is an iron-binding siderophore secreted by *K. pneumoniae* it competes and binds the  
504 iron against host proteins (March et al., 2011). Other iron-binding proteins include aerobactin,  
505 salmochelin, and yersiniabactin (Bachman et al., 2012). Importantly, yersiniabactin is associated  
506 with invasive infections. During *K. pneumoniae* infection the spread of the pathogen is  
507 associated with siderophores as they down-regulate transcription factor HIF-1 $\alpha$  responsible for  
508 mucosal immunity and cellular intrinsic immunity (Holt et al., 2015) the hypothesis that HIF-1 $\alpha$   
509 down-regulation increases the infection rate is usually common in *Klebsiella* infections (Holden  
510 et al., 2016). Overall, the immune evasion strategies of *K. pneumoniae* mechanisms are portrayed  
511 in (Figure 4).

## 512 11. Prospectives

513 *K. pneumoniae*-associated Hospital-acquired infections cannot be easily differentiable from  
514 HAIs caused by other clinically important pathogens. Whereas community-acquired infections  
515 caused by *K. pneumoniae* show some distinguished characteristics. Conventionally, infection  
516 caused by *K. pneumoniae* is designated as community-acquired pneumonia and clinically  
517 manifested as sudden onset of high fever, dramatic toxicity, hemoptysis and abnormalities seen  
518 in chest radiography such as bulging interlobar cleft and cavitary abscesses (Ashurst & Dawson,  
519 2018; Korvick et al., 1991) Considerable proportion of some ESBL producing clinical isolates of  
520 *K. pneumoniae* are sensitive to third generation cephalosporins or aztreonam and therefore it is  
521 problematic to detect ESBL's in clinical isolates (Paterson & Bonomo, 2005; Wang et al., 2011).  
522 This confusion results in serious health hazards when the same treatment is used against serious  
523 infections (Paterson et al., 2001; Paterson & Yu, 1999). Whereas resistance to Ceftazidime is a  
524 sufficient marker for the detection of ESBLs (Guideline & Edition).

525 The Clinical and Laboratory Standards Institute (CLSI) has standardized confirmatory and  
526 screening tests for *K. pneumoniae* and *K. oxytoca* for ESBL detection. Production of some  
527 important enzymes including extended-spectrum  $\beta$ -lactamases, cephalosporinases, and  
528 carbapenemases and their continuous horizontal gene transfer via plasmids and mobile elements  
529 like transposons facilitates the ESBL's associated infection and bacterial survival under the  
530 action of  $\beta$ -lactam drugs (Partridge et al., 2018). As resistance against known antibiotics keeps  
531 on increasing and there is a scarcity of new antibiotics, alternative therapeutic and diagnostic  
532 strategies may be exploited (Lewis, 2017). Various detection methods for ESBL have been  
533 employed in laboratories that include beta-lactamase inhibitors such as clavulanic acid by using  
534 double disk diffusion test, Microscan ESBL plus detection system, Vitek ESBL detection card, E  
535 test strips containing Ceftazidime or cefotaxime (Singh & Singh, 2014). Additionally, a  
536 bacteriophage-based diagnostic approach is also practiced. Recently, studies demonstrated a  
537 luminescent bacterio-phage-based detection of *K. pneumoniae* and they suggested that such a  
538 diagnostic approach may provide a prompt diagnostic tool to escort the developing subject of  
539 phage therapeutics, especially to treat chronic infectious diseases.

540 While considering novel treatments against drug resistance *K. pneumoniae*, phage therapy is  
541 considered a promising therapeutic strategy to fight resistant superbugs. The endolysins that are  
542 phage hydrolases and other phage proteins are potential antimicrobials (Aslam, Arshad, et al.,  
543 2021; Qurat-ul-Ain et al., 2021). (Zelcbuch et al., 2021). Despite the advancements in this field  
544 few challenges still need to be addressed for the general application of phage therapeutics. These  
545 shortfalls include target specificity, penetration abilities, immunogenicity, and half-life of the  
546 phage product (Karimi et al., 2016).

547 On the other hand, Immunotherapy is also considered as a rational alternative to manage MDR  
548 *K. pneumoniae*, it harnesses the host  immune system to elicit the immune response against the  
549 pathogen. This method employs various mechanisms to protect the host and avoid the  
550 development of resistance, unlike antibiotics. Practically, an all-in-one vaccine having a  
551 complete range of CPS or LPS is difficult, though a multivalent vaccine has been developed. It is  
552 suggested that a solution to this problem is to identify conserved antigenic regions among  
553 various serotypes of *K. pneumoniae* which may be used for the development of a broad-spectrum  
554 vaccine (Xiao et al., 2016). In this regard, MrkA is a suitable candidate as it is conserved among  
555 various members of the Enterobacteriaceae family is a key element fimbrial (Type III) complex,

556 and possesses key vital functions like biofilm formation, infection progression, and fimbrial shaft  
557 development (Allen et al., 1991). Poly-N-acetyl glucosamine (PNAG) is another possible  
558 conserved surface polysaccharide antigen that may also be beneficial to manage *K. pneumoniae*  
559 via immunotherapy (Cywes-Bentley et al., 2013; Xiao et al., 2016). Previously, the vaccine was  
560 developed from hyper-immune globulins and capsular polysaccharides of *K. pneumoniae*, but the  
561 complexity of its production halted further progress (Ahmad, El-Sayed, et al., 2012; Diago-  
562 Navarro et al., 2017). In 2017, Diago-Navarro and colleagues isolated Monoclonal antibodies  
563 against hyper-mucoid hypervirulent strains which promoted the neutrophil extracellular trap  
564 (NET) release and opsonophagocytic killing (Diago-Navarro, Calatayud-Baselga et al. 2017) In  
565 preclinical models' immunogenicity of macromolecules like LPS O antigens tends to increase  
566 when conjugated covalently with variety of carriers like outer membrane proteins (Ahmad,  
567 Haroun, et al., 2012). Recently a humanized anti-body against galactan III O antigen, expressed  
568 in about 83% of the Surface polysaccharides, has been reported these sugars are optimal targets  
569 for the development of immune prophylactic and therapeutic efforts to counter the emergence of  
570 antibiotic-resistant strains, along with the hypervirulent ST258 (Szijártó et al., 2017). E. Di-ago-  
571 Navarro et al have also generated murine-based monoclonal antibodies against ST 258 CPS  
572 (Diago-Navarro et al., 2018).

573 Furthermore, the implication of CRISPR-Cas technology to develop sequence-specific  
574 antimicrobials is also an emerging field to fight resistant superbugs. In this technique, the guide  
575 RNA with nuclease activity is used to target the specific sequences in the desired DNA (Pursey  
576 et al. 2018). Guide RNA is delivered proficiently to the target microbial community through  
577 phagemid or bacteriophage. The specific DNA targets include polymorphism, virulence  
578 determinants, and antibiotic-resistance genes. Use of this approach against *E. coli* and  
579 carbapenem-resistant Enterobacteriaceae has been reported in the recent past (Tagliaferri et al.,  
580 2020). RNA-guided nucleases (RGNs) are a class of extremely intolerant antimicrobials that put  
581 selective pressure into practice at the target DNA to minimize the distribution of unwanted  
582 genes, reduce the off-targets, and permit the programmable restoration of microbiota (Citorik et  
583 al., 2014).

## 584 12. Conclusion

585 The existing literature recommends that *K. pneumoniae* is a distinctive and credential pathogen  
586 among the other ESKAPE Gram-negative bacterial members due to some vital features like

587 ARGs and virulence genes diversity, genomic configuration, significant plasmid load, etc.  
588 Currently, this bacterium represents the incongruity of therapeutic approaches and present  
589 research and development (R & D) in the field of antimicrobial resistance. Straightforwardly,  
590 there are considerable gaps in our understanding of *K. pneumoniae* pathobiology and population  
591 transcriptomics. Hence, to understand the several Achilles heels of *K. pneumoniae* there is an  
592 urgent need for cutting-edge research which may be beneficial to cope with this certified  
593 pathogen.

594

## 595 **Acknowledgements**

596 The researchers would like to thank the Deanship of Scientific Research, Qassim University for  
598 funding the publication of this project (QU- APC).

599

600

601

## 602 **References**

603 Ahmad TA, El-Sayed, LH, Haroun, M, Hussein, AA, & El Sayed, H. (2012). Development of  
604 immunization trials against Klebsiella pneumoniae. Vaccine, 30(14), 2411-2420.

605 Ahmad, TA, Haroun M, Hussein AA, El Ashry ESH, & El-Sayed L H. (2012). Development of a  
606 new trend conjugate vaccine for the prevention of Klebsiella pneumoniae. Infectious  
607 disease reports, 4(2), 128-133.

608 Ahn C, Yoon SS, Yong, TS, Jeong, SH, & Lee, K. (2016). The resistance mechanism and clonal  
609 distribution of tigecycline-nonsusceptible Klebsiella pneumoniae isolates in Korea.  
610 Yonsei medical journal, 57(3), 641.

611 Albertí S, Alvare D, Merino S, Casado, MT, Vivanco F, Tomás, JM, & Benedí VJ. (1996).  
612 Analysis of complement C3 deposition and degradation on Klebsiella pneumoniae.  
613 Infection and immunity, 64(11), 4726-4732.

614 Albertí S, Marqués G, Camprubi S, Merino S, Tomás J, Vivanco F, & Benedí V. (1993). C1q  
615 binding and activation of the complement classical pathway by Klebsiella pneumoniae  
616 outer membrane proteins. Infection and immunity, 61(3), 852-860.

617 Allen BL, Gerlach GF, & Clegg, S. (1991). Nucleotide sequence and functions of mrk  
618 determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae. J  
619 Bacteriol, 173(2), 916-920. <https://doi.org/10.1128/jb.173.2.916-920.1991>

620 Álvarez D, Merino S, Tomás JM, Benedí VJ, & Albertí S. (2000). Capsular polysaccharide is a  
621 major complement resistance factor in lipopolysaccharide O side chain-deficient  
622 Klebsiella pneumoniae clinical isolates. Infection and immunity, 68(2), 953-955.

623 Amulic B, Cazalet C, Hayes GL, Metzler KD, & Zychlinsky A. (2012). Neutrophil function:  
624 from mechanisms to disease. Annual review of immunology, 30, 459-489.

625 Antoniadou A, Kontopidou F, Poulakou G, Koratzanis E, Galani I, Papadomichelakis, E,  
626 Kopterides P, Souli M, Armaganidis A, & Giannarelli, H. (2007). Colistin-resistant  
627 isolates of *Klebsiella pneumoniae* emerging in intensive care unit patients: first report of  
628 a multicolonial cluster. *Journal of Antimicrobial Chemotherapy*, 59(4), 786-790.

629 Arakawa Y, Ohta M, Kido N, Fujii Y, Komatsu T, & Kato N. (1986). Close evolutionary  
630 relationship between the chromosomally encoded  $\beta$  lactamase gene of *Klebsiella*  
631 *pneumoniae* and the TEM  $\beta$ -lactamase gene mediated by R plasmids. *FEBS letters*,  
632 207(1), 69-74.

633 Aslam B, Arshad MI, Aslam MA, Muzammil S, Siddique AB, Yasmeen N, Khurshid M, Rasool  
634 M, Ahmad M, Rasool MH, Fahim M, Hussain R, Xia X, & Baloch Z. (2021).  
635 Bacteriophage Proteome: Insights and Potentials of an Alternate to Antibiotics. *Infectious*  
636 *Disease Therapy*, 10(3), 1171-1193. <https://doi.org/10.1007/s40121-021-00446-2>

637 Aslam B, Chaudhry TH, Arshad MI, Muzammil S, Siddique AB, Yasmeen N, Khurshid M, Amir  
638 A, Salman M, Rasool MH, Xia X, & Baloch Z. (2022). Distribution and genetic diversity  
639 of multi-drug-resistant *Klebsiella pneumoniae* at the human-animal-environment  
640 interface in Pakistan. *Frontiers in Microbiology*, 13, 898248.  
<https://doi.org/10.3389/fmicb.2022.898248>

641 Aslam B, Khurshid M, Arshad MI, Muzammil S, Rasool M, Yasmeen N, Shah T, Chaudhry TH,  
642 Rasool MH, Shahid A, Xueshan X, & Baloch, Z. (2021). Antibiotic Resistance: One  
643 Health One World Outlook. *Frontiers in Cellular and Infection Microbiology*, 11,  
644 771510. <https://doi.org/10.3389/fcimb.2021.771510>

645 Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF,  
646 Aslam MA, Qamar MU, Salamat MKF, & Baloch, Z. (2018). Antibiotic resistance: a  
647 rundown of a global crisis. *Infection and Drug Resistance*, 11, 1645-1658.  
<https://doi.org/10.2147/idr.s173867>

648 Belaaouaj A, Kim KS, & Shapiro SD. (2000). Degradation of outer membrane protein A in  
649 *Escherichia coli* killing by neutrophil elastase. *Science*, 289(5482), 1185-1187.

