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ABSTRACT

Effective management of introduced species requires a clear understanding of their
habitat requirements. Species distribution models (SDMs) offer a powerful tool
for addressing this challenge. We applied seven modeling techniques to predict a
suitable habitat for the introduced Chukar Partridge (Alectoris chukar), including
artificial neural networks, generalized additive models, k-nearest neighbor, random
forests, support vector machines, extreme gradient boosting, and a weighted ensemble
approach. Using site-level data on physiography, climate, land cover, and habitat range,
we modeled Chukar distributions by simulating historical introduction efforts and
extrapolating predictions into surrounding areas to assess cross-regional transferability.
Model performance was evaluated using independent, geographically distinct validation
datasets. Our results demonstrate that machine learning-based SDMs provide accurate
and transferable predictions of Chukar habitat suitability. This study highlights the
value of machine learning for predicting establishment success while emphasizing the
importance of incorporating species movement behavior and site fidelity into SDM
frameworks. Overall, our findings contribute to advancing conservation planning,
species reintroductions, and adaptive management strategies.

Subjects Biodiversity, Biogeography, Ecology, Data Mining and Machine Learning, Spatial and
Geographic Information Science

Keywords Alectoris chukar, Ensemble modeling, Wildlife management, Habitat suitability,
Species distribution modeling, Species introductions

INTRODUCTION

The large-scale release of captive-bred species for introduction is a common management
practice, especially for species with commercial or recreational value (Bilal, 2022; Larsen
et al., 2007; Lever, 2005; Long, 1981; Moulton et al., 2018; Parish & Sotherton, 2007). Many
countries established formal acclimatization programs during the 19th and 20th centuries,
aiming to enrich local fauna, enhance hunting opportunities, or provide food resources
through the introduction of non-native species (Lever, 2005; Long, 1981). Throughout the
20th century, the Foreign Game Investigation Program (FGIP)—a United States (U.S.)
government-initiative—focused on identifying, acquiring, and evaluating non-native
wildlife species for potential introduction, primarily as game animals (Bohl ¢ Bump, 1970;
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Bump, 1941; Bump, 1951; Bump, 1963; Moulton et al., 2018; Smith, Cropper Jr & Moulton,
2021). This program aimed to supplement native game populations by introducing species
with favorable traits (e.g., hardiness, high reproductive potential, and hunting appeal)
into areas where native species were scarce or declining. This process often involved
experimental releases, habitat assessments, and extensive field trials. Several avian species,
particularly within the family Phasianidae, were evaluated and released as part of this
initiative (Banks, 1981; Bohl, 1957a; Bohl, 1957b; Bohl & Bump, 1970; Bump, 1941; Bump,
1963; Bump, 1968; Gullion, 1965).

One of the most notable successes was the introduction of the Chukar Partridge
(Alectoris chukar). Chukars are ground-dwelling Eurasian Galliformes that favor high-
elevation, arid habitats dominated by talus slopes, sparse grasses, and shrub cover (Alcorn
& Richardson, 1951; Barnett, 1952; Bohl, 1957a; Christensen, 1970; Christensen, 2020;
Galbreath & Moreland, 1953; Gruychev, Dyakov & Dimitrov, 2014; Harper, Harry & Bailey,
1958; Smith, Cropper Jr & Moulton, 2021). They are among the most widely introduced
gamebirds worldwide, with both notable successes and failures. In the conterminous U.S.,
introductions were attempted in at least 42 states, though self-sustaining populations
are now confined to ten western states. Their core distribution lies in the Great Basin,
extending into eastern Washington, northern Idaho, western Wyoming and Colorado, the
northwestern corner of Arizona, and parts of Montana (Christensen, 1970; Christensen,
2020). Successful introductions also occurred in the Hawaiian Islands, New Zealand,
and through translocations within the native range, whereas efforts in Australia, western
Europe, and southern Africa were largely unsuccessful (Lever, 2005; Long, 1981).

