The influence of basketball players' tracking speed ability on sports decision performance (#114856)

First revision

Guidance from your Editor

Please submit by 15 Aug 2025 for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 3 Figure file(s)
- 1 Table file(s)
- 1 Raw data file(s)

Custom checks

Human participant/human tissue checks

- Have you checked the authors <u>ethical approval statement?</u>
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. Basic Reporting
- 2. Study design
- 3. Validity of the findings
- 4. General Comments
- 5. Confidential notes to the editor
- You can also annotate the review pdf and upload it as part of your review (optional).

You can also annotate this PDF and upload it as part of your review When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

Article types: Research and AI Application

BASIC REPORTING

Include the appropriate criteria template based on the type variable Clear and unambiguous, professional English used throughout.

The article must be written in English and must use clear, unambiguous, technically correct text. The article must conform to professional standards of courtesy and expression.

Literature references, sufficient field background/context provided.

The article should include sufficient introduction and background to demonstrate how the work fits into the broader field of knowledge. Relevant prior literature should be appropriately referenced.

Professional article structure, figures, tables. Raw data shared.

The structure of the article should conform to an acceptable format of 'standard sections' (see our Instructions for Authors for our suggested format). Significant departures in structure should be made only if they significantly improve clarity or conform to a discipline-specific custom.

Figures should be relevant to the content of the article, of sufficient resolution, and appropriately described and labeled.

All appropriate raw data have been made available in accordance with our Data Sharing policy.

Self-contained with relevant results to hypotheses.

The submission should be 'self-contained,' should represent an appropriate 'unit of publication', and should include all results relevant to the hypothesis.

Coherent bodies of work should not be inappropriately subdivided merely to increase publication count.

EXPERIMENTAL DESIGN

Original primary research within <u>Aims and Scope</u> of the journal.

Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.

The submission should clearly define the research question, which must be relevant and meaningful. The knowledge gap being investigated should be identified, and statements should be made as to how the study contributes to filling that gap.

Rigorous investigation performed to a high technical & ethical standard.

The investigation must have been conducted rigorously and to a high technical standard. The research must have been conducted in conformity with the prevailing ethical standards in the field.

Methods described with sufficient detail & information to replicate.

Methods should be described with sufficient information to be reproducible by another investigator.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.

Decisions are not made based on any subjective determination of impact, degree of advance, novelty or being of interest to only a niche audience. We will also consider studies with null findings. Replication studies will be considered provided the rationale for the replication, and how it adds value to the literature, is clearly described. Please note that studies that are redundant or derivative of existing work will not be considered. Examples of "acceptable" replication may include software validation and verification, i.e. comparisons of performance, efficiency, accuracy or computational resource usage.

All underlying data have been provided; they are robust, statistically sound, & controlled.

The data on which the conclusions are based must be provided or made available in an acceptable disciplinespecific repository. The data should be robust, statistically sound, and controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

The conclusions should be appropriately stated, should be connected to the original question investigated, and should be limited to those supported by the results. In particular, claims of a causative relationship should be supported by a well-controlled experimental intervention. Correlation is not causation.

Standout reviewing tips

The best reviewers use these techniques

Т	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The influence of basketball players' tracking speed ability on sports decision performance

Qifeng Gou Corresp., 1, Sun-nan Li 2

Corresponding Author: Qifeng Gou Email address: 202031070018@mail.bnu.edu.cn

Background: The running speed of basketball players plays a critical role in shaping the complexity and dynamics of game situations. This study aims to examine the relationship between players' tracking speed capabilities and the quality of their decision-making during gameplay.

Method s: Employing an expert-novice paradigm, Experiment 1 assessed tracking accuracy in a multiple object tracking (MOT) task at three angular velocities: $5^{\circ}/s$, $10^{\circ}/s$, and $15^{\circ}/s$. Experiment 2 evaluated decision-making accuracy under three distinct running speed conditions: low speed (0.67–3.98 m/s), medium speed (3.99–7.97 m/s), and high speed (7.98–12.62 m/s).

Results: In Experiment 1, expert players demonstrated significantly higher tracking accuracy ($60.42 \pm 13.98\%$) than novice players ($41.25 \pm 13.93\%$) at $10^\circ/s$ (P < 0.001). No significant group differences were found at $5^\circ/s$ or $15^\circ/s$ (Ps > 0.05). In Experiment 2, the expert group exhibited significantly higher decision accuracy than the novice group across all three speed conditions (Ps < 0.001). Moreover, at high speeds (7.98-12.62 m/s), shooting decisions were significantly less accurate than passing and breakthrough decisions (Ps < 0.001), while no significant differences were observed between passing and breakthrough decisions (Ps > 0.05). Conclusion: This study demonstrates that expert basketball players exhibit superior visual attention and perceptual-cognitive decision-making abilities compared to novices. Their enhanced tracking performance and higher decision accuracy - particularly in complex, high-speed scenarios - underscore the role of domain-specific attentional allocation and strategic adaptation. These findings contribute to the theoretical understanding of expertise in dynamic sports environments and suggest practical implications for perceptual training in athletic development.

