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ABSTRACT
Temperature is one of the most important environmental factors that influence on
the successful development and survival of decapod larvae. Our model species, the
red squat lobster Grimothea monodon, has a wide biogeographic distribution in the
Humboldt Current Ecosystem (HCE) and support important fishing activities.
Recently, it has been described that juvenile and adult individuals ofG. monodon (i.e.,
benthic phase of their ontogeny), present intraspecific variations in size, lifestyle, and
nutritional condition, which could be modulated by the environmental conditions
like temperature associated with depth. However, it is still unknown whether these
intraspecific variations also occur during early ontogeny (i.e., planktonic larval
phase). To investigate, we evaluated the effect of contrasting temperatures (i.e., cold:
12 �C vs. warm: 20 �C) on the developmental and biochemical parameters of larvae of
the red squat lobster G. monodon under laboratory conditions. Our results show that
differences were observed only in the development time and larval size of the larvae
developed at the two experimental culture temperatures. No significant variations
were recorded in mortality during the larval phase (i.e., from zoea I to megalopa), nor
were significant variations detected in the biomass (dry weight) or the
biochemical-elemental constituents (carbon, hydrogen, nitrogen) of an advanced
larval stage (zoea V) at the two evaluated temperatures. Our findings suggest that
during early ontogeny G. monodon presents intraspecific variability in its
developmental traits along with a high physiological-energetic plasticity that allows it
to survive and successfully cope with the temporal and spatial variations in seawater
temperature that frequently occur in the HCE.
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INTRODUCTION
Variations in temperature have a major influence on the development, growth and survival
time of the early ontogenetic stages of crustaceans (Pörtner & Farrell, 2008) because this
phase of early ontogeny, compared to the adult phase, is vulnerable to adverse periods of
high and low ambient temperatures (Gutiérrez-Estrada & Pulido-Calvo, 2023). For
example, warm temperatures can accelerate larval growth rates (Bermudes & Ritar, 2004)
and trigger the appearance of deformities in the body structure of larvae as observed in
decapod species from temperate and cold environments such as Romaleon setosum and
Chaceon quinquedens (Zeng et al., 2020; Pérez-Pérez et al., 2023). In turn, cold
temperatures can slow larval growth rates, prolonging the larval development time in the
plankton, and consequently increasing their risk of predation and/or mortality before
completing the larval cycle and reaching the benthic juvenile phase (Green & Fisher, 2004).

Decapod crustaceans inhabit a wide variety of marine environments, including habitats
with extreme environmental conditions such as deep-sea areas, which are characterized by
abrupt changes in temperature, light penetration, food availability, and dissolved oxygen
levels (Costello, Cheung & De Hauwere, 2010; Zeng et al., 2020). These factors collectively
influence the distribution, diversity, behavior, and physiology of marine organisms
(Costello, Cheung & De Hauwere, 2010; Freitas et al., 2021). In this context, decapods with
a biphasic life cycle (i: free-living pelagic larval phase, ii: benthic juvenile-adult stage) have
been observed coping with variations in key environmental factors (temperature, food
availability, oxygen, salinity) on the seafloor or demersal areas by changing their
developmental and biochemical traits during their successive ontogenetic stages (Almeida,
Flores & Queiroga, 2008; Raventos et al., 2021). In particular, in decapods, it has been
described that the maternal provision of energy to eggs, together with the prevailing
environmental conditions during the embryogenesis phase, greatly influence the
subsequent larval development (Weiss et al., 2009; Baldanzi et al., 2018). In this context,
temperature is one of the most important environmental factors due to its high influence
on the successful development and survival of larvae (Bermudes & Ritar, 2004). This
physical parameter reflects kinetic energy and is considered one of the main modulators of
environmental variability and climate change in marine ecosystems (Storch et al., 2009),
especially influencing the distribution, abundance and survival of ectothermic marine
organisms (Bhaud et al., 1995; Freitas et al., 2021).