Although programs like the FGIP helped expand gamebird diversity in some regions,
they have been criticized for emphasizing a few successful introductions—such as the
Chukar—while overlooking many failed attempts where species did not establish breeding
populations (Gullion, 1965; Pierce, 1956). Success is often attributed to factors like large
release numbers (e.g., Blackburn, Lockwood & Cassey, 2009; Blackburn, Lockwood ¢ Cassey,
20155 Blackburn et al., 2013; Lockwood, Cassey ¢ Blackburn, 2005), as seen in states like
Utah (185,911), Oregon (113,675), and Washington (50,900); however, many of these large
propagules commonly involved releases after initial introductions had succeeded (Barnett,
1952; Harper, Harry ¢ Bailey, 1958; Moulton ¢ Cropper, 2015; Moulton & Cropper, 2016).
Chukars were not uniformly distributed across these states, often traveling significant
distances (i.e., 5-50 km) to reach preferred habitats, even when release sites appeared similar
(Bohl, 1957a; Galbreath ¢ Moreland, 1953). Despite large-scale releases, several attempts
in states including Minnesota (85,000), Wisconsin (43,013), and New Mexico (31,000)
failed to establish populations, raising concerns about the effectiveness of large-scale
introductions (Moulton & Cropper, 2015; Moulton & Cropper, 2016; Moulton & Cropper,
2019; Moulton et al., 2018). These inconsistencies highlight that large propagule sizes alone
cannot guarantee success, and that environmental variability plays a critical role (Moulton
& Cropper, 2015; Moulton & Cropper, 2016; Smith, Cropper Jr & Moulton, 2021; Smyth ¢
Drake, 2022; van der Marel, Waterman ¢ Lépez-Darias, 2021). Even so, traditional game
management largely depended on broad, qualitative habitat evaluations and trial-and-error
introduction strategies (Christensen, 1970; Gullion, 1965; Lever, 2005; Long, 1981; Pierce,
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1956), which lacked precision and often ignored important local factors. This not only led to
ineffective outcomes but also raised financial and ethical concerns due to high mortality in
unsuitable habitats (Bilal, 2022; Gullion, 1965; Madden, Santilli ¢» Whiteside, 2020). Thus, a
key challenge moving forward is identifying locations with ideal environmental conditions
that truly drive success while minimizing unnecessary losses.

Recent advances in computing technology and comprehensive data sets, particularly
over the last two decades, have enabled the use of more sophisticated statistical and
quantitative methods to better identify suitable habitats and assess trade-offs between
environmental variables (Beery et al., 2021; Elith et al., 2006; Franklin, 2010; Guisan,
Thuiller ¢& Zimmermann, 2017; Guisan et al., 2013; Howard et al., 2014; Peterson et al.,
20115 Zimmermann et al., 2010). For example, species distribution models (SDMs), can
address these limitations by incorporating detailed data and statistical analysis to predict
the potential geographic range of a species based on its known locations and habitat
characteristics (Austin, 2002; Elith ¢ Leathwick, 2009; Guisan ¢~ Thuiller, 2005; Guisan et
al., 2013; Miller, 20105 Norberg et al., 2019; Valavi et al., 2022). SDMs are routinely built
using advanced algorithms known as machine learning, a type of artificial intelligence that
enables computers to learn from data and improve their performance over time without
being explicitly programmed to mechanistically predict (Beery et al., 2021; Crisci, Ghattas
& Perera, 2012; Olden, Lawler & Poff, 2008; Pichler ¢ Hartig, 2023; Ramampiandra et al.,
2023; Zhang & Li, 2017). These algorithms identify patterns in data, make predictions, or
classify information based on known samples (Kuhn & Johnson, 2013).

SDMs are commonly used to assess the impacts of future climate change (e.g., Austin
¢ Van Niel, 2011; Pearson & Dawson, 2003) and to map potential invasion corridors
after a species has established (e.g., Barbet-Massin et al., 2018; Gallien et al., 2012; Mainali
et al., 2015); however, they are less frequently employed to inform intentional species
introductions for game management . To address this gap, Swmith, Cropper Jr ¢ Moulton
(2021) assessed the predictive power of SDMs in identifying suitable sites for Chukar
introductions by examining how site-level environmental factors relate to establishment
success across the contiguous U.S., using ensemble models based on data from the species’
native range. While their results underscored the role of local environmental conditions
in shaping outcomes, the models primarily predicted broad potential ranges rather than
identifying precise introduction sites. Moreover, the authors only considered locations with
known occurrences, excluding areas without observations. To improve predictive accuracy
and inform future efforts, it is essential to compare successful and failed introduction
sites—an approach that can help isolate key environmental drivers of establishment and
guide more effective introductions.

In this study, we explore the use of machine learning-based SDMs as a practical tool
to guide intentional gamebird introductions. Using the Chukar Partridge as a case study,
we analyze historical introduction outcomes in Washington—one of the few events with
records documenting both successes and failures across a range of perceived suitable
and unsuitable habitats. Our first objective was to use SDMs to predict outcomes in
select regions and then apply the models across the rest of the state. Our second goal
was to evaluate the ability of these models to generalize beyond the training region by
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Figure 1 Map of Chukar Partridge (Alectoris chukar) introduction outcomes across Washington
State. County-level outcomes are based on Barnett (1952) and Galbreath & Moreland (1953). Counties
are shaded according to establishment results: blue indicates successful introductions, orange indicates
failed introductions, and gray indicates inconclusive outcomes. Yellow points show GBIF occurrence
records used for model training and validation. Maps were generated in R using Natural Earth polygon
data (https:/www.naturalearthdata.com), GBIF records (https:/doi.org/10.15468/dl.5ybphp), and county
identifications based on Barnett (1952), Galbreath & Moreland (1953 ), and Washington Department of Fish
and Wildlife (2014—-2023) (https:/wdfw.wa.govhunting/management/game-harvest).