650 Bachman MA, Lenio S, Schmidt L, Oyler JE, & Weiser JN. (2012). Interaction of lipocalin 2,  
651 transferrin, and siderophores determines the replicative niche of *Klebsiella pneumoniae*  
652 during pneumonia. *MBio*, 3(6).

653 Bachman MA, Oyler JE, Burns SH, Caza M, Lépine F, Dozois CM, & Weiser JN. (2011).  
654 *Klebsiella pneumoniae* yersiniabactin promotes respiratory tract infection through  
655 evasion of lipocalin 2. *Infection and immunity*, 79(8), 3309-3316.

656 Bado I, Gutiérrez C, García-Fulgueiras V, Cordeiro NF, Pirez LA, Seija V, Bazet C, Rieppi G, &  
657 Vignoli R. (2016). CTX-M-15 in combination with aac (6')-Ib-cr is the most prevalent  
658 mechanism of resistance both in *Escherichia coli* and *Klebsiella pneumoniae*, including  
659 *K. pneumoniae* ST258, in an ICU in Uruguay. *Journal of global antimicrobial resistance*,  
660 6, 5-9.

661

662

663 Baker S, & Thomson N. (2018). Genomic insights into the emergence and spread of  
664 antimicrobial-resistant bacterial pathogens. 360(6390), 733-738.  
665 <https://doi.org/10.1126/science.aar3777>

666 Barbier E, Rodrigues C, Depret G, Passet V, Gal L, Piveteau P, & Brisson S. (2020). The ZKIR  
667 assay, a real-time PCR method for the detection of *Klebsiella pneumoniae* and closely  
668 related species in environmental samples. Applied and environmental microbiology,  
669 86(7).

670 Bengoechea JA, & Sa Pessoa J. (2019). *Klebsiella pneumoniae* infection biology: living to  
671 counteract host defenses. FEMS Microbiol Review, 43(2), 123-144.

672 Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard AS, Garin B,  
673 Le Hello S, Arlet G, & Nicolas-Chanoine MH. (2014). Genomic definition of  
674 hypervirulent and multidrug-resistant *Klebsiella pneumoniae* clonal groups. Emerging  
675 infectious diseases, 20(11), 1812.

676 Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Nicolas-Chanoine MH, Decré D, & Brisson  
677 S. (2014). Development of a multiplex PCR assay for identification of *Klebsiella*  
678 *pneumoniae* hypervirulent clones of capsular serotype K2. Journal of Medical  
679 Microbiology, 63(Pt12), 1608-1614. <https://doi.org/10.1099/jmm.0.081448-0>

680 Blin C, Passet V, Touchon M, Rocha EP, & Brisson S. (2017). Metabolic diversity of the  
681 emerging pathogenic lineages of *Klebsiella pneumoniae*. Environmental microbiology,  
682 19(5), 1881-1898.

683 Boonyasiri A, Jauneikaitė E, Brinkac LM, Greco, C, Lerdlamyong, K, Tangkosal T, Nguyen K,  
684 Thamlikitkul V, & Fouts DE. (2021). Genomic and clinical characterization of multidrug-  
685 resistant carbapenemase-producing ST231 and ST16 *Klebsiella pneumoniae* isolates  
686 colonizing patients at Siriraj hospital, Bangkok, Thailand from 2015 to 2017. BMC Infect  
687 Dis, 21(1), 142. <https://doi.org/10.1186/s12879-021-05790-9>

688 Boye K, & Hansen DS. (2003). Sequencing of 16S rDNA of *Klebsiella*: taxonomic relations  
689 within the genus and to other Enterobacteriaceae. International journal of medical  
690 microbiology, 292(7-8), 495-503.

691 Breurec S, Guessennd N, Timinouni M, Le T, Cao V, Ngandjio A, Randrianirina F, Thibierge J,  
692 Kinana A, & Dufougeray A. (2013). *Klebsiella pneumoniae* resistant to third-generation  
693 cephalosporins in five African and two Vietnamese major towns: multiclonal population  
694 structure with two major international clonal groups, CG15 and CG258. Clinical  
695 Microbiology and Infection, 19(4), 349-355.

696 Breurec S, Guessennd N, Timinouni M, Le TA, Cao V, Ngandjio A, Randrianirina F, Thibierge  
697 JM, Kinana A, Dufougeray A, Perrier-Gros-Claude JD, Boisier P, Garin B, & Brisson S.  
698 (2013). *Klebsiella pneumoniae* resistant to third-generation cephalosporins in five  
699 African and two Vietnamese major towns: multiclonal population structure with two  
700 major international clonal groups, CG15 and CG258. Clin Microbiol Infect, 19(4), 349-  
701 355. <https://doi.org/10.1111/j.1469-0691.2012.03805.x>

702 Brisse S, Fevre C, Passet V, Issenhuth-Jeanjean S, Tournebize R, Diancourt L, & Grimont P.  
703 (2009). Virulent clones of *Klebsiella pneumoniae*: identification and evolutionary  
704 scenario based on genomic and phenotypic characterization. *PLoS One*, 4(3), e4982.  
705 <https://doi.org/10.1371/journal.pone.0004982>

706 Bush K, & Jacoby GA. (2010). Updated functional classification of  $\beta$ -lactamases. *Antimicrobial  
707 Agents and Chemotherapy*, 54(3), 969-976.

708 Calbo E, & Garau J. (2015). The changing epidemiology of hospital outbreaks due to ESBL-  
709 producing *Klebsiella pneumoniae*: the CTX-M-15 type consolidation. *Future  
710 microbiology*, 10(6), 1063-1075.

711 Campos MA, Vargas MA, Regueiro V, Lampert CM, Albertí S, & Bengoechea JA. (2004).  
712 Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. *Infection  
713 and immunity*, 72(12), 7107-7114.

714 Castanheira M, Farrell SE, Wanger A, Rolston KV, Jones RN, & Mendes RE. (2013). Rapid  
715 expansion of KPC-2-producing *Klebsiella pneumoniae* isolates in two Texas hospitals  
716 due to clonal spread of ST258 and ST307 lineages. *Microbial Drug Resistance*, 19(4),  
717 295-297. <https://doi.org/10.1089/mdr.2012.0238>

718 Chen L, Chavda KD, Al Laham N, Melano RG, Jacobs MR, Bonomo RA, & Kreiswirth BN.  
719 (2013). Complete nucleotide sequence of a blaKPC-harboring IncI2 plasmid and its  
720 dissemination in New Jersey and New York hospitals. *Antimicrobial Agents and  
721 Chemotherapy*, 57(10), 5019-5025.

722 Chen L, Mathema B, Pitout JDD, DeLeo FR, & Kreiswirth BN. (2014). Epidemic *Klebsiella*  
723 ST258 is a Hybrid Strain. *MBio*, 5(3), e01355-01314.  
724 <https://doi.org/10.1128/mBio.01355-14>

725 Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, & Peng HL. (2004). Sequencing and analysis of  
726 the large virulence plasmid pLVPK of *Klebsiella pneumoniae* CG43. *Gene*, 337, 189-  
727 198. <https://doi.org/10.1016/j.gene.2004.05.008>

728 Citorik RJ, Mimee M, & Lu TK. (2014). Sequence-specific antimicrobials using efficiently  
729 delivered RNA-guided nucleases. *Nature Biotechnology*, 32(11), 1141-1145.  
730 <https://doi.org/10.1038/nbt.3011>

731 Clements A, Gaboriaud F, Duval JF, Farn JL, Jenney AW, Lithgow T, Wijburg OL, Hartland  
732 EL, & Strugnell RA (2008). The major surface-associated saccharides of *Klebsiella*  
733 *pneumoniae* contribute to host cell association. *PloS one*, 3(11), e3817.

734 Clements A, Tull D, Jenney AW, Farn JL, Kim SH, Bishop RE, McPhee JB, Hancock RE,  
735 Hartland EL, & Pearse MJ. (2007). Secondary acylation of *Klebsiella pneumoniae*  
736 lipopolysaccharide contributes to sensitivity to antibacterial peptides. *Journal of  
737 Biological Chemistry*, 282(21), 15569-15577.

738 Conlan S, Park M, Deming C, Thomas PJ, Young AC, Coleman H, Sison C, Weingarten RA,  
739 Lau AF, & Dekker JP. (2016). Plasmid dynamics in KPC-positive *Klebsiella pneumoniae*  
740 during long-term patient colonization. *MBio*, 7(3).

741 Cortés G, Álvarez D, Saus C, & Albertí S. (2002). Role of lung epithelial cells in defense against  
742 Klebsiella pneumoniae pneumonia. *Infection and immunity*, 70(3), 1075-1080.

743 Cortés G, Borrell N, de Astorza B, Gómez C, Sauleda J, & Albertí S. (2002). Molecular analysis  
744 of the contribution of the capsular polysaccharide and the lipopolysaccharide O side  
745 chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia.  
746 *Infection and immunity*, 70(5), 2583-2590.

747 Cywes-Bentley C, Skurnik D, Zaidi T, Roux D, Deoliveira RB, Garrett WS, Lu X, O'Malley J,  
748 Kinzel K, Zaidi T, Rey A, Perrin C, Fichorova RN, Kayatani AK, Maira-Litrà T,  
749 Gening ML, Tsvetkov YE, Nifantiev NE, Bakaletz L, Pier GB. (2013). Antibody to a  
750 conserved antigenic target is protective against diverse prokaryotic and eukaryotic  
751 pathogens. *Proceeding of National Academy of Science USA*, 110(24), E2209-2218.  
752 <https://doi.org/10.1073/pnas.1303573110>

753 Datta N, & Kontomichalou P. (1965). Penicillinase synthesis controlled by infectious R factors  
754 in Enterobacteriaceae. *Nature*, 208(5007), 239-241.

755 de Astorza, B, Cortés G, Crespí C, Saus C, Rojo JM, & Albertí S. (2004). C3 promotes clearance  
756 of Klebsiella pneumoniae by A549 epithelial cells. *Infection and immunity*, 72(3), 1767-  
757 1774.

758 De Jesus MB, Ehlers MM, Dos Santos RF, & Kock MM. (2015). Understanding  $\beta$ -lactamase  
759 producing Klebsiella pneumoniae. *Antimicrobial Resistance: An Open Challenge*, 51.

760 Decré D, Verdet C, Emirian A, Le Gourrierec T, Petit JC, Offenstadt G, Maury E, Brisson S, &  
761 Arlet G. (2011). Emerging severe and fatal infections due to Klebsiella pneumoniae in  
762 two university hospitals in France. *J Clin Microbiol*, 49(8), 3012-3014.  
763 <https://doi.org/10.1128/jcm.00676-11>

764 Di Martino P, Livrelli V, Sirot D, Joly B, & Darfeuille-Michaud A. (1996). A new fimbrial  
765 antigen harbored by CAZ-5/SHV-4-producing Klebsiella pneumoniae strains involved in  
766 nosocomial infections. *Infection and immunity*, 64(6), 2266-2273.

767 Diago-Navarro E, Calatayud-Baselga I, Sun D, Khairallah C, Mann I, Ulacia-Hernando A,  
768 Sheridan B, Shi M, & Fries BC. (2017). Antibody-based immunotherapy to treat and  
769 prevent infection with hypervirulent Klebsiella pneumoniae. *Clinical and Vaccine  
770 Immunology*, 24(1).

771 Diago-Navarro E, Motley MP, Ruiz-Peréz G, Yu W, Austin J, Seco BM, Xiao G, Chikhalya A,  
772 Seeberger PH, & Fries BC. (2018). Novel, broadly reactive anticapsular antibodies  
773 against carbapenem-resistant Klebsiella pneumoniae protect from infection. *MBio*, 9(2).

774 Doi Y, Wachino J, & Arakawa Y. (2016). Aminoglycoside resistance: the emergence of acquired  
775 16S ribosomal RNA methyltransferases. *Infectious Disease Clinics*, 30(2), 523-537.

776 Dolejska M, Villa L, Dobiasova H, Fortini D, Feudi C, & Carattoli A. (2013). Plasmid content of  
777 a clinically relevant Klebsiella pneumoniae clone from the Czech Republic producing  
778 CTX-M-15 and QnrB1. *Antimicrobial Agents and Chemotherapy*, 57(2), 1073-1076.

779 Dong N, Yang X, Chan EW, Zhang R, & Chen S. (2022). Klebsiella species: Taxonomy,  
780 hypervirulence and multidrug resistance. *EBioMedicine*, 79, 103998.  
781 <https://doi.org/10.1016/j.ebiom.2022.103998>

782 El Fertas-Aissani R, Messai Y, Alouache S, & Bakour R. (2013). Virulence profiles and  
783 antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different  
784 clinical specimens. *Pathologie Biologie*, 61(5), 209-216.

