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ABSTRACT
Determining mango ripeness is essential for ensuring its delicious taste, enticing
aroma, and rich nutritional value. For farmers, harvesting mangoes too early can result
in stunted fruit and lower yields compared to those harvested at a ripe stage. This
study aims to develop a potentially non-invasive and efficient method for detecting
mango ripeness using Raman spectroscopy. Traditional methods, which rely on human
assessment and color evaluation with image processing, are inconsistent, inaccurate,
and time-consuming due to variations in mango color and individual differences in
vision and perception. To address these limitations, this study pursued three main
objectives: extracting data characteristics of organic compounds in mangoes based on
raw Raman spectrum data, identifying the correlation between carotene characteristics
and mango ripeness levels, and evaluating the performance of machine learning
models in classifying mango ripeness levels. A total of 29 mango fruit spectra were
analyzed, with 13 samples selected to represent three ripeness categories: underripe,
ripe, and overripe. Raman spectra peak signal analysis revealed thatmango peel contains
lycopene, β-carotene, lutein, and neoxanthin, all of which are derived from carotenoid
molecules in the range of 1,480 cm−1 to 1,550 cm−1. Statistical analysis confirmed the
significance (p< 0.05) of extracted Raman Peak Intensity features in distinguishing
ripeness levels, supported by high correlation coefficients between carotenoid peak
intensity andmangomaturity. This study achieved 100% accuracy in classifying mango
ripeness levels using three classifier models: the Medium Gaussian Support Vector
Machine, the Cubic Support Vector Machine, and the Weighted K-Nearest Neighbors.
Raman spectroscopy has proven to be a reliable and robustmethod, immune to external
factors such as light, humidity, and noise, which makes it a promising approach for
assessing mango ripeness.

Subjects Biochemistry, Plant Science, Computational Science, Data Mining and Machine
Learning
Keywords Mango, Ripeness, Raman spectroscopy, Carotene, Machine learning

How to cite this article Tan JL, Hashim FH, Sampe J, Baseri Huddin A, Salim GM, Md Ali SH. 2025. Machine learning classification of
mango maturity based on carotene content from Raman spectra. PeerJ 13:e20288 http://doi.org/10.7717/peerj.20288

https://peerj.com
mailto:fazida@ukm.edu.my
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.20288
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.20288


INTRODUCTION
Mango is one of the most esteemed tropical fruits globally, renowned for its delicious
taste, enticing aroma, and rich nutritional value (Lebaka et al., 2021; Zhang, Zhu & Zhu,
2022). In the 21st century, mangoes emerged as the popular tropical fruit in terms of
production, with a remarkable global output exceeding 51 million tons in 2019 (Lebaka
et al., 2021; Islam et al., 2017). Malaysia primarily produces mangoes for the local market
and exports them to other countries, such as Singapore, Hong Kong, and Brunei (Ding &
Darduri, 2013).Malaysia’smango production industry has gained international recognition
not only for its large production volumes but also for being a good source of vitamin
(Rozana, Suntharalingam & Othman, 2017; Uda et al., 2020). In addition to its delicious
taste, mango has a rich chemical composition, including structural carbohydrates such as
pectin and cellulose, and major amino acids like lysine, leucine, cysteine, valine, arginine,
phenylalanine, and methionine (Lebaka et al., 2021; Maldonado-Celis et al., 2019; Mustafa
et al., 2023). During the ripe stage, the unsaturated fatty acids & lipid composition increase,
showing significant levels of omega-3 and omega-6 fatty acids (Maldonado-Celis et al.,
2019; Yahia et al., 2023; Hernández-Estrada et al., 2022). The primary pigments in mango
are chlorophylls (a and b) and carotenoids, while the main organic acids are malic acid
and citric acid (Maldonado-Celis et al., 2019; Deshpande et al., 2016). The unique aroma
of mango comes from a diverse group of volatile components that undergo significant
biochemical, physiological, and structural changes during development and ripening,
affecting its nutritional and phytochemical composition, as well as its aroma, taste, and
antioxidant capacity.