Crustacean larvae are particularly sensitive to changes in environmental conditions,
especially water temperature, which has a direct effect on their survival and growth
(Ryer et al., 2016;Marochi, Duarte & Costa, 2024). The larval phase of decapod crustaceans
consists of a series of ontogenetic stages that are completed by successive molts (Anger,
1996). This growth cycle is comprised by two components: (i) the duration of the intermolt
period, defined as the interval between successive molts, and (ii) the molt increment,
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representing the increase in size and weight attained at each stage (Stoner, Ottmar &
Copeman, 2010; Yuan et al., 2017). Thus, each species presents a number and/or frequency
of molts determined according to its family (e.g., Jasus edwardsii: four larval stages
(Bermudes & Ritar, 2004); Taliepus dentatus: two larval stages (Fagetti & Campodonico,
1971a)); Grimothea monodon: five larval stages (Fagetti & Campodonico, 1971b); Munida
subrugosa: five larval stages (Roberts, 1973; Wehrtmann & Báez, 1997). The duration of
these larval stages can change depending on the temperature (Anger, 1996;Hartnoll, 2001).
From a physiological perspective, it has been well documented that high temperatures can
generate a significant energy imbalance, greatly influencing the larval growth potential of
decapods (Bermudes & Ritar, 2004). High temperatures increased mortality rates during
the early stages (Koumoundouros et al., 2001). The biochemical and/or elemental
composition (carbon, hydrogen, nitrogen) and bioenergetic ratios (C/N, C/H) (Diez et al.,
2012) of larvae can also be affected by increased temperatures, as they can indicate their
nutritional condition (Anger, 2001; Quispe-Machaca et al., 2024).

Our model species, the red squat lobster Grimothea monodon, has a wide biogeographic
distribution from the Lobo de Afuera Islands in Perú to the Chiloé Islands in Chile.
However, its range has been increasing, and its presence has been reported as far away as
the coasts of the United States (DecaNet, 2024). This species has been of great commercial
importance in demersal fisheries since 1950 (Guzmán et al., 2020), along with other squat
lobster species such as G. johni. In Chile, there are fishing units dedicated to its extraction
(Northern Fishing Unit: NFU; Southern Fishing Unit: SFU) (Yannicelli et al., 2012;
Guzmán-Rivas, Quispe & Urzúa, 2022), with the largest extraction area in the SFU,
specifically off the coast of Concepción in the Biobío Region (Palma & Arana, 1997;
IFOP, 2022). The reproductive period of this species extends from autumn to spring with
numerous broods from which numerous planktotrophic zoea larvae hatch (Rivera &
Santander, 2005; Yannicelli et al., 2012; Barros, Alarcón & Arancibia, 2023). These larvae
remain at depths between 50 and 100 m (Yannicelli, 2005) and face temporal and spatial
variations in temperature that can influence their survival, and consequently, as a
cascading effect, impact the recruitment rates of juveniles (Yannicelli et al., 2012). In this
context, some studies have indicated that environmental conditions experienced during
the early ontogeny of G. monodon may influence not only the nutritional status of
individuals (Seguel et al., 2019; Guzmán-Rivas, Quispe & Urzúa, 2022), but also their
lifespan. Individuals with better nutritional conditions and longer lifespans are found in
the cold, rather than warm zones of the Humboldt Current Ecosystem (HCE)
(Yapur-Pancorvo et al., 2023).

During the early days of development, decapod larvae require food that provides a
substantial energy supply, which is essential for tissue and organ formation during growth
(Vargas-Ceballos et al., 2020); however, studies on the physiological capacity of
G. monodon larvae have not yet been carried out (Yannicelli et al., 2012). The ontogeny of
the red squat lobster studied in the laboratory has demonstrated five larval stages (zoea
I-Zoea V) and a megalopa before reaching the juvenile stage and later adult stage
(Fagetti & Campodonico, 1971b; Yannicelli, 2005). However, as in other galatheids, the
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larval development of G. monodon to the megalopa stage can be variable due to its plastic
development (Haye et al., 2010; Yannicelli et al., 2012). Sea temperature can thus influence
the development and growth period of larvae, considering that the first stages of
development in crustaceans are considered the most vulnerable part of their life cycle
(Anger, 2001; Weiss et al., 2009).