785 Evans BA, & Amyes SG. (2014). OXA  $\beta$ -lactamases. *Clinical microbiology reviews*, 27(2), 241-  
786 263.

787 Evrard B, Balestrino D, Dosgilbert A, Bouya-Gachancard JL, Charbonnel N, Forestier C, &  
788 Tridon A. (2010). Roles of capsule and lipopolysaccharide O antigen in interactions of  
789 human monocyte-derived dendritic cells and Klebsiella pneumoniae. *Infection and*  
790 *immunity*, 78(1), 210-219.

791 Fàbrega A, Madurga S, Giralt E, & Vila J. (2009). Mechanism of action of and resistance to  
792 quinolones. *Microbial biotechnology*, 2(1), 40-61.

793 Falcone M, Giordano C, Barnini S, Tiseo G, Leonildi A, Malacarne P, Menichetti F, & Carattoli  
794 A. (2020). Extremely drug-resistant NDM-9-producing ST147 Klebsiella pneumoniae  
795 causing infections in Italy, May 2020. *Euro Surveillance*, 25(48).  
796 <https://doi.org/10.2807/1560-7917.es.2020.25.48.2001779>

797 Fang CT, Lai SY, Yi WC, Hsueh PR, Liu KL, & Chang SC. (2007). Klebsiella pneumoniae  
798 genotype K1: an emerging pathogen that causes septic ocular or central nervous system  
799 complications from pyogenic liver abscess. *Clin Infect Dis*, 45(3), 284-293.  
800 <https://doi.org/10.1086/519262>

801 Fasciana T, Gentile B, Aquilina M, Ciammaruconi A, Mascarella C, Anselmo A, Fortunato A,  
802 Fillo S, Petralito G, Lista F, & Giammanco A. (2019). Co-existence of virulence factors  
803 and antibiotic resistance in new Klebsiella pneumoniae clones emerging in south of Italy.  
804 *BMC Infectious Diseases*, 19(1), 928. <https://doi.org/10.1186/s12879-019-4565-3>

805 Fevre C, Almeida AS, Taront S, Pedron T, Huerre M, Prevost MC, Kieusseian A, Cumano A,  
806 Brisse S, & Sansonetti PJ. (2013). A novel murine model of rhinoscleroma identifies  
807 Mikulicz cells, the disease signature, as IL-10 dependent derivatives of inflammatory  
808 monocytes. *EMBO molecular medicine*, 5(4), 516-530.

809 Francisco GR, Bueno MFC, Cerdeira L, Lincopan N, Ienne S, Souza TA, & de Oliveira Garcia  
810 D. (2019). Draft genome sequences of KPC-2-and CTX-M-15-producing Klebsiella  
811 pneumoniae ST437 isolated from a clinical sample and urban rivers in Sao Paulo, Brazil.  
812 *Journal of global antimicrobial resistance*, 16, 74-75.

813 Friedländer C. (1882). Ueber die Schizomyceten bei der acuten fibrösen Pneumonie. *Archiv für*  
814 *pathologische Anatomie und Physiologie und für klinische Medicin*, 87(2), 319-324.

815 Fuster B, Salvador C, Tormo N, García-González N, Gimeno C, & González-Candelas F. (2020).  
816 Molecular epidemiology and drug-resistance mechanisms in carbapenem-resistant  
817 Klebsiella pneumoniae isolated in patients from a tertiary hospital in Valencia, Spain.



857 Jondle CN, Gupta K, Mishra BB, & Sharma J. (2018). *Klebsiella pneumoniae* infection of  
858 murine neutrophils impairs their efferocytosis clearance by modulating cell death  
859 machinery. *PLoS pathogens*, 14(10), e1007338.

860 Kaplan E, Sela N, Doron-Faigenboim A, Navon-Venezia S, Jurkovich E, & Cytryn E. (2015).  
861 Genomic and functional characterization of qnr-encoding plasmids from municipal  
862 wastewater biosolid *Klebsiella pneumoniae* isolates. *Front Microbiol*, 6, 1354.

863 Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, & Hamblin M. R.  
864 (2016). Bacteriophages and phage-inspired nanocarriers for targeted delivery of  
865 therapeutic cargos. *Adv Drug Deliv Rev*, 106(Pt A), 45-62.  
866 <https://doi.org/10.1016/j.addr.2016.03.003>

867 Kidd TJ, Mills G, Sá-Pessoa J, Dumigan A, Frank CG, Insua JL, Ingram R, Hobley L, &  
868 Bengoechea JA. (2017). A *Klebsiella pneumoniae* antibiotic resistance mechanism that  
869 subdues host defenses and promotes virulence. *EMBO molecular medicine*, 9(4), 430-  
870 447.

871 Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S, Carmeli Y, Brolund A, &  
872 Giske CG. (2009). Molecular epidemiology of KPC-producing *Klebsiella pneumoniae*  
873 isolates in the United States: clonal expansion of multilocus sequence type 258.  
874 *Antimicrobial Agents Chemotherapy*, 53(8), 3365-3370.  
875 <https://doi.org/10.1128/aac.00126-09>

876 Korvick JA, Hackett AK, Yu VL, & Muder R. (1991). *Klebsiella pneumonia* in the modern era:  
877 clinicoradiographic correlations. *Southern medical journal*, 84(2), 200-204.

878 Lam MM, Wyres KL, Judd LM, Wick RR, Jenney A, Brisse S, & Holt KE. (2018). Tracking key  
879 virulence loci encoding aerobactin and salmochelin siderophore synthesis in *Klebsiella*  
880 *pneumoniae*. *Genome medicine*, 10(1), 1-15.

881 Lam MM, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, Brisse S, & Holt KE.  
882 (2018). Genetic diversity, mobilization and spread of the yersiniabactin-encoding mobile  
883 element ICEKp in *Klebsiella pneumoniae* populations. *Microbial Genome*, 4(9).  
884 <https://doi.org/10.1099/mgen.0.000196>

885 Lawlor MS, O'Connor C, & Miller VL. (2007). Yersiniabactin is a virulence factor for *Klebsiella*  
886 *pneumoniae* during pulmonary infection. *Infection and Immunity*, 75(3), 1463-1472.  
887 <https://doi.org/10.1128/iai.00372-06>

888 Lawlor MS, O'Connor C, & Miller VL. (2007). Yersiniabactin is a virulence factor for *Klebsiella*  
889 *pneumoniae* during pulmonary infection. *Infection and immunity*, 75(3), 1463-1472.

890 Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, & Lee SH. (2016). Global dissemination of  
891 carbapenemase-producing *Klebsiella pneumoniae*: epidemiology, genetic context,  
892 treatment options, and detection methods. *Frontiers in Microbiology*, 7, 895.

893 Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, & Lee SH. (2016). Global Dissemination of  
894 Carbapenemase-Producing *Klebsiella pneumoniae*: Epidemiology, Genetic Context,  
895 Treatment Options, and Detection Methods. *Frontiers in Microbiology*, 7, 895.  
896 <https://doi.org/10.3389/fmicb.2016.00895>

897 Lee YH, Cho B, Bae IK, Chang CL, & Jeong SH. (2006). *Klebsiella pneumoniae* strains carrying  
898 the chromosomal SHV-11  $\beta$ -lactamase gene produce the plasmid-mediated SHV-12  
899 extended-spectrum  $\beta$ -lactamase more frequently than those carrying the chromosomal  
900 SHV-1  $\beta$ -lactamase gene. *Journal of Antimicrobial Chemotherapy*, 57(6), 1259-1261.

901 Lewis K. (2017). New approaches to antimicrobial discovery. *Biochemical pharmacology*, 134,  
902 87-98.

903 Li B, Zhao Y, Liu C, Chen Z, & Zhou D. (2014). Molecular pathogenesis of *Klebsiella*  
904 *pneumoniae*. *Future microbiology*, 9(9), 1071-1081.

905 Li J, Zhang H, Ning J, Sajid A, Cheng G, Yuan Z, & Hao H. (2019). The nature and  
906 epidemiology of OqxAB, a multidrug efflux pump. *Antimicrob Resist Infect Control*, 8,  
907 44. <https://doi.org/10.1186/s13756-019-0489-3>

908 Liakopoulos A, Mevius D, & Ceccarelli D. (2016). A Review of SHV Extended-Spectrum  $\beta$ -  
909 Lactamases: Neglected Yet Ubiquitous. *Frontiers in Microbiology*, 7, 1374.  
910 <https://doi.org/10.3389/fmicb.2016.01374>

911 Livermore DM, Nicolau DP, Hopkins KL, & Meunier D. (2020). Carbapenem-Resistant  
912 Enterobacterales, Carbapenem Resistant Organisms, Carbapenemase-Producing  
913 Enterobacterales, and Carbapenemase-Producing Organisms: Terminology Past its "Sell-  
914 By Date" in an Era of New Antibiotics and Regional Carbapenemase Epidemiology. *Clin  
915 Infect Dis*, 71(7), 1776-1782. <https://doi.org/10.1093/cid/ciaa122>

916 Llobet E, Campos MA, Giménez P, Moranta D, & Bengoechea JA. (2011). Analysis of the  
917 networks controlling the antimicrobial-peptide-dependent induction of *Klebsiella*  
918 *pneumoniae* virulence factors. *Infection and immunity*, 79(9), 3718-3732.

919 Llobet E, Martínez-Moliner V, Moranta D, Dahlström KM, Regueiro V, Tomás A, Cano V,  
920 Pérez-Gutiérrez C, Frank CG, & Fernández-Carrasco H. (2015). Deciphering tissue-  
921 induced *Klebsiella pneumoniae* lipid A structure. *Proceedings of the National Academy  
922 of Sciences*, 112(46), E6369-E6378.

923 Llobet E, Tomas JM, & Bengoechea JA. (2008). Capsule polysaccharide is a bacterial decoy for  
924 antimicrobial peptides. *Microbiology*, 154(12), 3877-3886.

925 Loconsole D, Accogli M, De Robertis AL, Capozzi L, Bianco A, Morea A, Mallamaci R, Quarto  
926 M, Parisi A, & Chironna M. (2020). Emerging high-risk ST101 and ST307 carbapenem-  
927 resistant *Klebsiella pneumoniae* clones from bloodstream infections in Southern Italy.  
928 19(1), 24. <https://doi.org/10.1186/s12941-020-00366-y>

929 Long SW, Olsen RJ, Eagar TN, Beres SB, Zhao P, Davis JJ, Brettin T, Xia F, & Musser JM.  
930 (2017). Population genomic analysis of 1,777 extended-spectrum beta-lactamase-  
931 producing *Klebsiella pneumoniae* isolates, Houston, Texas: unexpected abundance of  
932 clonal group 307. *MBio*, 8(3).

933 Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S,  
934 Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J,  
935 Struelens MJ, Vatopoulos A, Weber JT, & Monnet DL. (2012). Multidrug-resistant,  
936 extensively drug-resistant and pan drug-resistant bacteria: an international expert

937 proposal for interim standard definitions for acquired resistance. *Clin Microbiol Infect*,  
938 18(3), 268-281. <https://doi.org/10.1111/j.1469-0691.2011.03570.x>

939 Mann S, & Chen YPP. (2010). Bacterial genomic G+ C composition-eliciting environmental  
940 adaptation. *Genomics*, 95(1), 7-15.

941 March C, Moranta D, Regueiro V, Llobet E, Tomás A, Garmendia J, & Bengoechea JA. (2011).  
942 *Klebsiella pneumoniae* outer membrane protein A is required to prevent the activation of  
943 airway epithelial cells. *Journal of Biological Chemistry*, 286(12), 9956-9967.

944 Marchaim D, Chopra T, Pogue JM, Perez F, Hujer AM, Rudin S, Endimiani A, Navon-Venezia,  
945 S., Hothi, J., & Slim, J. (2011). Outbreak of colistin-resistant, carbapenem-resistant  
946 *Klebsiella pneumoniae* in metropolitan Detroit, Michigan. *Antimicrobial Agents and*  
947 *Chemotherapy*, 55(2), 593-599.

948 Martin J, Phan HT, Findlay J, Stoesser N, Pankhurst L, Navickaite I, De Maio N, Eyre DW,  
949 Toogood G, & Orsi NM. (2017). Covert dissemination of carbapenemase-producing  
950 *Klebsiella pneumoniae* (KPC) in a successfully controlled outbreak: long-and short-read  
951 whole-genome sequencing demonstrate multiple genetic modes of transmission. *Journal*  
952 *of Antimicrobial Chemotherapy*, 72(11), 3025-3034.

953 Martinez-Martinez L, Hernández-Allés S, Albertí S, Tomás JM, Benedí VJ, & Jacoby GA.  
954 (1996). In vivo selection of porin-deficient mutants of *Klebsiella pneumoniae* with  
955 increased resistance to cefoxitin and expanded-spectrum-cephalosporins. *Antimicrobial*  
956 *Agents and Chemotherapy*, 40(2), 342-348.