For consumers, ripemangoes offer the best balance of taste, texture, and nutritional value
(Appiah, Kumah & Idun, 2011). Unripemangoes are complex and less sweet, while overripe
mangoes are prone to rot and may breed harmful microorganisms (Lebaka et al., 2021).
For farmers, the timing of mango harvesting is essential, as harvesting too early results in
stunted fruit and lower yields (Kour et al., 2018). Therefore, understanding mango ripeness
can lead to informed harvesting and marketing decisions, ultimately increasing farmers’
income and operational efficiency. Traditional methods for determining mango ripeness
rely on visual assessment of color, which are prone to inconsistencies due to variations
in mango color and individual differences in vision and perception (Zulkifli et al., 2018).
The researchers have explored image processing methods for ripeness assessment, but
these methods suffer from accuracy issues due to changes in light intensity throughout
the day and under different lighting conditions (Zulkifli et al., 2018). To address these
limitations, this study pursued three main objectives: extracting data characteristics of
organic compounds in mangoes based on raw Raman spectrum data, identifying the
correlation between carotene characteristics and mango ripeness levels, and evaluating
the performance of machine learning models in classifying mango ripeness levels. The
novelty of this study lies in its integration of raw Raman spectral analysis with carotenoid
identification and advanced machine learning classification for mango ripeness detection.
Unlike prior works that focus solely on surface color or basic spectral fingerprints, this
study explores the distinct vibrational signatures of ripeness-related compounds which
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are carotenoids as main features in supervised learning classification. Moreover, this
work contributes spectral dataset collected under real-world conditions and evaluates
multiple machine learning models to determine the optimal approach for robust and
non-destructive mango ripeness classification.

Raman spectroscopy is one of the vibrational analysis techniques in food chemistry,
which is valued for its non-destructive approach, high sensitivity, and capability to provide
straightforward interpretation and precise structural identification of both organic and
inorganic compounds without extensive sample preparation (Sun et al., 2022; Tzuan et al.,
2022; Raj et al., 2021; Rostron, Gaber & Gaber, 2016). According to Dan et al. (2018), each
raw Raman spectrum consists of signals convolved and contributed by different organic
compounds (Dan et al., 2018). Notably, Raman spectroscopy enables in situ analysis to
determine structural composition under field conditions. Its applications extend beyond
assessing mango ripeness to include monitoring plant health, early disease diagnosis,
and identifying biotic and abiotic structures in plants. A recent study by Trebolazabala et
al. (2017) successfully employed portable Raman spectroscopy to investigate changes in
carotene and chlorophyll a levels in tomatoes at different ripening stages, demonstrating the
potential for establishing an accurate automated grading system (Trebolazabala et al., 2017).
By focusing on carotenoids as Raman scatterers, the accuracy of ripeness assessments can
be significantly improved. Developing machine learning models to identify key indicators
of ripeness for automated ripeness classification systems has also been proven in previous
research (Tzuan et al., 2022; Raj et al., 2021).

Furthermore, a comparative analysis of fruit ripeness detection technologies identified
three key competitors: computer vision, near-infrared spectroscopy (NIR), and Raman
spectroscopy (Zulkifli et al., 2018; Tzuan et al., 2022; Raj et al., 2021; Makky, Soni &
Salokhe, 2014; Silalahi et al., 2016). While computer vision leverages optics, image
processing, and pattern recognition, its reliance on RGB values for color analysis can
lead to inaccuracies due to varying lighting conditions. Although NIR spectroscopy is non-
destructive, it requires frequent instrument calibration, which can extend measurement
time and is essential for obtaining accurate results. In contrast, Raman spectroscopy has
emerged as the superior choice, demonstrating excellent performance in accurate and
non-invasive ripeness assessment.

MATERIALS & METHODS
This section describes the materials and methods used in this study, beginning with the
preparation of mango fruit samples, the Raman spectroscopy setup for acquiring raw
Raman spectra, spectral processing for feature extraction, statistical analysis to select
the optimal features, and finally, the classification analysis tools employed. This study
comprises seven main stages as illustrated in Fig. 1, each systematically designed to achieve
the research objectives. These stages include the collection and preparation of mango fruit
samples, acquisition of raw Raman spectral data, Raman spectral pre-processing for noise
reduction and feature extraction, correlation and statistical analysis for data interpretation,
and classification analysis to determinemango ripeness using appropriatemachine learning
techniques.
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Figure 1 Research framework for machine learning-based classification of mangomaturity using Ra-
man spectroscopy.

Full-size DOI: 10.7717/peerj.20288/fig-1

Mango fruits sample preparation
In this study, 29 mango fruit samples were collected from private plantation trees and
purchased from a local grocer. The mangoes were classified into three ripeness categories
(underripe, ripe, and overripe) based on color, texture, and taste (Uda et al., 2020).
Carotenoids are pigments that produce bright yellow, red, and orange colors in plants,
vegetables, and fruits. They are present in both the skin and pulp of mangoes (Lebaka et
al., 2021). Measuring carotenoids in fruit pulp can be challenging due to the presence of
other pigments such as chlorophyll and anthocyanins. Additionally, as chlorophyll content
decreases, the carotenoid concentration in the pulp and peel of the fruit will increase
(Lebaka et al., 2021;Maldonado-Celis et al., 2019; Yahia et al., 2023).

