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Background: According to the World Health Organization (WHO) K. pneumoniae is a
critical public health concern and an established ESKAPE pathogen. Mounting incidence of
MDR K. pneumoniae is worrisome across the globe. K. pneumoniae is an established
ubiquitous pathogen and associated with various infections in a wide range of the hosts.
Methods: The Peer reviewed ûndings with given problem statements were thoroughly
studied through literature review technique. Multiple antibiotic-resistance genes and
virulence genes across various Klebsiella species were studied to explore their
evolutionary dynamics and genetic diversity.
Results: Population dynamics revealed that the clonal group (CG) 258 and CG 14 are
considered as global disseminated clones. The genome size (5.7 Mbps) of K. pneumoniae
is reported to be larger than the other Enterobacteriaceae which allows K. pneumoniae to
survive in diverse geo-graphical niches. It has adequate resistome and virulence
machinery to evade the host immune system and establish the infection. Due to the
emergence of resistant variants K. pneumoniae needs appropriate alternative control
measures.
Conclusion: The current review described the characteristics features of K. pneumoniae
which are the key players in making this organism as a credential pathogen. Additionally,
it would be instructive and underpin the molecular insights that may aid in restraining this
pathogen.
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13 Abstract

14 Background: According to the World Health Organization (WHO) K. pneumoniae is a critical 

15 public health concern and an established ESKAPE pathogen. Mounting incidence of MDR K. 

16 pneumoniae is worrisome across the globe. K. pneumoniae is an established ubiquitous pathogen 

17 and associated with various infections in a wide range of hosts. 

18 Methods: The Peer reviewed findings with given problem statements were thoroughly studied 

19 through literature review technique. Multiple antibiotic-resistance genes and virulence genes 

20 across various Klebsiella species were studied to explore their evolutionary dynamics and 

21 genetic diversity.

22 Results: Population dynamics revealed that the clonal group (CG) 258 and CG 14 are considered 

23 as global disseminated clones. The genome size (5.7 Mbps) of K. pneumoniae is reported to be 

24 larger than the other Enterobacteriaceae which allows K. pneumoniae to survive in diverse 

25 geographical niches. It has adequate resistome and virulence machinery to evade the host 

26 immune system and establish the infection. Due to the emergence of resistant variants K. 

27 pneumoniae needs appropriate alternative control measures. 

28 Conclusion: The current review described the characteristics features of K. pneumoniae which 

29 are the key players in making this organism a credential pathogen. Additionally, it would be 

30 instructive and underpin the molecular insights that may aid in restraining this pathogen.       

31

32
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33 1. Introduction

34 The �golden era� of modern medicine in which antibiotics saved innumerable lives is eroded 

35 with the emergence of antibiotic resistance. Klebsiella pneumoniae is a recognized ESKAPE 

36 (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, Enterobacter) 

37 pathogen, a common cause of antibiotic-resistant hospital-acquired infections (HAIs) and 

38 community-acquired infections. It is a notorious pathogen associated with various types of 

39 severe infections and has inadequate treatment options. According to the World Health 

40 Organization (WHO), K. pneumoniae falls among critical public health threats (Wyres & Holt, 

41 2018) K. pneumoniae is a well-known resistant pathogen for its diversity and high incidence of 

42 antibiotic resistance genes (ARGs).

43 K. pneumoniae is not only a substantial health concern, but it is also known as the origin and 

44 disseminator of various ARGs like blaKPC, blaNDM-1, and blaOXA-48. From a resistance 

45 perspective, a resistant strain must have the ability to disseminate ARGs, it may be achieved 

46 through vertical transmission of ARGs or via horizontal transmission through mobile genetic 

47 elements (MGEs) like plasmids, integrons, insertion sequences (IS) and transposons (S. Navon-

48 Venezia et al., 2017). Such discrete clinical apprehensions have transformed the research 

49 interests in K. pneumoniae (Aslam et al., 2022; Wyres & Holt, 2018).

50 During the last decade, K. pneumoniae has emerged as a substantial health concern due to the 

51 increasing incidence of MDR K. pneumoniae infections across the globe. Some K. pneumoniae 

52 strains known as hypervirulent (hypermucovisous) variants present an additional agitating 

53 mechanism of hyper-virulence due to the acquired virulence factors, first reported in Asia in the 

54 1990s and now has been reported all over the world. The share of K. pneumoniae in the crisis of 

55 antibiotic resistance is incalculable; the existing data advocates that it has a greater ecological 

56 range, significantly diverse composition of DNA, ARG diversity, and plasmid liability than the 

57 other Gram-negative bacilli (GNB) (Aslam, Khurshid, et al., 2021; K. L. Wyres et al., 2020).

58  K. pneumoniae infections need controlling measures such as prompt diagnosis, detection and 

59 containment of resistant variants, improved vaccine production, and use of alternative treatment 

60 approaches like phage or immunotherapy (Aslam, Arshad, et al., 2021; Aslam et al., 2018; K. L. 

61 Wyres et al., 2020; Xiao et al., 2016). However, all the above-mentioned containment measures 

62 still failed due to the diverse nature of K. pneumoniae. 
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63 Therefore, there is an urgent need for appropriate novel therapeutic and controlling measures. In 

64 this script, we present the taxonomic and genomic characteristic features of K. pneumoniae, 

65 which are the key players in making K. pneumoniae a credential pathogen. Further, we highlight 

66 the transmission mechanism, infection Biology, and Immune Evasion of K. pneumoniae.

67 2. Rationale: 

68 Antimicrobial resistance (AMR) is a pressing health threat across the globe and multi-drug-

69 resistant pathogens challenged the global health system and modern medicine. Underline 

70 mechanisms that make bacteria resistant superbugs are crucial and essential to comprehend, 

71 which may play a vital role to address this global challenge. As an ESKAPE member K. 

72 pneumoniae pose a substantial health and economic burden worldwide. It has complex molecular 

73 mechanisms associated with resistance, virulence and immune evasion. A comprehensive and 

74 thorough recounting of these insights is critical to finding out the viable solution to this global 

75 health concern. Keeping in view the importance of the subject, the current script is set down for 

76 the scientific audience associated with medicine and researchers in the field of molecular biology 

77 and microbiology.   

78 3.  Search Methodology:

79 The Peer reviewed findings with given problem statements were thoroughly studied through 

80 literature review technique. Owing to this approach explicit insights, research gaps and future 

81 perspectives regarding the pathogen were identified and narrated in the script accordingly. The 

82 Electronic Databases (EDs) like Web of Science, ScienceDirect, Scopus, PubMed and Google 

83 Scholar etc. were navigated extensively to retrieve the relevant dataset with numerous keywords, 

84 for instance, Klebsiella pneumoniae, population genomics, multi-drug-resistant K. pneumoniae 

85 etc. All the listed EDs were navigated because of their scientific reputation and wide-ranging 

86 subject coverage. The meticulous scheme of study was not just assured the relevancy and 

87 articulacy but enhanced the precision of this chronicle.

88 4. Taxonomy

89 The genus Klebsiella is designated after the name of a German microbiologist named Edwin 

90 Klebs in 1885, who later described the species Klebsiella pneumoniae in 1887 (Martínez et al., 

91 2004). The causative agent of opportunistic infections belongs to the family Enterobacteriaceae 

92 (Partridge et al., 2018). Historically, Friedlander identified a pathogen from the patient�s lungs 

93 that died due to pneumonia (Ashurst & Dawson, 2018; Friedländer, 1882). Later in that decade 
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94 two scientists came up with descriptions for the Friedlander bacterium and named it Hyalococcus 

95 pneumoniae (Ashurst & Dawson, 2018).  Klebsiella was first described by a patient suffering 

96 from rhino scleroma later this organism was named �Klebsiella rhinoscleromatis. In the post-

97 antibiotic era, the most prominent and widely cited efforts were made by different scientists such 

98 as Cowan in 1960, Bascomb in 1971, Buchanan and Gibbons in 1974, Brenner 1977, Woodward 

99 1979, Izard1981, Bagley 1981 and Naemura in 1979 discovering and arguing the taxonomic 

100 position of previously discovered species, concluded different groups within the genus as, (i) K. 