Full-size Gl DOI: 10.7717/peer;j.20291/fig-1

testing predictions in neighboring Oregon. By comparing results across both states, we
assess model performance under varied outcomes and refine our understanding of the
environmental drivers behind successful introductions. Ultimately, this approach aims to
improve the precision and efficiency of future introductions, moving away from traditional
trial-and-error strategies toward more informed and cost-effective practices.

MATERIALS & METHODS

Study area and context
We simulated the Chukar introduction efforts in Washington State, as documented by
Barnett (1952) and Galbreath ¢» Moreland (1953) (Fig. 1). Washington is one of the few
states where both successful and unsuccessful Chukar releases have been recorded, in areas
perceived as both suitable and unsuitable. The state’s environmental diversity—from its
wet western regions to its arid eastern landscapes—offers a valuable gradient for examining
the factors that influence establishment success (Alcorn ¢ Richardson, 1951; Barnett, 1952;
Galbreath & Moreland, 1953; Gohain, 1959). Accordingly, we used the Washington counties
where Chukars were introduced as the foundation for our models.

Between 1938 and 1951, over 5,800 Chukars were released across 24 counties. The
most consistent success occurred in the drier, eastern counties, which closely resemble the
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species’ native range (Barneft, 1952; Galbreath ¢» Moreland, 1953; Lever, 2005; Long, 1981).
Other attempts failed, likely due to unsuitable land cover. Releases on the western side
of the Cascades failed quickly—Ilargely attributed to the region’s damp climate. In eight
counties, mainly located in the southeastern quadrant, outcomes were inconclusive.

Following the eventual success in Washington, and given its similar environmental
conditions, Oregon initiated its own widespread Chukar release program (Lever, 2005; Long,
1981). Unlike Washington, Oregon focused exclusively on areas deemed environmentally
suitable, releasing approximately 50,000 Chukars between 1951 and 1956. By 1967, the
population had grown substantially, with an estimated 1,235,000 individuals distributed
across the state.

To evaluate factors influencing Chukar establishment success, we first developed
SDMs based on introduction records from Washington State. Our initial focus was on
counties with variable introduction outcomes, which served as a testing ground to assess
the predictive capacity of habitat suitability modeling under uncertain establishment
conditions. Using presence records from counties with confirmed successful introductions
as the training dataset, we calibrated the model to identify key environmental conditions
associated with establishment success and extrapolated habitat suitability predictions across
all of Washington to assess broader spatial patterns.

To replicate the approach used by the Oregon Game Commission—whose site selection
strategy was based on perceived habitat similarity—we refined our Washington-based
model for application in Oregon. Specifically, models were trained using the entire
Washington dataset, incorporating both training and testing records, to maximize the
representation of environmental variation within that state. By capitalizing on shared
environmental features and ecological analogs between Washington and Oregon, we
projected habitat suitability across Oregon using these Washington-trained models alone.
This approach enabled us to evaluate the generality of SDMs across state boundaries and
to critically assess the ecological soundness of Oregon’s management decisions based on
habitat similarity.

Data collection
Species records

We obtained Chukar occurrence records using data from the Global Biodiversity
Information Facility (GBIF.org, 2025), accessed via the R package rgbif (Chamberlain

et al., 2022). To improve data accuracy, we used the CoordinateCleaner package (Zizka et
al., 2019) to identify and exclude records with imprecise or erroneous coordinates, as well as
remove duplicate occurrences. It is important to note that, although Chukars possess a well-
established naturalized range, numerous occurrence records fall outside of this area. These
outliers are typically attributable to releases from private game ranches or escaped domestic
individuals, which are generally not recognized as part of self-sustaining naturalized
populations (Christensen, 2020). To focus on biologically relevant populations, we limited
our dataset to records from counties in both Washington (Washington Department of Fish
Wildlife, 2014-2023; Table S1) and Oregon (Oregon Department of Fish Wildlife, 2014-2023;
Fig. S1; Table S2) that reported annual hunting harvests of Chukars. We also filtered GBIF
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records to match the temporal scope of harvest data (2014-2023). This resulted in 1,634
occurrences from Washington and 2,676 from Oregon.

For modeling purposes, we partitioned occurrence data into four distinct subsets:
(1) a training dataset comprising records from Washington counties with confirmed
establishment success; (2) a test dataset including all remaining Washington occurrences
not used for model training; (3) a reduced test dataset containing records from counties
where introduction outcomes were classified as inconclusive; and (4) an external test
dataset consisting exclusively of occurrence records from Oregon.