Hence, exocarp samples were taken from each fruit, representing the top (T), middle
(M), and bottom (B) parts, to account for color variations influenced by sunlight exposure
during growth. Following the collection of mango skin samples, each section was carefully
mounted onto glass microscope slides and analyzed using a Raman spectrometer to obtain
the corresponding raw spectral data, as shown in Fig. 2.

After obtaining the Raman spectrum in the formof a CSV file, each spectrum is processed
using Orange Data Mining and OriginPro 2017 software to obtain hidden peaks resulting
from molecular vibrations in the mango skin sample. In this step, mango species that do
not have a clear peak and are not suitable for this study will also be discarded.

Raman spectroscopy
Raman spectroscopic measurements of mango samples with varying ripeness levels,
including underripe, ripe, and overripe fruits, were conducted using the Thermo Scientific™
DXR™ 2xi Raman spectroscopy system (Thermo Fisher Scientific, Waltham, MA, USA).
This advanced system enables point measurements at submicron spatial resolution across
a large area. To ensure accurate results, a 532 nm green laser was employed, as it aligns
with the Raman equation I ∝ 1/λ4, where I represents the Raman vibration intensity and
is inversely proportional to the wavelength, λ4.

To maintain the structural and molecular composition integrity of the mango fruit’s
interior, careful control of the sample was important. The 532 nm laser was directed to the
sliced skin of the mango fruit to obtain a microscopic view. From this view, the area to be
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Figure 2 Raman spectroscopy analysis onmango samples at different maturity stage.
Full-size DOI: 10.7717/peerj.20288/fig-2

scanned was selected, and a spot-sized local measurement was conducted. Subsequently,
the spectroscopy system calculated and determined the average value for the selected
region, generating an output spectrum that comprised Raman intensity and wave number.
This Raman spectrum analysis allowed for the accurate categorization of mango ripeness
levels. By studying the distinct Raman spectra associated with underripe, ripe, and overripe
mango samples, the methodology aimed to establish a reliable and effective approach for
classifying mango ripeness.

Raman spectral processing
Data pre-processing in this study involves three key stages: background noise removal,
data smoothing, and spectral segmentation. These stages are crucial for subsequent
feature extraction processes. The primary objective of data pre-processing is to effectively
eliminate noise signals, ensuring smoother and more accurate analysis. Additionally, it
aims to transform raw data into a format suitable for machine learning procedures. Noise
in the raw data may arise from instrumentation or environmental factors, making data
pre-processing crucial in maintaining data quality and addressing the challenges inherent
in the raw data.

To address fluorescence contamination in Raman spectra, the rubber band algorithm
was employed for background noise removal. This step is crucial for controlling noise data
before proceeding with feature extraction. Consequently, a Savitzky-Golay digital filter was
utilized for data smoothing.

Furthermore, a spectral segmentation process was applied to the smoothed Raman
spectrum, allowing for the elimination of irrelevant portions that are not pertinent to this
study. The primary focus is on the vibrational band located in the wavelength range of
1,480–1,550 cm−1. By concentrating on this specific part of the spectrum, the analysis
can target key features associated with mango ripeness levels, thereby facilitating accurate
classification.

Following spectral segmentation, the data underwent a deconvolution process utilizing
curve-fitting techniques. In this step, a sum of four Lorentzian profiles was employed,
and the profiles were manually positioned to establish the initial curve-fitting parameters.
The resulting deconvoluted spectra exhibited variations in peak positions, which were
subsequently calibrated using the pure β-carotene peak position as a reference marker.
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Statistical analysis
Statistical analysis is employed to examine the characteristics extracted from the data,
which helps to identify features with low statistical significance and exclude them from the
dataset. The homogeneity test is utilized to determine variations in variance between the
three ripeness levels. If variance is detected, follow-up tests, namely the Brown-Forsythe
and Welch tests, are performed to validate the results. Additionally, a one-way ANOVA is
conducted to analyze the minimum differences in selected characteristics across ripeness
levels and provide insights into features with low statistical significance.

Subsequently, a multiple comparison analysis was performed as a post hoc test to
determine the exact minimum differences between the three categories (underripe, ripe,
and overripe) for the characteristics that passed the ANOVA test. In this study, Gabriel’s
test is chosen due to the non-uniform sizes of the mango fruit samples. The Games-Howell
test is also conducted to confirm the characteristics further.