101 pneumoniae including K. ozaena and K. rhinoscleromatis from clinical origin. (ii) K. oxytoca 

102 from environmental and clinical origin. (iii) K. terrigena and (iv) K. planticola from soil and 

103 botanical origin, respectively (Trevisan, 1887).  

104 The phylogenetic analysis based on the 16SRNA subunit conducted in 2003, the Generic 

105 division of Klebsiella contains closely linked clusters. Klebsiella are much more related to each 

106 other than the neighboring bacterial clusters such as Serratia and Citrobacter (Boye & Hansen, 

107 2003). Based on the whole genome and gyrA sequences of K. pneumoniae clinical isolates, it 

108 split into three distinct species, K. pneumoniae (KpI), K. quasipneumoniae (KpII), and K. 

109 variicola (KpIII). Further, it has been demonstrated that K. pneumoniae (KpI) is mostly related 

110 to human infection (Holt et al., 2015). Substantial genetic divergence among the species, as 

111 indicated by the numerical values on the branches such as 8.89, 0.46, and 9.03, which measure 

112 the genetic distances or evolutionary changes. Species like K. pneumoniae and K. oxytoca are 

113 shown to cluster closely, suggesting a more recent common ancestry compared to more 

114 genetically distant species such as K. variicola and K. mitogenesis. This clustering indicates not 

115 only the evolutionary pathways of these bacteria but also their adaptation strategies to different 

116 environments or hosts (Fig 1A).

117 The WGS revealed that KpI and KpII are equally virulent as both species have acquired the K. 

118 pneumoniae carbapenemase (KPC) gene and the New Delhi metal-lo-beta-lactamase-1 (NDM-1) 

119 gene (Long et al., 2017) (Figure 1B). With genome-wide average nucleotide identity  these 

120 closely related phylogenetic species are collectively designated as K. pneumoniae species 

121 complex (KpsC) (Suzanne Bialek Davenet et al., 2014). Other KpsC included K. 

122 quasipneumoniae subsp. similipneumoniae (Kp4), K. variicola subsp. Tropica (Kp5) (Barbier et 

123 al., 2020), K. quasivariicola (Kp6), K. africana (Kp7) (Long et al., 2017).  Like K. pneumoniae, 

124 K. variicola and K. quasipneumoniae are also commonly found bacteria in nosocomial infections 
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125 (Potter et al., 2018). These KpsC are emerging threats to hospitalized patients as they can acquire 

126 resistance plasmids from K. pneumoniae (Mathers et al., 2019; Rodríguez-Medina et al., 2019). 

127 The ��Kp�� term is usually used to describe seven phylogroups of the KpsC, while ��K. 

128 pneumoniae� is designated for phylogroup Kp1 such as K. pneumoniae sensu stricto (Barbier et 

129 al., 2020). Phenomena for evolution �descent with modification� allows microbes of a 

130 population to adapt and survive within the vast range of habitat in exposure to selective or 

131 environmental pressure and severe use of antibiotics-induced selective pressure, which resulted 

132 in the geographical distribution of mutated clones (Pitout & Finn, 2020).

133 5. Population dynamics

134 Different mechanisms have been reported for subtyping the K. pneumoniae, MLST is the most 

135 widely used method which employs sequencing of seven core genes named rpoB, gapA, mdh, 

136 pgi, phoE, infB, and tonB to check variation within these genes and given numerical numbers to 

137 each different sequence alleles set the sequence type (ST) (Brisse et al., 2009). The closely 

138 related sequence types whose gene sequence differences occurred by point mutation and have a 

139 similarity of 90-98% are combined to form a clonal complex (CC) by using the eBURST 

140 program (Turner et al., 2007). Further, these CCs have been arranged into subsets called clonal 

141 groups (CGs) containing central genotypes along their single-locus variants (SLVs). The CGs are 

142 termed according to the central ST, which was selected for the definition like CG258 is named 

143 due to its central genotype i.e. ST258 (S Breurec et al., 2013). These clones are the main source 

144 of antibiotic resistance and are referred to as High-risk (HiR) clonal groups with the ability to 

145 transfer the resistance genes (Baker & Thomson, 2018). K. pneumoniae clonal group CG 258 

146 (ST258, ST11, 83 ST512) and CG14 (ST14 and ST15) are considered global disseminated health 

147 threats (S Breurec et al., 2013) (Figure 2). Recent reports have indicated that K. pneumoniae 

148 ST307 and ST147 are emerging global clones (Peirano et al., 2020), first reported in the USA 

149 with blaKPC-2 (Castanheira et al., 2013) and in Pakistan blaCTX-M-15 (Castanheira et al., 

150 2013) and later appeared with blaOXA-48 (Ruiz-Garbajosa et al., 2016). After 2016 the 

151 recombination of hypervirulent (HvKP), carbapenem-resistant K. pneumoniae isolates produced 

152 a superbug of epidemic potential (Chen et al., 2004). Among these CG 23 contains K1-type 

153 hypervirulent isolates, whereas K2 type is scattered among various clonal groups immensely 

154 (Baker & Thomson, 2018). However, both K1 and K2 types are the most common HvKP with 

155 epi-demic potential (Brisse et al., 2009). 
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156 Other hypervirulent K. pneumoniae K-types included K5, K20, K54, and K57 (Yawei Zhang et 

157 al., 2016). All isolates within GC 23 are hypervirulent among these ST23, ST26, ST57, and 

158 ST163 are of epidemic potential (Yawei Zhang et al., 2016). Whereas the hypervirulence 

159 associated genes were generally encoded by MGEs, including the integrative conjugative 

160 element (ICE) (M. M. C. Lam et al., 2018). Two large resistance plasmids pLVPK from CG43 

161 (Peirano & Chen, 2020) and pK2044 from K1 types (Wu et al., 2009) contain hypervirulence 

162 signature genes, including rmpA and/or rmpA2 (regulators of the mucoid Phenotype), iro 

163 (salmochelin) and iuc (Aerobactin) siderophores (Wu et al., 2009). 

164 Several plasmids are prevalent in different clonal groups like CG23, CG86, CG65, CG66, and 

165 CG380 (M. M. C. Lam et al., 2018). K. pneumoniae carbapenemases genes like blaKPC, 

166 blaNDM, and blaOXA and their dissemination within STs and various GCs is a substantial 

167 concern.  Populations of CG 258 are considered a main vehicle for the pandemic expansion of 

168 blaKPC-harboring K. pneumoniae (Munoz-Price et al., 2013) and blaNDM is frequently 

169 associated with ST11, ST14, ST147, ST149 and ST231 (Tängdén & Giske, 2015). While global 

170 dissemination of blaOXA-48-harboring K. pneumoniae is associated with mobile element 

171 Tn1999 (Poirel et al., 2012) and frequently prevalent in several STs e.g. ST11 and ST405, etc. 

172 (Fang et al., 2007). Isolates belonging to GC258 and ST258 & ST512 are the common cause of 

173 HAIs (Poirel et al., 2012), whereas isolates from GC 23, CG65, and CG86 are associated with 

174 invasive community-acquired infections (CAIs) (Decré et al., 2011; Munoz-Price et al., 2013). A 

175 detailed description of various CGs along with their STs and virulence determinants etc. is given 

176 in Table 1.

177 6. Genome composition

178 K. pneumoniae genomes are vast in distribution (Holt et al., 2015), and the phylogenetic lineages 

179 of these organisms vary from each other by >0.5% nucleotide divergence (Suzanne Bialek-

180 Davenet et al., 2014). Most of the ecological and metabolic activities for the survival of K. 

181 pneumoniae are governed by >2000 �core� (shared) genes, which are usually restrained by each 

182 strain. In addition to core genes 3500 accessory genes vary among different strains collected 

183 from a large pool of > 30,000 genes (Holt et al., 2015).  Studies on pan-genome (core and 

184 accessory) revealed that genes encode an essential protein, 100,000 coding sequences with 

185 functions (Vernikos et al., 2015; Kelly L Wyres et al., 2020). 
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186 Overall, 13% of genes are associated with membrane transport, 19% of genes are related to 

187 carbohydrate metabolism and about 18% of genes play a role during metabolic pathways. The 

188 higher rate of diversity results in variable metabolic capacity (Blin et al., 2017). The genome size 

189 of K. pneumoniae is reported to be larger than the other Enterobacteriaceae which allows K. 

