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Background: According to the World Health Organization (WHO) K. pneumoniae is a
critical public health concern and an established ESKAPE pathogen. Mounting incidence of
MDR K. pneumoniae is worrisome across the globe. K. pneumoniae is an established
ubiquitous pathogen and associated with various infections in a wide range of the hosts.
Methods: The Peer reviewed findings with given problem statements were thoroughly
studied through literature review technique. Multiple antibiotic-resistance genes and
virulence genes across various Klebsiella species were studied to explore their
evolutionary dynamics and genetic diversity.

Results: Population dynamics revealed that the clonal group (CG) 258 and CG 14 are
considered as global disseminated clones. The genome size (5.7 Mbps) of K. pneumoniae
is reported to be larger than the other Enterobacteriaceae which allows K. pneumoniae to
survive in diverse geo-graphical niches. It has adequate resistome and virulence
machinery to evade the host immune system and establish the infection. Due to the
emergence of resistant variants K. pneumoniae needs appropriate alternative control
measures.

Conclusion: The current review described the characteristics features of K. pneumoniae
which are the key players in making this organism as a credential pathogen. Additionally,
it would be instructive and underpin the molecular insights that may aid in restraining this
pathogen.
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Abstract
Background: According to the World Health Organization (WHO) K. pneumoniae is a critical

public health concern and an established ESKAPE pathogen. Mounting incidence of MDR K.
pneumoniae 1s worrisome across the globe. K. pneumoniae is an established ubiquitous pathogen
and associated with various infections in a wide range of hosts.

Methods: The Peer reviewed findings with given problem statements were thoroughly studied
through literature review technique. Multiple antibiotic-resistance genes and virulence genes
across various Klebsiella species were studied to explore their evolutionary dynamics and
genetic diversity.

Results: Population dynamics revealed that the clonal group (CG) 258 and CG 14 are considered
as global disseminated clones. The genome size (5.7 Mbps) of K. pneumoniae is reported to be
larger than the other Enterobacteriaceae which allows K. pneumoniae to survive in diverse
geographical niches. It has adequate resistome and virulence machinery to evade the host
immune system and establish the infection. Due to the emergence of resistant variants K.
pneumoniae needs appropriate alternative control measures.

Conclusion: The current review described the characteristics features of K. pneumoniae which
are the key players in making this organism a credential pathogen. Additionally, it would be

instructive and underpin the molecular insights that may aid in restraining this pathogen.
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1. Introduction
The “goE1 era” of modern medicine in which antibiotics saved innumerable lives is eroded
with the emergence of antibiotic resistance. Klebsiella pneumoniae is a recognized ESKAPE
(Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, Enterobacter)
pathogen, a common cause of antibiotic-resistant hospital-acquired infections (HAIs) and
community-acquired infections. It is a notorious pathogen associated with various types of
severe infections and has inadequate treatment options. According to the World Health
Organization (WHO), K. pneumoniae falls among critical public health threats (Wyres & Holt,
2018) K. pneumoniae is a well-known resistant pathogen for its diversity and high incidence of
antibiotic resistance genes (ARGs).
K. pneumoniae is not only a substantial health concern, but it is also known as the origin and
disseminator of various ARGs like blaxpc, blaNDM-1, and blaOXA-48. From a resistance
perspective, a resistant strain must have the ability to disseminate ARGs, it may be achieved
through vertical transmission of ARGs or via horizontal transmission through mobile genetic
elements (MGEs) like plasmids, integrons, insertion sequences (IS) and transposons (S. Navon-
Venezia et al.,, 2017). Such discrete clinical apprehensions have transformed the research
interests in K. pneumoniae (Aslam et 5022; Wyres & Holt, 201 S)E
During the last decade, K. pneumoniae has emerged as a substantial health concern due to the
increasing incidence of MDR K. pneumoniae infections across the globe. Some K. pneumoniae
strains known as hypervirulent (hypermucovisous) variants present an additional agitating
mechanism of hyper-virulence due to the acquired virulence factors, first reported in Asia in the
1990s and now has been reported all over the world. The share of K. pEnoniae in the crisis of
antibiotic resistance is incalculable; the existing data advocates that it has a greater ecological
range, significantly diverse composition of DNA, ARG diversity, and plasmid liability than the
other Gram-negative bacilli (GNB) (Aslam, Khurshid, et al., 2021; K. L. Wyres et al., 2020).
K. pneumoniae infections need controlling measures such as prompt diagnosis, detection and
containment of resistant variants, improved vaccine production, and use of alternative treatment
approaches like phage or immunotherapy (Aslam, Arshad, et ales2021; Aslam et al., 2018; K. L.
Wyres et al., 2020; Xiao et al., 2016). However, all the above-mentioned containment measures

still failed due to the diverse nature of K. pneumoniae.
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Therefore, there is an urgent need for appropriate novel therapeutic and controlling measures. In
this script, we present the taxonomic and genomic characteristic features of K. pneumoniae,
which are the key players in making K. pneumoniae a credential pathogen. Further, we highlight
the transmission mechanism, infection Biology, and Immune Evasion of K. pneumoniae.

2. RationalE
Antimicrobial resistance (AMR) is a pressing health threat across the globe multi-drug-
resistant pathogens challenged the global health system and modern mediH. Underline
mechanisms that make bacteria resistant superbugs are crucial and essential to comprehend,
which may play a vital role to address this global challenge. As an ESKAPE member K.
pneumoniae pose a substantial health and economic burden worldwide. It has complex molecular
mechanisms associated with resistance, virulence and immune evasion. A comprehensive and
thorough recounting of these insights is critical to finding out the viable solution to this global
health concern. Keeping in view the importance of the subject, the current script is set down for
the scientific audience associated with medicine and researchers in the field of molecular biology
and microbiology.

3. Search Methodology:
The Peer reviewed findings with given problem statements were thoroughly studied through
literature review technique. Owing to this approach explicit insights, research gaps and future
perspectives regarding the pathogen were identified and narrated in the script accordingly. The
Electronic Databases (EDs) like Web of Science, ScienceDirect, Scopus, PubMed and Google
Scholar etc. were navigated extensively to retrieve the relevant dataset with numerous keywords,
for instance, Klebsiella pneumoniae, population genomics, multi-drug-resistant K. pneumoniae
etc. All the listed EDs were navigated because of their scientific reputation and wide-ranging
subject coverage. The meticulous scheme of study was not just assured the relevancy and
articulacy but enhanced the precision of this chronicle.
4. Taxonomy
The genus Klebsiella is designated after the name of a German microbiologist named Edwin
Klebs in 1885, who later described the species Klebsiella pneumoniae in 1887 (Martinez et al.,
2004). The causative agent of opportunistic infections belongs to the family Enterobacteriaceae
(Partridge et al., 2018). Historically, Friedlander identified a pathogen from the patient’s lungs
that died due to pneumonia (Ashurst & Dawson, 2018; Friedldnder, 1882). Later in that decade
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two scientists came up with descriptions for the Friedlander bacterium and named it Hyalococcus
pneumoniae (Ashurst & Dawson, 2018). Klebsiella was first described by a patient suffering
from rhino scleroma later this organism was named “Klebsiella rhinoscleromatis. In the post-
antibiotic era, the most prominent and widely cited efforts were made by different scientists such
as Cowan in 1960, Bascomb in 1971, Buchanan and Gibbons in 1974, Brenner 1977, Woodward
1979, 1zard1981, Bagley 1981 and Naemura in 1979 discovering and arguing the taxonomic
position of previously discovered species, concluded different groups within the genus as, (i)
pneumoniae including K. ozaena and K. rhinoscleromatis from clinical origin. (ii) K. oxytoca
from environmental and clinical origin. (iii) K. terrigena and (iv) K. planticola from soil and
botanical origin, respectively (Trevisan, 1887).