Pseudo-absence sampling

Most biodiversity data sources, such as GBIF, are presence-only—they indicate where a
species has been observed, but not where it was surveyed and not found (i.e., absent).
As a result, species distribution models (SDMs) often rely on pseudo-absences: data
points drawn from areas lacking recorded occurrences and assumed to represent less
suitable conditions (Barbet-Massin et al., 2012; Elith ¢» Leathwick, 2009; Phillips et al.,
2009; Zbinden et al., 2024). While several methods exist for selecting pseudo-absences, each
comes with caveats (Barbet-Massin et al., 2012; Senay, Worner ¢ Ikeda, 2013). The most
basic approach involves randomly sampling locations across the study area, excluding
known presences. Although easy to implement, this method risks selecting areas that
are environmentally suitable but unoccupied or under-sampled. To improve ecological
relevance, environmental filtering restricts pseudo-absence selection to locations with
environmental conditions that differ substantially from those associated with known
presences, helping the model better distinguish between suitable and unsuitable habitat
(Barbet-Massin et al., 2012; Lobo, Jiménez-Valverde ¢ Hortal, 2010; Zbinden et al., 2024).
Similarly, geographic constraints impose spatial buffers—such as excluding areas within a
certain distance of known presences—to reduce the likelihood of selecting false absences
near potentially suitable areas (Senay, Worner & Ikeda, 2013; Van Der Wal et al., 2009).

In this study, we employed a combined approach using both environmental filtering
and geographic constraints. For model training, pseudo-absences were drawn from both
counties with recorded failed and successful introductions. A 5 km buffer was applied
around each occurrence point, reflecting the approximate minimum daily movement
observed in Chukars and accounting for potential observation error or uncertainty
(Galbreath ¢ Moreland, 1953). To ensure a balanced training dataset, we matched the
number of pseudo-absences to the number of presence records (Barbet-Massin et al., 2012).
For model testing, we sampled an additional 10,000 pseudo-absences from counties not
included in the training set and combined them with occurrence data outside of the training
counties. Likewise, for testing model predictions in Oregon, 10,000 pseudo-absences were
sampled across the state, excluding areas within a 5 km buffer of known occurrences.

Environmental data

All environmental data were obtained using the geodata package in R, which provides
access to various global geospatial datasets, specifically designed for environmental and
ecological modeling. The spatial datasets were in raster format with a 1km resolution and
included: WorldClim bioclimatic covariates (Fick ¢» Hijinans, 2017), a set of 19 variables
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summarizing climate variability over a 30-year period, with mean values calculated for each
quadrangle; the European Space Agency’s (ESA) land cover classification, which consists
of ten categories representing the proportion of each land cover type per raster pixel
(Zanaga et al., 2021); and the NASA Shuttle Radar Topography Mission (SRTM) elevation
raster layer, which provides data to calculate elevation, slope, aspect, and the Terrain
Roughness Index (http:/srtm.csi.cgiar.org/). Finally, because Chukars are were frequently
observed near rivers and other water sources (e.g., Bohl, 1957a; Christensen, 1970; Galbreath
& Moreland, 1953; Harper, Harry & Bailey, 1958), we calculated the distance to the nearest
water body for each pixel using spatial polygon data from the rnaturalearth package in R
(Massicotte ¢~ South, 2025).

In total, we compiled 33 potential covariates for use in modeling (Table 1). To ensure
equal weighting among covariates, all raster layers were normalized to a 0—1 scale prior
to point-based extraction and any subsequent preprocessing steps (Har, Pei ¢ Tong,
2022; Smith, Cropper Jr & Moulton, 2021). Additionally, we addressed potential issues of
multicollinearity and high dimensionality—known to impair statistical and machine
learning model performance—by reducing the number of predictors and retaining
only those that were relatively uncorrelated (Fourcade, Besnard ¢ Secondi, 2018; Hastie,
Tibshirani ¢ Friedman, 2009; James et al., 2013; Kuhn & Johnson, 2013; Valavi et al., 2022).
Accordingly, we used a correlation matrix to identify and exclude highly correlated
variables, retaining only those with absolute Pearson correlation value below 0.8. This
process reduced our set of input covariates from 37 to 17, retaining all ten landcover
classes, four bioclimatic variables, measured elevation, and calculated slope and distant
from water.

Statistical methods
Model building framework

We used a supervised learning procedure for our model building; that is, models were
trained to fit our input variables to a known response variable (e.g., habitat suitability). We
used the ‘caret’ package (Kuhn, 2008; Kuhn ¢ Johnson, 2013), an all-in-one platform that
helps streamline machine learning modeling procedures, for our model analysis. ‘caret’ is
a useful tool for non-expert practitioners as it automates the model building process by
generating a series of models with different hyperparameter combinations, and then choses
the best model based on an internal testing statistic. In our framework, we applied the
5-fold cross-validation which was performed five times resulting in 25 training samples.
This process identifies the optimal hyperparameters and subsequently retrains the model
on the entire training dataset using the selected parameters, which is then ready to be used
for predictions.

We employed six widely used machine learning algorithms—commonly applied in
ecological and geospatial modeling—to classify potential Chukar habitat distributions.
These included artificial neural networks (ANN; Lek ¢ Guégan, 1999), K-nearest neighbors
(KNN; Chirici et al., 2016; Franco-Lopez, Ek ¢ Bauer, 2001), generalized additive models
(GAM; Guisan, Edwards Jr ¢ Hastie, 2002), Random Forest (RF; Breiman, 2001; Valavi et
al., 2021), support vector machines (SVM; Drake, Randin ¢ Guisan, 2006), and extreme
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Table 1 Summary of measured environmental covariates. Note: Covariates shown in bold font have an
absolute Pearson correlation value below 0.8 and were retained for model construction.