¹ College of Physical Education, The Northwest Normal University, Lanzhou, China

² College of P.E. and Sports, Beijing Normal University ([[[]]]], Beijing, China

The influence of basketball players' tracking speed 2 ability on sports decision performance 3 4 5 Oi-feng Gou^{1,*}, Sun-nan Li² 6 7 8 ¹ College of Physical Education, Northwest Normal University, Lanzhou 730070, Gan Su, China 9 ² College of P.E. and Sports, Beijing Normal University, Beijing 100875, China 10 11 Corresponding Author: 12 Qi-feng Gou 13 Xinjiekou Wai Street 19, Beijing, 100875, China 14 Email: 202031070018@mail.bnu.edu.cn 15 **Abstract** 16 17 **Background**: The running speed of basketball players plays a critical role in shaping the complexity and dynamics of game situations. This study aims to examine the relationship 18 19 between players' tracking speed capabilities and the quality of their decision-making during 20 gameplay. **Methods**: Employing an expert-novice paradigm, Experiment 1 assessed tracking accuracy in a 21 22 multiple object tracking (MOT) task at three angular velocities: 5°/s, 10°/s, and 15°/s. Experiment 2 evaluated decision-making accuracy under three distinct running speed conditions: 23 24 low speed (0.67–3.98 m/s), medium speed (3.99–7.97 m/s), and high speed (7.98–12.62 m/s). 25 **Results**: In Experiment 1, expert players demonstrated significantly higher tracking accuracy $(60.42 \pm 13.98\%)$ than novice players $(41.25 \pm 13.93\%)$ at $10^{\circ}/s$ (P < 0.001). No significant 26 27 group differences were found at 5°/s or 15°/s (Ps > 0.05). In Experiment 2, the expert group 28 exhibited significantly higher decision accuracy than the novice group across all three speed 29 conditions (Ps < 0.001). Moreover, at high speeds (7.98–12.62 m/s), shooting decisions were 30 significantly less accurate than passing and breakthrough decisions (Ps < 0.001), while no 31 significant differences were observed between passing and breakthrough decisions (Ps > 0.05). 32 **Conclusion**: This study demonstrates that expert basketball players exhibit superior visual 33 attention and perceptual-cognitive decision-making abilities compared to novices. Their 34 enhanced tracking performance and higher decision accuracy-particularly in complex, highspeed scenarios-underscore the role of domain-specific attentional allocation and strategic 35 adaptation. These findings contribute to the theoretical understanding of expertise in dynamic 36 37 sports environments and suggest practical implications for perceptual training in athletic 38 development.

Introduction

39

- In sports, decision-making abilities play a crucial role in players' actions, especially in complex, high-speed situations. The performance of athletes, particularly in team sports like basketball,
- 42 depends on the successful integration of decision-making and technical skills (Marasso et al.
- 43 2014). The cognitive abilities involved in decision-making are critical in high-strategy sports
- such as basketball (Thomas 1994), where players must assess the game situation and respond
- 45 rapidly by choosing the optimal course of action. In basketball, these decisions are often based
- on visual cues, making the role of visual attention and memory crucial for successful decision
- 47 execution (Wang et al. 2018). Perception, the first step in decision-making, relies heavily on
- 48 visual information, with over 80% of brain data coming from visual stimulus (Sui et al. 2018).

One of the key cognitive functions in basketball is Multiple Object Tracking (MOT), a skill that allows players to simultaneously monitor the positions of multiple teammates and opponents in dynamic scenarios (Faubert & Sidebottom 2012). MOT is essential in fast-paced environments, such as basketball, where rapid shifts between offensive and defensive roles demand continuous and accurate tracking of multiple moving objects (Faubert 2013). As basketball has become increasingly fast-paced, coaches and researchers have focused more on improving players' visual attention to enhance their decision-making accuracy (Jin 2020).

While the importance of visual attention in basketball decision-making is well-established, existing research has focused primarily on third-person perspective visual materials (Li et al., 2006), which have limited ecological validity. The first-person perspective, by contrast, provides a closer and more direct view of target objects, offering clearer insights into their physical properties. This can improve the accuracy of subsequent behavioral evaluations (Mao, 2010). Despite the growing interest in visual attention in sports decision-making, there is still a lack of research that explicitly investigates the role of tracking speed and running speed in decision accuracy (Liao 2013), particularly in dynamic team sports like basketball.

In modern basketball, players face highly dynamic and complex visual stimuli, where they must rapidly assess positions, trajectories, and potential actions to make quick decisions—such as whether to shoot, pass, or break through (Vickers, 2007). The speed of movement, both of players and objects on the court, significantly increases the complexity of decision-making (Williams et al. 2013). Existing research indicates that the ability to track moving objects at varying speeds can reflect differences in visual attention and cognitive load between expert and novice players (Pylyshyn & Annan, 2006; Sungur & Boduroglu, 2012). However, there is still a gap in the literature regarding how different tracking speeds and running speeds influence decision-making in basketball, particularly in terms of how these factors interact to affect cognitive processing and decision accuracy.

This study seeks to address this gap by investigating the relationship between tracking speed, running speed, and decision-making accuracy in basketball players. In Experiment 1, the accuracy of expert and novice players in MOT tasks was compared across different tracking speeds. Experiment 2 focused on decision-making accuracy under three different speed ranges to explore how speed influences decision quality. The goal is to analyze the advantages of expert

82 83

84 85

86

players in tracking and decision-making, providing insights into how visual attention impacts sports decision-making.

The central hypothesis of this study is that expert basketball players have superior visual attention and decision-making abilities compared to novices. It is expected that as target speed increases, expert players will demonstrate higher tracking accuracy and decision-making accuracy than their novice counterparts, within certain speed ranges.

Materials & Methods

Participants

The study used G*Power 3.1.9.7 software to estimate the sample size, setting the effect size to be 87 88 biased by $\eta^2 = 0.03$ (Lakens 2014), $\alpha = 0.05$. The calculation indicated that a statistical test power 89 of 0.80 could be achieved with 40 participants (20 in each group). Considering the potential for participant withdrawal during the experiment, 48 participants were ultimately selected, with 24 90 participants in each group (Jin 2020). The participants were divided into two groups: an expert 91 92 group and a novice group, based on their basketball experience and skill level. The expert group 93 consisted of female players from the Northeast Division of the Chinese University Basketball League First Division (Pylyshyn & Annan 2006), with an average playing time of over 15 94 95 minutes per game, a minimum sports level of Level 1 (including Level 1), an average age of (21.20 ± 2.12) years, an average training period of (9.10 ± 2.14) years, and a weekly training 96 97 time of (27.64 ± 7.16) hours in the past year. The novice group included female students from 98 the basketball elective course at Northwest Normal University, with an average age of (19.83 \pm 99 0.89) years, an average training period of (1.60 ± 0.49) years, a weekly training time of $(1.20 \pm$ 100 0.15) hours, and no formal sports level. All participants have no previous experience in MOT, were right-handed, with normal or corrected vision, and maintained stable emotions and a good 101 102 mental state before the experiment. They played electronic games for no more than 4 hours per 103 week and experienced no fatigue. The experiment was approved by the ethics committee of Northwest Normal University (No. NWNU-20230301). Prior to the experiment, participants 104 105 were thoroughly informed of the purpose and procedures of the study and were required to sign an informed consent form. 106

107 Design

- Experiment 1 used a multiple object tracking task to assess tracking performance at different
- target speeds. A mixed experimental design was employed: 2 (group: experts, novices) × 3
- 110 (target speed: 5 °/s, 10 °/s, 15 °/s), where the group was the between-subjects variable, the target
- speed was the within-subjects variable, and the dependent variable was tracking accuracy. The
- accuracy calculation was based on the proportion of correctly selected targets in each
- 113 participant's trials.
- Experiment 2 followed a 2 (group: experts, novices) \times 2 (decision type: intuition, cognition) \times 3
- 115 (attack method: passing, shooting, breakthrough) × 3 (speed: low speed 0.67-3.98 m/s, medium
- speed 3.99-7.97 m/s, high speed 7.98-12.62 m/s) design. The group was the between-subjects
- variable, the target speed was the within-subjects variable, and the dependent variable was

- decision accuracy. During the experiment, a principal investigator was present to accompany and
- ensure the smooth progression of the procedure.