190 pneumoniae to survive in diverse geographical niches. Comparatively, the genome of K. 

191 pneumoniae is 5.7 Mbps in size, with 5455 protein coding genes that are larger than the E. coli 

192 genome ranging from 5.1 Mbp � 4915 genes, while the genome size of E. cloacae ranges from 

193 5.0 Mbps and 4680 genes (Figure 1B). DNA base composition remarkably plays an important 

194 role in assigning the taxa and species (Mann & Chen, 2010). Based on the G+C content ratio it 

195 has been estimated that K. pneumoniae core genes have a 58% GC ratio, because accessory 

196 genes originated from dis-tinct ancestors and GC content ranges between 20% to >70% (Holt et 

197 al., 2015; Kelly L Wyres et al., 2020).  K. pneumoniae genome is reported to be more variable 

198 than other species like E. coli, it is suggested that it acquired its DNA from horizontal gene 

199 transfer (HGT) (McInerney et al., 2017). While performing the lowest common ancestor 

200 analysis, K. pneumoniae accessory genes have occupied >20 diverse genera acquired from donor 

201 organisms, that include members of the Enterobacteriaceae and bacteria from a diverse group, 

202 including Acinetobacter, Burkholderia, Streptomyces, Vibrio, Xanthomonas, and Xylella (Holt et 

203 al., 2015). Evidenced from different studies have shown HGT patterns of K. pneumoniae, which 

204 revealed the presence of similar plasmids as identified in E. coli, E. cloacae, Enterobacter 

205 asburiae, and Citrobacter freundii (Conlan et al., 2016; Martin et al., 2017; Sheppard et al., 

206 2016).

207 7. Virulence factors

208 Capsule polysaccharide (CPS) is a pivotal physiological feature of K. pneumoniae, specifically 

209 tissue-invasive and hypermucovisous (hypervirulent) strains that provide protection against the 

210 immune system and thus help in the survival of the pathogen (Li et al., 2014). The thick capsular 

211 layer on K. pneumoniae surface protects it from opsonization, phagocytosis, and the action of 

212 neutrophils, macrophages, epithelial cells, and dendritic cells (Cortés, Borrell, et al., 2002; 

213 Evrard et al., 2010; Pan et al., 2011; Sahly et al., 2000). An increasing level of CPS material in 

214 K. pneumoniae serotypes like well-known hypervirulent strains K1 and K2 provide a steady 

215 escape from the neutrophil-mediated intracellular killing of the bacterium, resulting in abscess 

216 formation in the liver (Wu et al., 2010). The K1 serotype belongs to ST57 and ST23, which are 
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217 placed together in CG23 (Brisse et al., 2009). The STs with the K2 serotype are distributed 

218 mostly in CG375, CG380, and CG86 (Suzanne Bialek-Davenet et al., 2014).

219 The presence of RmpA regulator and aerobactin is a characteristic feature of hvKp, both are 

220 encoded by virulence harboring plasmids. In addition, yersiniabactin, which is an iron 

221 acquisition system is associated with specific hvKp strains as well. It is encoded by ICEKp1 

222 (integrative conjugative element Kp1). It is demonstrated that hypermucoviscosity has some 

223 association with antibiotic resistance as well. Hypermucoviscosity is more common in strains 

224 harboring blaSHV and blaTEM (Dong et al., 2022). 

225 Capsule may play a significant role both outside and within the host, it helps to avoid desiccation 

226 in the atmosphere, prevents complement-mediated lysis or phagocytosis, and antibodies 

227 neutralization via releasing the capsular content (Clements et al., 2008; Cortés, Borrell, et al., 

228 2002). In K. pneumoniae about 80 types have been reported based on antigenic diversity in 

229 capsules (Pan et al., 2008; Shon et al., 2013), K1 and K2 types are found to be resistant to 

230 phagocytes (Shon et al., 2013). These specified types may also have a crucial role in virulence as 

231 the K2 capsular type has often been detected in clinical iso-lates of urinary tract infections, 

232 pneumonia, and septicemia (De Jesus et al., 2015; Hennequin et al., 2012; Turton et al., 2008). 

233 The kfu (Iron acquisition system) and PTS (Phosphoenolpyruvate sugar phosphotransferase 

234 system) serve as security pathways for the iron supply which is critically important in pathology 

235 associated with tissue-invasive K. pneumoniae (M. S. Lawlor et al., 2007). The siderophores 

236 including yersiniabactin, aerobactin, enterobactin, and salmochelin are iron chelators, these 

237 elements provide strength to K. pneumoniae against iron deficiency (Bachman et al., 2011). 

238 Aerobactin may serve as a virulence enhancer (Matthew S Lawlor et al., 2007) and has been 

239 reported to be responsible for more than 90% of the siderophore activities in hypermucovisous 

240 K. pneumoniae. Yersiniabactin has shown the ability to confer and maintain pneumonia and 

241 respiratory infection (Bachman et al., 2011).

242 Fimbriae is another significant virulence factor associated with infection and biofilm production, 

243 i.e., type 1, type 3, Kpc, and KPF-28 adhesins. Type 1 fimbriae serve as an initial factor in 

244 urinary tract infections (UTIs). However, it was reported that fimbriae have no role in the 

245 colonization of K. pneumoniae in the lungs or intestine (Struve et al., 2009). Type 3 fimbriae 

246 have a crucial role in biofilm but have no part in intestine or pulmonary infections. The types 1 

247 and 3 fimbriae both worked in a compensating way and have a significant role in the 
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248 colonization of K. pneumoniae and its biofilm-associated UTI (Struve et al., 2009). The fimbrial 

249 adhesins are frequently associated with hypermucoviscosity in K. pneumoniae and play a 

250 contributing role in biofilm production (Wu et al., 2010). The KPF-28 adhesins facilitate K. 

251 pneumoniae colonization in the mammalian intestine (Di Martino et al., 1996). It has been 

252 demonstrated that CF29K protein is prevalent in the CC23 and could be either directly associated 

253 with pyogenic liver abscess pathogenesis or related to a different virulence factor on that 

254 plasmid.

255 Outer membrane protein A (OmpA) is vital for pathogenesis and has also a major role in the 

256 immune evasion mechanism exhibited by K. pneumoniae in vitro and in vivo (March et al., 

257 2011). The OmpA enables the K. pneumoniae for host invasion, serum resistance, and protection 

258 from lung collections (Sukumaran et al., 2003). However, OmpA is a target of neutrophil 

259 elastases and serum amyloid protein A, which are the components of the innate immune system 

260 of the host, leading to cell lysis and enhancing phagocytosis (Belaaouaj et al., 2000; Hari-Dass et 

261 al., 2005).

262 Lipopolysaccharide (LPS) is essential for the formation of the outer monolayer of the membrane 

263 in Gram-negative bacterial pathogen, lipid A moiety modification helps K. pneumoniae in the 

264 evasion from the innate immune system of the host. There may be some association between 

265 lipid A modification and antibiotic resistance in Klebsiella species (Llobet et al., 2015), however, 

266 more studies are needed to corroborate this hypothesis. For instance, Colistin causes the 

267 disruption of the outer membrane by interacting with lipid A. Primarily LPS modification 

268 followed by the addition of 4-amino-4-deoxy-L-arabinose to lipid A are the causes of colistin 

269 resistance in K. pneumoniae. This change is linked with operon pbgPE regulated by 

270 PmrAB/PhoPQ, which is determined through the insertional activation of the PhoQ/PhoP MgrB 

271 regulators.