The phylogenetic analysis based on the 16SRNA subunit conducted in 2003, the Generic
division of Klebsiella contains closely linked clusters. Klebsiella are much more related to each
other than the neighboring bacterial clusters such as Serratia and Citrobacter (Boye & Hansen,
2003). Based on the whole genome and gyrA sequences of K. pneumoniae clinical isolates, it
split into three distinct species, K. pneumoniae (Kpl), K. quasipneumoniae (Kpll), and K.
variicola (Kplll). Further, it has been demonstrated that K. prneumoniae (Kpl) is mostly related
to human infection (Holt et al., 2015). Substantial genetic divergence among the species, as
indicated by the numerical values on the branches such as 8.89, 0.46, and 9.03, which measure
the genetic distances or evolutionary changes. Species like K. pneumoniae and K. oxytoca are
shown to cluster closely, suggesting a more recent common ancestry compared to more
genetically distant species such as K. variicola and K. mitogenesis. This clustering indicates not
only the evolutionary pathways of these bacteria but also their adaptation strategies to different
environments or hosts (Fig 1A).

The WGS revealed that Kpl and KpllI are equally virulent as both species have acquired the K.
pneumoniae carbapenemase (KPC) gene and the New Delhi metal-lo-beta-lactamase-1 (NDM-1)
gene (Long et al., 2017) (Figure 1B). With genome-wide average nucleotide identity (=3%) these
closely related phylogenetic species are collectively designated as K. pneumoniae species
complex (KpsC) (Suzanne Bialek Davenet et al, 2014). Other KpsC included K.
quasipneumoniae subsp. similipneumoniae (Kp4), K. variicola subsp. Tropica (Kp5) (Barbier et
al., 2020), K. quasivariicola (Kp6), K. africana (Kp7) (Long et al., 2017). Like K. pneumoniae,

K. variicola and K. quasipneumoniae are also commonly found bacteria in nosocomial infections
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(Potter et al., 2018). These KpsC are emerging threats to hospitalized patients as they can acquire
resistance plasmids from K. pneumoniae (Mathers et al., 2019; Rodriguez-Medina et al., 2019).
The ““Kp’’ term is usually used to describe seven phylogroups of the KpsC, while ‘K.
pneumoniae’ is designated for phylogroup Kpl such as K. pneIEniae sensu stricto (Barbier et
al., 2020). Phenomena for evolution “descent with modification” allows microbes of a
population to adapt and survive within the vast range of habitat in exposure to selective or
environmental pressure and severe use of antibiotics-induced selective pressure, which resulted
in the geographical distribution of mutated clones (Pitout & Finn, EO).

5. Population dynamics

Different mechanisms have been reported for subtyping the K. pneumoniae, MLST is the most
widely used method which employs sequencing of seven core genes named rpoB, gapA, mdh,
pgi, phoE, infB, and tonB to check variation within these genes and given numerical numbers to
each different sequence alleles set the sequence type (ST) (Brisse et al., 2009). The closely
related sequence types whose gene sequence differences occurred by point mutation and have a
similarity of 90-98% are combined to form a clonal complex (CC) by using the eBURST
program (Turner et al., 2007). Further, these CCs have been arranged into subsets called clonal
groups (CGs) containing central genotypes along their single-locus variants (SLVs). The CGs are
termed according to the central ST, which was selected for the definition like CG258 is named
due to its central genotype i.e. ST258 (S Breurec et al., 2013). These clones are the main source
of antibiotic resistance and are referred to as High-risk (HiR) clonal groups with the ability to
transfer the resistance genes (Baker & Thomson, 2018). K. prneumoniae clonal group CG 258
(ST258, ST11, 83 ST512) and CG14 (ST14 and ST15) are considered global disseminated health
threats (S Breurec et al., 2013) (Figure 2). Recent reports have indicated that K. pneumoniae
ST307 and ST147 are emerging global clones (Peirano et al., 2020), first reported in the USA
with blaKPC-2 (Castanheira et al., 2013) and in Pakistan blaCTX-M-15 (Castanheira et al.,
2013) and later appeared with blaOXA-48 (Ruiz-Garbajosa et al., 2016). After 2016 the
recombination of hypervirulent (HvKP), carbapenem-resistant K. pneumoniae isolates produced
a superbug of epidemic potential (Chen et al., 2004). Among these CG 23 contains KI1-type
hypervirulent isolates, whereas K2 type is scattered among various clonal groups immensely
(Baker & Thomson, 2018). However, both K1 and K2 types are the most common HvKP with
epi-demic potential (Brisse et al., 2009).
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Other hypervirulent K. pneumoniae K-types included K5, K20, K54, and K57 (Yawei Zhang et
al., 2016). All isolates within GC 23 are hypervirulent among these ST23, ST26, ST57, and
ST163 are of epidemic potential (Yawei Zhang et al., 2016). Whereas the hypervirulence
associated genes were generally encoded by MGEs, including the integrative conjugative
element (ICE) (M. M. C. Lam et al., 2018). Two large resistance plasmids pLVPK from CG43
(Peirano & Chen, 2020) and pK2044 from K1 types (Wu et al., 2009) contain hypervirulence
signature genes, including rmpA and/or rmpA2 (regulators of the mucoid Phenotype), iro
(salmochelin) and 1uc (Aerobactin) siderophores (Wu et al., 2009).

Several plasmids are prevalent in different clonal groups like CG23, CG86, CG65, CG66, and
CG380 (M. M. C. Lam et al., 2018). K. pneumoniae carbapenemases genes like blaKPC,
blaNDM, and blaOXA and their dissemination within STs and various GCs is a substantial
concern. Populations of CG 258 are considered a main vehicle for the pandemic expansion of
blaKPC-harboring K. pneumoniae (Munoz-Price et al., 2013) and blaNDM is frequently
associated with ST11, ST14, ST147, ST149 and ST231 (Tédngdén & Giske, 2015). While global
dissemination of blaOXA-48-harboring K. pneumoniae is associated with mobile element
Tn1999 (Poirel et al., 2012) and frequently prevalent in several STs e.g. ST11 and ST405, etc.
(Fang et al., 2007). Isolates belonging to GC258 and ST258 & ST512 are the common cause of
HAIs (Poirel et al., 2012), whereas isolates from GC 23, CG65, and CG86 are associated with
invasive community-acquired infections (CAls) (Decré et al., 2011; Munoz-Price et al., 2013). A
detailed description of various CGs along with their STs and virulence determinants etc. is given
in Table 1.