120 Apparatus

- 121 The experiment was conducted using a Lenovo E15 laptop, with an operating system of
- Windows 10, a 15.6-inch display screen, a screen resolution of 1920 × 1080 pixels, and a refresh
- rate of 60 Hz. At the beginning of Experiment 1, a "+" symbol lasting 500 ms was displayed at
- the center of the screen, followed by 12 white spheres. Three of the spheres turned blue and
- flashed three times, marking them as target objects, while the remaining spheres remained white
- as non-target objects. Subsequently, all spheres turned white and moved randomly at speeds of 5
- °/s, 10°/s, and 15°/s. After 8 seconds, the spheres stopped moving, and the target objects turned
- red. Participants were required to determine how many of the red spheres contained target
- objects, press the corresponding number keys, and proceed to the next trial.

130 Stimuli

139140

142

143

- 131 The offensive video sequences used in Experiment 2 were selected from Women's Chinese
- 132 Basketball Association (CBA) games, specifically focusing on the forward position. These clips
- were drawn from the final matches of the 2020-2021 and 2021-2022 seasons, which were
- temporally close to the experiment. A total of 129 segments were included, each representing
- actions such as passing, breakthrough, and shooting (Jin et al. 2023). Ten high-level female
- basketball players recreated these scenes on-site, with each team wearing black and white jerseys
- and identified by their numbers. A tall player with short hair wore a sports camera (model:
- 138 Insta360 One X) to capture footage from the player's first-person perspective (Ping 2019).
 - (1) Determination of content validity: Five CUBA basketball coaches and CBA players reviewed and validated the 129 selected WCBA league offensive position attack videos, as well

as the final first-person perspective videos (Spitz et al. 2018).

- (2) Determination of structural validity: The study also selected 6 high-level basketball players and 6 college students enrolled in the basketball elective course for validity testing. This step
- aimed to eliminate the "ceiling effect" and "floor effect," ensuring that each video could
- effectively distinguish decision-making efficiency among players at different skill levels. For
- videos with low discriminative power, the video durations were adjusted by either extending or
- shortening the clips until each video clearly differentiated the decision-making speed and
- accuracy between high-level players and elective course students. As expected, high-level
- players demonstrated higher decision-making speed and accuracy (Dai et al. 2011), thus forming
- the experimental materials for this study (Wang 2010). The final video duration for each clip was
- 151 3000 ms.

152 Video analysis

- 153 In the statistical analysis of 60 basketball game videos from Experiment 2, it was noted that there
- were 10 players in 59 videos, while only one video featured 9 players. Due to this fixed number
- characteristic, analysis of the number of players did not provide effective insights into the results
- of sports decision-making. Therefore, following consultations with experts, Experiment 2
- 157 focused on analyzing the average speed of the ball handler.

PeerJ

158 159

161162

163

164

165

166167

168

169170

171

172

173174

175

176

177178

179

189

Notes: ■pass, ●shoot.

160 Figure 1 Example of positioning calibration for ball bearers

Video analysis technology is a critical tool in modern sports science research, providing detailed data on player performance. By recording the time and location (x and y-axis coordinates) of movements during competitions, it is possible to describe the behavior of players through ordinary video footage (Kamble et al. 2019). The analysis tracks location changes over a specified time period, which are determined by the nature of the event. Based on the standard dimensions of a basketball court (28 meters in length and 15 meters in width), the court is set within a Cartesian coordinate system with an x-axis of 28 meters and a y-axis of 15 meters, with a stride value of 1 meter. Each time the step size increases by 1 meter, this serves as a reference for the grid covering the field, where mapping the event onto the grid results in corresponding x and y values (Cullinane et al. 2024). See Figure 1.

Storm player software (version 5.81) is employed to play the video material and calculate the ball handler's speed using the following steps:

The time interval is set to Δt (0.5 s), and the position changes of the ball handler are checked within each 0.5-second interval. If there is no change in the player's position, the location is recorded at 0.5-second intervals. If a change in position occurs, the location is recalibrated based on the time of the change, and the time interval is recalculated. This algorithm enables real-time detection and tracking of the ball handler's position and movement.

By recording the position changes over a continuous period, the player's running speed is calculated using the following formula. If the player moves from position $P1(x_1, y_1)$ to position

180 P2 (x₂, y₂) within time Δ t, the velocity v can be expressed as: $v = \frac{P2 - P1}{\Delta t} = \frac{\sqrt{(x2 - x1)^2 + (y2 - y1)^2}}{\Delta t}$

181 By calculating the average speed of the ball handler in each video and combining it with the

speed settings of the multiple object tracking task in Experiment 1, the decision video material

was divided into three speed ranges: 0.67-3.98 m/s, 3.99-7.97 m/s, and 7.98-12.62 m/s. The

results showed that, within the range of 0.67-3.98 m/s, there were a total of 28 videos (including

6 passes, 13 shots, and 9 breakthroughs). In the range of 3.99-7.97 m/s, there were a total of 27

videos (including 11 passes, 7 shots, and 9 breakthroughs). In the range of 7.98-12.62 m/s, there

187 were only 5 videos (including 3 passes and 2 breakthroughs), with no shooting decisions made

by the ball handler while running at high speed.