Variable Source
BIO1 — Annual mean temperature (°C) WorldClim
BIO2 — Mean diurnal range (mean of monthly (max temp WorldClim
- min temp)) (°C)

BIO3 - Isothermality (BIO2/BIO7) (x100) (°C) WorldClim
BIO4 — Temperature seasonality (standard deviation x100) WorldClim
(°C)

BIO5 — Max temperature of warmest month (°C) WorldClim
BIO6 — Min temperature of coldest month (°C) WorldClim
BIO7 — Temperature annual range (BIO5-BIO6) (°C) WorldClim
BIO8 — Mean temperature of wettest quarter (°C) WorldClim
BIO9 — Mean temperature of driest quarter (°C) WorldClim
BIO 10 — Mean temperature of warmest quarter (°C) WorldClim
BIO 11 — Mean temperature of coldest quarter (°C) WorldClim
BIO 12 — Annual precipitation (mm) WorldClim
BIO 13 — Precipitation of wettest month (mm) WorldClim
BIO 14 — Precipitation of driest month (mm) WorldClim
BIO 15 — Precipitation seasonality (coefficient of WorldClim
variation) (mm)

BIO 16 — Precipitation of wettest quarter (mm) WorldClim
BIO 17 — Precipitation of Driest Quarter (mm) WorldClim
BIO 18 — Precipitation of warmest quarter (mm) WorldClim
BIO 19 — Precipitation of coldest quarter (mm) WorldClim
Tree cover (%) ESA
Shrubland (%) ESA
Grassland (%) ESA
Cropland (%) ESA
Built-up/urban (%) ESA
Bare/sparse vegetation (%) ESA

Snow and ice (%) ESA
Permeant water body (%) ESA
Herbaceous wetland (%) ESA

Moss and lichen (%) ESA
Elevation (m) SRTM
Slope (rad) Calculated
Terrain Roughness Index Calculated
Distance from water source (m) Calculated

gradient boosting (XGBoost; Chen ¢» Guestrin, 2016; Valavi et al., 2022), recommended
over the conventional gradient boosting machine (i.e., GBM; De’Ath, 2007; Elith, Leathwick
¢ Hastie, 2008; Friedman, 2001). A summary of each algorithm is provided in Table 2. To
minimize individual model bias and enhance prediction reliability, we also generated an
ensemble model based on the averaged outputs of all six algorithms (Araiijo & New, 2007;
Friedman, 2001; Kaky et al., 2020; Thuiller et al., 2009).
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Table 2 Summary of algorithms with their respective R package extension.

Method

Overview

Rlibrary

ANN

GAM

KNN

RF

SVM

XGBoost

Created to replicate the human brain, these models use
several stacked, fully connected layers of information-
processing units (i.e., ‘neurons’) that transform input data
into more manageable features for processing. Each neuron
incorporates an activation function (e.g., sigmoid function)
to decide if the processed information is important for the
model’s learning. Neurons are connected through weighted
scalars, which determine the strength of the connections
and are recalibrated throughout the model training phase.

An extension of generalized linear models that allows for
nonlinear relationships between predictors and response
variable. Models are the effect of each predictor using
smooth functions (i.e., splines) instead of linear functions
and the prediction is the sum of the individual effects of
each variable. Models are optimized using component
wise boosting—a process where each sequential iteration
corrects the learning errors of the previously attempt.

A non-parametric method based on input data mapping.
Models store and visualize all training data in a
multidimensional feature space, with each point labeled

by its class. New samples are classified based on the majority
vote of the nearest points when projected into the feature
space.

An ensemble method that generates a series of fully grown,
unpruned decision trees, constructed from bagging (i.e.,
bootstrap aggregation). Each tree is provided different
bootstrapped samples of the data and a random subset

of features at each decision node. The final decision (i.e.,
model output) is the averaged score (regression) or the
majority vote (classification) amongst all trees.

A supervised method that maps input data, where models
use a hyperplane to achieve the maximum separation
between output classes. The hyperplane is positioned by
the closest neighboring points (i.e., support vectors) to
maximize the distance between them and the decision
boundary.

An ensemble method that generates a series of weak
predictive decision trees, built from a subset of available
input variables, and calibrates hyperparameters using
gradient boosting—a process where each sequential tree
corrects the learning errors of the previously trained tree(s).
The models incorporate regularization techniques, which
enhance generalization and reduce overfitting.

nnet

mboost

base

randomForest

el071

mboost

Model evaluation metrics
All models were initially evaluated using the area under the receiver operating characteristic

curve (AUROC) a widely used metric that summarizes the trade-off between sensitivity

and specificity across a range of classification thresholds (Hastie, Tibshirani ¢ Friedman,
2009; James et al., 2013; Kuhn & Johnson, 2013). Sensitivity refers to the proportion of true
positives (i.e., correctly predicted species presences) among all actual presences, while
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Table 3 Model prediction statistics for Washington testing regions and Oregon. Accuracy metrics are
area under the receiver operating characteristic (AUROC) curve and the true skill statistic (TSS).