957 Martínez J, Martínez L, Rosenblueth M, Silva J, & Martínez-Romero E. (2004). How are gene  
958 sequences analyses modifying bacterial taxonomy? The case of *Klebsiella*. *International*  
959 *Microbiology*, 7(4), 261-268.

960 Martins WMBS, Nicolas MF, Yu Y, Li M, Dantas P, Sands K, Portal E, Almeida LGP,  
961 Vasconcelos ATR, Medeiros EA, Toleman MA, Walsh TR, Gales AC, & Andrey DO.  
962 (2020). Clinical and Molecular Description of a High-Copy IncQ1 KPC-2 Plasmid  
963 Harbored by the International ST15 <span class="named-content genus-species"  
964 id="named-content-1">*Klebsiella pneumoniae*</span> Clone. *mSphere*, 5(5), e00756-  
965 00720. <https://doi.org/10.1128/mSphere.00756-20>

966 Mathers AJ, Crook D, Vaughan A, Barry KE, Vegesana K, & Stoesser N. (2019). *Klebsiella*  
967 *quasipneumoniae* Provides a Window into Carbapenemase Gene Transfer, Plasmid  
968 Rearrangements, and Patient Interactions with the Hospital Environment. 63(6).  
969 <https://doi.org/10.1128/aac.02513-18>

970 McInerney JO, McNally A, & O'connell MJ. (2017). Why prokaryotes have pangenomes. *Nature*  
971 *microbiology*, 2(4), 1-5.

972 Merino S, Camprubí S, Albertí S, Benedí VJ, & Tomás JM. (1992). Mechanisms of *Klebsiella*  
973 *pneumoniae* resistance to complement-mediated killing. *Infection and immunity*, 60(6),  
974 2529-2535.

975 Mills G, Dumigan A, Kidd T, Hobley L, & Bengoechea JA. (2017). Identification and  
976 characterization of two *Klebsiella pneumoniae* lpxL lipid A late acyltransferases and their  
977 role in virulence. *Infection and immunity*, 85(9).

978 Miriagou V, Papagiannitsis C, Kotsakis S, Loli A, Tzelepi E, Legakis N, & Tzouvelekis L.  
979 (2010). Sequence of pNL194, a 79.3-kilobase IncN plasmid carrying the blaVIM-1  
980 metallo- $\beta$ -lactamase gene in *Klebsiella pneumoniae*. *Antimicrobial Agents and*  
981 *Chemotherapy*, 54(10), 4497-4502.

982 Mmatli M, Mbelle NM, & Osei Sekyere J. (2022). Global epidemiology, genetic environment,  
983 risk factors and therapeutic prospects of mcr genes: A current and emerging update. *Front*  
984 *Cell Infect Microbiol*, 12, 941358. <https://doi.org/10.3389/fcimb.2022.941358>

985 Moranta Mesquida D, Regueiro V, March C, Llobet E, Margareto J, Larrarte E, Garmendia J, &  
986 Bengoechea JA. (2018). *Klebsiella pneumoniae* capsule polysaccharide impedes the  
987 expression of beta-defensins by airway epithelial cells. *Infection and Immunity*, 2010,  
988 vol. 78, num. 3, p. 1135-1146.

989 Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G,  
990 Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ,  
991 Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Quinn JP. (2013).  
992 Clinical epidemiology of the global expansion of *Klebsiella pneumoniae*  
993 carbapenemases. *Lancet Infect Dis*, 13(9), 785-796. [https://doi.org/10.1016/s1473-3099\(13\)70190-7](https://doi.org/10.1016/s1473-3099(13)70190-7)

995 Naas T, Cuzon G, Truong HV, & Nordmann P. (2012). Role of ISKpn7 and deletions in blaKPC  
996 gene expression. *Antimicrobial Agents and Chemotherapy*, 56(9), 4753-4759.

997 Naeem A, Badshah SL, Muska M, Ahmad N, & Khan K. (2016). The current case of quinolones:  
998 synthetic approaches and antibacterial activity. *Molecules*, 21(4), 268.

999 Navon-Venezia, S., Kondratyeva, K., & Carattoli, A. (2017). *Klebsiella pneumoniae*: a major  
1000 worldwide source and shuttle for antibiotic resistance. *FEMS microbiology reviews*,  
1001 41(3), 252-275.

1002 Navon-Venezia S, Kondratyeva K, & Carattoli A. (2017). *Klebsiella pneumoniae*: a major  
1003 worldwide source and shuttle for antibiotic resistance. *FEMS Microbiol Rev*, 41(3), 252-  
1004 275. <https://doi.org/10.1093/femsre/fux013>

1005 Nguyen TNT, Nguyen PLN, Le NTQ, Nguyen LPH, Duong TB, Ho NDT, Nguyen QPN, Pham  
1006 TD, Tran AT, & The HC. (2021). Emerging carbapenem-resistant *Klebsiella pneumoniae*  
1007 sequence type 16 causing multiple outbreaks in a tertiary hospital in southern Vietnam.  
1008 *Microb Genome*, 000519.

1009 Nguyen TNT, Nguyen PLN, Le NTQ, Nguyen LPH, Duong TB, Ho NDT, Nguyen QPN, Pham  
1010 TD, Tran AT, The HC, Nguyen HH, Nguyen CVV, Thwaites GE, Rabaa MA, & Pham  
1011 DT. (2021). Emerging carbapenem-resistant *Klebsiella pneumoniae* sequence type 16  
1012 causing multiple outbreaks in a tertiary hospital in southern Vietnam. *Microb Genome*.  
1013 <https://doi.org/10.1099/mgen.0.000519>

1014 Nielsen LE, Snesrud EC, Onmus-Leone F, Kwak YI, Avilés R, Steele ED, Sutter DE, Waterman  
1015 PE, & Lesho EP. (2014). IS5 element integration, a novel mechanism for rapid in vivo  
1016 emergence of tigecycline nonsusceptibility in *Klebsiella pneumoniae*. *Antimicrobial  
1017 Agents and Chemotherapy*, 58(10), 6151-6156.

1018 Ojdana D, Kochanowicz J, Sacha P, Sieńko A, Wieczorek P, Majewski P, Hauschild T, Mariak  
1019 Z, & Tryniszewska E. (2020). Infection caused by *Klebsiella pneumoniae* ST11 in a  
1020 patient after craniectomy. *Folia Microbiologica*, 65(1), 205-209.  
1021 <https://doi.org/10.1007/s12223-019-00718-y>

1022 Osborn AM, da Silva Tatley FM, Steyn LM, Pickup RW, & Saunders JR. (2000). Mosaic  
1023 plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic  
1024 diversity in IncFII-related replicons. The EMBL accession numbers for the sequences  
1025 reported in this paper are AJ009980 (pGSH500 alpha replicon) and AJ009981 (pLV1402  
1026 alpha replicon). *Microbiology*, 146(9), 2267-2275.

1027 Paczosa MK, & Mecsas J. (2016). *Klebsiella pneumoniae*: going on the offense with a strong  
1028 defense. *Microbiology and Molecular Biology Reviews*, 80(3), 629-661.

1029 Pan YJ, Fang HC, Yang HC, Lin TL, Hsieh PF, Tsai FC, Keynan Y, & Wang JT. (2008).  
1030 Capsular polysaccharide synthesis regions in *Klebsiella pneumoniae* serotype K57 and a  
1031 new capsular serotype. *J Clin Microbiol*, 46(7), 2231-2240.

1032 Pan YJ, Lin TL, Hsu CR, & Wang JT. (2011). Use of a *Dictyostelium* model for isolation of  
1033 genetic loci associated with phagocytosis and virulence in *Klebsiella pneumoniae*.  
1034 *Infection and immunity*, 79(3), 997-1006.

1035 Partridge SR, Kwong SM, Firth N, & Jensen SO. (2018). Mobile genetic elements associated  
1036 with antimicrobial resistance. *Clinical microbiology reviews*, 31(4).

1037 Paterson DL, & Bonomo RA. (2005). Extended-spectrum  $\beta$ -lactamases: a clinical update.  
1038 *Clinical microbiology reviews*, 18(4), 657-686.

1039 Paterson DL, Ko WC, Von Gottberg A, Casellas JM, Mulazimoglu L, Klugman KP, Bonomo  
1040 RA, Rice LB, McCormack JG., & Victor LY. (2001). Outcome of cephalosporin  
1041 treatment for serious infections due to apparently susceptible organisms producing  
1042 extended-spectrum  $\beta$ -lactamases: implications for the clinical microbiology laboratory. *J  
1043 Clin Microbiol*, 39(6), 2206-2212.

1044 Paterson DL, & Yu VL. (1999). Editorial response: extended-spectrum  $\beta$ -lactamases: a call for  
1045 improved detection and control. *Clinical Infectious Diseases*, 29(6), 1419-1422.

1046 Peirano G, & Chen L. (2020). Emerging Antimicrobial-Resistant High-Risk *Klebsiella*  
1047 pneumoniae Clones ST307 and ST147. 64(10). <https://doi.org/10.1128/aac.01148-20>

1048 Peirano G, Chen L, Kreiswirth BN, & Pitout JD. (2020). Emerging antimicrobial-resistant high-  
1049 risk *Klebsiella pneumoniae* clones ST307 and ST147. *Antimicrobial Agents and  
1050 Chemotherapy*, 64(10).

1051 Philippon A, Slama P, Dény P, & Labia R. (2016). A structure-based classification of class A  $\beta$ -  
1052 lactamases, a broadly diverse family of enzymes. *Clinical microbiology reviews*, 29(1),  
1053 29-57.

1054 Pillonel T, Nordmann P, Bertelli C, Prod' Hom G, Poirel L, & Greub G. (2018). Resistome  
1055 Analysis of a Carbapenemase (OXA-48)-Producing and Colistin-Resistant Klebsiella  
1056 pneumoniae Strain. *Antimicrobial Agents Chemotherapy*, 62(5).  
1057 <https://doi.org/10.1128/aac.00076-18>

1058 Ping Y, Ogawa W, Kuroda T, & Tsuchiya T. (2007). Gene cloning and characterization of  
1059 KdeA, a multidrug efflux pump from *Klebsiella pneumoniae*. *Biological and*  
1060 *Pharmaceutical Bulletin*, 30(10), 1962-1964.

1061 Pitout JD, & Finn TJ. (2020). The evolutionary puzzle of *Escherichia coli* ST131. *Infection,*  
1062 *Genetics and Evolution*, 81, 104265.

1063 Pitout JD, Nordmann P, & Poirel L. (2015). Carbapenemase-producing *Klebsiella pneumoniae*, a  
1064 key pathogen set for global nosocomial dominance. *Antimicrobial Agents and*  
1065 *Chemotherapy*, 59(10), 5873-5884.

1066 Podschun R, & Ullmann U. (1998). *Klebsiella* spp. as nosocomial pathogens: epidemiology,  
1067 taxonomy, typing methods, and pathogenicity factors. *Clinical microbiology reviews*,  
1068 11(4), 589-603.

1069 Poirel L, Nordmann P, Ducroz S, Boulouis HJ, Arné P, & Millemann Y. (2013). Extended-  
1070 spectrum  $\beta$ -lactamase CTX-M-15-producing *Klebsiella pneumoniae* of sequence type  
1071 ST274 in companion animals. *Antimicrobial Agents and Chemotherapy*, 57(5), 2372-  
1072 2375.

1073 Poirel L, Potron A, & Nordmann P. (2012). OXA-48-like carbapenemases: the phantom menace.  
1074 *Journal of Antimicrobial Chemotherapy*, 67(7), 1597-1606.  
1075 <https://doi.org/10.1093/jac/dks121>

1076 Potron A, Rondinaud E, Poirel L, Belmonte O, Boyer S, Camiade S, & Nordmann P. (2013).  
1077 Genetic and biochemical characterization of OXA-232, a carbapenem-hydrolyzing class  
1078 D  $\beta$ -lactamase from Enterobacteriaceae. *Int J Antimicrob Agents*, 41(4), 325-329.  
1079 <https://doi.org/10.1016/j.ijantimicag.2012.11.007>

1080 Potter RF, Lainhart W, Twentyman J, Wallace MA, Wang B, Burnham CAD, Rosen D. A., &  
1081 Dantas, G. (2018). Population structure, antibiotic resistance, and uropathogenicity of  
1082 *Klebsiella variicola*. *MBio*, 9(6).

1083 Poulikakos P, & Falagas ME. (2013). Aminoglycoside therapy in infectious diseases. Expert  
1084 opinion on pharmacotherapy, 14(12), 1585-1597.