6. Genome composition

K. pneumoniae genomes are vast in distribution (Holt et al., 2015), and the phylogenetic lineages
of these organisms vary from each other by ~0.5% nucleotide divergence (Suzanne Bialek-
Davenet et al., 2014). Most of the ecological and metabolic activities for the survival of K.
pneumoniae are governed by ~2000 ‘core’ (shared) genes, which are usually restrained by each
strain. In addition to core genes 3500 accessory genes vary among different strains collected
from a large pool of > 30,000 genes (Holt et al., 2015). Studies on pan-genome (core and
accessory) revealed that genes encode an essential protein, 100,000 coding sequences with

functions (Vernikos et al., 2015; Kelly L. Wyres et al., 2020).
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Overall, 13% of genes are associated with membrane transport, 19% of genes are related to
carbohydrate metabolism and about 18% of genes play a role during metabolic pathways. The
higher rate of diversity results in variable metabolic capacity (Blin et al., 2017). The genome size
of K. pneumoniae is reported to be larger than the other Enterobacteriaceae which allows K.
pneumoniae to survive in diverse geographical niches. Comparatively, the genome of K.
pneumoniae is 5.7 Mbps in size, with 5455 protein coding genes that are larger than the E. coli
genome ranging from 5.1 Mbp — 4915 genes, while the genome size of E. cloacae ranges from
5.0 Mbps and 4680 genes (Figure 1B). DNA base composition remarkably plays an important
role in assigning the taxa and species (Mann & Chen, 2010). Based on the G+C content ratio it
has been estimated that K. pneumoniae core genes have a 58% GC ratio, because accessory
genes originated from dis-tinct ancestors and GC content ranges between 20% to >70% (Holt et
al., 2015; Kelly L Wyres et al., 2020). K. pneumoniae genome is reported to be more variable
than other species like E. coli, it is suggested that it acquired its DNA from horizontal gene
transfer (HGT) (Mclnerney et al., 2017). While performing the lowest common ancestor
analysis, K. pneumoniae accessory genes have occupied >20 diverse genera acquired from donor
organisms, that include members of the Enterobacteriaceae and bacteria from a diverse group,
including Acinetobacter, Burkholderia, Streptomyces, Vibrio, Xanthomonas, and Xylella (Holt et
al., 2015). Evidenced from different studies have shown HGT patterns of K. pneumoniae, which
revealed the presence of similar plasmids as identified in E. coli, E. cloacae, Enterobacter
asburiae, and Citrobacter freundii (Conlan et al., 2016; Martin et al., 2017; Sheppard et al.,
2016).

7. ViE:nce factors

Capsule polysaccharide (CPS) is a pivotal physiological feature of K. pneumoniae, specifically
tissue-invasive and hyperrnucovisousE/pervirulent) strains that provide protection against the
immune system and thus help in the survival of the pathogen (Li et al., 2014gsshe thick capsular
layer on K. pneumoniae surface protects it from opsonization, phagocytosis, and the action of
neutrophils, macrophages, epithelial cells, and dendritic cells (Cortés, Borrell, et al., 2002;
Evrard et al., 2010; Pan et al., 2011; Sahly et al., 2000). An increasing level of CPS material in
K. pneumoniae serotypes like well-known hypervirulent strains K1 and K2 provide a steady
escape from the neutrophil-mediated intracellular killing of the bacterium, resulting in abscess

formation in the liver (Wu et al., 2010). The K1 serotype belongs to ST57 and ST23, which are
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placed together in CG23 (Brisse et al., 2009). The STs with the K2 serotype are distributed
mostly in CG375, CG380, and CG86 (Suzanne Bialek-Davenet et al., 2014).

The presence of RmpA regulator and aerobactin is a characteristic feature of hvKp, both are
encoded by virulence harboring plasmids. In addition, yersiniabactin, which is an iron
acquisition system is associated with specific hvKp strains as well. It is encoded by ICEKpl
(integrative conjugative element Kpl). It is demonstrated that hypermucoviscosity has some
association with antibiotic resistance as well. Hypermucoviscosity is more common in strains
harboring blaSHV and blaTEM (Dong et al., 2022).

Capsule may play a significant role both outside and within the host, it helps to avoid desiccation
in the atmosphere, prevents complement-mediated lysis or phagocytosis, and antibodies
neutralization via releasing the capsular content (Clements et al., 2008; Cortés, Borrell, et al.,
2002). In K. pneumoniae about 80 types have been reported based on antigenic diversity in
capsules (Pan et al., 2008; Shon et al., 2013), K1 and K2 types are found to be resistant to
phagocytes (Shon et al., 2013). These specified types may also have a crucial role in virulence as
the K2 capsular type has often been detected in clinical iso-lates of urinary tract infections,
pneumonia, and septicemia (De Jesus et al., 2015; Hennequin et al., 2012; Turton et al., 2008).
The kfu (Iron acquisition system) and PTS (Phosphoenolpyruvate sugar phosphotransferase
system) serve as security pathways for the iron supply which is critically important in pathology
associated with tissue-invasive K. pneumoniae (M. S. Lawlor et al., 2007). The siderophores
including yersiniabactin, aerobactin, enterobactin, and salmochelin are iron chelators, these
elements provide strength to K. pneumoniae against iron deficiency (Bachman et al., 2011).
Aerobactin may serve as a virulence enhancer (Matthew S Lawlor et al., 2007) and has been
reported to be responsible for more than 90% of the siderophore activities in hypermucovisous
K. pneumoniae. Yersiniabactin has shown the ability to confer and maintain pneumonia and
respiratory infection (Bachman et al., 2011).

Fimbriae is another significant virulence factor associated with infection and biofilm production,
ie., type 1, type 3, Kpc, and KPF-28 adhesins. Type 1 fimbriae serve as an initial factor in
urinary tract infections (UTIs). However, it was reported that fimbriae have no role in the
colonization of K. pneumoniae in the lungs or intestine (Struve et al., 2009). Type 3 fimbriae
have a crucial role in biofilm but have no part in intestine or pulmonary infections. The types 1

and 3 fimbriae both worked in a compensating way and have a significant role in the
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colonization of K. pneumoniae and its biofilm-associated UTI (Struve et al., 2009). The fimbrial
adhesins are frequently associated with hypermucoviscosity in K. pneumoniae and play a
contributing role in biofilm production (Wu et al., 2010). The KPF-28 adhesins facilitate K.
pneumoniae colonization in the mammalian intestine (Di Martino et al., 1996). It has been
demonstrated that CF29K protein is prevalent in the CC23 and could be either directly associated
with pyogenic liver abscess pathogenesis or related to a different virulence factor on that
plasmid.

Outer membrane protein A (OmpA) is vital for pathogenesis and has also a major role in the
immune evasion mechanism exhibited by K. prneumoniae in vitro and in vivo (March et al.,
2011). The OmpA enables the K. pneumoniae for host invasion, serum resistance, and protection
from lung collections (Sukumaran et al., 2003). However, OmpA is a target of neutrophil
elastases and serum amyloid protein A, which are the components of the innate immune system
of the host, leading to cell lysis and enhancing phagocytosis (Belaaouaj et al., 2000; Hari-Dass et
al., 2005).

Lipopolysaccharide (LPS) is essential for the formation of the outer monolayer of the membrane
in Gram-negative bacterial pathogen, lipid A moiety modification helps K. pneumoniae in the
evasion from the innate immune system of the host. There may be some association between
lipid A modification and antibiotic resistance in Klebsiella species (Llobet et al., 2015), however,
more studies are needed to corroborate this hypothesis. For instance, Colistin causes the
disruption of the outer membrane by interacting with lipid A. Primarily LPS modification
followed by the addition of 4-amino-4-deoxy-L-arabinose to lipid A are the causes of colistin
resistance in K. pneumoniae. This change is linked with operon pbgPE regulated by
PmrAB/PhoPQ, which is determined through the insertional activation of the PhoQ/PhoP MgrB
regulators.