Procedure

Experiment 1: A multiple object tracking experimental program was developed using Matlab

191 R2020b software. The distance between the participant and the screen was approximately 60 cm,

and the stimulus presentation area covered the entire screen. To familiarize the participants with

the experimental process, five practice trials were conducted before the formal experiment. The

194 experiment consisted of 10 blocks, each containing 3 trials corresponding to the three target

speeds: 5 °/s, 10 °/s, and 15 °/s, for a total of 30 trials. A 10-second white screen was displayed

between each block to alleviate eye fatigue. The experimental sequence was counterbalanced

within subjects. The entire experiment lasted approximately 11 minutes.

198 199 Figure 2 Basic process of sports decision-making task Experiment 2 was programmed using Experiment Builder 2.3 software. Referring to previous 200 research, the presentation time for intuitive decisions was set at 600 ms, while the presentation 201 time for cognitive decisions was set at 1200 ms (Lu 2018). Intuitive decision-making task 202 instructions: "The '+' sign is first displayed in the center of the screen, followed by a blank screen 203 204 and a first-person perspective game video, prompting: 'Please make a decision.' Carefully observe and judge the attacking style of the ball handler within 0.6 seconds. The situation on the 205 206 court is urgent; please make a quick decision. Press 1 for passing, press 2 for shooting, and press 3 for a breakthrough." Cognitive decision-making task instructions: "The '+' sign is first 207 displayed in the center of the screen, followed by a blank screen and a first-person perspective 208 game video, prompting: 'Please make a decision.' Carefully observe and judge the attacking style 209 of the ball handler within 1.2 seconds. Please make accurate and prompt decisions. Press 1 for 210 passing, press 2 for shooting, and press 3 for a breakthrough." After the practice trials are 211 completed, the screen will display "Start formal experiment," and the button operation will 212 remain consistent with the preparation stage. The video will be played in full screen, and 213 participants will alternate between cognitive and intuitive decision-making tasks using an ABBA 214 215 design to balance task order (Liu 2012), with a 30-second break between tasks. Three types of 216 attack videos for each decision-making task will be randomly presented, and the entire experimental process will take approximately 27 minutes. See Figure 2. 217 Statistical analysis 218 The data for Experiment 1 were recorded and collected using Matlab R2020b software, while the 219 data for Experiment 2 were recorded and collected using Experiment Builder 2.3 software and 220 221 analyzed using SPSS 29.0 software. Experiment 1 uses tracking accuracy as the dependent 222 variable and employs a repeated measures analysis of variance (ANOVA) with 2 (groups) × 3 (target velocity). Experiment 2 uses decision accuracy as the dependent variable and employs a 223 224 repeated measures ANOVA with 2 (group) \times 2 (decision type) \times 3 (attack style) \times 3 (speed). If 225 the interaction effect is significant, further simple effects analysis will be performed. The Bonferroni method will then be used for pairwise comparisons. P < 0.05 will be used as the 226 threshold for statistically significant differences. 227 Results 228 Tracking accuracy of experts and novice MOT at different speeds 229 230 231 Note **P<0.01 232 233 Figure 3 Tracking accuracy of MOT at different speeds for experts and novices A repeated measures ANOVA was performed with target speed (5 °/s, 10 °/s, 15 °/s) as the 234 235 within-subjects variable, group (expert group, novice group) as the between-subjects variable, 236 and tracking accuracy as the dependent variable. The results showed that the main effect of the 237 group was significant, with the accuracy of the expert group ($56.81 \pm 13.11\%$) being

- 238 significantly higher than that of the novice group (46.95 \pm 12.70%, P < 0.001). The main effect
- of target speed was significant, F(2, 92) = 196.722, P < 0.001, $\eta^2 = 0.810$. Post-hoc analysis 239
- revealed that as target speed increased, accuracy significantly decreased (Ps < 0.01). The 240
- interaction effect between target speed and group was also significant, F(2, 92) = 5.891, P =241
- 242 0.006, $\eta^2 = 0.114$. Simple effects analysis showed that at 10 °/s, the accuracy of the expert group
- $(60.42 \pm 13.98\%)$ was significantly higher than that of the novice group $(41.25 \pm 13.93\%, P <$ 243
- 0.001); at other speeds, no significant differences in accuracy were found (Ps > 0.05). See Figure 244
- 245

246 Decision accuracy of expert and novice video materials at different speeds

- 247 A repeated measures ANOVA was conducted using group (expert group, novice group) as the
- between-subjects variable, decision type (intuition, cognition), attack method (passing, shooting, 248
- breakthrough), and speed (low speed: 0.67-3.98 m/s, medium speed: 3.99-7.97 m/s, high speed: 249
- 250 7.98-12.62 m/s) as within-subjects variables, with accuracy as the dependent variable. The
- 251 results are shown in Table 1.
- 252 The analysis revealed a significant main effect of group, with the decision accuracy of the
- expert group (0.66 ± 0.11) being significantly higher than that of the novice group (0.32 ± 0.10) . 253
- F(1, 46) = 1069.644, P < 0.001, $\eta^2 = 0.959$. The main effect of decision type was also significant. 254
- with the accuracy of intuitive decisions (0.47 \pm 0.11) being significantly lower than that of 255
- cognitive decisions (0.52 ± 0.10) , F(1, 46) = 45.818, P < 0.001, $\eta^2 = 0.499$. The main effect of 256
- attack method was significant, F(2, 92) = 171.733, P < 0.001, $\eta^2 = 0.789$. Post-hoc analysis 257
- revealed that the accuracy of shooting decisions (0.40 ± 0.10) was significantly lower than that 258
- of passing (0.55 ± 0.11) and breakthrough (0.53 ± 0.12) , Ps < 0.001; there was no significant 259
- 260 difference in the accuracy of passing and breakthrough decisions (P = 0.05). The main effect of
- speed was significant, F(2, 92) = 729.000, P < 0.001, $\eta^2 = 0.941$. Post-hoc analysis showed that 261
- as speed increased, decision accuracy significantly decreased (Ps < 0.001). 262
- The interaction effect between group and decision type was significant, F(1, 46) = 7.050, P =263
- 0.011, $\eta^2 = 0.133$. The interaction effect between group and attack method was significant, F(2, 264
- 92) = 38.394, P < 0.001, $\eta^2 = 0.455$. The interaction effect between group and speed was 265
- significant, F(2, 92) = 41.583, P < 0.001, $\eta^2 = 0.475$. The interaction effect between decision 266
- type and attack method was significant, F(2, 92) = 5.243, P = 0.007, $\eta^2 = 0.102$. The interaction 267
- 268 effect of group, decision type, and attack method was significant, F(2, 92) = 3.923, P = 0.023, η^2
- = 0.079. The interaction effect between decision type and speed was significant, F(2, 92) = 269
- 7.254, P = 0.001, $\eta^2 = 0.136$. The interaction effect between attack method and speed was 270
- significant, F(4, 184) = 177.963, P < 0.001, $\eta^2 = 0.795$. The interaction effect of group, attack 271
- method, and speed was significant, F(4, 184) = 31.753, P < 0.001, $\eta^2 = 0.408$. The interaction 272
- effect of decision type, attack method, and speed was significant, F(4, 184) = 5.054, P < 0.001,
- 273
- $\eta^2 = 0.099$. No other significant interaction effects were found (Ps > 0.05). 274
- To further explore the interaction effect between groups and decision types, a simple effects 275
- 276 analysis was conducted, which revealed that the decision accuracy of the expert group was
- 277 significantly higher than that of the novice group in both intuitive and cognitive decision-making