272 Hospital and other health centers acquired infections due to K. pneumoniae led the investigators 

273 to figure out the contribution of different virulence factors in the progression of disease (De 

274 Jesus et al., 2015). These contributors are the fimbrial and non-fimbrial adhesins, a capsule, 

275 siderophores (particularly enterobactin), urease, lipopolysaccharide (LPS), serum resistance as 

276 well and biofilm formation (Clements et al., 2008; De Jesus et al., 2015; El Fertas-Aissani et al., 

277 2013; Fuursted et al., 2012; Hennequin et al., 2012). On the other hand, enhancement of the 

278 features increasing invasion comprises other siderophores (Aerobactin and yersiniabactin), 
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279 catechol receptor, mucoid factor, and hypermucoviscosity (De Jesus et al., 2015; El Fertas-

280 Aissani et al., 2013; Russo et al., 2011; Struve et al., 2008). K. pneumoniae shows a variety of 

281 fimbrial and non-fimbrial adhesins having the ability to recognize various cell receptors which in 

282 turn can enable it to attach the target cell surfaces (Struve et al., 2008). Fimbrial adhesins 

283 comprised of mannose-sensitive type 1 fimbria, type 3 fimbriae, and plasmid-encoded fimbriae 

284 designated as KPF-28, whereas CF29K is a non-fimbrial adhesins (Podschun & Ullmann, 1998; 

285 Schroll et al., 2010; Struve et al., 2008). Type 1 and type 3 fimbriae have frequently been 

286 reported in K. pneumoniae species, and cause UTIs and biofilm formation (El Fertas-Aissani et 

287 al., 2013; Schroll et al., 2010). Fimbrial adhesins are useful as these enhance the adherence 

288 capabilities of the pathogen. On the other hand, it can be disadvantageous in the way that it may 

289 trigger the immune system of the host indicating the opportunistic nature of K. pneumoniae (De 

290 Jesus et al., 2015). 

291 The hypervirulent strain of K. pneumoniae contains high quantities of siderophores (Shon et al., 

292 2013), which are encoded by genes including entB (enterobactin), iutA (Aerobactin), irp1-irp2-

293 ybtS-fyuA (yersiniabactin) and iroN (ferric catecholates receptor) (Turton et al., 2008). Most 

294 investigated virulent genes include uge (encoding uridine diphosphate galacturonate 4-

295 epimerase), wabG (involved in the biosynthesis of the outer core lipopolysaccharide), ureA 

296 (related to the urease operon), magA (microviscosity-associated gene A), mrkD (type 3 fimbriae 

297 adhesion), allS (activator of the allantois regulon), kfuBC (iron-uptake system), rpmA (regulator 

298 of mucoid phenotype) and fimH (fimbrial gene encoding type 1 fimbrial adhesion) (Brisse et al., 

299 2009; Gao et al., 2014). Additionally, acquired  encoding genes increase the 

300 pathogenicity of K. pneumoniae; however, active infection is primarily dependent on a variety of 

301 host-dependent factors (El Fertas-Aissani et al., 2013).

302 8. Naturally occurring resistance determinants

303 All the genes that can confer antibiotic resistance when grouped are as resistors (Fig-ure 2) 

304 (Wright, 2007). One of the schemes used for the classification of  is molecular 

305 classification, based on the amino acid sequences and dividing them into class A, C, and D 

306 enzymes that utilize serine, whereas class B metallo-  lactamases require zinc for hydrolysis 

307 (Bush & Jacoby, 2010). Formerly, K. pneumoniae was the lone Gram-negative enteric bacterium 

308 that harbored a chromosome-encoded penicillinase (Arakawa et al., 1986). K. pneumoniae 

309 exhibits species-specific class A chromosome encoded  which cause resistance 
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310 against ampicillin, carbenicillin amoxicillin, and ticarcillin (Lee et al., 2006). Overall, three 

311 different families including SHV, LEN, and OKP have been identified as the source of 

312 chromosome-based  in K. pneumoniae, steer intrinsic resistance to ampicillin via the 

313 production of class A  e.g. SHV, encoded by a core gene blaSHV (Holt et al., 2015). 

314 Two core locus OqxAB (efflux pump) and fosA (glutathione S-transferase) have also been 

315 detected in the K. pneumoniae chromosome using MGEs and distributed to other bacterial 

316 species. The wild-type gene expression of both loci is associated with resistance against 

317 fosfomycin i.e. fosA and quinolones i.e. OqxAB (Li et al., 2019).

318 In the mid-20th century, the use of Aminoglycosides was replaced by third-generation 

319 cephalosporins, carbapenems, and Fluoroquinolones (Doi et al., 2016), which resulted in a 

320 reduction of novel resistance mechanisms against aminoglycosides. However, the evolution of 

321 16S RNA Methylase (Poulikakos & Falagas, 2013) extended the resistance spectrum against all 

322 aminoglycosides (Srinivasan & Rajamohan, 2013). Whereas kpnEF (SMR-type efflux pump) 

323 developed strong resistance against tobramycin and spectinomycin (Naeem et al., 2016). 

324 Resistance to tobramycin, streptomycin, and spectinomycin is considered linked directly with the 

325 loss of KpnO porins. Mutations in rrs or rpsL, result in target modification augment the 

326 resistance patterns (Redgrave et al., 2014). Extensive use of fluoroquinolones after their 

327 discovery in the 1980s has directed quinolone resistance mechanisms (Ward-McQuaid et al., 

328 1963). Right after the first use of nalidixic acid (Guerra et al., 1983) and norfloxacin (Guerra et 

329 al., 1983),  K. pneumoniae developed a vast variety of resistance mechanisms against quinolones 

330 including target modification i.e. gyrA-gyrB subunits and parC-parE subunits of DNA gyrase 

331 topoisomerase IV (Martinez-Martinez et al., 1996), (Guillard et al., 2016). Other mechanisms 

332 include the expression of efflux pumps acrAB gene (Wong et al., 2015) and OmpK36 porins 

333 deficiency (Ping et al., 2007).

334 Polymyxins which perturbs bacterial membrane via cations (Ca+2/Mg+2) dislocation are 

335 considered as one of the last resort antibiotics against Enterobacteriaceae (Antoniadou et al., 

336 2007). Resistance to colistin was initially reported in 2004 from Greece (Marchaim et al., 2011). 

337 Resistance against colistin mainly occurs due to mutation in lpxM and its regulator ramA, 

338 responsible for the maturation of lipid A (Marchaim et al., 2011), while the addition of amino 

339 arabinose results in neutralization of lipid A. Lipid A modification through TupA-

340 like/glycosyltransferase and CrrAB is also an important resistance mechanism (Srinivasan et al., 
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341 2012). Upregulated efflux expression via positive regulation of AcrAB-TolC and KpnEF (C.R. 

342 Lee et al., 2016) by the RarA transcription regulator is imperative. Most commonly the 

343 resistance to colistin develops via mgrB gene inactivation or point mutations in phoPQ, pmrAB, 

344 or crrAB (two-component regulator systems) (C.-R. Lee et al., 2016). 

345 Additionally, resistance against first approved glycylcyclines i.e. Tigecycline has also been 

346 reported (Nielsen et al., 2014) through modification in the 30S and the 16S ribosomal units and 

347 cell permeability (Villa et al., 2014). Other mechanisms include up-regulation of efflux pumps 

348 such as KpgABC (Ahn et al., 2016). The first mutation was detected in S10 (ribosomal protein) 

349 encoded by rpsJ, which reduces susceptibility, but their role in tigecycline resistance is unclear 

350 (Pitout et al., 2015).

351 9. Plasmid-mediated antibiotic resistance

352 In K. pneumoniae ARGs attained through horizontal gene transfer play a significant role in the 

353 acquisition of resistance as compared to chromosomal mutations. Such accessory genes are often 

354 plasmid-mediated; however, these may be incorporated into the bacterial chromosome. For 

355 instance, a strong promoter enables the mobile genetic variant of blaSHV with some point 

356 mutations to perform ESBL activity, which causes resistance against cephalosporins and even 

357 carbapenems (Liakopoulos et al., 2016). Accordingly, a few K. pneumoniae strains cart replicas 

358 of blaSHV, one core chromosomal gene, and other acquired plasmid variants directed by a robust 

359 IS26 promoter (Hammond et al., 2005). 

360 K. pneumoniae can acquire resistance genes reside on plasmids and mobile elements (Bush & 

361 Jacoby, 2010; Calbo & Garau, 2015), like blaOXA (Evans & Amyes, 2014), blaPER, blaTLA 

362 and blaVEB (Philippon et al., 2016), rare genes blaGES and blaSFO (Ramirez et al., 2019; Yigit 

363 et al., 2001). During the 1960s two  blaSHV-1 and blaTEM-1 were described in K. 

364 pneumoniae for the first time which conferred resistance to penicillin (Datta & Kontomichalou, 

365 1965). Later, the acquisition of blaTEM-3 unveiled resistance against mono-bactams and 

366 cephalosporins (Sirot et al., 1987). 