Hospital and other health centers acquired infections due to K. pneumoniae led the investigators
to figure out the contribution of different virulence factors in the progression of disease (De
Jesus et al., 2015). These contributors are the fimbrial and non-fimbrial adhesins, a capsule,
siderophores (particularly enterobactin), urease, lipopolysaccharide (LPS), serum resistance as
well and biofilm formation (Clements et al., 2008; De Jesus et al., 2015; El Fertas-Aissani et al.,
2013; Fuursted et al., 2012; Hennequin et al., 2012). On the other hand, enhancement of the

features increasing invasion comprises other siderophores (Aerobactin and yersiniabactin),
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catechol receptor, mucoid factor, and hypermucoviscosity (De Jesus et al., 2015; El Fertas-
Aissani et al., 2013; Russo et al., 2011; Struve et al., 2008). K. pneumoniae shows a variety of
fimbrial and non-fimbrial adhesins having the ability to recognize various cell receptors which in
turn can enable it to attach the target cell surfaces (Struve et al., 2008). Fimbrial adhesins
comprised of mannose-sensitive type 1 fimbria, type 3 fimbriae, and plasmid-encoded fimbriae
designated as KPF-28, whereas CF29K is a non-fimbrial adhesins (Podschun & Ullmann, 1998;
Schroll et al., 2010; Struve et al., 2008). Type 1 and type 3 fimbriae have frequently been
reported in K. pneumoniae species, and cause UTIs and biofilm formation (El Fertas-Aissani et
al., 2013; Schroll et al., 2010). Fimbrial adhesins are useful as these enhance the adherence
capabilities of the pathogen. On the other hand, it can be disadvantageous in the way that it may
trigger the immune system of the host indicating the opportunistic nature of K. pneumoniae (De
Jesus et al., 2015).

The hypervirulent strain of K. pneumoniae contains high quantities of siderophores (Shon et al.,
2013), which are encoded by genes including entB (enterobactin), iutA (Aerobactin), irpl-irp2-
ybtS-fyuA (yersiniabactin) and iroN (ferric catecholates receptor) (Turton et al., 2008). Most
investigated virulent genes include E (encoding uridine diphosphate galacturonate 4-
epimerase), wabG (involved in the biosynthesis of the outer core lipopolysaccharide), ureA
(related to the urease operon), magA (microviscosity-associated gene A), mrkD (type 3 fimbriae
adhesion), allS (activator of the allantois regulon), kfuBC (iron-uptake system), rpmA (regulator
of mucoid phenotype) and fimH (fimbrial gene encoding type 1 fimbrial adhesion) (Brisse et al.,
2009; Gao et al., 2014). Additionally, acquired [B-lactamase encoding genes increase the
pathogenicity of K. pneumoniae; however, active infection is primarily dependent on a variety of
host-dependent factors (El Fertas-Aissani et al., 2013).

8. Naturally occurring resistance determinants

All the genes that can confer antibiotic resistance when grouped are as resistors (Fig-ure 2)
(Wright, 2007). One of the schemes used for the classification of B-lactamases is molecular
classification, based on the amino acid sequences and dividing them into class A, C, and D
enzymes that utilize serine, whereas class B metallo- B lactamases require zinc for hydrolysis
(Bush & Jacoby, 2010). Formerly, K. pneumoniae was the lone Gram-negative enteric bacterium
that harbored a chromosome-encoded penicillinase (Arakawa et al., 1986). K. pneumoniae

exhibits species-specific class A chromosome encoded B-lactamases which cause resistance
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against ampicillin, carbenicillin amoxicillin, and ticarcillin (Lee et al., 2006). Overall, three
different families including SHV, LEN, and OKP have been identified as the source of
chromosome-based B-lactamases in K. pneumoniae, steer intrinsic resistance to ampicillin via the
production of class A B-lactamase e.g. SHV, encoded by a core gene blaSHV (Holt et aEOlS).
Two core locus OgxAB (efflux pump) and fosA (glutathione S-transferase) have also been
detected in the K. pneumoniae chromosome using MGEs and distributed to other bacterial
species. The wild-type gene expression of both loci is associated with resistance against
fosfomycin i.e. fosA and quinolones i.e. OgqxAB (Li et al., 2019).

In the mid-20th century, the use of Aminoglycosides was replaced by third-generation
cephalosporins, carbapenems, and Fluoroquinolones (Doi et al., 2016), which resulted in a
reduction of novel resistance mechanisms against aminoglycosides. However, the evolution of
16S RNA Methylase (Poulikakos & Falagas, 2013) extended the resistance spectrum against all
aminoglycosides (Srinivasan & Rajamohan, 2013). Whereas kpnEF (SMR-type efflux pump)
developed strong resistance against tobramycin and spectinomycin (Naeem et al., 2016).
Resistance to tobramycin, streptomycin, and spectinomycin is considered linked directly with the
loss of KpnO porins. Mutations in rrs or rpsL, result in target modification augment the
resistance patterns (Redgrave et al., 2014). Extensive use of fluoroquinolones after their
discovery in the 1980s has directed quinolone resistance mechanisms (Ward-McQuaid et al.,
1963). Right after the first use of nalidixic acid (Guerra et al., 1983) and norfloxacin (Guerra et
al., 1983), K. pneumoniae developed a vast variety of resistance mechanisms against quinolones
including target modification i.e. gyrA-gyrB subunits and parC-parE subunits of DNA gyrase
topoisomerase IV (Martinez-Martinez et al., 1996), (Guillard et al., 2016). Other mechanisms
include the expression of efflux pumps acrAB gene (Wong et al., 2015) and OmpK36 porins
deficiency (Ping et al., 2007).

Polymyxins which perturbs bacterial membrane via cations (Ca+2/Mg+2) dislocation are
considered as one of the last resort antibiotics against Enterobacteriaceae (Antoniadou et al.,
2007). Resistance to colistin was initially reported in 2004 from Greece (Marchaim et al., 2011).
Resistance against colistin mainly occurs due to mutation in lpxM and its regulator ramA,
responsible for the maturation of lipid A (Marchaim et al., 2011), while the addition of amino
arabinose results in neutralization of lipid A. Lipid A modification through TupA-

like/glycosyltransferase and CrrAB is also an important resistance mechanism (Srinivasan et al.,
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2012). Upregulated efflux expression via positive regulation of AcrAB-TolC and KpnEF (C.R.
Lee et al., 2016) by the RarA transcription regulator is imperative. Most commonly the
resistance to colistin develops via mgrB gene inactivation or point mutations in phoPQ, pmrAB,
or crrAB (two-component regulator systems) (C.-R. Lee et al., 2016).

Additionally, resistance against first approved glycylcyclines i.e. Tigecycline has also been
reported (Nielsen et al., 2014) through modification in the 30S and the 16S ribosomal units and
cell permeability (Villa et al., 2014). Other mechanisms include up-regulation of efflux pumps
such as KpgABC (Ahn et al., 2016). The first mutation was detected in S10 (ribosomal protein)
encoded by rpsJ, which reduces susceptibility, but their role in tigecycline resistance is unclear
(Pitout et al., 2015).

9. Plasmid-mediated antibiotic resistance

In K. pneumoniae ARGs attained through horizontal gene transfer play a significant role in the
acquisition of resistance as compared to chromosomal mutations. Such accessory genes are often
plasmid-mediated; however, these may be incorporated into the bacterial chromosome. For
instance, a strong promoter enables the mobile genetic variant of blaSHV with some point
mutations to perform ESBL activity, which causes resistance against cephalosporins and even
carbapenems (Liakopoulos et al., 2016). Accordingly, a few K. pneumoniae strains cart replicas
of blaSHV, one core chromosomal gene, and other acquired plasmid variants directed by a robust
IS26 promoter (Hammond et al., 2005).

K. pneumoniae can acquire resistance genes reside on plasmids and mobile elements (Bush &
Jacoby, 2010; Calbo & Garau, 2015), like blaOXA (Evans & Amyes, 2014), blaPER, blaTLA
and blaVEB (Philippon et al., 2016), rare genes blaGES and blaSFO (Ramirez et al., 2019; Yigit
et al., 2001). During the 1960s two B-lactamase blaSHV-1 and blaTEM-1 were described in K.
pneumoniae for the first time which conferred resistance to penicillin (Datta & Kontomichalou,
1965). Later, the acquisition of blaTEM-3 unveiled resistance against mono-bactams and
cephalosporins (Sirot et al., 1987).