The significant characteristics that undergo statistical analysis include the position of
the Raman peak, the intensity of the Raman peak, the full-width half-maximum (FWHM),
and the intensity ratio of the Raman peak. Features showing statistical significance were
selected for the subsequent classification analysis. This comprehensive approach ensures
accurate classification of mangoes based on their ripeness levels.

Classification analysis
In this study, machine learning techniques were employed to analyze the ripeness level
of mangoes using the Classification Learner function in MATLAB software. Specifically,
two machine learning algorithms, such as support vector machine (SVM) and K-Nearest
Neighbors (KNN), were utilized for classification purposes.

The essential features obtained from the statistical analysis process were carefully selected
as input data for the machine learning models. By leveraging these significant features, the
machine learning classifiers can effectively learn patterns and relationships that distinguish
between different ripeness levels of mangoes.

The primary evaluation metric used was accuracy, defined as the ratio of correctly
classified instances to the total number of cases. Accuracy was chosen for its simplicity
and direct interpretability in scenarios with balanced class distributions where the mango
samples were relatively evenly distributed across the ripeness categories (underripe, ripe,
and overripe).

Furthermore, confusion matrix analysis was used to visualize and interpret model
performance across all ripeness classes, allowing for the identification of any systematic
biases or misclassification trends. Additionally, receiver operating characteristic (ROC)
curves were used to evaluate the discriminative ability of themodels for binary classification
subproblems.

RESULTS
In this section, the focus was on a comprehensive examination of various aspects related to
the mango fruit samples collected for this study. Specifically, we conduct a detailed analysis
of mango fruit spectra, examine the distinctive features present in the data, perform
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statistical analysis to uncover patterns and trends, and showcase the outcomes of the
classifier analysis.

After comparing the average Raman spectra of the top, middle, and bottom regions
of 29 mangoes, the results showed that local mango varieties, such as Padi Mango and
Chok AnanMango, and foreign varieties, such as R2E2 Mango, exhibited clear and distinct
peaks. This may be attributed to the absence of food-grade paraffin wax on the surfaces
of these mangoes, unlike other varieties. The 29 samples comprised Mango R2E2 (19),
Mango Susu (2), Mango EV (1), Mango Golden Lily (1), Mango Aiwen (2), Mango Chok
Anan (1), and Mango Padi (3). However, only 13 R2E2 mangoes were included in the final
analysis due to inconsistencies or low signal quality in the Raman spectra of the excluded
samples. The selected sample size was determined based on data quality considerations,
given the strong spectral consistency and significant variance observed across the retained
samples. Food-grade paraffin wax can interfere with the light collection process used
in Raman spectroscopy and cause changes in the resulting spectrum, which consists of
distinct chemical compositions and can affect the Raman spectra (Prinsloo, du Plooy & van
der Merwe, 2004).

In addition, the selection of 13 Mango R2E2 samples (five unripe, four ripe, and four
overripe) for this study was based on their popularity and wide accessibility across diverse
retail settings, including supermarkets, grocery stores, and fruit markets.

Mango fruits Raman spectra
Among the five peaks observed in the Raman spectra of R2E2 Mango, peak 5 recorded
the highest Raman intensity value, while peak 1 had the lowest Raman intensity value.
The sequence of peaks, based on increasing Raman intensity values, is as follows: peak
1, 4, 2, 3, and 5. Raman bands are related to the molecular vibrations present in mango
fruit samples. Additionally, the peak position of the Raman spectrum is connected to the
structure of the functional groups. Furthermore, the observed Raman intensity value for
each peak provides information about molecular density; higher molecular density results
in lower peak intensity, whereas lower molecular density leads to higher peak intensity. It
is essential to study the relationship between the peak position in the Raman spectrum and
the material’s structure.

The Raman spectrumobtained in this study showed that each observed peak corresponds
to molecular vibrations in the carotenoid compound, as shown in Fig. 3. In addition, Fig. 4
also shows the difference in Raman spectra between underripe, ripe, and overripe mangoes.
These compounds consist of molecular chains, such as C=C, C-C, CH3, and CH2, each
producing a distinct vibrational mode, and verify the findings from Raj et al. (2021). The
first peak, located around 956 cm−1, results from molecular vibrations of C-C, CH2, and
CH3 in carotenoids. The second peak at 1,005 cm−1 is attributed to the C-H stretching
vibration of the CH3 group. Moreover, the third peak found at 1,150 cm−1 is associated
withC-Cmolecular vibrations. Additionally, the fourth peak, located at around 1,270 cm−1,
is possibly representing C-H molecular vibrations. Lastly, the fifth Raman peak, situated at
about 1,515 cm−1, is attributed to the vibration of the C=C molecule.
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Figure 3 Raman spectra of mango fruit with molecular vibrationmode references.
Full-size DOI: 10.7717/peerj.20288/fig-3