1085 Pursey E, Sünderhauf D, Gaze WH, Westra ER, & van Houte S. (2018). CRISPR-Cas  
1086 antimicrobials: Challenges and prospects. *PLoS Pathogen*, 14(6), e1006990.  
1087 <https://doi.org/10.1371/journal.ppat.1006990>

1088 Qurat-ul-Ain H, Ijaz M, Siddique AB, Muzammil S, Shafique M, Rasool MH, Almatroudi A,  
1089 Khurshid M, Chaudhry TH, & Aslam B. (2021). Efficacy of Phage-Antibiotic  
1090 Combinations Against Multidrug-Resistant *Klebsiella pneumoniae* Clinical Isolates  
1091 [Research Article]. *Jundishapur J Microbiol*, 14(1), e111926.  
1092 <https://doi.org/10.5812/jjm.111926>

1093 Ramirez MS, Iriarte A, Reyes-Lamothe R, Sherratt DJ, & Tolmasky ME. (2019). Small  
1094 Klebsiella pneumoniae plasmids: neglected contributors to antibiotic resistance. *Front*  
1095 *Microbiol*, 10, 2182.

1096 Redgrave LS, Sutton SB, Webber MA, & Piddock LJ. (2014). Fluoroquinolone resistance:  
1097 mechanisms, impact on bacteria, and role in evolutionary success. *Trends in*  
1098 *microbiology*, 22(8), 438-445.

1099 Regueiro V, Moranta D, Campos MA, Margareto J, Garmendia J, & Bengoechea JA. (2009).  
1100 Klebsiella pneumoniae increases the levels of Toll-like receptors 2 and 4 in human  
1101 airway epithelial cells. *Infection and immunity*, 77(2), 714-724.

1102 Regueiro V, Moranta D, Frank CG, Larrarte E, Margareto J, March C, Garmendia J, &  
1103 Bengoechea JA. (2011). Klebsiella pneumoniae subverts the activation of inflammatory  
1104 responses in a NOD1-dependent manner. *Cellular microbiology*, 13(1), 135-153.

1105 Rodríguez-Medina N, Barrios-Camacho H, Duran-Bedolla J, & Garza-Ramos U. (2019).  
1106 Klebsiella variicola: an emerging pathogen in humans. *Emerging microbes & infections*,  
1107 8(1), 973-988.

1108 Ruiz-Garbajosa P, Hernández-García M, Beatobe L, Tato M, Méndez MI, Grandal M, Aranzábal  
1109 L, Alonso S, López M, Astray J, & Cantón R. (2016). A single-day point-prevalence  
1110 study of fecal carriers in long-term care hospitals in Madrid (Spain) depicts a complex  
1111 clonal and polyclonal dissemination of carbapenemase-producing Enterobacteriaceae.  
1112 *Journal of Antimicrobial Chemotherapy*, 71(2), 348-352.  
1113 <https://doi.org/10.1093/jac/dkv355>

1114 Ruiz E, Sáenz Y, Zarazaga M, Rocha-Gracia R, Martínez-Martínez L, Arlet G, & Torres C.  
1115 (2012). qnr, aac (6')-Ib-cr and qepA genes in *Escherichia coli* and *Klebsiella* spp.: genetic  
1116 environments and plasmid and chromosomal location. *Journal of Antimicrobial*  
1117 *Chemotherapy*, 67(4), 886-897.

1118 Russo TA, Shon AS, Beanan JM, Olson R, MacDonald U, Pomakov AO, & Visitacion MP.  
1119 (2011). Hypervirulent *K. pneumoniae* secretes more and more active iron-acquisition  
1120 molecules than "classical" *K. pneumoniae* thereby enhancing its virulence. *PloS one*,  
1121 6(10), e26734.

1122 Sahly H, Podschun R, Oelschlaeger TA, Greiwe M, Parolis H, Hasty D, Kekow J, Ullmann U,  
1123 Ofek I, & Sela S. (2000). Capsule impedes adhesion to and invasion of epithelial cells by  
1124 *Klebsiella pneumoniae*. *Infection and immunity*, 68(12), 6744-6749.

1125 Samuelsen Ø, Toleman MA, Hasseltvedt V, Fuursted K, Leegaard TM, Walsh TR, Sundsfjord A,  
1126 & Giske CG. (2011). Molecular characterization of VIM-producing *Klebsiella*  
1127 *pneumoniae* from Scandinavia reveals genetic relatedness with international clonal  
1128 complexes encoding transferable multidrug resistance. *Clin Microbiol Infect*, 17(12),  
1129 1811-1816. <https://doi.org/10.1111/j.1469-0691.2011.03532.x>

1130 Schroll C, Barken KB, Krogfelt KA, & Struve C. (2010). Role of type 1 and type 3 fimbriae in  
1131 *Klebsiella pneumoniae* biofilm formation. *BMC microbiology*, 10(1), 1-10.

1132 Shankar C, Jacob JJ, Vasudevan K, Biswas R, Manesh A, Sethuvel DPM, Varughese S, Biswas  
1133 I, & Veeraraghavan B. (2020). Emergence of Multidrug Resistant Hypervirulent ST23  
1134 Klebsiella pneumoniae: Multidrug Resistant Plasmid Acquisition Drives Evolution. *Front  
1135 Cell Infect Microbiol*, 10, 575289. <https://doi.org/10.3389/fcimb.2020.575289>

1136 Shen X, Liu L, Yu J, Ai W, Cao X, Zhan Q, Guo Y, Wang L, & Yu F. (2020). High Prevalence  
1137 of 16S rRNA Methyltransferase Genes in Carbapenem-Resistant Klebsiella pneumoniae  
1138 Clinical Isolates Associated with Bloodstream Infections in 11 Chinese Teaching  
1139 Hospitals. *Infect Drug Resist*, 13, 2189-2197. <https://doi.org/10.2147/idr.s254479>

1140 Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW, Giess A, Pankhurst LJ,  
1141 Vaughan A, & Grim CJ. (2016). Nested Russian doll-like genetic mobility drives rapid  
1142 dissemination of the carbapenem resistance gene blaKPC. *Antimicrobial Agents and  
1143 Chemotherapy*, 60(6), 3767-3778.

1144 Shon AS, Bajwa RP, & Russo TA. (2013). Hypervirulent (hypermucovisous) Klebsiella  
1145 pneumoniae: a new and dangerous breed. *Virulence*, 4(2), 107-118.

1146 Singh RM, & Singh HL. (2014). Comparative evaluation of six phenotypic methods for detecting  
1147 extended-spectrum beta-lactamase-producing Enterobacteriaceae. *The Journal of  
1148 Infection in Developing Countries*, 8(04), 408-415.

1149 Sirot D, Sirot J, Labia R, Morand A, Courvalin P, Darfeuille-Michaud A, Perroux R, & Cluzel R.  
1150 (1987). Transferable resistance to third-generation cephalosporins in clinical isolates of  
1151 Klebsiella pneumoniae: identification of CTX-1, a novel  $\beta$ -lactamase. *Journal of  
1152 Antimicrobial Chemotherapy*, 20(3), 323-334.

1153 Srinivasan VB, & Rajamohan G. (2013). KpnEF, a new member of the Klebsiella pneumoniae  
1154 cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-  
1155 spectrum antimicrobial resistance. *Antimicrobial Agents and Chemotherapy*, 57(9), 4449-  
1156 4462.

1157 Srinivasan VB, Venkataramaiah M, Mondal A, Vaidyanathan V, Govil T, & Rajamohan G.  
1158 (2012). Functional characterization of a novel outer membrane porin KpnO, regulated by  
1159 PhoBR two-component system in Klebsiella pneumoniae NTUH-K2044. *PloS one*, 7(7),  
1160 e41505.

1161 Struve C, Bojer M, & Krogfelt KA. (2008). Characterization of Klebsiella pneumoniae type 1  
1162 fimbriae by detection of phase variation during colonization and infection and impact on  
1163 virulence. *Infection and immunity*, 76(9), 4055-4065.

1164 Struve C, Bojer M, & Krogfelt KA. (2009). Identification of a conserved chromosomal region  
1165 encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of  
1166 fimbriae in pathogenicity. *Infection and immunity*, 77(11), 5016-5024.

1167 Sukumaran SK, Shimada H, & Prasad Rao NV. (2003). Entry and intracellular replication of  
1168 Escherichia coli K1 in macrophages require expression of outer membrane protein A.  
1169 *Infection and Immunity*, 71(10), 5951-5961. <https://doi.org/10.1128/iai.71.10.5951-5961.2003>

1171 Surgers L, Boyd A, Girard PM, Arlet G, & Decré D. (2016). ESBL-Producing Strain of  
1172 Hypervirulent *Klebsiella pneumoniae* K2, France. *Emerging Infectious Diseases*, 22(9),  
1173 1687-1688. <https://doi.org/10.3201/eid2209.160681>

1174 Szijártó V, Guachalla LM, Hartl K, Varga C, Badarau A, Mirkina I, Visram ZC, Stulik L, Power  
1175 CA, & Nagy E. (2017). Endotoxin neutralization by an O-antigen specific monoclonal  
1176 antibody: a potential novel therapeutic approach against *Klebsiella pneumoniae* ST258.  
1177 *Virulence*, 8(7), 1203-1215.

1178 Tagliaferri TL, Guimarães NR, Pereira MPM, Vilela LFF, Horz HP, Dos Santos SG, & Mendes  
1179 TAO. (2020). Exploring the Potential of CRISPR-Cas9 Under Challenging Conditions:  
1180 Facing High-Copy Plasmids and Counteracting Beta-Lactam Resistance in Clinical  
1181 Strains of Enterobacteriaceae. *Frontiers in Microbiology*, 11, 578.  
1182 <https://doi.org/10.3389/fmicb.2020.00578>

1183 Tängdén T, & Giske CG. (2015). Global dissemination of extensively drug-resistant  
1184 carbapenemase-producing Enterobacteriaceae: clinical perspectives on detection,  
1185 treatment and infection control. *J Intern Med*, 277(5), 501-512.  
1186 <https://doi.org/10.1111/joim.12342>

1187 Tomás A, Lery L, Regueiro V, Pérez-Gutiérrez C, Martínez V, Moranta D, Llobet E, González-  
1188 Nicolau M, Insua JL, & Tomas JM. (2015). Functional genomic screen identifies  
1189 *Klebsiella pneumoniae* factors implicated in blocking nuclear factor κB (NF-κB)  
1190 signaling. *Journal of Biological Chemistry*, 290(27), 16678-16697.

1191 Tóth, Á., Kocsis, B., Damjanova, I., Kristóf, K., Jánvári, L., Pászti, J., Csercsik, R., Topf, J.,  
1192 Szabó, D., & Hamar, P. (2014). Fitness cost associated with resistance to  
1193 fluoroquinolones is diverse across clones of *Klebsiella pneumoniae* and may select for  
1194 CTX-M-15 type extended-spectrum β-lactamase. *European journal of clinical  
1195 microbiology & infectious diseases*, 33(5), 837-843.

1196 Trevisan V. (1887). Sul micrococco della rabbia e sulla possibilità di riconoscere durante il  
1197 periodo d'incubazione, dall'esame del sangue della persona moricata, se ha contrattato  
1198 l'infezione rabbica. *Rend Ist Lombardo Accad Sci Lett Sez (ser. 2)*, 20, 88-105.

1199 Turner KM, Hanage WP, Fraser C, Connor TR, & Spratt BG. (2007). Assessing the reliability of  
1200 eBURST using simulated populations with known ancestry. *BMC microbiology*, 7(1), 1-  
1201 14.

1202 Turton JF, Baklan H, Siu L, Kaufmann ME, & Pitt TL. (2008). Evaluation of a multiplex PCR  
1203 for detection of serotypes K1, K2 and K5 in *Klebsiella* sp. and comparison of isolates  
1204 within these serotypes. *FEMS microbiology letters*, 284(2), 247-252.

1205 Van Elssen CH, Vanderlocht J, Frings PW, Senden-Gijsbers BL, Schnijderberg MC, van Gelder  
1206 M, Meek B, Libon C, Ferlazzo G, & Germeraad WT. (2010). *Klebsiella*  
1207 *pneumoniae*-triggered DC recruit human NK cells in a CCR5-dependent manner leading  
1208 to increased CCL19-responsiveness and activation of NK cells. *European journal of  
1209 immunology*, 40(11), 3138-3149.

1210 Vernikos G, Medini D, Riley DR, & Tettelin H. (2015). Ten years of pan-genome analyses. *Curr*  
1211 *Opin Microbiol*, 23, 148-154.

1212 Villa L, Feudi C, Fortini D, Brisson S, Passet V, Bonura C, Endimiani A, Mammina C, Ocampo  
1213 AM, Jimenez JN, Doumith M, Woodford N, Hopkins K, & Carattoli A. (2017).  
1214 Diversity, virulence, and antimicrobial resistance of the KPC-producing *Klebsiella*  
1215 *pneumoniae* ST307 clone. *Microb Genome*, 3(4), e000110.  
1216 <https://doi.org/10.1099/mgen.0.000110>

1217 Villa L, Feudi C, Fortini D, García-Fernández A, & Carattoli A. (2014). Genomics of KPC-  
1218 producing *Klebsiella pneumoniae* sequence type 512 clone highlights the role of RamR  
1219 and ribosomal S10 protein mutations in conferring tigecycline resistance. *Antimicrobial*  
1220 *Agents and Chemotherapy*, 58(3), 1707-1712.