Recently, it has been described that juvenile and adult individuals of G. monodon,
corresponding to the benthic phase of their ontogeny, present intraspecific variations in
size and/or lifestyle (Guzmán-Rivas, Quispe & Urzúa, 2022; Yapur-Pancorvo et al., 2023),
which could be modulated by the environmental conditions of their habitat such as
temperature, planktonic food availability, and oxygen level (Haye et al., 2010; Guzmán-
Rivas, Quispe & Urzúa, 2022; Quispe-Machaca et al., 2024). However, it is still unknown
whether these intraspecific variations also occur during early ontogeny (larval phase).
Given that the red squat lobster G. monodon is an ectothermic invertebrate with a complex
life cycle and highly sensitive larval development, inhabiting the temperate–cold latitudes
of the HCE, we hypothesized that exposure to warmer temperatures than those of its
natural habitat would increase larval energy expenditure, thereby affecting survival,
development time, size, biomass, and elemental composition during early ontogeny.
Therefore, the objective of the present work was to evaluate the effect of contrasting
temperatures (cold vs. warm) on the growth, survival and biochemical parameters (C, H,
N) of larvae of the red squat lobster G. monodon from SFU under laboratory conditions.

MATERIALS AND METHODS
Collection site and maintenance of adult individuals
Adult individuals of G. monodon were collected in Faro Carranza (35�26′S 75�29′W), a
marine area located on a wide continental shelf characterized by pronounced seasonal
temperature variation and upwelling, which together generate high primary productivity
(4–9 g C m−2d−1) (Daneri et al., 2000; Eissler et al., 2010). The collected squat lobsters were
transported in 200 L seawater tanks to the Marine Biological Station Abate Juan Ignacio
Molina (Fig. 1). In the laboratory, both males and females were placed together in 100 L
tanks with continuous sea water flow. They were exposed to similar environmental
conditions of temperature (12.81 �C), salinity (33–34 PSU) and photoperiod (12 h L:D);
and they were fed ad libitum food with fresh mussel and fish pellets until the release of
their ovarian load (female) and seminal ducts (male). Then, once the individuals had
mated under laboratory conditions (starting a new reproductive cycle in captivity), the
egg-bearing females (n = 3; carapace length: 50.3–55.5 mm) were placed in individual 40 L
tanks and maintained under the same conditions mentioned above until larval hatching
(larval stage: zoea I).

Larval culture
The larvae zoea-I were placed were placed in 1-L culture chambers containing filtered
seawater that had been sterilized with ultraviolet light to eliminate protozoans that could
compromise larval survival (Brown & Russo, 1979; Ford, Xu & Debrosse, 2001). The larvae
were subjected to two temperature treatments: i. cold temperature (12 �C) and ii. warm
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temperature (20 �C). The experimental temperatures were established based on a projected
increase of approximately 3 �C in the average cold-winter (9 �C) and warm-summer
(17 �C) conditions under climate warming and marine heatwave scenarios for the study
area (IPCC, 2022; Rahmstorf, 2024). A total of 11 culture chambers, each with a volume of
500 mL, were used in each treatment (12 �C vs. 20 �C). A group of 50 larvae (total
N = 1,100 larvae) were placed in each culture chamber. During the development of
experiments, the seawater was changed daily with new filtered and sterilized water to avoid
the presence of microorganisms such as microalgae and protozoans that affect the survival
of larvae. Finally, the larvae were fed daily with nauplius larvae of brine shrimp as live food
(Artemia sp. Yannicelli et al., 2013).

Development, survival and larval size
The time and stage of development of the successive larval instars were evaluated by
observation under a stereo microscope (Motic BA-310 model) and by determining molts
(presence of exuviae) in the culture chambers, following the morphological description of

Figure 1 Sampling area of G. monodon in the HCE (~35 �S: Faro Carranza, Chile).
Full-size DOI: 10.7717/peerj.20278/fig-1
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the G. monodon larvae proposed by Fagetti & Campodonico (1971b). Larvae that reached a
new instar were transferred to new culture chambers. In turn, to quantify survival
(measured as a function of the % of mortality), every day the culture chambers were
observed and the presence of dead individuals (larvae on the bottom with no signs
of life) were recorded. Finally, to determine larval size (body length from posterior edge of
eyestalk to posterior mid dorsal edge of carapace) (Rasmussen & Aschan, 2011) of the
successive larval instars cultured at temperatures of 12 �C and 20 �C, a microscopy with a
digital camera graduated with a ruler of 1mm and photographic records were used.