Figure 4 Difference in Raman spectra between underripe, ripe and overripe mango.
Full-size DOI: 10.7717/peerj.20288/fig-4

According to Trebolazabala et al. (2017), ripe and overripe fruits exhibited high levels
of β-carotene. β-carotene is responsible for the red-orange pigment found in fruits,
vegetables, and trees (Trebolazabala et al., 2017). As a result, the presence of β-carotene
is less noticeable in underripe fruits. The lack of β-carotene content at the less mature
stage can also be attributed to the possible dominance of the green pigment contributed by
chlorophyll a compounds. Therefore, the selection of the 1,480 cm−1 to 1,550 cm−1 range
for this study was motivated by the presence of β-carotene in this particular range.

The Raman peak position documented in this study aligns with findings reported by
Raj et al. (2021). Peak 5 observed in the Raman spectrum originates from various organic
compounds, including β-carotene, lycopene, lutein, and neoxanthin (Raj et al., 2021).

In this study, all four hidden peaks in Peak 5, denoted as V1, V2, V3, and V4, have
been successfully identified, each with a unique peak position, as shown in Fig. 5. Based
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on theoretical analysis, the V2 Raman band located around 1,516 cm−1 is associated with
β-carotene molecules. The V1 Raman band that is positioned to the left of the V2 Raman
band can be attributed to the lycopene molecule. The justification for this interpretation is
that linear molecules, such as lycopene, have a lower peak position compared to β-carotene
molecules, due to the linear structure of lycopene and the ring structures at both ends of
β-carotene (Maoka, 2020).

In addition, the V3 and V4 Raman bands, positioned more to the right than the V2
Raman band, are interpreted as carotenoid molecules with oxygenated rings in their
structures. According to the study by Ruban et al. (2001), the carotenoid molecule most
closely related to β-carotene, with a difference of four to six cm−1, is known as lutein (Ruban
et al., 2001). Consequently, the V3 Raman band is attributed to the lutein molecule. Lastly,
the V4 Raman band exhibits a peak at around 1,530 cm−1, attributed to Neoxanthin
molecules. This finding aligns with the research reported by both Ruban et al. (2001) and
Raj et al. (2021).

Feature analysis
The features extracted in this study are Raman peak position, Raman peak intensity, Raman
peak intensity ratio, and Raman peak full width at half maximum (FWHM). Additionally,
the results of feature extraction will be compared with those of previous studies, and further
correlations will be established.

The peak position is a critical characteristic (also known as a chemical fingerprint) that
is important for determining the molecular properties of carotenoids in mangoes. The
mean values of Raman peak positions extracted from a range of 1,480 cm−1 to 1,550 cm−1

are illustrated in Fig. 6A. This plot demonstrates the distribution of peak positions for
three levels of mango ripeness: underripe (URP), ripe (RP), and overripe (ORP). Four
distinct bands labeled as V1, V2, V3, and V4 represent different organic compounds found
in mango skin, with V1 corresponding to lycopene, V2 to β-carotene, V3 to lutein, and
V4 to neoxanthin. The significance of Raman peak positions lies in their ability to act
as chemical fingerprints for the organic compounds/molecules present in mangoes. This
information enables the identification of specific organic compounds associated with each
Raman peak, facilitating the determination of the corresponding vibrational mode of the
molecule. The variation in the position of the Raman peak signifies the change in the
molecular composition of carotenoids as mangoes progress from underripe to ripe and
overripe stages. In this case, there is a high variation in V1 and V4 bands for underripe
mangoes, which suggests the potential presence of other organic compounds.

The peak intensity observed in the Raman analysis serves as an indicator of the
concentration of different carotenoid molecules present in the mango fruit sample, as
shown in Fig. 6B. During the underripe stage, the V3 band exhibits the highest mean
intensity among all bands, indicating a relatively higher concentration of lutein. The
mean intensities of the V1 and V4 bands are closer to each other, suggesting a lower
concentration. The ascending order of average peak intensity is as follows: V4, V1, V2,
V3. As the mango fruit reaches the ripe stage, the peak intensity of the V2 band displays
the highest mean intensity compared to the other bands. This intensity has increased by
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Figure 5 The results of the deconvolution process of the Raman spectrum of mango fruit by using the
Lorentz curve adjustment method.