In the early 2000’s plasmid, plasmid-mediated blaCTX-M shifted the trends of K. pneumoniae
infections to major hospital-acquired acute infections. It was documentation that metallo-enzyme
named blaIMP-1 identified in K. pneumoniae displayed resistance to carbapenems. Among other

carbapenemases acquired by K. pneumoniae including blaNDM-1, blaOXA-48 and blaKPC are
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the most common and immensely disseminated resistance determinants in every continent (Naas
et al., 2012).

Aminoglycosides on the other hand were frequently used during the early 1940s to late 1960
which were then replaced by B-lactams such as cephalosporins and carbapenems as plasmid-
mediated resistance determinants like aph, ant, and aac genes were identified against these
antibiotics (Novan,.2017). Unfortunately, Plasmid-mediated aminoglycoside-resistant gene armA
is identified, which encodes 16S rRNA methylase enzyme confers resistance to all classes of
aminoglycoside. While other 16S rRNA methylase genes belong to the NpmA and Rmt family
(Shen et al., 2020).

The very first plasmid-mediated quinolone resistance in K. pneumoniae described that qnrA
encodes a pentapeptide repeat protein that is responsible for the resistance. Overall, the
acquisition of plasmid-mediated resistant genes (PMQR) is associated with resistance to
quinolones. These genes include aac (6")-Ibcr (Bado et al., 2016; Fabrega et al., 2009; Ruiz et al.,
2012) which modifies quinolones in K. pneumoniae and qnrA genes whose product protects
DNA gyrase and topoisomerase IV from quinolone inhibition in K. pneumoniae. PMQR genes
modify quinolones in K. pneumoniae and pose a narrow spectrum of resistance but their presence
augments resistance of K. pneumoniae harboring ESBL genes (Toth et al., 2014). It has been
observed in the clonal groups ST11, ST15, and ST147 (Antoniadou et al., 2007).
Plasmid-mediated polymyxin resistance in K. pneumoniae strains is also reported in China after
the identification of the mcr-1 harboring strains (Zowawi et al., 2015), which modifies lipid A
through phosphoethanolamine transferase enzyme activity. Further-more, the recent emergence
of hypervirulent colistin resistance K. pneumoniae is a major public health concern worldwide
keeping in view the colistin as a last resort antibiotic against carbapenem resistance hvKp.
However, it is worth mentioning here that mcr-1 is not solely associated with colistin resistance.
Other determinants including mcr-2 to 7 and more recently mcr-8 gene are also associated with
colistin resistance in K. pneumoniae. Additionally, mecr-7.1 which has 70 % amino acid
similarity with mer-3 and mcr-8.1 on a plasmid having IncFIA has been reported as a novel
mobile genetic element from various parts of the world (Mmatli et al., 2022).

The CG 258 harboring K. pneumoniae carbapenemase (KPC) was first re-ported from the USA,
and blaKPC genes reside in a unique Tn4401 transposon (Naas et al., 2012). Most K.
pneumoniae plasmids cannot be typed by PCR-assisted replicon typing methods (Osborn et al.,
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2000). However, many of these novel plasmids are considered to belong to the IncF plasmid
family. Based on sequencing data FII replicons of large plasmid family IncFII can be
characterized as Flls, FlIly, and FIIk specific groups (Kaplan et al., 2015). Plasmids also produce
an ability to bypass the incompatibility effect where two in-compatible plasmids can reside in the
same cell (Chen et al., 2013). This phenomenon is achieved when plasmids replicate using
alternative replicons. K. pneumoniae strains undergo the recombination of homologous regions
of FIIk replicons. Whereas ST258 was isolated from the USA in 2000 has blaKPC-2 along with
blaKPC-3 encoded by IncFIlk and PKpQIL plasmids.

Phylogenetic studies of CG 258 have demonstrated that plasmids belonging to InclI2 are only
present in clade II and pKpQIL were found in both clades I and II (Miriagou et al., 2010).
Rearrangements of IncFIlk plasmids portions with IncR or IncN plasmids merged in a multi-
replicon status have also been seen. Some other diverse plasmids have been described to have
resistance genes like NDM metallo-lactamases (MBL), GES, and the carbapenem-hydrolyzing
class D OXA B-lactamases (CHDL) and are disseminated in geologically distant K. pneumoniae
strains. In Greece, plasmids carrying IncN1 blaVIM-1 were identified from different Klebsiella
strains isolated from numerous hospitals containing distinct regions having several transposons
and integrons (Poirel et al., 2013). The plasmid IncX3 is highly disseminated in K. pneumoniae
as it acquires resistance genes including blaNDM-5, (Figure 2). It has been described that
blaCTX-M genes are mostly associated with IncFII plasmids which are related to IncFII of E.
coli and highly like plasmid IncFII having FIA replicon and the phage P1, adept of extra
chromosomal replication by the IncY replicon and diverge from those carrying blaKPC
(Dolejska et al., 2013). Plasmids including Incl1, IncR, and IncN are reported as of animal origin
while they also acquired CTX-M-15 and CTX-M-1 (Zhu et al., 2009). The data suggests that
ESBL-encoding plasmids are highly disseminated within Klebsiella and other
Enterobacteriaceae. Interestingly, Strains of K. pneumoniae isolated from China were carrying
pCTX-M-3 plasmid lacking ArmA (Zhu et al., 2009). Overall, taking into consideration IncFIlk
plasmids, IncHI, InclI2, and IncN2 alongside novel replicons identified, resistance plasmids of K.
pneumoniae are distinctive and differ from those which are identified in other members of the

Enterobacteriaceae family (Shiri Navon-Venezia et al., 2017).
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10. Infection Biology and Immune Evasion

K. pneumoniae prevents the triggering of the host defense mechanism by covering its PAMPs
from PRRs, immune globulins, and complement proteins. It prevents binding to both cells of
innate and adaptive immunity (Paczosa & Mecsas, 2016). Activation of complement proteins by
K. pneumoniae occurs in antibodies independent manner as it binds directly to Cql (Alberti et
al., 1996; Alberti et al., 1993). Although K. pneumoniae also activates the complement classical
pathway by binding of LPS to complement protein. However, this mechanism of activation was
reported as less efficient as compared to Outer membrane proteins (Alberti et al., 1993). The
complement system plays a crucial role in phagocytosis and clearance of K. pneumoniae by lung
epithelial cells facilitated by the C3b complement protein (de Astorza et al., 2004). Mutation of
capsular polysaccharides ultimately increases the C3b deposition which results in string
bactericidal activity complement proteins. While to avoid increased deposition of C3b O antigen
and LPS of outer membrane work as shielding factor (Merino et al., 1992). Other than LPs and O
antigen CPS also inhibits complement deposition (Alvarez et al., 2000) and inhibits binding of
lung collectins SPA and SP-D to LPS. Studies conducted on mouse models strongly fortify the
argument that CPS plays a crucial role in K. pneumoniae virulence (Willsey et al., 2018) by
inhibiting the binding of Polymyxins and CAMP therefore, it has been stated that resistance to
Polymyxins is directly proportional to the amount of CPS produced by K. pneumoniae (Campos
et al., 2004). Another mechanism to invade CAMPs and Polymyxins includes modification in
Lipid A structure (Llobet et al., 2008). The absence of palpitate, 4-amino-4-deoxy-L-arabinose,
phospho-ethanolamine, and 2-hydroxy myristate from Lipid A structure results in loss of
virulence in mouse models (Kidd et al., 2017; Llobet et al., 2011; Mills et al., 2017). But
something worth mentioning here is that the role of CPS in virulence is indirect as level CPS
depends upon 2-hydroxylation and switches on the status of late acyltransferases lpxM and IpxL
respectively (Llobet et al., 2011).