(Ps < 0.001).

tasks (Ps < 0.001). In both groups, the accuracy of cognitive decision-making was significantly higher than that of intuitive decision-making (Ps < 0.01).

To test the interaction effect between groups and attack methods, a simple effects analysis was conducted, showing that, across all attack methods, the decision accuracy of the expert group was significantly higher than that of the novice group (Ps < 0.001). In the expert group, the accuracy of shooting decisions (0.52 ± 0.10) was significantly lower than that of passing (0.74 ± 0.12) and breakthrough (0.72 ± 0.13) (Ps < 0.001), with no significant difference between passing and breakthrough decisions (P = 0.139). In the novice group, the accuracy of shooting decisions (P = 0.139) was significantly lower than that of passing (P = 0.139) and breakthrough (P = 0.139).

Table 1 Decision accuracy of experts and novices at different video speeds

In order to test the interaction effect between group and speed, a simple effects analysis was conducted, and it was found that the decision accuracy of the expert group was significantly higher than that of the novice group at all three speeds (Ps < 0.001). In both the expert and novice groups, as the ball handler's speed increased, decision accuracy significantly decreased

In order to test the interaction effect between decision types and attack methods, a simple effects analysis was conducted, and it was found that among the three attack methods, the accuracy of cognitive decision-making was significantly higher than that of intuitive decision-making (Ps < 0.05). In both intuitive and cognitive decision-making, the accuracy of shooting decisions was significantly lower than that of passing and breakthrough (Ps < 0.001), while there was no significant difference in the accuracy of passing and breakthrough decisions (Ps > 0.05). In order to test the interaction effect between decision type and speed, a simple effects analysis was conducted, and it was found that there was no significant difference (P = 0.108) between intuitive decision accuracy (0.62 ± 0.09) and cognitive decision accuracy (0.65 ± 0.10) at 0.67-3.98 m/s. At speeds of 3.99-7.97 m/s and 7.98-12.62 m/s, the accuracy of cognitive decision-making was significantly higher than that of intuitive decision-making (Ps < 0.001). In both intuitive and cognitive decision-making, the accuracy of passing decisions was significantly higher than that of shooting and breakthrough (Ps < 0.001), and the accuracy of shooting decisions was significantly higher than that of breakthrough (Ps < 0.001).

In order to test the interaction effect between attack mode and speed, a simple effects analysis was conducted, and it was found that there was no significant difference in decision accuracy among the three attack modes at 0.67-3.98 m/s and 3.99-7.97 m/s (Ps > 0.05). At 7.98-12.62 m/s, the decision-making accuracy for shooting was significantly lower than that for passing and breakthrough (Ps < 0.001), and there was no significant difference in decision-making accuracy between passing and breakthrough (Ps > 0.05). Among the three offensive methods, the accuracy of passing decisions was greater than that of shooting and breakthrough (Ps < 0.001), and the accuracy of shooting decisions was greater than that of breakthrough (Ps < 0.001).

In order to test the interaction effects between groups, decision types, and attack methods, a simple effects analysis was conducted, and it was found that the expert group had significantly higher decision accuracy than the novice group in both intuitive and cognitive decision-making tasks across all three attack methods (Ps < 0.001). In the expert group, the accuracy of cognitive decision-making for passing and breakthrough was significantly higher than that of intuitive decision-making (Ps < 0.001). In the novice group, the accuracy of cognitive decision-making during passing (0.38 ± 0.11) was significantly higher than that of intuitive decision-making (0.33 \pm 0.09, P < 0.01). There was no significant difference in the accuracy of other decisions (Ps > 0.05). In the expert group's intuitive decision-making, the accuracy of shooting decisions was significantly lower than that of passing and breakthrough (Ps < 0.001), while the accuracy of passing decisions (0.70 \pm 0.11) was significantly higher than that of breakthrough decisions (0.67 \pm 0.14, P = 0.024). In the expert group's cognitive decision-making, the accuracy of shooting decisions was significantly lower than that of passing and breakthrough (Ps < 0.001), while there was no significant difference in the accuracy of passing decisions (0.78 \pm 0.12) and breakthrough decisions (0.77 ± 0.11) (P = 0.981). In both intuitive and cognitive decision-making in the novice group, the accuracy of shooting decisions was significantly lower than that of passing and breakthrough (Ps < 0.01), while there was no significant difference in the accuracy of passing and breakthrough decisions (Ps > 0.05).

In order to test the interaction effects between groups, decision type, and speed, a simple effects analysis was conducted, and it was found that in both intuitive and cognitive decision-making, the decision accuracy of the expert group was significantly higher than that of the novice group at all three video speeds (Ps < 0.001). In both the expert and novice groups, the accuracy of cognitive decision-making was significantly higher than that of intuitive decision-making when the ball handler's speed was between 3.99-7.97 m/s and 7.98-12.62 m/s (Ps < 0.05), while there was no significant difference in the accuracy of other decisions (Ps > 0.05). In the cognitive decision-making of the expert group, there was no significant difference in decision accuracy between 0.67-3.98 m/s (0.84 ± 0.10) and 3.99-7.97 m/s (0.80 ± 0.11) (P = 0.104), while the accuracy of other decisions decreased significantly with increasing speed (Ps < 0.01). At different speeds for the three attack methods, the decision accuracy of the expert group was significantly higher than that of the novice group (Ps < 0.001).