1221 Villa L, Feudi C, Fortini D, Iacono M, Bonura C, Endimiani A, Mammina C, & Carattoli A.  
1222 (2016). Complete Genome Sequence of KPC-3- and CTX-M-15-Producing *Klebsiella*  
1223 *pneumoniae* Sequence Type 307. *Genome Announcements*, 4(2).  
1224 <https://doi.org/10.1128/genomeA.00213-16>

1225 Wang P, Hu F, Xiong Z, Ye X, Zhu D, Wang YF, & Wang M. (2011). Susceptibility of  
1226 extended-spectrum-β-lactamase-producing Enterobacteriaceae according to the new CLSI  
1227 breakpoints. *J Clin Microbiol*, 49(9), 3127-3131.

1228 Wang X, Li Q, Kang J, Zhang Z, Song Y, Yin D, Guo Q, Song J, Li X, Wang S, & Duan J.  
1229 (2021). Co-Production of NDM-1, CTX-M-9 Family and mcr-1 in a *Klebsiella*  
1230 *pneumoniae* ST4564 Strain in China. *Infect Drug Resist*, 14, 449-457.  
1231 <https://doi.org/10.2147/idr.s292820>

1232 Ward-McQuaid J, Jichlinski D, & Macis R. (1963). Nalidixic acid in urinary infections. *British*  
1233 *medical journal*, 2(5368), 1311.

1234 Weng X, Shi Q, Wang S, Shi Y, Sun D, & Yu Y. (2020). The Characterization of OXA-232  
1235 Carbapenemase-Producing ST437 *Klebsiella pneumoniae* in China. *Canadian Journal of*  
1236 *Infectious Diseases and Medical Microbiology*, 2020.

1237 Wayne, PA: Clinical and Laboratory Standards Institute; 2008. CLSI document GP34-A.

1238 Wijetunge DS, Karunathilake KH, Chaudhari A, Katani R, Dudley EG, Kapur V, DebRoy C, &  
1239 Kariyawasam S. (2014). Complete nucleotide sequence of pRS218, a large virulence  
1240 plasmid, that augments pathogenic potential of meningitis-associated *Escherichia coli*  
1241 strain RS218. *BMC Microbiology*, 14, 203. <https://doi.org/10.1186/s12866-014-0203-9>

1242 Willsey GG, Ventrone S, Schutz KC, Wallace AM, Ribis JW, Suratt BT, & Wargo M. J. (2018).  
1243 Pulmonary surfactant promotes virulence gene expression and biofilm formation in  
1244 *Klebsiella pneumoniae*. *Infection and immunity*, 86(7).

1245 Wong MHY, Chan EWC, & Chen S. (2015). Evolution and dissemination of OqxAB-like efflux  
1246 pumps, an emerging quinolone resistance determinant among members of  
1247 Enterobacteriaceae. *Antimicrobial Agents and Chemotherapy*, 59(6), 3290-3297.

1248 Wright GD. (2007). The antibiotic resistome: the nexus of chemical and genetic diversity. *Nature*  
1249 *Reviews Microbiology*, 5(3), 175-186.

1250 Wu CC, Huang YJ, Fung CP, & Peng HL. (2010). Regulation of the *Klebsiella pneumoniae* Kpc  
1251 fimbriae by the site-specific recombinase KpcI. *Microbiology*, 156(7), 1983-1992.

1252 Wu KM, Li LH, Yan JJ, Tsao N, Liao TL, Tsai HC, Fung CP, Chen HJ, Liu YM, Wang JT, Fang  
1253 CT, Chang SC, Shu HY, Liu TT, Chen YT, Shiau YR, Lauderdale TL, Su IJ, Kirby R, &  
1254 Tsai SF. (2009). Genome sequencing and comparative analysis of *Klebsiella pneumoniae*  
1255 NTUH-K2044, a strain causing liver abscess and meningitis. *J Bacteriol*, 191(14), 4492-  
1256 4501. <https://doi.org/10.1128/jb.00315-09>

1257 Wyres KL, & Holt KE. (2018). *Klebsiella pneumoniae* as a key trafficker of drug resistance  
1258 genes from environmental to clinically important bacteria. *Curr Opin Microbiol*, 45, 131-  
1259 139. <https://doi.org/10.1016/j.mib.2018.04.004>

1260 Wyres KL, Lam MM, & Holt KE. (2020). Population genomics of *Klebsiella pneumoniae*.  
1261 *Nature Reviews Microbiology*, 18(6), 344-359.

1262 Wyres KL, Lam MM, & Holt KE. (2020). Population genomics of *Klebsiella pneumoniae*. *Nat  
1263 Rev Microbiol*, 18(6), 344-359. <https://doi.org/10.1038/s41579-019-0315-1>

1264 Xiao X, Wu H, & Dall'Acqua WF. (2016). Immunotherapies against antibiotics-resistant  
1265 *Klebsiella pneumoniae*. *Hum Vaccine Immunotherapy*, 12(12), 3097-3098.  
1266 <https://doi.org/10.1080/21645515.2016.1210746>

1267 Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S,  
1268 Bush K, & Tenover FC. (2001). Novel carbapenem-hydrolyzing  $\beta$ -lactamase, KPC-1,  
1269 from a carbapenem-resistant strain of *Klebsiella pneumoniae*. *Antimicrobial Agents and  
1270 Chemotherapy*, 45(4), 1151-1161.

1271 Yoshida K, MATSUMOTO T, TATEDA K, UCHIDA K, TSUJIMOTO S, & YAMAGUCHI K.  
1272 (2000). Role of bacterial capsule in local and systemic inflammatory responses of mice  
1273 during pulmonary infection with *Klebsiella pneumoniae*. *Journal of medical  
1274 microbiology*, 49(11), 1003-1010.

1275 Yoshida K, Matsumoto T, Tateda K, Uchida K, Tsujimoto S, & Yamaguchi K. (2001). Induction  
1276 of interleukin-10 and down-regulation of cytokine production by *Klebsiella pneumoniae*  
1277 capsule in mice with pulmonary infection. *Journal of medical microbiology*, 50(5), 456-  
1278 461.

1279 Zaman TU, Alrodayyan M, Albladi M, Aldrees M, Siddique MI, Aljohani S, & Balkhy HH.  
1280 (2018). Clonal diversity and genetic profiling of antibiotic resistance among  
1281 multidrug/carbapenem-resistant *Klebsiella pneumoniae* isolates from a tertiary care  
1282 hospital in Saudi Arabia. *BMC Infectious Diseases*, 18(1), 205.  
1283 <https://doi.org/10.1186/s12879-018-3114-9>

1284 Zelcbuch L, Yitzhaki E, Nissan O, Gidron E, Buchshtab N, Kario E, Kredo-Russo S, Zak NB, &  
1285 Bassan M. (2021). Luminescent Phage-Based Detection of *Klebsiella pneumoniae*: From  
1286 Engineering to Diagnostics. *Pharmaceuticals (Basel)*, 14(4).  
1287 <https://doi.org/10.3390/ph14040347>

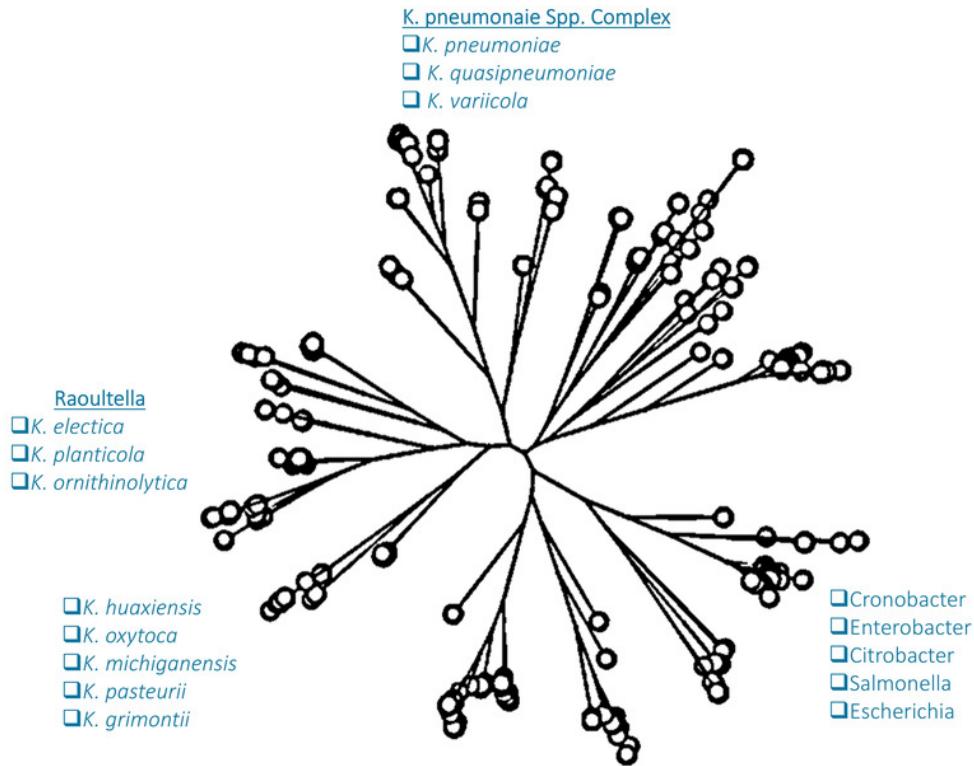
1288 Zhan L, Wang S, Guo Y, Jin Y, Duan J, Hao Z, Lv J, Qi X, Hu L, Chen L, Kreiswirth BN,  
1289 Zhang R, Pan J, Wang L, & Yu F. (2017). Outbreak by Hypermucovisous *Klebsiella*

1290 pneumoniae ST11 Isolates with Carbapenem Resistance in a Tertiary Hospital in China.  
1291 Front Cell Infect Microbiol, 7, 182. <https://doi.org/10.3389/fcimb.2017.00182>

1292 Zhang Y, Zhao C, Wang Q, Wang X, Chen H, Li H, Zhang F, Li S, Wang R, & Wang H. (2016).  
1293 High prevalence of hypervirulent *Klebsiella pneumoniae* infection in China: geographic  
1294 distribution, clinical characteristics, and antimicrobial resistance. *Antimicrobial Agents  
1295 and Chemotherapy*, 60(10), 6115-6120.

1296 Zhang Y, Zhao C, Wang Q, Wang X, Chen H, Li H, Zhang F, Li S, Wang R, & Wang H. (2016).  
1297 High Prevalence of Hypervirulent *Klebsiella pneumoniae* Infection in China: Geographic  
1298 Distribution, Clinical Characteristics, and Antimicrobial Resistance. *Antimicrobial  
1299 Agents Chemotherapy*, 60(10), 6115-6120. <https://doi.org/10.1128/aac.01127-16>

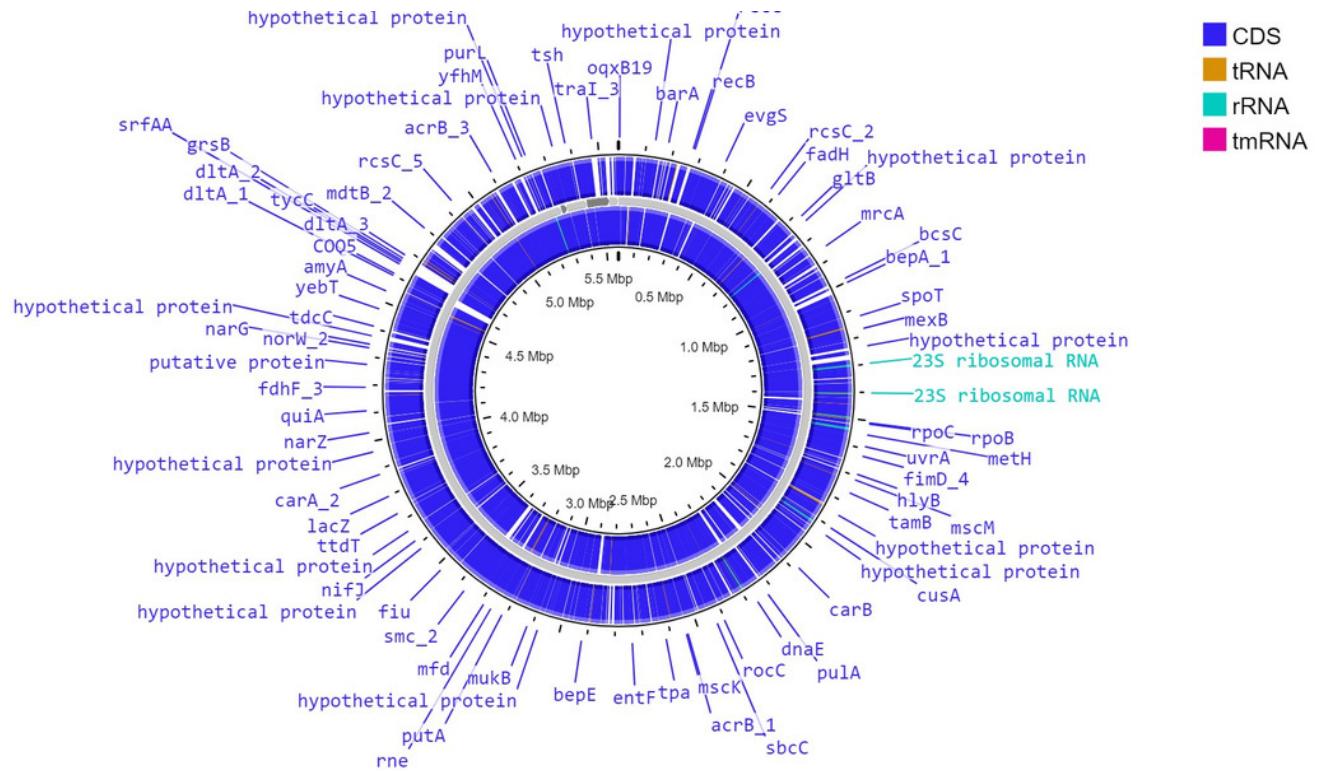
1300 Zhu WH, Luo L, Wang JY, Zhuang XH, Zhong L, Liao K, Zeng Y, & Lu YJ. (2009). Complete  
1301 nucleotide sequence of pCTX-M360, an intermediate plasmid between pEL60 and  
1302 pCTX-M3, from a multidrug-resistant *Klebsiella pneumoniae* strain isolated in China.  
1303 *Antimicrobial Agents and Chemotherapy*, 53(12), 5291-5293.