367 In the early 2000�s plasmid, plasmid-mediated blaCTX-M shifted the trends of K. pneumoniae 

368 infections to major hospital-acquired acute infections. It was documentation that metallo-enzyme 

369 named blaIMP-1 identified in K. pneumoniae displayed resistance to carbapenems. Among other 

370 carbapenemases acquired by K. pneumoniae including blaNDM-1, blaOXA-48 and blaKPC are 
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371 the most common and immensely disseminated resistance determinants in every continent (Naas 

372 et al., 2012).

373  Aminoglycosides on the other hand were frequently used during the early 1940s to late 1960 

374 which were then replaced by  such as cephalosporins and carbapenems as plasmid-

375 mediated resistance determinants like aph, ant, and aac genes were identified against these 

376 antibiotics (Novan,.2017). Unfortunately, Plasmid-mediated aminoglycoside-resistant gene armA 

377 is identified, which encodes 16S rRNA methylase enzyme confers resistance to all classes of 

378 aminoglycoside. While other 16S rRNA methylase genes belong to the NpmA and Rmt family 

379 (Shen et al., 2020).

380 The very first plasmid-mediated quinolone resistance in K. pneumoniae described that qnrA 

381 encodes a pentapeptide repeat protein that is responsible for the resistance. Overall, the 

382 acquisition of plasmid-mediated resistant genes (PMQR) is associated with resistance to 

383 quinolones. These genes include aac  (Bado et al., 2016; Fàbrega et al., 2009; Ruiz et al., 

384 2012) which modifies quinolones in K. pneumoniae and qnrA genes whose product protects 

385 DNA gyrase and topoisomerase IV from quinolone inhibition in K. pneumoniae. PMQR genes 

386 modify quinolones in K. pneumoniae and pose a narrow spectrum of resistance but their presence 

387 augments resistance of K. pneumoniae harboring ESBL genes (Tóth et al., 2014). It has been 

388 observed in the clonal groups ST11, ST15, and ST147 (Antoniadou et al., 2007). 

389 Plasmid-mediated polymyxin resistance in K. pneumoniae strains is also reported in China after 

390 the identification of the mcr-1 harboring strains (Zowawi et al., 2015), which modifies lipid A 

391 through phosphoethanolamine transferase enzyme activity. Further-more, the recent emergence 

392 of hypervirulent colistin resistance K. pneumoniae is a major public health concern worldwide 

393 keeping in view the colistin as a last resort antibiotic against carbapenem resistance hvKp. 

394 However, it is worth mentioning here that mcr-1 is not solely associated with colistin resistance. 

395 Other determinants including mcr-2 to 7 and more recently mcr-8 gene are also associated with 

396 colistin resistance in K. pneumoniae. Additionally, mcr-7.1 which has 70 % amino acid 

397 similarity with mcr-3 and mcr-8.1 on a plasmid having IncFIA has been reported as a novel 

398 mobile genetic element from various parts of the world (Mmatli et al., 2022).

399 The CG 258 harboring K. pneumoniae carbapenemase (KPC) was first re-ported from the USA, 

400 and blaKPC genes reside in a unique Tn4401 transposon (Naas et al., 2012). Most K.  

401 pneumoniae plasmids cannot be typed by PCR-assisted replicon typing methods (Osborn et al., 
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402 2000).  However, many of these novel plasmids are considered to belong to the IncF plasmid 

403 family. Based on sequencing data FII replicons of large plasmid family IncFII can be 

404 characterized as FIIs, FIIy, and FIIk specific groups (Kaplan et al., 2015). Plasmids also produce 

405 an ability to bypass the incompatibility effect where two in-compatible plasmids can reside in the 

406 same cell (Chen et al., 2013). This phenomenon is achieved when plasmids replicate using 

407 alternative replicons. K. pneumoniae strains undergo the recombination of homologous regions 

408 of FIIk replicons. Whereas ST258 was isolated from the USA in 2000 has blaKPC-2 along with 

409 blaKPC-3 encoded by IncFIIk and PKpQIL plasmids.  

410 Phylogenetic studies of CG 258 have demonstrated that plasmids belonging to IncI2 are only 

411 present in clade II and pKpQIL were found in both clades I and II (Miriagou et al., 2010). 

412 Rearrangements of IncFIIk plasmids portions with IncR or IncN plasmids merged in a multi-

413 replicon status have also been seen. Some other diverse plasmids have been described to have 

414 resistance genes like NDM metallo-lactamases (MBL), GES, and the carbapenem-hydrolyzing 

415 class D OXA  (CHDL) and are disseminated in geologically distant K. pneumoniae 

416 strains. In Greece, plasmids carrying IncN1 blaVIM-1 were identified from different Klebsiella 

417 strains isolated from numerous hospitals containing distinct regions having several transposons 

418 and integrons (Poirel et al., 2013). The plasmid IncX3 is highly disseminated in K. pneumoniae 

419 as it acquires resistance genes including blaNDM-5, (Figure 2). It has been described that 

420 blaCTX-M genes are mostly associated with IncFII plasmids which are related to IncFII of E. 

421 coli and highly like plasmid IncFII having FIA replicon and the phage P1, adept of extra 

422 chromosomal replication by the IncY replicon and diverge from those carrying blaKPC 

423 (Dolejska et al., 2013). Plasmids including IncI1, IncR, and IncN are reported as of animal origin 

424 while they also acquired CTX-M-15 and CTX-M-1 (Zhu et al., 2009). The data suggests that 

425 ESBL-encoding plasmids are highly disseminated within Klebsiella and other 

426 Enterobacteriaceae. Interestingly, Strains of K. pneumoniae isolated from China were carrying 

427 pCTX-M-3 plasmid lacking ArmA (Zhu et al., 2009). Overall, taking into consideration IncFIIk 

428 plasmids, IncHI, IncI2, and IncN2 alongside novel replicons identified, resistance plasmids of K. 

429 pneumoniae are distinctive and differ from those which are identified in other members of the 

430 Enterobacteriaceae family (Shiri Navon-Venezia et al., 2017).

431

432
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433 10. Infection Biology and Immune Evasion

434 K. pneumoniae prevents the triggering of the host defense mechanism by covering its PAMPs 

435 from PRRs, immune globulins, and complement proteins. It prevents binding to both cells of 

436 innate and adaptive immunity (Paczosa & Mecsas, 2016). Activation of complement proteins by 

437 K. pneumoniae occurs in antibodies independent manner as it binds directly to Cq1 (Albertí et 

438 al., 1996; Alberti et al., 1993). Although K. pneumoniae also activates the complement classical 

439 pathway by binding of LPS to complement protein. However, this mechanism of activation was 

440 reported as less efficient as compared to Outer membrane proteins (Alberti et al., 1993). The 

441 complement system plays a crucial role in phagocytosis and clearance of K. pneumoniae by lung 

442 epithelial cells facilitated by the C3b complement protein (de Astorza et al., 2004). Mutation of 

443 capsular polysaccharides ultimately increases the C3b deposition which results in string 

444 bactericidal activity complement proteins. While to avoid increased deposition of C3b O antigen 

445 and LPS of outer membrane work as shielding factor (Merino et al., 1992). Other than LPs and O 

446 antigen CPS also inhibits complement deposition (Álvarez et al., 2000) and inhibits binding of 

447 lung collectins SPA and SP-D to LPS. Studies conducted on mouse models strongly fortify the 

448 argument that CPS plays a crucial role in K. pneumoniae virulence (Willsey et al., 2018) by 

449 inhibiting the binding of Polymyxins and CAMP therefore, it has been stated that resistance to 

450 Polymyxins is directly proportional to the amount of CPS produced by K. pneumoniae (Campos 

451 et al., 2004). Another mechanism to invade CAMPs and Polymyxins includes modification in 

452 Lipid A structure (Llobet et al., 2008). The absence of palpitate, 4-amino-4-deoxy-L-arabinose, 

453 phospho-ethanolamine, and 2-hydroxy myristate from Lipid A structure results in loss of 

454 virulence in mouse models (Kidd et al., 2017; Llobet et al., 2011; Mills et al., 2017). But 

455 something worth mentioning here is that the role of CPS in virulence is indirect as level CPS 

456 depends upon 2-hydroxylation and switches on the status of late acyltransferases lpxM and lpxL 

457 respectively (Llobet et al., 2011).