Biomass and elemental composition of larvae
To analyze the biomass (dry weight: DW) and elemental composition (carbon, hydrogen,
and nitrogen contents: C, H, N) the standard technique of Anger & Harms (1990) was
performed. The quantifications of DW and C, H, and N were performed only in samples of
the larval stages zoea I and zoea V due to the greater availability of larval specimens
(minimum sample size for analysis) necessary for these analyses. In turn, the larvae
selected for analyses were obtained from larval stage zoea I one day after being
subjected to the two temperature treatments after hatching, while larvae from stage zoea V
were obtained immediately upon reaching this stage. For laboratory analyses, an
appropriate number of larvae was pooled to obtain the sample mass required for DW and
CHN determinations (i.e., 0.44–0.95 mg dry weight; 60–70 zoea-I larvae; 3–5 zoea-V
larvae) (Yannicelli et al., 2013; Anger, Harzsch & Thiel, 2020). For larval biomass (DW)
determinations, samples were placed in pre-weighed tin cartridges, lyophilized
(model FDU-7012, Operon) and weighed on a microbalance (Perkin Elmer
Instruments AD 6000). To determine the larval elemental composition (CHN), a
Perkin Elmer Instruments elemental analyzer (series II CHNS/O Analyzer 2400) was
used, which has an auto-sampler of up to 60 samples; acetanilide was used as a
standard. The samples were incinerated at a temperature of 975 �C for approximately
5 min using helium gas as a carrier gas and oxygen as combustion (Viña-Trillos, Brante &
Urzúa, 2023).

Statistical analysis
To evaluate the effect of the culture temperature (12 �C vs. 20 �C) on the development
time and size of successive larval stages of G. monodon, a generalized linear model
(GLM) with Gaussian distribution and an analysis of variance (ANOVA) were applied
following standard methods (Zuur, Ieno & Elphick, 2010). Prior to the ANOVA
analysis, the assumptions of normality, homoscedasticity and effect size were checked
according to Zuur, Ieno & Elphick (2010). In turn, the effect of the culture temperature on
larval survival (measured as a function of the % of mortality) was analyzed using the
nonparametric Kaplan Meier method (Rodrigues, De Almeida & Bertini, 2018). Finally,
variations in biomass (DW), elemental biochemical constituents (C, H, N) and
bioenergetic ratios (C/N, C/H) of an initial larval stage (zoea I) vs. advanced (zoea V) were
analyzed by T-test.
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RESULTS
Development, survival, and larval size
A total of 1,100 zoea I larvae were obtained, and all individuals completed the larval
development cycle in the two temperature treatments. The maximum larval development
time (zoea I-megalopa) was 110 and 91 days at a temperature of 12 �C and 20 �C,
respectively (Table 1). During the experiment, possible new larval stages were observed
(intra-individual variability) as a plastic response to the 12 �C temperature treatment. In
the zoea-III stage, no changes were observed in the number of spines during molting; only
an increase in the size of the internal uropods was recorded. Similarly, in the zoea-IV A
stage, individuals that initially presented three setae molted with the addition of one seta
but did not reach the zoea-IV B stage after molting (Fig. 2).

Larval survival (measured as the % of mortality) in both temperature treatments (12 �C
vs. 20 �C) showed similar trends until day 12 (~45%). In turn, during larval development at
12 �C, the % of mortality increased from day 13 to day 33 and then remained stable until
day 77. From this day on, a similar percentage of mortality was observed in both
temperature treatments (i.e., mortality curves overlapped) (Fig. 3). Finally, when
comparing the mortality curves of red squat lobster larvae subjected to temperatures of
12 �C and 20 �C using the nonparametric Kaplan-Meier test, these showed no significant
differences during their development time (χ2: p = 0.071).