It has been reported that K. pneumoniae invades the effect of antibiotics and the immune system
by penetrating epithelial cells (Clements et al., 2007). However, further research on this
phenomenon revealed that the engulfment of K. pneumoniae by host epithelial cells is a defense
mechanism (Clements et al., 2007). K. pneumoniae CPS agonistically activates the TLRs
especially the TLR4 function which results in an enhanced inflammatory effect as no. of TLR4

and TLR2 increase in epithelial cells because of K. pneumoniae infection (Cortés, Alvarez, et al.,
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2002). The host immune system also produces anti-CPS immunoglobulins which activate the
secretion of neutrophil extracellular traps (NETs), which upon release kills K. pneumoniae in
extracellular space (Regueiro et al., 2009). Phosphatidylserine is known as eat me signal for
macrophages, however their reduced expression of neutrophils because of their infection
ultimately inhibits their phagocytosis (Diago-Navarro et al., 2018) and leads them towards
necroptosis and inhibits efferocytosis of neutrophils (Amulic et al., 2012). Subsets of dendritic
cells are also activated by K. pneumoniae (Jondle et al., 2018). While structures including CPS,
LPS, and porins, induce their maturation (Jondle et al., 2018). Inside macrophages K.
pneumoniae controls the phagosome maturation and 10 h after K. pneumoniae infection
programmed cell death of macrophages usually occurs (Van Elssen et al., 2010) Interestingly,
there is no evidence that CPS augments the K. pneumoniae survival inside macrophages, as CPS
mutants do not affect intracellular survival patterns, supported by the fact that K. pneumoniae
inhibits its CPS production once it gets inside the cell (Van Elssen et al., 2010). The plasticity of
macrophages allows them to have physiological and phenotypical characteristics. As studies
have demonstrated the M2 macrophage presence in mouse infection models, while the
elimination of M2 macrophages results in efficient clearance of pathogen (Mills et al., 2017).

High levels of IL-10 during K. pneumoniae-triggered pneumoniae result in an anti-inflammatory
effect (Fevre et al., 2013). IL-10 cytokines are used to control the activation of cells involved in
innate immune response and are secreted by various immune cells (Yoshida et al., 2000). To
counter this K. pneumoniae-induced anti-inflammatory affect mediated by IL-10 host immune
system regulates IFNy production (GabrySova et al., 2014). Reports also claim the direct
association between CPS and high levels of IL-10 fortifies the pathogenicity of K. pneumoniae.
While mice infected with mutant CPS do not have high IL-10 concentrations (GabrySova et al.,
2014). NF-xB (transcription factor) upon stimulation of a TLR4/2-MyD88 signaling pathway
controls various anti-Klebsiella responses (Yoshida et al., 2001). Here CPS came into play by
inhibiting the engulfment of K. pneumoniae by epithelial cells resulting in limited NF-xB
activation which in turn further sup-presses the production of IL§, ICAM1, and human defensins.
In deubiquitinase cylindromatosis (CYLD) negative host cells Klebsiella infection quickly
followed by production of IL8 this happens because in (CYLD) positive cells K. pneumoniae
hijacked the (CYLD) thus inhibits NF-kB signaling (Bengoechea & Sa Pessoa, 2019). Studies
have shown CPS mutants are unable to activate the EGFR pathway, while CPS wild strain does
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(Bengoechea & Sa Pessoa, 2019). However, their activation is indirect and TLR4-dependent
(Moranta Mesquida et al., 2018). K. pneumoniae inhibits the production of inflammatory
mediators and defensins by inactivating the MAPK-by-MAPK phosphatase-1 (MKP-1). As
MAPKSs p38, ERK and JNK play important roles in the inflammatory response. The production
of (MKP-1) during infection is mediated by activation of NODI1, while inhibition of IL8 from
epithelial cells is governed by the synergistic effect of MKP-1 and CYLD (Regueiro et al.,
2011). Studies have confirmed the CPS-independent anti-inflammatory role of OmpA during
Klebsiella pneumoniae infections (Tomas et al., 2015).

Enterobactin is an iron-binding siderophore secreted by K. prneumoniae it competes and binds the
iron against host proteins (March et al., 2011). Other iron-binding proteins include aerobactin,
salmochelin, and yersiniabactin (Bachman et al., 2012). Importantly, yersiniabactin is associated
with invasive infections. During K. pneumoniae infection the spread of the pathogen is
associated with siderophores as they down-regulate transcription factor HIF-1a responsible for
mucosal immunity and cellular intrinsic immunity (Holt et al., 2015) the hypothesis that HIF-1a
down-regulation increases the infection rate is usually common in Klebsiella infections (Holden
et al., 2016). Overall, the immune evasion strategies of K. pneumoniae mechanisms are portrayed
in (Figure 4).

11. Prospectives

K. pneumoniae-associated Hospital-acquired infections cannot be easily differentiable from
HAIs caused by other clinically important pathogens. Whereas community-acquired infections
caused by K. pneumoniae show some distinguished characteristics. Conventionally, infection
caused by K. pneumoniae is designated as community-acquired pneumonia and clinically
manifested as sudden onset of high fever, dramatic toxicity, hemoptysis and abnormalities seen
in chest radiography such as bulging interlobar cleft and cavitary abscesses (Ashurst & Dawson,
2018; Korvick et al., 1991) Considerable proportion of some ESBL producing clinical isolates of
K. pneumoniae are sensitive to third generation cephalosporins or aztreonam and therefore it is
problematic to detect ESBL’s in clinical isolates (Paterson & Bonomo, 2005; Wang et al., 2011).
This confusion results in serious health hazards when the same treatment is used against serious
infections (Paterson et al., 2001; Paterson & Yu, 1999). Whereas resistance to Ceftazidime is a

sufficient marker for the detection of ESBLs (Guideline & Edition).
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The Clinical and Laboratory Standards Institute (CLSI) has standardized confirmatory and
screening tests for K. pneumoniae and K. oxytoca for ESBL detection. Production of some
important enzymes including extended-spectrum B-lactamases, cephalosporinases, and
carbapenemases and their continuous horizontal gene transfer via plasmids and mobile elements
like transposons facilitates the ESBL’s associated infection and bacterial survival under the
action of B-lactam drugs (Partridge et al., 2018). As resistance against known antibiotics keeps
on increasing and there is a scarcity of new antibiotics, alternative therapeutic and diagnostic
strategies may be exploited (Lewis, 2017). Various detection methods for ESBL have been
employed in laboratories that include beta-lactamase inhibitors such as clavulanic acid by using
double disk diffusion test, Microscan ESBL plus detection system, Vitek ESBL detection card, E
test strips containing Ceftazidime or cefotaxime (Singh & Singh, 2014). Additionally, a
bacteriophage-based diagnostic approach is also practiced. Recently, studies demonstrated a
luminescent bacterio-phage-based detection of K. pneumoniae and they suggested that such a
diagnostic approach may provide a prompt diagnostic tool to escort the developing subject of
phage therapeutics, especially to treat chronic infectious diseases.

While considering novel treatments against drug resistance K. pneumoniae, phage therapy is
considered a promising therapeutic strategy to fight resistant superbugs. The endolysins that are
phage hydrolases and other phage proteins are potential antimicrobials (Aslam, Arshad, et al.,
2021; Qurat-ul-Ain et al., 2021). (Zelcbuch et al., 2021). Despite the advancements in this field
few challenges still need to be addressed for the general application of phage therapeutics. These
shortfalls include target specificity, penetration abilities, immunogenicity, and half-life of the
phage product (Karimi et al., 2016).

