Submitted 4 August 2025
Accepted 29 September 2025
Published 14 November 2025

Corresponding authors

Charlie Pauvert,
cpauvert@ukaachen.de

Thomas Clavel, tclavel@ukaachen.de

Academic editor
Liang Wang

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peer;j.20259

© Copyright
2025 Pauvert et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Fast and robust estimate of bacterial
genus novelty using the percentage of

conserved proteins with unique matches
(POCPu)

Charlie Pauvert, Thomas C.A. Hitch and Thomas Clavel

Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH
Aachen, Aachen, Germany

ABSTRACT

Accurate taxonomic assignment of bacterial genomes is essential for identifying novel
taxa and for stable classification to enable robust comparison between studies. Bacterial
genus delineation relies on multiple lines of evidence, including phylogenetic trees and
metrics like the percentage of conserved proteins (POCP). POCP is widely used, but
requires benchmarking in terms of both, computation and accuracy. We used 2,358,466
pairwise comparisons of proteomes derived from 4,767 genomes across 35 families

to systematically assess POCP calculation and percentage of conserved proteins with
unique matches (POCPu) which considers unique matches only. Both methods are 20x
faster than the reference BLASTP when using the very-sensitive setting of DIAMOND.
However, POCPu differentiates better within-genus from between-genera values, which
improves bacterial genus assignment. This work facilitates comparative analysis of an
increasingly larger number of genomes, providing a reliable metric to support genus
delineation. The findings suggest that specific POCPu thresholds deviating from the
reference 50% value are needed for certain families.

Subjects Bioinformatics, Genomics, Microbiology, Taxonomy, Data Science

Keywords Bacterial taxonomy, Bacterial genomics, Genus delineation, Protein sequence
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INTRODUCTION

Bacterial taxonomy is the classification of strains into lineages ranging from phyla to
species (Tindall et al., 2010). This is critical to understand microbial diversity by creating a
coherent framework that reflect their evolutionary relationships. Two elements show that
accurate taxonomic placement of microorganisms is more important now than ever: (i) a
very high fraction of bacteria, both in the environment and host-associated microbiomes,
remain to be described and named (Thomas ¢ Segata, 2019; Sutcliffe, Rossello-Mara &
Trujillo, 2021; Rodriguez del Rio et al., 2024); (ii) large-scale metagenomic studies in the
last decade and now high-throughput cultivation methods are accelerating the pace of
bacterial discovery (Hugenholiz et al., 2021; Clavel et al., 2025). Tt is therefore essential

to consolidate the system for classifying bacteria and confidently assess their taxonomic
novelty. It is equally important to ensure that the boundaries between genera that include
known taxa are stable. Whilst bacteria had been classified based on morphology and
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phenotypic parameters for decades, the advent of genomics has revolutionised the way we
classify bacteria (Chun ¢ Rainey, 2014), giving rise to several overall genome relatedness
indices (OGRI). However, in the process of classifying bacteria, it is essential to provide
a robust framework that includes easy-to-implement parameters to classify organisms at
each level of bacterial lineage, including the genus level, which is the focus in this article.

The Genome Taxonomy Database (GTDB) has proposed a standardized approach to
group publicly available genomes into species clusters (Parks et al., 2020), resulting in an
invaluable resource that is regularly updated and adopted by the community (Parks et
al., 2022). The approach is resilient to genome contamination, which can plague public
repositories (Mussig et al., 2024), but also includes cases of taxonomic incongruence with
previously described and accepted species names (Parks et al., 2020).

In the last three years alone, the number of bacterial genomes just in the RefSeq collection,
a high-quality and curated subset of public sequence databases, has increased by 35,000 per
year, both from isolates and metagenomes (Haft et al., 2024). To analyse these genomes, we
need clear and rapid methods for taxonomic assignment. For species, the average nucleotide
identity (ANI) has been developed (Jain et al., 2018) and shown to delineate species almost
unanimously (Parks et al., 2020). Whilst there is no ANI threshold for genus delineation
(Qin et al., 2014), family-specific thresholds have been suggested using both the ANI value
and alignment fraction, however the lack of a clear threshold limits their usability (Barco
et al., 2020). An alternative to ANI is the average amino acid identity (AAI) which uses
protein sequences instead of genomic nucleic sequences (Konstantinidis & Tiedje, 2005).
Whilst several tools implement AAI calculation (Medlar, Torénen ¢ Holm, 2018; Kim, Park
e Chun, 2021; Dieckmann et al., 2021; Gerhardt et al., 2025), and AAI values above 65 to
95% were proposed for genomes from the same genus (Konstantinidis, Rossello-Méra ¢
Amann, 2017), such wide range requires to combine AAI with others metrics to classify
genera. A protein sequence-based genus delineation method with an interpretable metric
is the percentage of conserved proteins (POCP) (Qin et al., 2014). If two bacterial genomes
share more than half of their conserved proteins, i.e., POCP >50%, they are considered to
represent species from the same genus.