458 It has been reported that K. pneumoniae invades the effect of antibiotics and the immune system 

459 by penetrating epithelial cells (Clements et al., 2007). However, further research on this 

460 phenomenon revealed that the engulfment of K. pneumoniae by host epithelial cells is a defense 

461 mechanism (Clements et al., 2007). K. pneumoniae CPS agonistically activates the TLRs 

462 especially the TLR4 function which results in an enhanced inflammatory effect as no. of TLR4 

463 and TLR2 increase in epithelial cells because of K. pneumoniae infection (Cortés, Álvarez, et al., 
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464 2002). The host immune system also produces anti-CPS immunoglobulins which activate the 

465 secretion of neutrophil extracellular traps (NETs), which upon release kills K. pneumoniae in 

466 extracellular space (Regueiro et al., 2009). Phosphatidylserine is known as eat me signal for 

467 macrophages, however their reduced expression of neutrophils because of their infection 

468 ultimately inhibits their phagocytosis (Diago-Navarro et al., 2018) and leads them towards 

469 necroptosis and inhibits efferocytosis of neutrophils (Amulic et al., 2012). Subsets of dendritic 

470 cells are also activated by K. pneumoniae (Jondle et al., 2018). While structures including CPS, 

471 LPS, and porins, induce their maturation (Jondle et al., 2018). Inside macrophages K. 

472 pneumoniae controls the phagosome maturation and 10 h after K. pneumoniae infection 

473 programmed cell death of macrophages usually occurs (Van Elssen et al., 2010) Interestingly, 

474 there is no evidence that CPS augments the K. pneumoniae survival inside macrophages, as CPS 

475 mutants do not affect intracellular survival patterns, supported by the fact that K. pneumoniae 

476 inhibits its CPS production once it gets inside the cell (Van Elssen et al., 2010). The plasticity of 

477 macrophages allows them to have physiological and phenotypical characteristics. As studies 

478 have demonstrated the M2 macrophage presence in mouse infection models, while the 

479 elimination of M2 macrophages results in efficient clearance of pathogen (Mills et al., 2017).

480 High levels of IL-10 during K. pneumoniae-triggered pneumoniae result in an anti-inflammatory 

481 effect (Fevre et al., 2013). IL-10 cytokines are used to control the activation of cells involved in 

482 innate immune response and are secreted by various immune cells (Yoshida et al., 2000). To 

483 counter this K. pneumoniae-induced anti-inflammatory affect mediated by IL-10 host immune 

484 system regulates  production (Gabry�ová et al., 2014). Reports also claim the direct 

485 association between CPS and high levels of IL-10 fortifies the pathogenicity of K. pneumoniae. 

486 While mice infected with mutant CPS do not have high IL-10 concentrations (Gabry�ová et al., 

487 2014).  (transcription factor) upon stimulation of a TLR4/2-MyD88 signaling pathway 

488 controls various anti-Klebsiella responses (Yoshida et al., 2001). Here CPS came into play by 

489 inhibiting the engulfment of K. pneumoniae by epithelial cells resulting in limited  

490 activation which in turn further sup-presses the production of IL8, ICAM1, and human defensins. 

491 In deubiquitinase cylindromatosis (CYLD) negative host cells Klebsiella infection quickly 

492 followed by production of IL8 this happens because in (CYLD) positive cells K. pneumoniae 

493 hijacked the (CYLD) thus inhibits  signaling (Bengoechea & Sa Pessoa, 2019). Studies 

494 have shown CPS mutants are unable to activate the EGFR pathway, while CPS wild strain does 
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495 (Bengoechea & Sa Pessoa, 2019). However, their activation is indirect and TLR4-dependent 

496 (Moranta Mesquida et al., 2018). K. pneumoniae inhibits the production of inflammatory 

497 mediators and defensins by inactivating the MAPK-by-MAPK phosphatase-1 (MKP-1). As 

498 MAPKs p38, ERK and JNK play important roles in the inflammatory response. The production 

499 of (MKP-1) during infection is mediated by activation of NOD1, while inhibition of IL8 from 

500 epithelial cells is governed by the synergistic effect of MKP-1 and CYLD (Regueiro et al., 

501 2011). Studies have confirmed the CPS-independent anti-inflammatory role of OmpA during 

502 Klebsiella pneumoniae infections (Tomás et al., 2015).

503 Enterobactin is an iron-binding siderophore secreted by K. pneumoniae it competes and binds the 

504 iron against host proteins (March et al., 2011).  Other iron-binding proteins include aerobactin, 

505 salmochelin, and yersiniabactin (Bachman et al., 2012). Importantly, yersiniabactin is associated 

506 with invasive infections. During K. pneumoniae infection the spread of the pathogen is 

507 associated with siderophores as they down-regulate transcription factor  responsible for 

508 mucosal immunity and cellular intrinsic immunity (Holt et al., 2015) the hypothesis that  

509 down-regulation increases the infection rate is usually common in Klebsiella infections (Holden 

510 et al., 2016). Overall, the immune evasion strategies of K. pneumoniae mechanisms are portrayed 

511 in (Figure 4).

512 11. Prospectives

513 K. pneumoniae-associated Hospital-acquired infections cannot be easily differentiable from 

514 HAIs caused by other clinically important pathogens. Whereas community-acquired infections 

515 caused by K. pneumoniae show some distinguished characteristics. Conventionally, infection 

516 caused by K. pneumoniae is designated as community-acquired pneumonia and clinically 

517 manifested as sudden onset of high fever, dramatic toxicity, hemoptysis and abnormalities seen 

518 in chest radiography such as bulging interlobar cleft and cavitary abscesses (Ashurst & Dawson, 

519 2018; Korvick et al., 1991) Considerable proportion of some ESBL producing clinical isolates of 

520 K. pneumoniae are sensitive to third generation cephalosporins or aztreonam and therefore it is 

521 problematic to detect ESBL�s in clinical isolates (Paterson & Bonomo, 2005; Wang et al., 2011). 

522 This confusion results in serious health hazards when the same treatment is used against serious 

523 infections (Paterson et al., 2001; Paterson & Yu, 1999). Whereas resistance to Ceftazidime is a 

524 sufficient marker for the detection of ESBLs (Guideline & Edition).
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525 The Clinical and Laboratory Standards Institute (CLSI) has standardized confirmatory and 

526 screening tests for K. pneumoniae and K. oxytoca for ESBL detection. Production of some 

527 important enzymes including extended-spectrum ß-lactamases, cephalosporinases, and 

528 carbapenemases and their continuous horizontal gene transfer via plasmids and mobile elements 

529 like transposons facilitates the ESBL�s associated infection and bacterial survival under the 

530 action of ß-lactam drugs (Partridge et al., 2018). As resistance against known antibiotics keeps 

531 on increasing and there is a scarcity of new antibiotics, alternative therapeutic and diagnostic 

532 strategies may be exploited (Lewis, 2017). Various detection methods for ESBL have been 

533 employed in laboratories that include beta-lactamase inhibitors such as clavulanic acid by using 

534 double disk diffusion test, Microscan ESBL plus detection system, Vitek ESBL detection card, E 

535 test strips containing Ceftazidime or cefotaxime (Singh & Singh, 2014).  Additionally, a 

536 bacteriophage-based diagnostic approach is also practiced. Recently, studies demonstrated a 

537 luminescent bacterio-phage-based detection of K. pneumoniae and they suggested that such a 

538 diagnostic approach may provide a prompt diagnostic tool to escort the developing subject of 

539 phage therapeutics, especially to treat chronic infectious diseases.

540 While considering novel treatments against drug resistance K. pneumoniae, phage therapy is 

541 considered a promising therapeutic strategy to fight resistant superbugs. The endolysins that are 

542 phage hydrolases and other phage proteins are potential antimicrobials (Aslam, Arshad, et al., 

543 2021; Qurat-ul-Ain et al., 2021). (Zelcbuch et al., 2021). Despite the advancements in this field 

544 few challenges still need to be addressed for the general application of phage therapeutics. These 

545 shortfalls include target specificity, penetration abilities, immunogenicity, and half-life of the 

546 phage product (Karimi et al., 2016).