On the other hand, Immunotherapy is also considered as a rational alternative to manage MDR
K. pneumoniae, it harnesses the host Emne system to elicit the immune response against the
pathogen. This method employs various mechanisms to protect the host and avoid the
development of resistance, unlike antibiotics. Practically, an all-in-one vaccine having a
complete range of CPS or LPS is difficult, though a multivalent vaccine has been developed. It is
suggested that a solution to this problem is to identify conserved antigenic regions among
various serotypes of K. pneumoniae which may be used for the development of a broad-spectrum
vaccine (Xiao et al., 2016). In this regard, MrkA is a suitable candidate as it is conserved among

various members of the Enterobacteriaceae family is a key element fimbrial (Type I1I) complex,
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and possesses key vital functions like biofilm formation, infection progression, and fimbrial shaft
development (Allen et al., 1991). Poly-N-acetyl glucosamine (PNAG) is another possible
conserved surface polysaccharide antigen that may also be beneficial to manage K. pneumoniae
via immunotherapy (Cywes-Bentley et al., 2013; Xiao et al., 2016). Previously, the vaccine was
developed from hyper-immune globulins and capsular polysaccharides of K. pneumoniae, but the
complexity of its production halted further progress (Ahmad, El-Sayed, et al., 2012; Diago-
Navarro et al., 2017). In 2017, Diago-Navarro and colleagues isolated Monoclonal antibodies
against hyper-mucoid hypervirulent strains which promoted the neutrophil extracellular trap
(NET) release and opsonophagocytic killing (Diago-Navarro, Calatayud-Baselga et al. 2017) In
preclinical models’ immunogenicity of macromolecules like LPS O antigens tends to increase
when conjugated covalently with variety of carriers like outer membrane proteins (Ahmad,
Haroun, et al., 2012). Recently a humanized anti-body against galactan III O antigen, expressed
in about 83% of the Surface polysaccharides, has been reported these sugars are optimal targets
for the development of immune prophylactic and therapeutic efforts to counter the emergence of
antibiotic-resistant strains, along with the hypervirulent ST258 (Szijarto et al., 2017). E. Di-ago-
Navarro et al have also generated murine-based monoclonal antibodies against ST 258 CPS
(Diago-Navarro et al., 2018).

Furthermore, the implication of C R-Cas technology to develop sequence-specific
antimicrobials is also an emerging ﬁelgiight resistant superbugs. In this technique, the guide
RNA with nuclease activity is used to target the specific sequences in the desired DNA (Pursey
et alE)18). Guide RNA is delivered proficiently to the target microbial community through
phagemid or bacteriophage. The Eciﬁc DNA targets include polymorphism, virulence
determinants, and antibiotic-resistance genes. Use of this approach against E. coli and
carbapenem-resistant Enterobacteriaceae has been reported in the recent past (Tagliaferri et al.,
2020). RNA-guided nucleases (RGNs) are a class of extremely intolerant antimicrobials that put
selective pressure into practice at the target DNA to minimize the distribution of unwanted
genes, reduce the off-targets, and permit the programmable restoration of microbiota (Citorik et
al., 2014).

12.qnclusion

The existing literature recommends that K. pneumoniae is a distinctive and credential pathogen

among the other ESKAPE Gram-negative bacterial members due to some vital features like

Peer] reviewing PDF | (2025:04:117348:0:2:NEW 24 Apr 2025)


User
Sticky Note
Lines 573–574: "Consider adding a clear transitional sentence to separate immunotherapy-based strategies from gene-editing tools like CRISPR-Cas, as the abrupt shift might confuse readers."

User
Sticky Note
Line 576: To enhance Prospectives section add the following reference: Hekmat A. Owaid, Mushtak T.S. Al-Ouqaili, Molecular characterization and genome sequencing of selected highly resistant clinical isolates of Pseudomonas aeruginosa and its association with the clustered regularly interspaced palindromic repeat/Cas system, Heliyon, Volume 11, Issue 1, 2025, e41670, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2025.e41670.

User
Sticky Note
line 584: Conclusion should be objective with further perspective or should add at least a few sentences about future study/future perspective of it

User
Sticky Note
line 580: "Define RNA-guided nucleases (RGNs) more clearly and explain their role in antimicrobial action with one illustrative example."


PeerJ

587
588
589
590
591
592
593

594

595
596
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

ARGs and virulence genes diversity, genomic configuration, significant plasmid load, etc.
Currently, this bacterium represents the incongruity of therapeutic approaches and present
research and development (R & D) in the field of antimicrobial resistance. Straightforwardly,
there are considerable gaps in our understanding of K. pneumoniae pathobiology and population
transcriptomics. Hence, to understand the several Achilles heels of K. pneumoniae there is an
urgent need for cutting-edge research which may be beneficial to cope with this certified

pathogen.
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Figure 1

Taxonomy details

. Taxonomy details (Phyloviz) of K. pneumoniae, along with the positioning of different
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Figure 2

Genomic orchestrate

Circular Genomic orchestrate of K. pneumoniae, showing genetic, virulence and resistance

determinants
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Figure 3

Phylogenetic tree

Phylogenetic tree showing the relative depth of the (CG258) nodes extracted from Kleborate,
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Figure 4

resistance mechanisms

Genetic insights into various resistance mechanisms employed by K. pneumoniae
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Figure 5

Immune Evasion

Immune Evasion strategies of K. pneumoniae
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Table 1l(on next page)

Clonal disseminatiom

Regional distribution of K. pneumoniae clonal groups
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Endemic CGs STs |Domina| GC Virulence Resistance MGEs | Type of infection | References
countries nt K & | Content | Determinants. | Determinant
O locus % S
Singapore, ST23| KL1, |56.6-57.2| ybt1,clb2, CTX-M-15 | IncA/C,, Pneumonia, (Brisse et al.,
Vietnam, CG23 , O1v2 iucl,iro1, ESBL and IncFIB  |Bacteremia, sepsis, 2009),
Russia, ST26 (RmpADC/ blapxa-as, (pQil), Abdominal (Livermore et
, rmpA2), rmp |Mutations in| IncFIB, infection, Liver al., 2020),
ST57 1; KpVP-1/ gyrA or IncXs, abscess and (Shankar et
and rmpA2, parC, sull | ColRNAI |invasive infections| al., 2020), (M.
ST16 iucABCD- tetAr and M. Lam et al,,
3 iutA Col44011 2018)
Madagascar, CG380 KL2, |57.1-57.5| ybt1, ybt14, | blaKPC-2 I Meningitis, liver (S. Bialek-
china. ST37| Olv2 iucliro1, | blaSHV-11, | ncL/M abscess, severe |Davenet et al.,
5 (RmpADC/ SHV-1 plasmid CAJ, Invasive |2014) (Zhan et
rmpA2, infection in al., 2017)
Diabetic patients | (Magiorakos
et al., 2012)
Singapore, CGo65 ST65| KL2, |56.8-57.2| (RmpADC/ | blaKPC-2 UTI's pneumonia, | (Magiorakos
Vietnam O1v2 rmpA2), ybt | blaSHV-11, Septicemia, liver | etal., 2012)
17, clb 3, iuc SHV-1, abscess, Invasive | (Zhanetal.,
1, iro, blaKPC-3, infections, CAI’s 2017)
iucABCD- SHV-1
iutA, entB,
wabG, uge
and ycfM,

Vietnam, New CG86 ST86| KL2, |56.5-57.5 ybtS, SHV-1 IncL/M |Invasive Infection, | (Y. Zhang et
Zealand, O1vl iucABCD- plasmid Sepsis, Liver al., 2016)
Australia iutA, rmpA abscess, CAl's |(Surgers et al.,

and entB 2016)
(Magiorakos
et al., 2012)
United CG25 ST25| KL2, |57.1-57.4| ybt2, ybt 16, SHV-1 IncFII UTI's septicemia, | (S. Breurec et
Kingdoms, , O1v2 ybt9, ybt6,3,| CTX-M 15 IncFIB | pneumonia, Liver al., 2013)
United states ST27 iro 3, OXA-48 ColKP3 Abscess (Potron et al.,
of America, 7,ST iucABCD- 2013) (Shiri
Vietnam 326, iutA Navon-
ST30 Venezia et al.,
9