The larval development time at the cold temperature of 12 �C was observed to be longer
than that at the warm temperature (Fig. 4A). When comparing the effect of temperature on
the larval size of successive instars, GLM results indicated that the interaction between
larval stage and temperature was not significant (p = 0.051), with differences detected only
among larval stages (p < 0.05) (Table 2; Table S1). However, when the effect of temperature
on larval size was evaluated independently, the larvae cultured at the cold temperature of

Table 1 Development time (days) of successive larval stages of G. monodon cultured at two
temperatures (cold: 12 �C vs. warm: 20 �C).

Larval stage 12 �C 20 �C

Min Max �X ± SD Min Max �X ± SD

Zoea I 3 22 8.55 ± 3.30 4 17 6.00 ± 2.49

Zoea II 15 35 17.60 ± 2.72 9 26 10.60 ± 1.17

Zoea III 24 48 27.00 ± 3.12 12 36 14.80 ± 2.86

Zoea IV-A 32 67 40.38 ± 9.78 17 52 20.56 ± 4.42

Zoea IV-B 40 89 46.38 ± 8.78 21 64 26.56 ± 6.54

Zoea IV-C 49 104 56.75 ± 12.35 30 75 33.56 ± 6.67

Zoea IV-D 58 104 62.86 ± 7.93 34 77 43.00 ± 13.78

Zoea IV-E 68 104 74.00 ± 8.58 40 91 48.75 ± 13.99

Zoea V 78 111 90.86 ± 11.29 47 92 59.63 ± 13.77

Zoea VI 107 110 108.50 ± 2.12 54 91 62.50 ± 10.99

Megalopa 110 0 110.00 54 82 73.50 ± 14.68

Note:
Min, Minimum; Max, Maximum; �X, Mean; SD, Standard Deviation.
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12 �C were found to be significantly larger than those cultured at the warm temperature of
20 �C (Fig. 4B, Table 3). This variability in larval size showed statistical differences among
the three larval stages, zoea IV-A (ANOVA: F1,18 = 16.767, p = 0.0007), zoea IV-B
(ANOVA: F1,18 = 4.531, p = 0.0474) and zoea IV-E (ANOVA: F1,18 = 20.78, p = 0.0002).

Biomass and elemental composition of larvae
Comparisons between the analyzed larval stages (zoea I vs. zoea V) for each temperature
(12 �C, 20 �C), revealed a significant increase in the absolute values (ug/ind) of larval
biomass (DW) and its elemental constituents (C, H, N) (Fig. 5A, Table 4). In turn, in the

Figure 2 Larval cycle (from zoea I to megalopa) of G. monodon cultured at two temperatures ((A)
cold: 12 �C vs. (B) warm: 20 �C). Symbol (?) indicates possible plastic response to cold tempera-
ture. Full-size DOI: 10.7717/peerj.20278/fig-2
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relative values (%) of the larval elemental composition for each temperature, only the % of
C showed a significant decrease in zoea V, while the % of N and H remained similar
between the analyzed larval stages. When comparing between temperatures (12 �C vs.
20 �C) and considering only the zoea V stage, a slight increase was reported in the absolute
(ug/ind) and relative (%) values of biomass (DW) and elemental composition (CHN);
however, these differences were not statistically significant (see Fig. 5B, Table 4).

At the bioenergetic ratio level, at both temperatures (12, 20 �C) the C/N and C/H values
of the advanced larval stage (zoea V) presented significantly lower values compared to the
initial larval stage (zoea I) (Fig. 6, Table 4). In turn, when comparing between temperatures
(12 �C vs. 20 �C) and considering only the zoea V stage, the C/N ratio presented similar
values between the experimental cultivation temperatures. For the C/H ratio, zoea V larvae
cultured at 20 �C presented slightly higher values than those cultured at 12 �C.
Consequently, there was no statistically significant effect of culture temperature on the
bioenergetic ratios of zoea V (T-test: C/N: t (5:0.05) = −0.81, p = 0.456; T-test:
C/H: t (5:0.05) = 1.61, p = 5.00) (Fig. 6, Table 4).