In order to test the interaction effects between groups, attack methods, and speed, a simple effects analysis was conducted, and it was found that the decision accuracy of the expert group was significantly higher than that of the novice group across different speeds for the three attack methods (Ps < 0.001). The accuracy of shooting decisions for both the expert and novice groups was significantly lower than that of passing and breakthrough at 7.98-12.62 m/s (Ps < 0.001), while there was no significant difference in the accuracy of other decisions (Ps > 0.05). In the expert group's shooting decision, there was no significant difference in the accuracy of decisions between 0.67-3.98 m/s (0.80 ± 0.09) and 3.99-7.97 m/s (0.76 ± 0.11) (P = 0.076), while the accuracy of other decisions decreased significantly with increasing speed (Ps < 0.05).

 In order to test the interaction effects between decision types, offensive styles, and speed, a simple effects analysis was conducted, and it was found that the accuracy of cognitive decisions was significantly higher than that of intuitive decisions at 7.98-12.62 m/s for passing, 3.99-7.97 m/s for shooting, and 3.99-7.97 m/s and 7.98-12.62 m/s for breakthrough (Ps < 0.05), while there was no significant difference in the accuracy of other decisions (Ps > 0.05). At a speed of 7.98-12.62 m/s for both intuitive and cognitive decision-making, the accuracy of shooting decisions was significantly lower than that of passing and breakthrough (Ps < 0.001), while there was no significant difference in the accuracy of other decisions (Ps > 0.05). In breakthrough cognitive decision-making, there was no significant difference in decision accuracy between 0.67-3.98 m/s (0.64 ± 0.11) and 3.99-7.97 m/s (0.59 ± 0.12) (P = 0.067), while the accuracy of other decisions decreased significantly with increasing speed (Ps < 0.05).

Discussion

Experiment 1 aimed to explore the visual attention differences between expert and novice players in multiple object tracking tasks under different target speed conditions. As the target speed increased, the tracking accuracy of both groups showed a decreasing trend. However, at a target speed of 10° /s, the accuracy of the expert group was significantly higher than that of the novice group (P < 0.001), reflecting the visual attention advantage of expert players in tracking speed, thereby supporting our hypothesis.

This result aligns with the findings of Jingwen Song (Song 2012), but differs from those of Jin Peng et al. on the differences in target velocity tracking accuracy, which may be attributed to gender differences among the subjects (Jin 2020). There was no significant difference in tracking accuracy between the two groups at target speeds of 5 °/s and 15 °/s. The attention resources consumed by the target speed task are limited, and the difficulty of the task increases with the target speed. Due to the lower difficulty of the 5 °/s task, players can manage it easily; the 15 °/s task, however, is too difficult and exceeds the visual capability of both groups of players. Thus, at a target speed of 10 °/s, expert players demonstrated higher accuracy based on their ability to quickly process visual information acquired through long-term training and competition. Zhang Xuemin's research also shows that players outperform control groups in tracking tasks (Zhang et al. 2005).

Experiment 2 examined the performance of expert and novice groups in motion decision-making tasks across different speed ranges and decision types. The results showed that the decision-making accuracy of the expert group was significantly higher than that of the novice group across all three speed ranges (Ps < 0.001), confirming the advantage of expert players in decision-making ability. As speed increased, decision accuracy significantly decreased (Ps < 0.001), indicating that players' decision flexibility and accuracy are affected by targets of different speeds. The faster the target movement speed, the greater the cognitive load on players, which impacts decision-making accuracy. Specifically, when the ball handler moves at high speed, the player must quickly assess the relative position of the ball handler to other players in order to respond quickly to the rapidly changing game environment. This rapid response ability

397

398

399 400

401

402

403

404

405

406

407

408 409

410

411

412

413

414

415

416

417 418

419

420

421 422

423

424

425

426 427

428

429

430 431

432

433

434 435 is a core characteristic of high-level players, which can significantly improve their decision-making efficiency in complex environments (Mann et al. 2007).

Moreover, fast-paced basketball games may make players more inclined to rely on intuitive decision-making rather than thoughtful analysis, thereby increasing the diversity and flexibility of decision-making. Due to long-term training and competition, expert players have accumulated a wealth of knowledge, which makes their decision-making abilities significantly better than those of novice players. Wu Yin's research further suggests that long-term exercise training can alter brain structure and help players process complex visual information more efficiently during sports (Wu et al. 2015). Ericsson and Lehmann argue that long-term exercise can increase the excitability of players' nervous systems, making them more flexible in visual attention regulation (Ericsson & Lehmann 1996). Elite male basketball players, as compared to amateur basketball players, are able to preserve their cognitive performance in tests probing visuospatial attention and decision-making even after an exhaustive bout of acute physical exercises (Mancı et al. 2023). Although the analysis of the number of players did not provide meaningful results, the relationship between the ball handler's movement speed and motion decisions is significant. Previous studies have shown that as the number of players on the field increases, players' cognitive load significantly increases, affecting both decision-making time and accuracy (Vaevens et al. 2010). In this study, the complex interaction between visual attention and motion decision-making was revealed by analyzing the performance of ball handlers under different speed conditions. Specifically, the average running speed and total running distance not only provide information on players' physical condition but also offer insights into their decisionmaking ability at critical moments. At high speeds, players' visual attention may be disrupted, leading to neglect of the surrounding environment, thus impacting decision-making quality. Research has shown a significant correlation between visual attention and sports decisionmaking. During high-speed sports, players tend to rely more on intuitive decision-making, which may lead to misjudgment. The results of this study confirmed this finding, showing that the accuracy of intuitive decision-making was significantly lower than that of cognitive decisionmaking (P < 0.001). Additionally, the ball handler did not make any shooting decisions while

accuracy of intuitive decision-making was significantly lower than that of cognitive decision-making (P < 0.001). Additionally, the ball handler did not make any shooting decisions while running at high speeds (7.98-12.62 m/s), providing important insights for practical training. This suggests that other offensive methods may be more effective than shooting in high-speed situations.