2017)
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United CG37 ST37| KL15, |56.7-57.4| ybt3, ybt5, OXA-48 |pKPN-704 UTI’s, RI's, (Zaman et al.,
Kingdoms, KL12, ybt 9, ybt 14 TEM-1, pKPN-332 Septicemia, 2018)
United states, KL38. (RmpADC/ SHV-11 (Wijetunge et
Netherlands O2v2 rmpA2), OXA-48, al., 2014)
O3b, KPC-2 KPC- (Shiri Navon-
04, 3, OXA, Venezia et al.,
OL103 NDM, CTX- 2017)
M15 {Li, 2017 #52}
United CG101 ST10| KL17, |56.3-56.9 ybt9, blaKPC-2, | Tnl1721 Blood Stream (S. Breurec et
Kingdoms, 1 O1lvl (RmpADC / | KPC-2 KPC- | transposo | Infections, HAI's, al., 2013)
Serbia, rmpA2), clb 3,0XA- n, UTTI’s, (Loconsole et
Romania 3, irol 48, NDM,CT | IncFII(K), al., 2020)
Netherlands, X-M-15, IncR, {Roe, 2019
Italy OmpK35/0 | IncFIB, #53}
mpK36 IncFII,
IncQ1,
and
Col44011
United CG147 ST14| KL19, |56.4-57.4| ybt9, ybt 16, NDM-1, IncF, Nosocomial (Falcone et
Kingdoms, 7,5T | KL64, (RmpADC/ NDM-9, IncA/C Infections, al., 2020)
United states, 392 | O2vl, rmpA2), ARMA, and Abdominal (Lee etal,,
Thailand, 03/03a AADALI, IncL/M, | wound Infections, 2016)
Russia, Oman, AAC(6')-1B, | pKpQIL, UTT's (Samuelsen et
Netherlands, APH(3')-VI, | pKPN3, al., 2011)
Pakistan APH(3')-1A, | pNDM- {Ouertani,
CATB3, |MAR and 2016 #54}
DFRAD, IncR
MPH(E), IncA/C,
MSR(E), | ColRNAI
QNRSI,
SUL1, SUL2,
CTX-M-15,
OXA-1,
OXA-9,
TEM-1A
Pakistan, CG15 ST15| KL24, |56.6-57.4| ybt1, ybt 16, |[KPC-2, KPC-| IncQ, Pediatric (Lee et al.,
United states, KL112. ybt 13 iuc 3, 3, OXA- ColRNAI, | Infections, UTI’s, 2016)
United O1vl clb 3 48 NDM,CT IncL, Neonatal (Martins et
Kingdoms, X-M, aac(3)-| ColpVC, meningitis al., 2020),
Vietnam, Ila, aph(3')- and (Pillonel et al.,
Spain, Ia, blaOXA-| IncFIB, 2018)
Netherlands, 48, MgrB, IncFII {Lohr, 2015
Nepal, tet(A), #55}
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Germany, catAl,
China.
United states, CG258  |ST11| ST258 ybt 14, ybt 13 | blaKPC-2 |ICEKp258 | Neurosurgical Site| (Chen et al.,
Italy, Greece, ,340, | [KL106, [56.7-57.4| ybt 17, clb 3, | blaSHV-11, Jand |Infections, urinary | 2014) (Kitchel
Germany, 258, | KL107, iucABCD- blaKPC-3, |[ICEKp258| tract, bacteremia, | et al., 2009)
Australia, 512 | O2v2] iutA bla OXA-9, | .Tn4401 |Lower respiratory | (Fasciana et
Israel CTX-M-15, tract Infections, al., 2019),
SHV-1, surgical intensive (Kelly L
ST11 |[56.9-57.4 SHV-11, care unit Wyres et al.,
[KL105, SHV-12), Infections, 2020),
KL24, blaOXA-48 pneumonia (Ojdana et al.,
KL15, frame shift 2020)
China, Spain, KL47, mutation in
United states, KL64. mgrB, mer,
Brazil O2vl, aph3-Ia
O2v2,
O3b,
04,0L1
01]
United states, CG307 ST30| KL102, |56.6-57.3| (RmpADC/ |acc3, blaSHV, | pKPN-307 Sepsis, (Villa et al.,
United 7 02v2 rmpA2), blaCTX-15, | Tnl1721 UTTI’s, 2017)
Kingdoms, (T4SS), mobA blaxpc. FIB-M, Pneumonia, (Villa et al.,
Norway, and mobB, 3, blanpwm- HIB-M, 2016)
Netherlands, ybt, irpl, irp2 | 4, blaoxa-s, FIBK, Neonatal .
Italy and fyuA, m- | and blacrx.m- FIIK, Infections (Haller et al.,
fimbrial 15 KPC-3, | pKpQIL, 2019)
chaperone/us | KPC-2, |IncN type
her pathway. | aac(3)-Ila, | B, n5403-
aac(6")Ib-cr, | AISKpn6-
qnrB, tet(A), | bla KPC-
strAB, sul2, | 2-ISKpn7
dfrAl4 and
catB3, SHV-
28, oqxAB
and fosA
(To Nguyen
Thailand, CC16 ST16| KL51, |56.9-57.5 ybt9, qnrS, rmtB, IncFII, Super Thi Nguyen
United states, O3b ybt 1, mphA and | ISL3-like Infections, et al., 2021)
Netherland, (RmpADC/ | blaOXA- | insertion VAP,
Australia, rmpA2), 181, bla sequence, blood stream (Boonyasiri et
OXA-48, IncLL infections, al., 2021)
arr3, cath, | plasmid, meningitis, (T.N.T.
aadAle, ISL3-like septic shock, |Nguyenetal,
rmtB, sull, | element, sepsis, 2021)
mphA, bla | Col(pHA pneumonia
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TEM-1, bla
CTX-M-15,
dfrA, qnr§,
qnrB, tetA,
mutations
on gyrA and
parC,
Disruption
mgrB gene
by an ISL3-
like insertion
sequence

D28)/Col4d
4011,
Col(IRGK

)/

Croatia, Spain

CcC11

ST
437

KL36,
04

57.2-57.5

Ybt 1, rmpA
(RmpADC/
rmpA?2)

KPC-2,
blaOXA-232,
CTX-M-15,
blaNDM,
blaCTX-M-
55, aph (3')-
Ila, aph (3")-
Ib, aph (6)-
Id, and
rmtB), ogqxA
and oqxB,
sul2, (floR),
(tetA),
OXA-9,
TEM-1

Tn4401b,
IncN,
ISKpn7,
ColKP3-
type no
conjugativ
e plasmid,
IncFIB
(K), IncR,
Col440I,
IncFII (K),
IncP1.

Community
acquired
Urinary tract
Infections,
nosocomial
infections.

(Francisco et
al., 2019)
(Weng et al.,
2020)
(Fuster et al.,
2020)

China

CC1571

ST45
64

iucA, iutA,
rmpA, rmpA2
and iroN,
magA, iutA,
fepD, iroE,
acrAB, rcsAB,
T6SS

blaCTX-M-
14, blaCTX-
M-17, acrA,
acrB, NDM-
1 and CTX-
M-9, mcr-1,
blaNDM,
blaTEM,
qnrBs,
mphA, mrx,

sull, sul2

HAT's

(Wang et al.,
2021)

1

Table 1: Global disseminated Clonal Groups of K. pneumoniae with details of genetic determinants
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