DISCUSSION
Temperature promotes changes in the metabolic activity of marine invertebrates with high
thermal sensitivity (Bennett et al., 2019; Czaja et al., 2023). This affects their reproductive
and developmental parameters, including fertilization rates, and embryonic and larval
development (Estrada-Godínez et al., 2015). For decapods, temperature changes can
negatively affect their generation time, while accelerating physiological processes such as
growth and reproduction and increasing intraspecific variability rates (Willig & Presley,
2018). Due to this, the environmental temperatures exert selective pressure on population
phenotypes (Lardies, Arias & Bacigalupe, 2010; Barria et al., 2018). These responses are
important for maintaining the fitness of the species in relation to the environment (Storch
et al., 2009), as observed in our findings in G. monodon, which proved that depending on

Figure 3 Mortality curves of red squat lobster larvae cultured at two temperatures (cold: 12 �C vs.
warm: 20 �C). Full-size DOI: 10.7717/peerj.20278/fig-3
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Figure 4 (A) Development time and (B) size of successive larval stages ofG. monodon cultured at two
temperatures (cold: 12 �C vs. warm: 20 �C). The asterisk in red (*) shows significant differences.

Full-size DOI: 10.7717/peerj.20278/fig-4

Table 2 Predictor variables included in the fitted Gaussian model.

Df Deviance residuals Df residuals Deviance F p

NULL 190 27.13

Temperature 1 0.01 189 27.12 1.89 0.17

Larval stage 9 26.17 180 0.96 571.99 <2e−16

Temperature: Larval stage 9 0.09 171 0.87 1.93 0.051

Notes:
Df, Degree Freedom.
Significant effects (p < 0.05) are shown in bold.
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the water temperature (cold vs. warm) intraspecific variability during larval development
occurred.

Since temperature influences the life history traits of decapod crustaceans, its effect may
be noticeable during the early ontogeny of species that support important fishing activities
(Fischer & Thatje, 2016), such as our model species G. monodon (Guzmán et al., 2020). In
this context, in a previous study by Fagetti & Campodonico (1971b) on the larval
development cycle of G. monodon, larvae were cultured at two temperatures (15 �C vs.
20 �C) and a total of five larval stages (zoea I–V), including some larval substages at the

Table 3 Size of successive larval stages of G. monodon cultured at two temperatures (cold: 12 �C vs.
warm: 20 �C).

Stage larval 12 �C 20 �C p-value
X ± SD (ug) X ± SD (ug)

Zoea I 0.68 ± 0.05 0.65 ± 0.02 p = 0.26

Zoea II 0.79 ± 0.04 0.75 ± 0.05 p = 0.08

Zoea III 0.87 ± 0.08 0.82 ± 0.05 p = 0.12

Zoea IV-A 1.02 ± 0.07 0.90 ± 0.05 p = 0.0007

Zoea IV-B 1.20 ± 0.10 1.11 ± 0.09 p = 0.047

Zoea IV-C 1.35 ± 0.09 1.27 ± 0.09 p = 0.07

Zoea IV-D 1.44 ± 0.08 1.40 ± 0.09 p = 0.35

Zoea IV-E 1.65 ± 0.04 1.50 ± 0.10 p = 0.0002

Zoea V 1.74 ± 0.10 1.66 ± 0.09 p = 0.06

Zoea VI 1.74 ± 0.08 1.79 ± 0.04 ND

Note:
ND, No Data (not enough replicates of zoea VI at 12 �C).

Figure 5 Elemental composition (carbon, hydrogen, nitrogen; CHN) of zoea I and zoea V of G. monodon cultured at two temperatures (cold:
12 �C vs. warm: 20 �C). (A) absolute (ug/ind) and (B) relative (%) values. Full-size DOI: 10.7717/peerj.20278/fig-5
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zoea IV level, were reported. These are similar to our findings, where G. monodon larvae
were cultured at two temperatures (12 �C vs. 20 �C), and a total of 6 larval stages (zoea
I-VI) were observed, along with some larval substages at the zoea IV level (Fig. 2).
Therefore, these comparative findings from the larval cycle of G. monodon indicate that
temperature may play a modulating role in the intraspecific variability in early ontogeny
traits (i.e., total number of larval stages, morphological varieties in larval substages) of
G. monodon.