Full-size DOI: 10.7717/peerj.20288/fig-5

1,186% compared to the previous level, indicating a substantial rise in the concentration of
β-carotene. Additionally, the intensities of the V1, V3, and V4 bands also show an increase,
with the lowest mean intensity still observed for the V1 band. The order of ascending peak
intensity is as follows: V1, V2, V3, V4. At the overripe level, the intensity of the V2 band
still reaches the highest mean value compared to the other bands, indicating a continued
high concentration of β-carotene. On the other hand, the V4 band exhibits the lowest
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mean intensity, suggesting a lower concentration of neoxanthin. The order of ascending
peak intensity for the overripe stage is as follows: V4, V1, V3, V2.

The third feature is derived from the second feature, which is the intensity ratio of
the Raman band. This ratio represents the relative concentrations of different molecules
present, as indicated by the ratio of peak intensities in Raman spectroscopy. To establish
the ratios, the peak intensity of the V2 band (β-carotene) was used as a reference value.
Three ratios were generated: V2/V1, V2/V3, and V2/V4. The first ratio represents the
concentration ratio between β-carotene and lycopene molecules. The second ratio
represents the concentration ratio between β-carotene and lutein molecules. Lastly,
the third ratio represents the concentration ratio between β-carotene and neoxanthin
molecules. Since each carotenoid molecule exhibits a unique color, these ratios also reflect
the color distribution over the mango skin. Figure 6C illustrates the differences in the
V2/V1, V2/V3, and V2/V4 peak intensity ratios for the three ripeness levels. In both the
underripe and ripe mango stages, the V2/V1 peak ratio shows the highest value among all
studied ratios. This indicates a higher concentration of β-carotene molecules compared
to lycopene molecules during these stages. However, when mangoes reach the overripe
stage, the V2/V1 ratio decreases due to a higher concentration of lycopene (a red pigment)
compared to β-carotene. A similar trend is observed in the V2/V4 and V3/V4 peak ratios
compared to the V2/V1 ratio. These trends in peak ratios offer valuable insights into the
changes in carotenoid composition in mangoes at various ripeness levels. Additionally,
they shed light on the changing molecular properties and dynamics of pigmentation as the
fruit ripens.

Figure 6D illustrates the changes in FWHM for all the bands of mangoes at three
maturity levels: underripe, ripe, and overripe. During the underripe stage, the V1 band
displayed the highest mean FWHM value, indicating a broader spectral line. In contrast,
the V4 band showed the lowest mean FWHM value, suggesting a narrower spectral line.
At the ripe stage, the V2 band exhibited the highest mean FWHM value, indicating a
broader spectral line. In contrast, the V1 band recorded the lowest mean FWHM value,
implying a narrower spectral line. At the overripe stage, the V2 band still recorded the
highest mean FWHM value, while the V4 band showed the lowest mean FWHM value,
indicating a narrower spectral line. Furthermore, the mean FWHM values of the V2 and V4
bands exhibited similar trends during the three ripeness levels, showing consistent changes
in their spectral line widths as mangoes progressed from underripe to ripe and then to
overripe. This information provides valuable insights into the molecular interactions and
structural changes occurring in carotenoid compounds as mangoes ripen. The FWHM
analysis contributes to a better understanding of the ripening process and may aid in
assessing mango fruit quality based on spectral characteristics.

Statistical analysis
In this study, a total of 15 Raman spectrum features were extracted from four hidden
Raman peaks obtained through the deconvolution process using Lorentz curve fitting
from Peak 5. The importance of these features was determined using various statistical
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Figure 6 Feature analysis of Raman spectra. (A) Mean plot of Raman peak position for 3 levels of
ripeness (B) Mean plot of Raman peak intensity for 3 levels of ripeness (C) Mean plot of Raman peak
intensity ratio for 3 levels of ripeness (D) Mean plot of Raman peak FWHM for 3 levels of ripeness (URP,
underripe; RP, ripe; ORP, overripe).

Full-size DOI: 10.7717/peerj.20288/fig-6

tests, including the Homogeneity test, One-way ANOVA test, Gabriel’s test, Welch’s test,
and Games-Howell’s test. These tests aimed to identify and retain only the most essential
features while excluding those of less significance. All statistical analyses were conducted
using IBM SPSS Statistics software. The identified important characteristics will serve as
crucial predictor variables in the subsequent training process of the classification model
used to assess different ripeness levels of mango fruit.

After performing the statistical analysis, it was observed that all 15 features passed both
the ANOVA test and the Welch test, as shown in Fig. 7. Statistical analysis confirmed
the significance (p< 0.05) of extracted Raman Peak Intensity features in distinguishing
ripeness levels, supported by high correlation coefficients between carotenoid peak intensity
and mango maturity. This indicates that each of these extracted Raman spectral features
exhibits significant variation across different ripeness levels of mango fruit. Consequently,
all features are considered valuable and informative for further analysis and machine
learning classification.