Washington (all testing regions) =~ Washington (unsure regions) Oregon
Model AUROC TSS AUROC TSS AUROC TSS
Ensemble 0.98 0.85 0.92 0.71 0.90 0.62
ANN 0.97 0.82 0.87 0.66 0.86 0.57
GAM 0.97 0.82 0.88 0.65 0.88 0.58
KNN 0.96 0.83 0.90 0.66 0.79 0.48
RF 0.97 0.84 0.91 0.69 0.91 0.64
SVM 0.94 0.75 0.77 0.45 0.85 0.64
XGBoost 0.97 0.84 0.91 0.68 0.87 0.55

specificity is the proportion of true negatives (i.e., correctly predicted absences) among
all actual absences. AUROC values range from 0 to 1, with 0.5 indicating performance no
better than random chance. Models with AUROC >0.7 are generally considered useful,
while values above 0.9 are considered excellent; values below 0.5 suggest confusion between
classes and unreliable predictions (Guisan, Thuiller ¢ Zimmermann, 2017).

Because species distribution models (SDMs) typically generate continuous suitability
scores (e.g., ranging from 0 to 1), they are informative for ecological interpretation
but less intuitive for decision-making (Liu et al., 2005; Liu, Newell ¢ White, 2016). To
simplify model evaluation and facilitate interpretation in applied contexts, we converted
continuous predictions into binary classifications (suitable vs. unsuitable) using the
optimized specificity—sensitivity threshold (Barbet-Massin et al., 2012; Liu, Newell ¢ White,
2016). This threshold was selected to maximize the true skill statistic (TSS), calculated
as sensitivity plus specificity minus one. TSS evaluates the model’s ability to correctly
distinguish between presences and absences and, importantly, is not influenced by class
prevalence. In general, TSS values above 0.6 are considered to indicate good model
performance (e.g., Gonzdlez-Ferreras, Barquin ¢ Pefias, 2016).

RESULTS

Model performance

Models performed strongest when evaluating samples from across the entire Washington
testing regions (Table 3). The ensemble model achieved the highest score, with an AUROC
of 0.98 and TSS scores of 0.8. This was followed closely by RF and XGBoost, both yielding
AUROC = 0.97 and TSS = 0.84. ANN and GAM showed similar performances with
AUROC values of 0.97 and TSS values of 0.82. KNN also produced competitive results
(AUROC = 0.96, TSS = 0.83), while SVM showed the lowest performance (AUROC =
0.94, TSS = 0.75).

In assessing Washington’s unsure regions, performance declined across all models
(Table 3). The ensemble (AUROC = 0.92, TSS = 0.71), RF (AUROC = 0.91, TSS = 0.69)
and XGBoost (AUROC = 0.91, TSS = 0.68) maintained top-tier performance. KNN also
performed well in this subset (AUROC = 0.90, TSS = 0.66), while GAM (AUROC =
0.88, TSS = 0.65) and ANN (AUROC = 0.87, TSS = 0.66) both demonstrated moderate
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Figure 2 Predicted spatial distribution of Chukar Partridge (Alectoris chukar) across Washington.
The leftmost panel shows observed occurrence records used to train and evaluate the models. Remaining
panels show predicted habitat suitability from the ensemble model and six individual algorithms: artificial
neural networks (ANN), generalized additive models (GAM), random forests (RF), support vector ma-
chines (SVMs), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost). Suitability values
range from 0 (dark) to 1 (light), with each model capturing different spatial patterns and prediction inten-
sities.

Full-size Gal DOIL: 10.7717/peerj.20291/fig-2

performance. SVM exhibited a notable decline, producing the lowest TSS (0.45) and an
AUROC of 0.77.

In Oregon, model performance for predicting Chukar habitat suitability varied across
algorithms but overall demonstrated strong predictive ability. RF and the ensemble model
achieved the highest performance, each with an AUROC of 0.90 and TSS values of 0.62
and 0.61, respectively. SVM and XGBoost followed, both with TSS values of 0.57; however,
SVM had alower AUROC of 0.83 compared to 0.87 for XGBoost. GAM and ANN produced
slightly weaker results, with GAM achieving an AUROC of 0.86 and a TSS of 0.54, and
ANN an AUROC of 0.83 and a TSS of 0.51. Although both fall just below the 0.6 TSS
threshold for “good” classification, they still reflect moderate predictive performance.
KNN exhibited the weakest results, with the lowest AUROC (0.76) and TSS (0.43). While
still exceeding the AUROC threshold for utility, KNN did not meet the TSS criterion for
reliable classification, indicating relatively limited predictive capacity in this context.