It has been well documented those contrasting temperatures (cold vs. warm) can have a
significant effect on the development time, growth and/or larval size of decapod
crustaceans (Anger, 2001), consequently altering the periods and frequencies of molts and
inter-molts during their larval cycle (Ren et al., 2021; Khalsa et al., 2023). In particular, in
our findings on the larval development time of G. monodon, at the cold temperature
(12 �C) larvae developed slower than at the warm temperature (20 �C) (Fig. 4A). From a
physiological approach, the larvae in warmer environments could develop more rapidly, as
reported for zoea I and II stages by Yannicelli et al. (2013), due to an increase in their
metabolic rates and the activity of molting enzymes and hormones that occur at high
and/or warm temperatures, subsequently impacting growth processes (Navarro-Ojeda,
Cuesta & González-Ortegón, 2021). Finally, this greater metabolic and/or energetic
demand at the warm temperature (20 �C) was reflected by a reduction in the size of
successive stages during the larval cycle of G monodon, as reported in our study (Fig. 4B)
and in other species of decapod crustaceans from cold-temperate environments (Baudet
et al., 2022).

Temperature has also been shown to influence the survival and/or mortality of the
initial stages of the life cycle of ectothermic invertebrates such as decapod crustaceans (Ren

Table 4 Biomass (ug/ind), elemental composition (CHN) and bioenergetic ratios (C/N, C/H) of zoea I and zoea V of G. monodon cultured at
two temperatures (cold: 12 °C vs. warm: 20 °C).

12 °C 20 °C

Elemental
composition

Zoea I Zoea V p-value Zoea I Zoea V p-value p-value
X̄ ± SD X̄ ± SD (between stage

to 12 °C)
X̄ ± SD X̄ ± SD (between stage

to 12 °C)
Zoea V (12 °C
vs. 20 °C)

Dry Weight
(ug/ind)

7.74 ± 1.06 197.17 ± 33.52 p = 0.0006 7.30 ± 1.06 189.21 ± 35.33 p = 0.0019 p = 0.7757

C (ug/ind) 2.13 ± 0.35 35.55 ± 9.68 p = 0.0029 2.12 ± 0.34 38.42 ± 2.95 p = 0.0001 p = 0.9796

H (ug/ind) 0.25 ± 0.05 6.15 ± 1.76 p = 0.0044 0.24 ± 0.05 5.76 ± 0.73 p = 0.0006 p = 0.6759

N (ug/ind) 0.32 ± 0.06 7.44 ± 2.64 p = 0.0094 0.34 ± 0.06 7.61 ± 0.58 p = 0.0001 p = 0.9235

%C 27.55 ± 2.55 19.81 ± 1.81 p = 0.0104 29.07 ± 3.69 20.61 ± 2.20 p = 0.0122 p = 0.4599

%H 3.18 ± 0.30 3.08 ± 0.42 p = 0.7556 3.26 ± 0.56 3.05 ± 0.19 p = 0.5030 p = 0.9207

%N 4.09 ± 0.49 3.69 ± 0.79 p = 0.5013 4.69 ± 0.65 4.09 ± 0.50 p = 0.2200 p = 0.4466

C/N 6.76 ± 0.24 5.35 ± 0.71 p = 0.0305 6.21 ± 0.13 5.05 ± 0.21 p = 0.0004 p = 0.4560

C/H 8.69 ± 0.61 6.32 ± 0.30 p = 0.0037 8.96 ± 0.45 6.74 ± 0.37 p = 0.0008 p = 0.1679