As a result, this study proposes the use of four predictors: the Raman peak intensity
of V1, V2, V3, and V4 in the classifier analysis. The ANOVA test revealed a significant
level below 0.05 for these predictors, as shown in Fig. 7, indicating the reliability and
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Figure 7 Significant characteristics identified through statistical analysis ANOVA test.
Full-size DOI: 10.7717/peerj.20288/fig-7

strong evidence supporting the results. These predictors are derived from the critical
Raman spectral features, which are expected to play a vital role in accurately classifying and
determining the maturity level of mangoes.

Classification analysis
The classification analysis utilized the four predictors, namely the intensity of the V1 to
V4 peak bands, as described in the previous section. This analysis was evaluated using two
types of classification algorithms with different kernel types: KNN and SVM, as listed in
Table 1. The number of mangoes in the training set for this study is small, which may
result in overfitting. Overfitting can lead to high accuracy in the training set validation
but low accuracy when testing external mango samples. Therefore, cross-validation was
employed to evaluate model performance, using a 4-fold (k = 4) validation strategy to
ensure reliability and mitigate overfitting due to the small dataset.

DISCUSSION
In this study, we conducted a comprehensive analysis of Raman spectra obtained from
mango fruit samples at various ripeness levels to understand the molecular composition
and changes in carotenoid compounds during the ripening process. Our study revealed
five distinct Raman peaks, each corresponding to specific molecular vibrations in the
carotenoid compound. Peak 5 exhibited the highest Raman intensity value, while peak 1
had the lowest intensity; the sequence of peaks, based on increasing intensity values, was
peak 1, 4, 2, 3, and 5.

The Raman peak positions proved to be critical characteristics for identifying the
molecular properties of carotenoids in mangoes. Through deconvolution using Lorentz
curve fitting, we identified four prominent bands labeled as V1, V2, V3, and V4, which
represented different organic compounds in mangoes: V1 (lycopene), V2 (β-carotene),
V3 (lutein), and V4 (neoxanthin). These peak positions served as chemical fingerprints,
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Table 1 Results of classification analysis using four predictors inMATLAB software.

Classifier type Kernel methods Accuracy (%)

SVM Linear 92.3
Quadratic 92.3
Cubic 100.0
Fine Gaussian 76.9
Medium Gaussian 100.0

KNN Fine 92.3
Medium 23.1
Coarse 38.5
Cosine 30.8
Cubic 30.8
Weighted 100.0

enabling the identification of specific organic compounds associated with each Raman
peak and aiding in the determination of the corresponding vibrational modes.

In addition, an intriguing finding was the relationship between Raman peak intensity
and molecular density in mango fruit samples. This correlation provided valuable insights
into the molecular composition and concentration of carotenoids in different ripeness
levels of mangoes. Our analysis demonstrated that mangoes progress from underripe to
ripe and then to overripe stages, resulting in changes in the molecular composition of
carotenoids.

Moreover, the variation in Raman peak intensities provided essential information about
the concentration of different carotenoid molecules in mango fruit samples. During the
underripe stage, the V3 band exhibited the highest mean intensity, indicating a relatively
higher concentration of lutein. As the mango fruit reached the ripe stage, the V2 band
displayed the highest mean intensity, indicating a substantial rise in the concentration
of β-carotene. These intensity trends continued in the overripe stage, with the V2 band
still recording the highest mean intensity, indicating a continued high concentration of
β-carotene.

Furthermore, the derived peak intensity ratios serve as indicators of molecular
concentrations in mango fruit samples. The V2/V1, V2/V3, and V2/V4 ratios reflected
the relative quantities of β-carotene compared to lycopene, lutein, and neoxanthin,
respectively. These ratios also provided insights into the color distribution over the mango
fruit skin, as carotenoid molecules exhibit distinct colors.

Additionally, our analysis of full width at half maximum (FWHM) values sheds light
on molecular interactions and structural changes in carotenoid compounds as mangoes
ripen. The FWHM analysis contributed to a better understanding of the ripening process
and may serve as a basis for assessing mango fruit quality based on spectral characteristics.

The statistical analysis of the extractedRaman spectral features confirmed the significance
of all 15 features in differentiating mango fruit maturity levels. Subsequently, we employed
classification algorithms to assess the ripeness level of mango fruits based on the extracted
features. The classification models demonstrated remarkable accuracy with Medium

Tan et al. (2025), PeerJ, DOI 10.7717/peerj.20288 14/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.20288


Table 2 Comparison of the results of the classifier model and the method from previous studies.