Spitz et al.'s research suggests that there is no significant difference in the accuracy of football referees when reviewing plays in slow motion compared to real-time decisions, and slowing down video speed does not improve decision accuracy, possibly due to a loss of authenticity in the real-time environment (Spitz et al. 2018). In contrast to Spitz et al.'s findings, this study supports Lorains' viewpoint. Lorains' research explains why expert players make more accurate decisions at high speeds: faster speeds better align with the dynamic, time-sensitive decision-making environment in sports, meeting the cognitive processing needs of players (Lorains et al. 2013). This is reflected in the experimental data: as speed increases, decision accuracy

significantly decreases, particularly for shooting decisions. This decline may be attributed to the

- heightened cognitive load and attentional demands imposed by faster speeds. According to cognitive load theory (Ping, 2019), excessive processing demands can overwhelm working memory, impairing decision-making efficiency.
- However, the expert group still showed significant advantages over the novice group under 439 440 high-speed conditions, indicating that the fast-moving competitive environment places higher demands on players' attention allocation and timely decision-making, further emphasizing the 441 crucial role of visual attention in sports decision-making. Therefore, coaches and practitioners 442 should consider incorporating high-speed visual tracking drills-such as dynamic target tracking, 443 occlusion-based recognition tasks, and sport-specific decision scenarios-into training routines. 444 445 These tasks should emphasize contextual realism, requiring players to respond under temporal constraints that closely mimic actual gameplay. 446
- This study found the promoting effect of multiple object tracking training on sports decision-447 making ability, underscoring the close relationship between visual attention and sports decision-448 449 making. However, research on how multiple object tracking training affects the brain mechanisms of players is still insufficient. The expert group includes only players from one 450 university-level league, the study exclusively included fmale participants, which restricts the 451 generalizability of the findings to male players, the unbalanced number of decisions at different 452 speeds, which reduces the diversity of expertise and limits the generalizability of the results. 453 Future studies should integrate brain imaging technology to further explore the neural adaptive 454
- changes caused by training, providing a scientific basis for training strategies aimed at enhancing
- 456 players' decision-making abilities.

Conclusions

457

This study demonstrates that expert basketball players exhibit superior visual attention and perceptual-cognitive decision-making abilities compared to novices. Their enhanced tracking performance and higher decision accuracy-particularly in complex, high-speed scenarios-underscore the role of domain-specific attentional allocation and strategic adaptation. These findings contribute to the theoretical understanding of expertise in dynamic sports environments and suggest practical implications for perceptual training in athletic development.

464 Acknowledgements

- **465** Competing Interests
- The authors declare that they have no competing interests.
- **467 Author Contributions**
- 468 Qi-feng Gou conceived and designed the experiments, performed the experiments, analyzed the
- data, prepared figures and/or tables, and approved the final draft.
- 470 Sun-nan Li conceived and designed the experiments, prepared figures and/or tables, reviewed
- 471 drafts of the paper, and approved the final draft.
- 472 Data Availability
- 473 The following information was supplied regarding data availability:
- The raw measurements are available in the Supplemental Files.

References

475

- Bahdur K. 2015. The effect of a physical, psychological and visual intervention on decision-making in football players. University of Johannesburg (South Africa).
 - Cullinane A, Davies G, and O'Donoghue P. 2024. *An introduction to performance analysis of sport*. New York: Routledge.
 - Dai H, Zhang F, and Chen X. 2011. *Psychological and educational measurement*. Guangzhou: JiNan University Press.
 - Ericsson KA, and Lehmann AC. 1996. Expert and exceptional performance: evidence of maximal adaptation to task constraints. *Annual Review of Psychology* 47:273-305. 10.1146/annurev.psych.47.1.273
 - Faubert J. 2013. Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. *Scientific Reports* 3:1154-1157. 10.1038/srep01154
 - Faubert J, and Sidebottom L. 2012. Perceptual-cognitive training of athletes. *Journal of Clinical Sport Psychology* 6:85-102. 10.1123/jcsp.6.1.85
 - Gou QF, and Li SN. 2023. Study on the correlation between basketball players' multiple object tracking ability and sports decision-making. *Plos One* 18. 10.1371/journal.pone.0283965
 - Hu GY, Hu B, Zhuang YF, and Xu XY. 2004. Sport psychology. Hangzhou: Zhejiang University Press.
 - Jin P, Li X, Ma B, Guo H, Zhang Z, and Mao L. 2020b. Dynamic visual attention characteristics and their relationship to match performance in skilled basketball players. *Peer J* 8:e9803. 10.7717/peerj.9803
 - Jin P, Ge Z, and Fan T. 2023. Research on visual search behaviors of basketball players at different levels of sports expertise. *Scientific Reports* 13:1406-1416. 10.1038/s41598-023-28754-2
 - Kamble PR, Keskar AG, and Bhurchandi KM. 2019. A deep learning ball tracking system in soccer videos. *Opto-Electronics Review* 27:58-69. 10.1016/j.opelre.2019.02.003
 - Lakens D. 2014. Performing high-powered studies efficiently with sequential analyses. *European Journal of Social Psychology* 44:701-710. 10.1002/ejsp.2023
 - Li JC, Xu SS, and Zhang S. 2006. A review of eye moving researches in sports psychology. *Journal of Capital Institute of Physical Education* 18:3-5+22. 10.3969/j.issn.1009-783X.2006.03.002
 - Liao YG. 2013. Eye movement analysis applied in sport psychology in China. *Contemporary Sports Technology* 3:20-21. 10.16655/j.cnki.2095-2813.2013.15.027
 - Liu JM. 2012. The experimental study on decision making in volleyball situation Master. Northwest Normal University.
 - Lorains M, Ball K, and MacMahon C. 2013. Expertise differences in a video decision-making task: Speed influences on performance. *Psychology of Sport and Exercise* 14:293-297. 10.1016/j.psychsport.2012.11.004
 - Lu HF. 2018. ERP study on decision-making characteristics of basketball under different emotional states Master. Shandong Normal University.
 - Mancı E, Herold F, Günay E, Güdücü Ç, Müller NG, and Bediz CŞ. 2023. The Influence of Acute Sprint Interval Training on the Cognitive Performance of Male Basketball Players: An Investigation of Expertise-Related Differences. *International Journal of Environmental Research and Public Health*, 20(6): 4719. 10.3390/ijerph20064719
 - Mann DTY, Williams AM, Ward P, and Janelle C. 2007. Perceptual-cognitive expertise in sport: a meta-analysis. *Journal of Sport and Exercise Psychology* 29:457-478. 10.1123/jsep.29.4.457
 - Mao Z. 2010. A brief compilation of sports psychology. Beijing: Beijing Sport University Press.
 - Marasso D, Laborde S, Bardaglio G, and Raab M. 2014. A developmental perspective on decision making in sports. *International Review of Sport and Exercise Psychology* 7:251-273. 10.1080/1750984X.2014.932424
 - Ping AD. 2019. Research on VR panoramic video training to improve college students' basketball attack decision making skills Master. Beijing Normal University.
 - Pylyshyn Z, and Annan V. 2006. Dynamics of target selection in multiple object tracking (MOT). *Spatial Vision* 19:485-504. 10.1163/156856806779194017
- Song J. 2012. The impact of speed of movement, number of objects, and tracking duration on multiple object visual tracking performance and strategies master. Soochow University.
- 526 Spitz J, Moors P, Wagemeans J, and Nelsen W. 2018. The impact of video speed on the decision-making process of sports officials. 3:16-26. 10.1186/s41235-018-0105-8
- 528 Sui X, Gao M, and Xiang HW. 2018. Eve movement theory and empirical research in visual cognition. Beijing:

Manuscript to be reviewed

529	Science Press.
530	Sungur H, and Boduroglu A. 2012. Action video game players form more detailed representation of objects.
531	Acta Psychologica 139:327-334. 10.1016/j.actpsy.2011.12.002
532	Thomas K T. 1994. The development of sport expertise: from leeds to MVP legend[J].Quest 46(2):199-210.
533	10.1080/00336297.1994.10484121
534	Vaeyens R, Lenoir M, Williams A, and Philippaerts R. 2010. Mechanisms underpinning successful decision
535	making in skilled youth soccer players:an analysis of visual search behaviors. Journal of Motor
536	Behavior 39:395-408. 10.3200/JMBR.39.5.395-408
537	Vickers J. 2007. Perception, cognition, and decision training: the quiet eye in action. Champaign-Urbana:
538	Human Kinetics.
539	Wang CS. 2010. Research on sports thinking decision making. Wuhan: Central China Normal University Press.
540	Wang J, Li J, and Zhang Y. 2018. Tracking performance and attentional allocation of football athletes in
541	dynamic tracking tasks. Journal of Tianjin University of Sport 33. 10.13297/j.cnki.issn1005-
542	0000.2018.02.007
543	Williams AM, Davids K, Burwitz L, and Williams J. 2013. Visual search strategies in experienced and
544	inexperienced soccer players. Research Quarterly for Exercise and Sport 65:127-135.
545	10.1080/02701367.1994.10607607
546	Wu Y, Zhang J, Zeng Y, and Shen C. 2015. Structural brain plasticity change in athletes associated with
547	different sports. China Sport Science 35:52-57. 10.16469/j.css.201504006
548	Zhang X, Liao Y, and Ge C. 2005. Comparative research on visual selection attention between college students
549	and athletes. China Sport Science 25:22-24. 10.16469/j.css.2005.03.007

Table 1(on next page)

Decision accuracy of experts and novices at different video speeds

Table 1 Decision accuracy of experts and novices at different video speeds

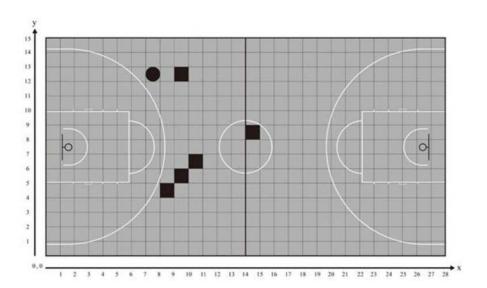

group	type	Speed (m/s)	pass	shoot	breakthrough
			M±SD	M±SD	M±SD
expert	intuition	0.67-3.98	0.83±0.07	0.79±0.07	0.80±0.09
		3.99-7.97	0.78 ± 0.11	0.75±0.08	0.72 ± 0.13
		7.98-12.62	0.49±0.15	\	0.47 ± 0.19
	cognition	0.67-3.98	0.86±0.10	0.82 ± 0.10	0.85±0.11
		3.99-7.97	0.82 ± 0.09	0.78 ± 0.13	0.80 ± 0.12
		7.98-12.62	0.67±0.17	\	0.67 ± 0.13
novice	intuition	0.67-3.98	0.44 ± 0.09	0.43±0.11	0.44 ± 0.12
		3.99-7.97	0.35±0.10	0.35 ± 0.08	0.35±0.11
		7.98-12.62	0.20 ± 0.08	\	0.18 ± 0.08
	cognition	0.67-3.98	0.47±0.10	0.45±0.10	0.44±0.11
		3.99-7.97	0.38±0.13	0.39 ± 0.09	0.37±0.10
		7.98-12.62	0.28±0.11	\	0.24±0.11

Figure 1

Figure 1 Example of positioning calibration for ball bearers

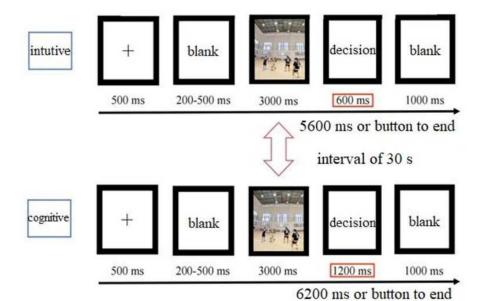


Figure 2

Figure 2 Basic process of sports decision-making task

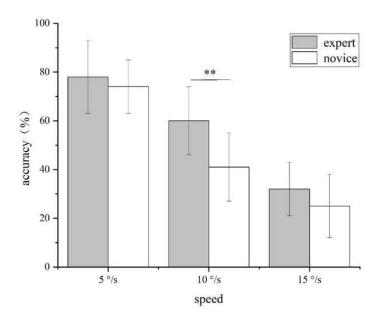


Figure 3

Figure 3 Tracking accuracy of MOT at different speeds for experts and novices