Note:
Absolute (ug/ind) and relative (%) values. P-value in function to T-test. C, Carbon; H, Hydrogen; N, Nitrogen; %C, percentage of carbon; %H, percentage of Hydrogen;
%N, percentage of Nitrogen; �X, Mean; SD, Standard Deviation.
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et al., 2021; Khalsa et al., 2023). In the case of G. monodon, Fagetti & Campodonico (1971b)
reported higher mortality at warm (20�C) than cold temperatures (15 �C) during the larval
culture. These findings are contrary to our results because, although different percentages
of mortality were found during larval development depending on the culture temperature,
these differences were not statistically significant (Fig. 3). This finding could indicate that
G. monodon larvae present compensatory physiological mechanisms that allow them to
cope with the energy costs linked to temperature changes (Ren et al., 2021). In this context,
it is proposed that, depending on the culture temperature and the type of food offered,
G. monodon larvae could differentially use their main biochemical and/or elemental
constituents as bioenergetic fuel. This compensatory mechanism has been described in
several species of decapods (Litopenaeus vannamei: He et al., 2018; Crangon crangon:
Anger, 2001; Urzúa et al., 2012; Anger, Harzsch & Thiel, 2020), which, depending on the
temperature, have presented a degree and sequence of use and/or assimilation of
carbohydrates (inferred from C and H), lipids (based on C), and proteins (quantified by N)
(Sterner & Elser, 2017).

The red squat lobster G. monodon is an important marine bioresource along the Chilean
coast, characterized by the high reproductive potential of the female stock, with average

Figure 6 Bioenergetic ratios of zoea I and zoea V of G. monodon cultured at two temperatures (cold:
12 �C vs. warm: 20 �C). (A) C/N, (B) C/H. Full-size DOI: 10.7717/peerj.20278/fig-6
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densities reaching 74 million eggs per square kilometer (Barros, Alarcón & Arancibia,
2023; Yapur-Pancorvo et al., 2023). Our species of interest has an indirect life cycle.
Females incubate their eggs in the abdomen where the embryos develop under the same
environmental conditions as the mother’s habitat (temperature, salinity, dissolved oxygen)
(Urzúa et al., 2018), and from which numerous free-living planktonic larvae hatch
(Yannicelli et al., 2012). Therefore, the survival of the new larvae (zoea I) depends on the
first energy reserves they obtain from the egg, which are rapidly catabolized in the absence
of food (Guerao et al., 2012). In turn, the energy reserves of the successive later larval stages
depend on the food consumed and deposited in their body biomass (Anger, 2001).
Consequently, in our findings, for each temperature the variations in the percentages of C
(as a proxy for lipids) between larval stages may indicate the storage and subsequent use of
this biomolecule as the main source of energy to meet the energy demands that occur
during the larval cycle (Viña-Trillos, Brante & Urzúa, 2023). On the contrary, for each
temperature the % of N and H remained relatively stable between stages (without
variation). This finding could indicate the preservation of these biomolecules, especially N,
as a proxy for proteins destined to form body structures (musculature) necessary for the
development and growth of the larvae (Salonen et al., 1976; Ikeda et al., 2011; Urzúa et al.,
2012).

In turn, at the level of bioenergetic ratios, at both temperatures (12 �C, 20 �C) the C/N
and C/H values found during the advanced larval stage (zoea V) were significantly lower
compared to those at the initial larval stage (zoea I). This decrease in bioenergetic ratios, as
larval ontogenetic development progressed, can be considered a sign of the use of these
components as a metabolic substrate to support the greater demand or energy expenditure
that increases as a function of growth during early ontogeny in decapods (Anger, 2001;
Anger & Moreira, 2004).

CONCLUSIONS
In our experiment, which evaluated the effect of contrasting temperatures (cold: 12 �C;
warm: 20 �C) on the developmental and biochemical parameters of red squat lobster
(G. monodon) larvae, differences were observed only in development time and larval size.
No significant variations were recorded in mortality during the larval phase (from zoea I to
megalopa), nor were significant variations detected in the biomass (DW) or the
biochemical-elemental constituents (CHN) of an advanced larval stage (zoea V) at the two
evaluated temperatures. These results suggest that during early ontogeny G. monodon
presents intraspecific variability in its developmental traits along with a high
physiological-energetic plasticity that allows it to survive and successfully cope with the
temperature variations that frequently occur in planktonic marine environments of
temperate-cold latitudes such as the HCE. Overall, our findings allow us to update our
knowledge on the influence of temperature on the development, growth, survival and
larval bioenergetic patterns of G. monodon in the HCE, an important commercial resource
as it is the main resource of the industrial crustacean fishery. This information is key to
improving our understanding of the intricate relationships that exist between the larval
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phase and juvenile recruitment, subsequently determining the adult stock exploited by
industrial fisheries.
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