Classifier method Detection technique Accuracy (%) Reference

ANN Imaging (Ripeness) 93.50 Makky, Soni & Salokhe (2014)
ANN Image Processing 94.00 Alfatni et al. (2014)
ANN HIS Color Model 70.00 Shabdin et al. (2016)
KNN Raman spectroscopy 100.00 Raj et al. (2021)
ANN Raman spectroscopy 97.90 Tzuan et al. (2022)
KNN/SVM Raman spectroscopy 100.00 This study (2025)

Gaussian SVM, Cubic SVM, and Weighted KNN achieving a maximum accuracy of
100%. This high accuracy validates the effectiveness of the selected peak bands (V1 to
V4) as reliable indicators for accurately determining mango ripeness. This classifier has
been compared with previous studies listed in Table 2, and each study provides valuable
insights.

In terms of classification performance, the machine learning models developed in this
study which include Medium Gaussian SVM, Cubic SVM, and Weighted KNN achieved
a perfect 100% accuracy. This result surpasses previous imaging-based approaches using
artificial neural networks (ANN), such as Makky, Soni & Salokhe (2014) and Alfatni et
al. (2014), which reported accuracies of 93.5% and 94%, respectively, and Shabdin et al.
(2016), which achieved 70% using an HIS color model. These vision-based methods might
be limited by their sensitivity to lighting and color variation. Compared to previous Raman
spectroscopy-based studies, Tzuan et al. (2022) achieved 97.9% accuracy using ANN, while
Raj et al. (2021) achieved 100% using KNN. However, this study uniquely combines both
SVM and KNN with carotenoid selected peak bands (V1 to V4), optimized preprocessing
and robust classification models. This study not only for precise molecular insight into
ripeness indicators like carotenoids but also for real-time application in automated fruit
sorting where provides both theoretical advancement and practical significance in the field
of non-destructive fruit quality analysis.

However, several practical limitations must be acknowledged. Firstly, while Raman
spectroscopy is a powerful tool in controlled environments, its implementation in
field conditions is challenged by ambient light interference, fruit surface variability, and
potential equipment sensitivity. Additionally, although the current dataset provides strong
classification accuracy, the sample size and variety may not fully represent the heterogeneity
of mangoes across different regions and cultivars. In addition, another limitation is the
assumption of uniformity in the fruit’s surface chemistry. Mangoes may exhibit localized
variations in carotenoid concentration due to microclimatic growth factors, which could
influence spectral readings if not properly sampled and accounted for.

In summary, our study offers valuable insights into the molecular composition and
changes in carotenoid compounds at various ripeness levels of mangoes. The Raman peaks,
peak positions, intensities, and ratios serve as essential characteristics for understanding
mango fruit ripening and assessing mango fruit quality. These findings hold significant
implications for the mango industry and open up opportunities for non-destructive
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ripeness assessment techniques and quality control measures. However, further research
is warranted to explore additional aspects and applications of Raman spectroscopy in
the field of fruit analysis. Raman spectroscopy can be integrated with portable scanners
and automated systems, where a Reinforcement Learning (RL) agent intelligently selects
representative mangoes for scanning based on visual cues, reducing the need to monitor
every fruit. This innovative sampling approach enables efficient, large-scale maturity
detection in real-world farm or post-harvest settings while maintaining non-destructive
assessment. Our results also demonstrate that Raman spectroscopy is a beneficial analytical
technique in the field of food chemistry.

CONCLUSIONS
This study successfully addressed three key objectives related to the analysis of mango
ripeness using Raman spectroscopy and machine learning. The identification of specific
Raman bands, particularly those associated with C=C double bond vibrations, provided
critical molecular markers for evaluating ripeness. The established correlation between
carotenoid attributes and ripening stages formed the basis of a non-destructive and reliable
assessment technique. Through optimized feature selection and the application of Medium
Gaussian SVM, Cubic SVM, and Weighted KNN, the study achieved a classification
accuracy of 100%, surpassing the performance of previous imaging-based approaches and
demonstrating the robustness of Raman-based classifiers.

These numerical results affirm the practical applicability of the method for rapid and
accurate mango maturity detection. However, potential limitations include variability
that may be due to sample heterogeneity, environmental interference during spectral
acquisition, and the need for standardization across the sample. To enhance the applicability
of this method, future research should incorporate larger, multi-regional datasets,
investigate real-time field deployment using portable Raman devices, and integrate
automatic spectral deconvolution algorithms. Validating the framework in commercial
and post-harvest environments will further solidify its value for the agricultural sector. The
integration of Raman spectroscopy with machine learning presents a promising approach
for scalable, accurate, and non-invasive fruit quality assessment in real-world applications.
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