Spatial suitability predictions

Suitability maps for Washington, generated by each modeling algorithm, are presented
in Fig. 2 and compared against known species occurrence points. Predicted suitability is
ranked on a continuous scale from 0 to 1, with higher values indicating greater predicted
suitability. Across all models, higher suitability was generally concentrated in the central
and eastern regions of the state. Among the models, the Ensemble, RF, and XGBoost
exhibited the strongest spatial agreement, producing sharply defined high-suitability areas
that closely aligned with observed occurrence data. ANN and GAM also captured the overall
distribution of suitable areas but showed less spatial precision. In contrast, KNN and SVM
showed lower spatial specificity and produced broader and more diffuse suitability patterns.
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Figure 3 Predicted spatial distribution of Chukar Partridge (Alectoris chukar) across Oregon. The left-
most panel shows observed occurrence records used to train and evaluate the models. Remaining panels
show predicted habitat suitability from the ensemble model and six individual algorithms: artificial neu-
ral networks (ANN), generalized additive models (GAM), random forests (RF), support vector machines
(SVM), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost). Suitability values range
from 0 (dark) to 1 (light), with each model capturing different spatial patterns and prediction intensities.
Full-size Gal DOI: 10.7717/peerj.20291/fig-3

Suitability predictions for Oregon were notably less consistent across models (Fig. 3).
In general, the western portion of the state was predominantly predicted as low suitability,
which aligns with the absence of observed occurrences in that region. The Ensemble,
RF, and XGBoost models again demonstrated the most structured and spatially focused
predictions, showing strong correspondence with known presence locations. Predictions
from ANN and GAM were similar in pattern but tended to overpredict suitable areas
beyond known occurrence zones. KNN highlighted areas of high suitability but frequently
overgeneralized, suggesting potential overfitting in spatial extrapolation. The SVM model
produced the most conservative prediction, identifying only a few isolated zones of high
suitability near dense occurrence records.

DISCUSSION

This study highlights the utility of machine learning-based SDMs as a robust framework for
informing intentional species introductions in game management. By simulating historical
introduction efforts of the Chukar Partridge in Washington and projecting predictions into
Oregon, we evaluated the capacity of SDMs to identify environmentally suitable habitats
and assess their transferability across state boundaries. Overall, our models achieved
strong performance, particularly the ensemble, RF, and XGBoost algorithms, which
consistently showed high classification accuracy and spatial concordance with known
species occurrences.

Importantly, our results highlight the benefits of ensemble modeling. A common
challenge in SDMs is selecting an appropriate algorithm, particularly in the context of
hyperparameter tuning and avoiding overfitting (Araiijo & New, 2007; Guisan, Thuiller ¢
Zimmermann, 2017; Norberg et al., 2019; Valavi et al., 2022; Zhang & Li, 2017). Ensemble
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approaches or model averaging offer robust solutions to these challenges (Aratijo ¢ New,
2007; Guisan, Thuiller & Zimmermann, 2017; Smith, Cropper Jr & Moulton, 2021; Thuiller
et al., 2009). In our study, the ensemble model exhibited the highest spatial specificity, with
sharply defined high-suitability zones concentrated near known presence points. This level
of spatial precision is especially valuable for applied decision-making, allowing managers
to prioritize candidate introduction sites with greater confidence.

Notably, individual algorithms can also be highly effective (Hao et al., 2020; Kaky et al.,
20205 Norberg et al., 2019; Valavi et al., 2022). Both the RF and XGBoost models performed
exceptionally well, which is not surprising given that these are themselves ensemble-based
decision tree models—further reinforcing the strength of ensemble learning approaches.
At the same time, non-ensemble methods such as ANN and GAM produced promising
predictions, consistent with previous studies supporting their use in ecological modeling
(Franklin, 2010; Guisan, Edwards Jr ¢ Hastie, 2002; Lek & Guégan, 1999). In contrast,
models such as SVM and KNN, while statistically sound, generated broader and more diffuse
suitability patterns. These results may reflect challenges associated with high-dimensional
feature spaces and sensitivity to local density variations (i.e., curse of dimensionality; Hastie,
Tibshirani ¢ Friedman, 2009; James et al., 2013), making such approaches less suitable for
fine-scale ecological modeling.

The ability of the Washington-trained models to generalize to Oregon also provides
insights into the ecological transferability of SDMs. Despite differences in data origin, the
top-performing models demonstrated strong predictive power when applied to Oregon’s
introduction landscape. This suggests that shared environmental gradients can facilitate
the successful application of models trained in one region to another, especially when care
is taken to ensure ecological and climatic congruence (Aratijo ¢ Peterson, 2012; Barbet-
Massin et al., 2012; Van Der Wal et al., 2009; Velazco et al., 2024). The fact that Oregon’s
large-scale Chukar introductions were concentrated in regions our models predicted as
highly suitable offers retrospective support for the state’s management strategy—despite its
original reliance on qualitative assessments—and further asserts the critical role of habitat
conditions in introduction success.