547 On the other hand, Immunotherapy is also considered as a rational alternative to manage MDR 

548 K. pneumoniae, it harnesses the host immune system to elicit the immune response against the 

549 pathogen. This method employs various mechanisms to protect the host and avoid the 

550 development of resistance, unlike antibiotics. Practically, an all-in-one vaccine having a 

551 complete range of CPS or LPS is difficult, though a multivalent vaccine has been developed. It is 

552 suggested that a solution to this problem is to identify conserved antigenic regions among 

553 various serotypes of K. pneumoniae which may be used for the development of a broad-spectrum 

554 vaccine (Xiao et al., 2016). In this regard, MrkA is a suitable candidate as it is conserved among 

555 various members of the Enterobacteriaceae family is a key element fimbrial (Type III) complex, 
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556 and possesses key vital functions like biofilm formation, infection progression, and fimbrial shaft 

557 development (Allen et al., 1991). Poly-N-acetyl glucosamine (PNAG) is another possible 

558 conserved surface polysaccharide antigen that may also be beneficial to manage K. pneumoniae 

559 via immunotherapy (Cywes-Bentley et al., 2013; Xiao et al., 2016). Previously, the vaccine was 

560 developed from hyper-immune globulins and capsular polysaccharides of K. pneumoniae, but the 

561 complexity of its production halted further progress (Ahmad, El-Sayed, et al., 2012; Diago-

562 Navarro et al., 2017). In 2017, Diago-Navarro and colleagues isolated Monoclonal antibodies 

563 against hyper-mucoid hypervirulent strains which promoted the neutrophil extracellular trap 

564 (NET) release and opsonophagocytic killing (Diago-Navarro, Calatayud-Baselga et al. 2017) In 

565 preclinical models� immunogenicity of macromolecules like LPS O antigens tends to increase 

566 when conjugated covalently with variety of carriers like outer membrane proteins (Ahmad, 

567 Haroun, et al., 2012). Recently a humanized anti-body against galactan III O antigen, expressed 

568 in about 83% of the Surface polysaccharides, has been reported these sugars are optimal targets 

569 for the development of immune prophylactic and therapeutic efforts to counter the emergence of 

570 antibiotic-resistant strains, along with the hypervirulent ST258 (Szijártó et al., 2017). E. Di-ago-

571 Navarro et al have also generated murine-based monoclonal antibodies against ST 258 CPS 

572 (Diago-Navarro et al., 2018).

573 Furthermore, the implication of CRISPR-Cas technology to develop sequence-specific 

574 antimicrobials is also an emerging field to fight resistant superbugs. In this technique, the guide 

575 RNA with nuclease activity is used to target the specific sequences in the desired DNA (Pursey 

576 et al., 2018). Guide RNA is delivered proficiently to the target microbial community through 

577 phagemid or bacteriophage. The specific DNA targets include polymorphism, virulence 

578 determinants, and antibiotic-resistance genes. Use of this approach against E. coli and 

579 carbapenem-resistant Enterobacteriaceae has been reported in the recent past (Tagliaferri et al., 

580 2020). RNA-guided nucleases (RGNs) are a class of extremely intolerant antimicrobials that put 

581 selective pressure into practice at the target DNA to minimize the distribution of unwanted 

582 genes, reduce the off-targets, and permit the programmable restoration of microbiota (Citorik et 

583 al., 2014).

584 12. Conclusion

585 The existing literature recommends that K. pneumoniae is a distinctive and credential pathogen 

586 among the other ESKAPE Gram-negative bacterial members due to some vital features like 
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587 ARGs and virulence genes diversity, genomic configuration, significant plasmid load, etc. 

588 Currently, this bacterium represents the incongruity of therapeutic approaches and present 

589 research and development (R & D) in the field of antimicrobial resistance. Straightforwardly, 

590 there are considerable gaps in our understanding of K. pneumoniae pathobiology and population 

591 transcriptomics. Hence, to understand the several Achilles heels of K. pneumoniae there is an 

592 urgent need for cutting-edge research which may be beneficial to cope with this certified 

593 pathogen.
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Figure 1
Taxonomy details

. Taxonomy details (Phyloviz) of K. pneumoniae, along with the positioning of diûerent
Klebsiella spp.
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Figure 2
Genomic orchestrate

Circular Genomic orchestrate of K. pneumoniae, showing genetic, virulence and resistance
determinants
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Figure 3
Phylogenetic tree

Phylogenetic tree showing the relative depth of the (CG258) nodes extracted from Kleborate,
Pathogenwatch
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Figure 4
resistance mechanisms

Genetic insights into various resistance mechanisms employed by K. pneumoniae
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Figure 5
Immune Evasion

Immune Evasion strategies of K. pneumoniae
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Table 1(on next page)

Clonal disseminatiom

Regional distribution of K. pneumoniae clonal groups
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Endemic 

countries

CGs STs Domina

nt K & 

O locus

GC 

Content 

%

Virulence 

Determinants. 

Resistance 

Determinant

s

MGEs Type of infection References

Singapore, 

Vietnam,

Russia,  

CG23    

ST23

, 

ST26

, 

ST57 

and 

ST16

3

KL1, 

O1v2

56.6-57.2

      

ybt 1, clb 2, 

iuc 1, iro 1, 

(RmpADC / 

rmpA2), rmp 

1; KpVP-1 / 

rmpA2, 

iucABCD-

iutA   

CTX-M-15 

ESBL and 

blaOXA-48, 

Mutations in 

gyrA or 

parC, sul1 

tetAr

IncA/C2, 

IncFIB 

(pQil), 

IncFIB, 

IncX3, 

ColRNAI, 

and 

Col440II 

Pneumonia, 

Bacteremia, sepsis, 

Abdominal 

infection, Liver 

abscess and 

invasive infections

 

(Brisse et al., 

2009), 

(Livermore et 

al., 2020), 

(Shankar et 

al., 2020), (M. 

M. Lam et al., 

2018)

Madagascar, 

china. 

CG380  

ST37

5

KL2,  

O1v2

57.1-57.5

 

 ybt 1, ybt 14, 

iuc 1 iro 1, 

(RmpADC / 

rmpA2, 

blaKPC-2

blaSHV-11, 

SHV-1

I

ncL/M 

plasmid

Meningitis, liver 

abscess, severe 

CAI, Invasive 

infection in 

Diabetic patients

(S. Bialek-

Davenet et al., 

2014) (Zhan et 

al., 2017) 

(Magiorakos 

et al., 2012)

Singapore, 

Vietnam

CG65   ST65 KL2, 

O1v2

56.8-57.2  (RmpADC / 

rmpA2), ybt 

17, clb 3, iuc 

1, iro, 

iucABCD-

iutA, entB, 

wabG, uge 

and ycfM, 

blaKPC-2

blaSHV-11, 

SHV-1, 

blaKPC-3, 

SHV-1    

UTI�s pneumonia, 

Septicemia, liver 

abscess, Invasive 

infections, CAI�s

(Magiorakos 

et al., 2012) 

(Zhan et al., 

2017)   

Vietnam, New 

Zealand,  

Australia 

CG86                 ST86 KL2, 

O1v1

56.5-57.5 ybtS, 

iucABCD-

iutA, rmpA 

and entB

SHV-1 IncL/M 

plasmid

Invasive Infection, 

Sepsis, Liver 

abscess, CAI�s

(Y. Zhang et 

al., 2016) 

(Surgers et al., 

2016)

(Magiorakos 

et al., 2012)

United 

Kingdoms, 

United states 

of America, 

Vietnam

 

CG25                ST25

, 

ST27

7,ST

326,

ST30

9

KL2, 

O1v2

     

57.1-57.4 ybt 2, ybt 16, 

ybt 9, ybt 6, 3, 

iro 3, 

iucABCD-

iutA  

SHV-1

CTX-M 15

OXA-48

IncFII

IncFIB

ColKP3

UTI�s septicemia, 

pneumonia, Liver 

Abscess

(S. Breurec et 

al., 2013) 

(Potron et al., 

2013) (Shiri 

Navon-

Venezia et al., 

2017)
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United 

Kingdoms, 

United states, 

Netherlands

CG37 ST37 KL15, 

KL12, 

KL38.