1304 Zowawi HM, Forde BM, Alfaresi M, Alzarouni A, Farahat Y, Chong TM, Yin WF, Chan KG, Li  
1305 J, & Schembri MA. (2015). Stepwise evolution of pan drug-resistance in *Klebsiella*  
1306 *pneumoniae*. *Scientific reports*, 5(1), 1-8.

1307

# Figure 1

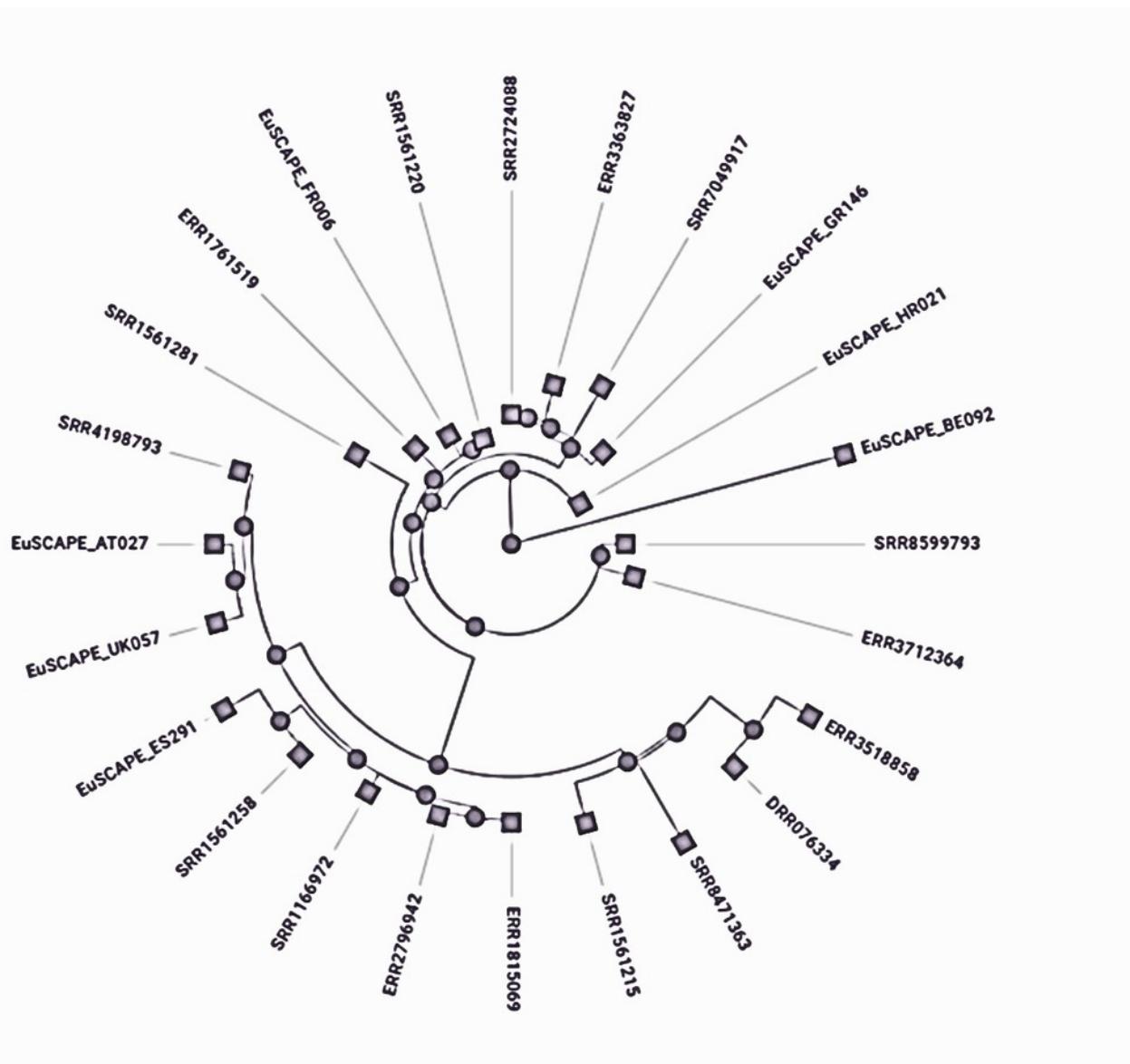
## Taxonomy details


. Taxonomy details (Phyloviz) of *K. pneumoniae*, along with the positioning of different *Klebsiella* spp.



# Figure 2

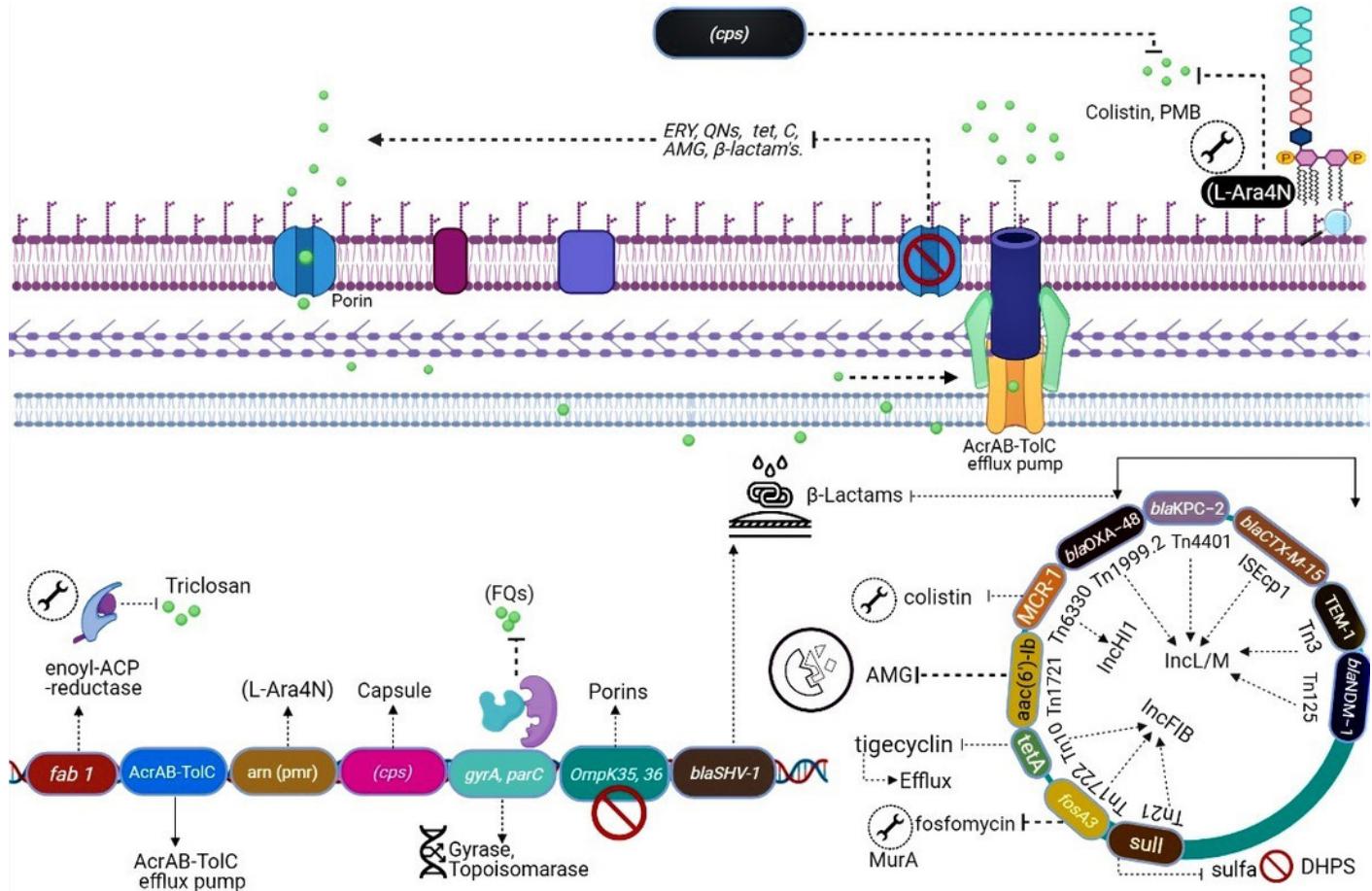
## Genomic orchestrate


## Circular Genomic orchestra of *K. pneumoniae*, showing genetic, virulence and resistance determinants



## Figure 3

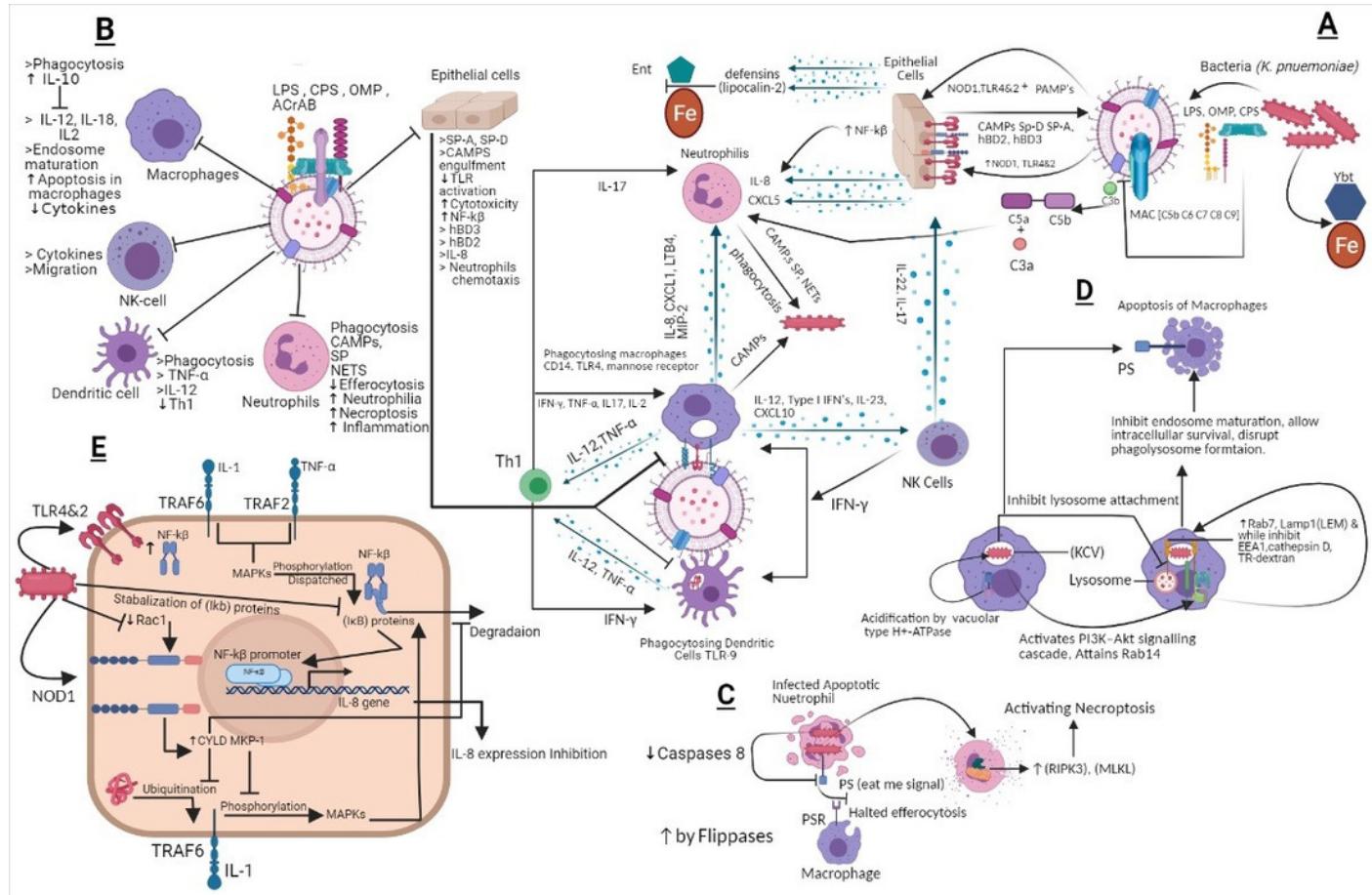
## Phylogenetic tree


Phylogenetic tree showing the relative depth of the (CG258) nodes extracted from Kleborate, Pathogenwatch