At the same time, model accuracy declined when applied to counties in Washington
with historically variable introduction outcomes. This reduction in performance likely
reflects the ecological ambiguity of these transitional zones, which lie near the threshold
of environmental suitability. However, these areas are particularly valuable for evaluating
model resolution and sensitivity, as they capture subtle environmental gradients that may
influence establishment outcomes. Notably, the continued strong performance of several
models—such as the ensemble, Random Forest, and XGBoost—even in these uncertain
contexts, suggests that species distribution models can still provide meaningful insights
under ecologically ambiguous scenarios.

Nonetheless, several limitations warrant consideration. As with all modeling frameworks,
it is important to choose covariates that are ecologically informative, but also linearly
independent to reduce overfitting (Duan et al., 2014; Hastie, Tibshirani ¢ Friedman, 2009;
James et al., 2013; Norberg et al., 2019). Undoubtably, all covariates measured in the study
can affect local populations; nonetheless, this information was highly correlated and/or
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redundant, which could lead to model bias (Aratijo ¢ Peterson, 2012; Hastie, Tibshirani &
Friedman, 2009; James et al., 2013; Strobl et al., 2007). Here we reduced the dimensionality
by reducing multicollinearity; however, it is possible the incorporation of other variables or
different selection methods (e.g., different correlation thresholds, clustering, replacement,
etc.) could improve model performance (Austin ¢ Van Niel, 2011). Additionally, our
environmental predictors—though comprehensive—may still omit key variables related to
microhabitat conditions, interspecies competition, or anthropogenic influences (e.g., land
use changes). Beyond abiotic factors, studies have shown that behavioral dynamics, local
species interactions, and biotic events (e.g., grazing pressure, vegetation shifts, or predator
abundance) can strongly influence species distribution and productivity (Gruychev, Dyakov
& Dimitrov, 2014; Pearson & Dawson, 2003; Wittmann et al., 2016). Finally, our models rely
on historical occurrence records, which may be influenced by observer bias or inconsistent
survey effort (Phillips et al., 2009; Zizka et al., 2019).

Similarly, pseudo-absence selection requires careful consideration to avoid
mischaracterization of habitat suitability (Barbet-Massin et al., 2012; Phillips et al., 2009).
From a methodological standpoint, our inclusion of pseudo-absences derived from both
successful and failed introduction counties enhances the ecological realism of our models.
This approach enabled direct comparisons between suitable and unsuitable environments,
rather than relying solely on presence-only data,which are often spatially biased or clustered
(Elith ¢ Leathwick, 2009; Peterson et al., 2011; Van Der Wal et al., 2009). To minimize
the risk of incorporating false absences and improve model discrimination, we applied
environmental filtering and spatial buffering which previous studies have shown improve
model predictions (e.g., Barbet-Massin et al., 2012; Phillips et al., 2009; Senay, Worner &
Ikeda, 2013; Van Der Wal et al., 2009; Zbinden et al., 2024). However, some areas classified
as unsuitable may have been inaccurately represented. For example, Chukars released
from captivity are highly mobile and generally exhibit low site fidelity, complicating efforts
to accurately infer habitat associations (Bohl, 1957a; Christensen, 1970; Christensen, 2020;
Galbreath ¢ Moreland, 1953; Harper, Harry ¢ Bailey, 1958). Additionally, individuals have
been documented dispersing more 50 km from introduction points (Bohl, 1957a; Galbreath
& Moreland, 1953; Harper, Harry ¢ Bailey, 1958)—well beyond the buffering thresholds
used in our analyses. Such mobility may influence model performance, particularly when
predictions are extended to regions of uncertain establishment (Barbet-Massin et al.,
2018; Velazco et al., 2024). We therefore recommend that future studies critically evaluate
assumptions regarding species movement and site fidelity when selecting pseudo-absences,
as these methodological choices can substantially affect model outputs.

Despite these challenges, the modeling framework presented here offers a significant
advancement over traditional introduction strategies. By combining high-resolution
environmental data, robust machine learning algorithms, and empirical records of both
success and failure, this approach allows wildlife managers to make more informed and
efficient decisions. As species introductions become increasingly subject to ecological,
ethical, and economic scrutiny, the integration of SDMs into environmental planning
represents a critical step toward effective management practices.
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CONCLUSION

Our study demonstrates that SDMs, especially with machine learning ensemble methods
and biologically relevant pseudo-absence selection, can predict gamebird establishment
successfully across diverse landscapes. Additionally, our models provided strong predictions
for retrospective evaluation and future management planning. The consistency of model
performance across different algorithms reinforces the importance of habitat suitability in
introduction success, while also highlighting the need for careful consideration of species
movement behavior and site fidelity in SDM construction. These findings highlight the
effectiveness of machine learning and ensemble modeling in guiding species introductions,
reintroductions, and broader conservation strategies.
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