O2v2 

O3b, 

O4, 

OL103

56.7-57.4 ybt 3, ybt 5, 

ybt 9, ybt 14 

 (RmpADC / 

rmpA2), 

OXA-48

TEM-1, 

SHV-11

OXA-48, 

KPC-2 KPC-

3, OXA, 

NDM, CTX-

M15 

pKPN-704

pKPN-332

UTI�s, RI�s, 

Septicemia,

(Zaman et al., 

2018) 

(Wijetunge et 

al., 2014) 

(Shiri Navon-

Venezia et al., 

2017)

{Li, 2017 #52}

United 

Kingdoms, 

Serbia, 

Romania 

Netherlands, 

Italy 

CG101 ST10

1

KL17, 

O1v1

56.3-56.9 ybt 9,   

(RmpADC / 

rmpA2),  clb 

3,  iro1 

blaKPC22,  
KPC-2 KPC-

3,OXA-

48,NDM,CT

X-M-15,  

OmpK35/O

mpK36

Tn1721 

transposo

n, 

IncFII(K), 

IncR, 

IncFIB, 

IncFII, 

IncQ1, 

and 

Col440II

Blood Stream 

Infections, HAI�s, 

UTI�s,

(S. Breurec et 

al., 2013) 

(Loconsole et 

al., 2020)

{Roe, 2019 

#53}

United 

Kingdoms, 

United states, 

Thailand, 

Russia, Oman, 

Netherlands, 

Pakistan

CG147 ST14

7,ST

392

KL19, 

KL64, 

O2v1, 

O3/O3a

56.4-57.4

 

 ybt 9, ybt 16,   

(RmpADC / 

rmpA2), 

NDM-1,  

NDM-9,  

ARMA, 

AADA1, 

AAC(6')-IB, 

APH(3')-VI, 

APH(3')-1A, 

CATB3, 

DFRA5, 

MPH(E), 

MSR(E), 

QNRS1, 

SUL1, SUL2, 

CTX-M-15, 

OXA-1, 

OXA-9, 

TEM-1A  

IncF, 

IncA/C 

and 

IncL/M, 

pKpQIL, 

pKPN3, 

pNDM-

MAR and 

IncR 

IncA/C, 

ColRNAI

Nosocomial 

Infections, 

Abdominal 

wound Infections, 

UTI�s

(Falcone et 

al., 2020)

(Lee et al., 

2016)

(Samuelsen et 

al., 2011)

{Ouertani, 

2016 #54}

Pakistan, 

United states, 

United 

Kingdoms, 

Vietnam, 

Spain, 

Netherlands, 

Nepal, 

CG15 ST15 KL24, 

KL112.

O1v1 

56.6-57.4 ybt 1, ybt 16, 

ybt 13 iuc 3, 

clb 3  

KPC-2, KPC-

3, OXA-

48,NDM,CT

X-M,  aac(3)-

IIa,  aph(32)-
Ia,  blaOXA-

48,  MgrB,  

tet(A),  

IncQ, 

ColRNAI, 

IncL, 

ColpVC, 

and 

IncFIB, 

IncFII 

Pediatric 

Infections, UTI�s, 

Neonatal 

meningitis

(Lee et al., 

2016)

(Martins et 

al., 2020), 

(Pillonel et al., 

2018)

{Löhr, 2015 

#55}
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Germany, 

China.   

catA1,

United states, 

Italy, Greece, 

Germany, 

Australia, 

Israel 

China, Spain, 

United states, 

Brazil 

CG258   ST11

,340,

258, 

512

ST258 

[KL106, 

KL107, 

O2v2]

ST11 

[KL105, 

KL24, 

KL15, 

KL47, 

KL64.

O2v1, 

O2v2, 

O3b, 

O4,OL1

01]

56.7-57.4

56.9-57.4

  

ybt 14, ybt 13   

ybt 17, clb 3, 

iucABCD-

iutA    

blaKPC-2

blaSHV-11, 

blaKPC-3, 

bla OXA-9, 

CTX-M-15, 

SHV-1, 

SHV-11, 

SHV-12), 

blaOXA-48 

frame shift 

mutation in 

mgrB, mcr, 

aph3-Ia  

ICEKp258

.1 and 

ICEKp258

.Tn4401

Neurosurgical Site 

Infections, urinary 

tract, bacteremia, 

Lower respiratory 

tract Infections, 

surgical intensive 

care unit 

Infections, 

pneumonia

(Chen et al., 

2014) (Kitchel 

et al., 2009) 

(Fasciana et 

al., 2019), 

(Kelly L 

Wyres et al., 

2020), 

(Ojdana et al., 

2020)

  

United states,  

United 

Kingdoms, 

Norway, 

Netherlands, 

Italy

CG307 ST30

7

KL102, 

O2v2

56.6-57.3 (RmpADC / 

rmpA2), 

(T4SS), mobA 

and mobB, 

ybt, irp1, irp2 

and fyuA, Ã-
fimbrial 

chaperone/us

her pathway. 

acc3, blaSHV, 

blaCTX-15, 

blaKPC-

3, blaNDM-

1, blaOXA-48, 

and blaCTX-M-

15, KPC-3, 

KPC-2,  

aac(3)-IIa, 

aac(62)Ib-cr, 
qnrB, tet(A), 

strAB, sul2, 

dfrA14 and 

catB3,  SHV-

28, oqxAB 

and fosA

pKPN-307

Tn1721

FIB-M, 

HIB-M, 

FIBK, 

FIIK, 

pKpQIL, 

IncN type 

B,  n5403-

�ISKpn6- 
bla KPC-

2�ISKpn7

Sepsis,

UTI�s,

 Pneumonia,

Neonatal 

Infections  

(Villa et al., 

2017)

 (Villa et al., 

2016)

. 

(Haller et al., 

2019)

Thailand,  

United states, 

Netherland,  

Australia,

CC16 ST16 KL51, 

O3b

56.9-57.5 ybt 9, 

 ybt 1,  

(RmpADC / 

rmpA2), 

qnrS, rmtB, 

mphA and 

bla OXA-

181, bla 

OXA-48, 

arr3, catA, 

aadA16, 

rmtB, sulI, 

mphA, bla 

IncFII, 

ISL3-like 

insertion 

sequence, 

IncL 

plasmid, 

  ISL3-like 

element,  

Col(pHA

Super

 Infections,

 VAP, 

blood stream

 infections,

  meningitis,

 septic shock,

 sepsis, 

pneumonia

(To Nguyen 

Thi Nguyen 

et al., 2021)

(Boonyasiri et 

al., 2021)

(T. N. T. 

Nguyen et al., 

2021)
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2

TEM-1, bla 

CTX-M-15, 

dfrA, qnrS, 

qnrB, tetA,  

mutations 

on gyrA and 

parC , 

Disruption  

mgrB gene 

by an ISL3-

like insertion 

sequence

D28)/Col4

40II, 

Col(IRGK

),  

Croatia, Spain

CC 11 ST 

437

 KL36, 

O4

57.2-57.5 Ybt 1, rmpA   

(RmpADC / 

rmpA2)

KPC-2, 

blaOXA-232,  

CTX-M-15,  

blaNDM,  

blaCTX-M-

55, aph (32)-
IIa, aph (33)-
Ib, aph (6)-

Id, and 

rmtB),  oqxA 

and oqxB,  

sul2,  (floR),  

(tetA),  

OXA-9, 

TEM-1 

Tn4401b, 

IncN, 

ISKpn7, 

ColKP3-

type no 

conjugativ

e plasmid, 

IncFIB 

(K),   IncR, 

Col440I, 

IncFII (K), 

IncP1.  

Community 

acquired 

Urinary tract

 Infections, 

nosocomial 

infections.  

(Francisco et 

al., 2019) 

(Weng et al., 

2020)

(Fuster et al., 

2020)

China CC1571 ST45

64

iucA, iutA, 

rmpA, rmpA2 

and iroN,  

magA,  iutA, 

fepD, iroE, 

acrAB, rcsAB,  

T6SS  

blaCTX-M-

14, blaCTX-

M-17, acrA, 

acrB,  NDM-

1 and CTX-

M-9, mcr-1,  

blaNDM, 

blaTEM, 

qnrBs, 

mphA, mrx, 

sul1, sul2

HAI�s (Wang et al., 

2021)
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