## Figure 4

## resistance mechanisms


## Genetic insights into various resistance mechanisms employed by *K. pneumoniae*



# Figure 5

## Immune Evasion

### Immune Evasion strategies of *K. pneumoniae*



**Table 1**(on next page)

Clonal dissemination

Regional distribution of *K. pneumoniae* clonal groups

| Endemic countries                                  | CGs   | STs                        | Dominant K & O locus | GC Content % | Virulence Determinants.                                                              | Resistance Determinants                                                                                             | MGEs                                                                                   | Type of infection                                                                         | References                                                                                        |
|----------------------------------------------------|-------|----------------------------|----------------------|--------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Singapore, Vietnam, Russia,                        | CG23  | ST23, ST26, ST57 and ST163 | KL1, O1v2            | 56.6-57.2    | ybt 1, clb 2, iuc 1, iro 1, (RmpADC / rmpA2), rmp 1; KpVP-1 / rmpA2, iucABCD-iutA    | CTX-M-15 ESBL and <i>bla</i> <sub>OXA-48</sub> , Mutations in <i>gyrA</i> or <i>parC</i> , <i>sul1</i> <i>tetAr</i> | IncA/C <sub>2</sub> , IncFIB (pQil), IncFIB, IncX <sub>3</sub> , ColRNAI, and Col440II | Pneumonia, Bacteremia, sepsis, Abdominal infection, Liver abscess and invasive infections | (Brisse et al., 2009), (Livermore et al., 2020), (Shankar et al., 2020), (M. M. Lam et al., 2018) |
| Madagascar, china.                                 | CG380 | ST375                      | KL2, O1v2            | 57.1-57.5    | ybt 1, ybt 14, iuc 1 iro 1, (RmpADC / rmpA2,                                         | blaKPC-2 blaSHV-11, SHV-1                                                                                           | I ncL/M plasmid                                                                        | Meningitis, liver abscess, severe CAI, Invasive infection in Diabetic patients            | (S. Bialek-Davenet et al., 2014) (Zhan et al., 2017) (Magiorakos et al., 2012)                    |
| Singapore, Vietnam                                 | CG65  | ST65                       | KL2, O1v2            | 56.8-57.2    | (RmpADC / rmpA2), ybt 17, clb 3, iuc 1, iro, iucABCD-iutA, entB, wabG, uge and ycfM, | blaKPC-2 blaSHV-11, SHV-1, blaKPC-3, SHV-1                                                                          |                                                                                        | UTI's pneumonia, Septicemia, liver abscess, Invasive infections, CAI's                    | (Magiorakos et al., 2012) (Zhan et al., 2017)                                                     |
| Vietnam, New Zealand, Australia                    | CG86  | ST86                       | KL2, O1v1            | 56.5-57.5    | ybtS, iucABCD-iutA, rmpA and entB                                                    | SHV-1                                                                                                               | IncL/M plasmid                                                                         | Invasive Infection, Sepsis, Liver abscess, CAI's                                          | (Y. Zhang et al., 2016) (Surgers et al., 2016) (Magiorakos et al., 2012)                          |
| United Kingdoms, United states of America, Vietnam | CG25  | ST25, ST277, ST326, ST309  | KL2, O1v2            | 57.1-57.4    | ybt 2, ybt 16, ybt 9, ybt 6, 3, iro 3, iucABCD-iutA                                  | SHV-1 CTX-M 15 OXA-48                                                                                               | IncFII IncFIB ColKP3                                                                   | UTI's septicemia, pneumonia, Liver Abscess                                                | (S. Breurec et al., 2013) (Potron et al., 2013) (Shiri Navon-Venezia et al., 2017)                |

|                                                                               |       |                |                                       |           |                                               |                                                                                                                                                |                                                                           |                                                          |                                                                                                 |
|-------------------------------------------------------------------------------|-------|----------------|---------------------------------------|-----------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| United Kingdoms, United states, Netherlands                                   | CG37  | ST37           | KL15, KL12, KL38, O2v2 O3b, O4, OL103 | 56.7-57.4 | ybt 3, ybt 5, ybt 9, ybt 14 (RmpADC / rmpA2), | OXA-48 TEM-1, SHV-11 OXA-48, KPC-2 KPC-3, OXA, NDM, CTX-M15                                                                                    | pKPN-704 pKPN-332                                                         | UTI's, RI's, Septicemia,                                 | (Zaman et al., 2018) (Wijetunge et al., 2014) (Shiri Navon-Venezia et al., 2017) {Li, 2017 #52} |
| United Kingdoms, Serbia, Romania Netherlands, Italy                           | CG101 | ST10 1         | KL17, O1v1                            | 56.3-56.9 | ybt 9, (RmpADC / rmpA2), clb 3, iro1          | blaKPC-2, KPC-2 KPC-3, OXA-48, NDM, CTX-M-15, OmpK35/OmpK36                                                                                    | Tn1721 transposon, IncFII(K), IncR, IncFIB, IncFII, IncQ1, and Col440II   | Blood Stream Infections, HAI's, UTI's,                   | (S. Breurec et al., 2013) (Loconsole et al., 2020) {Roe, 2019 #53}                              |
| United Kingdoms, United states, Thailand, Russia, Oman, Netherlands, Pakistan | CG147 | ST14 7, ST 392 | KL19, KL64, O2v1, O3/O3a              | 56.4-57.4 | ybt 9, ybt 16, (RmpADC / rmpA2),              | NDM-1, NDM-9, ARMA, AADA1, AAC(6')-IB, APH(3')-VI, APH(3')-1A, CATB3, DFRA5, MPH(E), MSR(E), QNRS1, SUL1, SUL2, CTX-M-15, OXA-1, OXA-9, TEM-1A | IncF, IncA/C and IncL/M, pKpQIL, pKPN3, pNDM-MAR and IncR IncA/C, ColRNAI | Nosocomial Infections, Abdominal wound Infections, UTI's | (Falcone et al., 2020) (Lee et al., 2016) (Samuelson et al., 2011) {Ouertani, 2016 #54}         |
| Pakistan, United states, United Kingdoms, Vietnam, Spain, Netherlands, Nepal, | CG15  | ST15           | KL24, KL112, O1v1                     | 56.6-57.4 | ybt 1, ybt 16, ybt 13 iuc 3, clb 3            | KPC-2, KPC-3, OXA-48, NDM, CTX-M, aac(3')-IIa, aph(3')-Ia, blaOXA-48, MgrB, tet(A),                                                            | IncQ, ColRNAI, IncL, ColpVC, and IncFIB, IncFII                           | Pediatric Infections, UTI's, Neonatal meningitis         | (Lee et al., 2016) (Martins et al., 2020), (Pillonel et al., 2018) {Löhr, 2015 #55}             |

| Germany, China.                                            |       |                     |                                                                  |           |                                                                                                              | catA1,                                                                                                                                                                                                                                   |                                                                                                        |                                                                                                                                                  |                                                                                                                         |
|------------------------------------------------------------|-------|---------------------|------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| United states, Italy, Greece, Germany, Australia, Israel   | CG258 | ST11, 340, 258, 512 | ST258 [KL106, KL107, O2v2]                                       | 56.7-57.4 | ybt 14, ybt 13 ybt 17, clb 3, iucABCD-iutA                                                                   | blaKPC-2 blaSHV-11, blaKPC-3, bla OXA-9, CTX-M-15, SHV-1, SHV-11, SHV-12), blaOXA-48 frame shift mutation in mgrB, mcr, aph3-Ia                                                                                                          | ICEKp258 .1 and ICEKp258 .Tn4401                                                                       | Neurosurgical Site Infections, urinary tract, bacteremia, Lower respiratory tract Infections, surgical intensive care unit Infections, pneumonia | (Chen et al., 2014) (Kitchel et al., 2009) (Fasciana et al., 2019), (Kelly L Wyres et al., 2020), (Ojdana et al., 2020) |
| China, Spain, United states, Brazil                        |       |                     | ST11 [KL105, KL24, KL15, KL47, KL64, O2v1, O2v2, O3b, O4,OL1 01] | 56.9-57.4 |                                                                                                              |                                                                                                                                                                                                                                          |                                                                                                        |                                                                                                                                                  |                                                                                                                         |
| United states, United Kingdoms, Norway, Netherlands, Italy | CG307 | ST30 7              | KL102, O2v2                                                      | 56.6-57.3 | (RmpADC / rmpA2), (T4SS), mobA and mobB, ybt, irp1, irp2 and fyuA, $\pi$ -fimbrial chaperone/us her pathway. | acc3, blaSHV, blaCTX-15, bla <sub>KPC-3</sub> , bla <sub>NDM-1</sub> , bla <sub>OXA-48</sub> , and bla <sub>CTX-M-15</sub> , KPC-3, KPC-2, aac(3)-IIa, aac(6')Ib-cr, qnrB, tet(A), strAB, sul2, dfrA14 and catB3, SHV-28, oqxAB and fosA | pKPN-307 Tn1721 FIB-M, HIB-M, FIBK, FIIK, pKpQIL, IncN type B, n5403- $\Delta$ ISKpn6-bla KPC-2-ISKpn7 | Sepsis, UTI's, Pneumonia, Neonatal Infections                                                                                                    | (Villa et al., 2017) (Villa et al., 2016) . (Haller et al., 2019)                                                       |
| Thailand, United states, Netherland, Australia,            | CC16  | ST16                | KL51, O3b                                                        | 56.9-57.5 | ybt 9, ybt 1, (RmpADC / rmpA2),                                                                              | qnrS, rmtB, mphA and bla OXA-181, bla OXA-48, arr3, catA, aadA16, rmtB, sulI, mphA, bla                                                                                                                                                  | IncFII, ISL3-like insertion sequence, IncL plasmid, ISL3-like element, Col(pHA)                        | Super Infections, VAP, blood stream infections, meningitis, septic shock, sepsis, pneumonia                                                      | (To Nguyen Thi Nguyen et al., 2021) (Boonyasiri et al., 2021) (T. N. T. Nguyen et al., 2021)                            |

|                |        |         |          |           |                                                                              |                                                                                                                                                       |                                                                                                          |                                                                     |                                                                    |
|----------------|--------|---------|----------|-----------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
|                |        |         |          |           |                                                                              | TEM-1, bla CTX-M-15, dfrA, qnrS, qnrB, tetA, mutations on gyrA and parC, Disruption mgrB gene by an ISL3-like insertion sequence                      | D28)/Col4 40II, Col(IRGK ),                                                                              |                                                                     |                                                                    |
| Croatia, Spain | CC 11  | ST 437  | KL36, O4 | 57.2-57.5 | Ybt 1, rmpA (RmpADC / rmpA2)                                                 | KPC-2, blaOXA-232, CTX-M-15, blaNDM, blaCTX-M-55, aph (3')-IIa, aph (3")-Ib, aph (6)-Id, and rmtB), oqxA and oqxB, sul2, (floR), (tetA), OXA-9, TEM-1 | Tn4401b, IncN, ISKpn7, ColKP3-type no conjugative plasmid, IncFIB (K), IncR, Col440I, IncFII (K), IncP1. | Community acquired Urinary tract Infections, nosocomial infections. | (Francisco et al., 2019) (Weng et al., 2020) (Fuster et al., 2020) |
| China          | CC1571 | ST45 64 |          |           | iucA, iutA, rmpA, rmpA2 and iroN, magA, iutA, fepD, iroE, acrAB, rcsAB, T6SS | blaCTX-M-14, blaCTX-M-17, acrA, acrB, NDM-1 and CTX-M-9, mcr-1, blaNDM, blaTEM, qnrBs, mphA, mrx, sul1, sul2                                          |                                                                                                          | HAI's                                                               | (Wang et al., 2021)                                                |

1 Table 1: Global disseminated Clonal Groups of *K. pneumoniae* with details of genetic determinants

2