POCP is widely used, in combination with other OGRI, to assign novel bacterial taxa
to known genera, or to support the proposal of novel genera (Orata et al., 2018; Chaplin
et al., 2020; Gonzdlez et al., 2020; Wylensek et al., 2020 Liu et al., 2021; Kuzmanovic et al.,
20225 Afrizal et al., 2022; Sereika et al., 2023; Hitch et al., 2025). However, the validity of
the reference threshold value (50%) has not been widely tested. In addition, a major
limitation of POCP is that comparing all proteins within each genome to each other is
computationally demanding. Given that the number of valid genus names almost doubled
(Fig. S1) since the original proposition of POCP by Qin et al. (2014), scalable methods and
a timely re-evaluation of the POCP approach are needed.

Herndndez-Salmerén ¢ Moreno-Hagelsieb (2020) compared protein alignment tools
to find faster alternatives to identify reciprocal best hits, without a loss in precision.
They found that DIAMOND (Buchfink, Reuter ¢ Drost, 2021), set to sensitive parameters
instead of defaults, correctly found 87% of the reciprocal best hits of BLASTP (Camacho
et al., 2009) in less than 8% of the computing time. Recently, Holzer (2024) suggested
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the use of DIAMOND with ultra-sensitive settings to compute POCP faster than with
BLASTP. This method was based on previously available code (Hdlzer, 2020), implemented
as a nextflow workflow (Hdlzer, 2024). However, this new method was only validated
on five genera, with 15 to 167 genomes each. Fundamental changes, such as the tool
selected, can have significant effects on calculations, especially if 13% (as in 100%—87%)
of matching proteins may not be found. Current implementations of POCP have also
modified the calculation method by considering conserved proteins to unique matches
(Holzer, 20205 Holzer, 20245 Lin, 2021; Riesco ¢ Trujillo, 2024), without comparing to the
original implementation (Qin ef al., 2014). These studies clearly show the need for a clear
definition of POCP to avoid divergent assumptions in tools between microbiologists and
developers. Furthermore, given the increased number of genomic resources available, we
need a fast and reproducible framework to classify genera that needs to be tested at a large
scale.

Here the aim was to re-evaluate genus-level delineation based on POCP proposed
10 years ago, with a focus on scalability and the handling of duplicate genes. To achieve
this, we analyzed 2,358,466 pairwise comparisons of 4,767 genomes across 35 families, with
a focus on optimizing POCP implementation to provide a reliable and accurate metric that
can be used in conjunction with other evidence to support genus delineation.

MATERIALS AND METHODS

Standardisation of protein sequences and taxonomy via GTDB
Portions of this text were previously published as part of a preprint (bioRxiv https:
/doi.org/10.1101/2025.03.17.643616). As GTDB provides curated taxonomy along with
genomes and genome-derived protein sequences (Parks et al., 2022), we used it as a reliable
source of high-quality data in our benchmark. We used inclusion criteria to facilitate the
selection of a diverse range of taxonomic groups from GTDB (release 214) (N = 394,932
bacterial genomes), while maintaining achievable comparisons with the time, human, and
computing resources available: (1) the bacteria had a valid name according to the list of
prokaryotic names with standing in nomenclature (Parte et al., 2020) and a representative
genome was available (N = 11,699), (2) they belonged to a family with at least two genera
(N = 5,904), and (3) to a genus with at least ten genomes (N = 4,767). Based on these
criteria, the protein sequence files for the shortlisted bacteria were obtained from GTDB
(Table ST) which uses Prodigal v2.6.3 (Hyatt et al., 2010) for protein sequence prediction.
A single representative genome from each species, as designated by GTDB, was selected for
further analysis (Table S1).

Definition of percentage of conserved proteins (POCP)

The percentage of conserved proteins (Fig. 1A) between two genomes Q and S is defined

as:

Cos+Csq
To+Ts

where Cqs represents the conserved number of proteins from Q when aligned to S and

POCP = x 100% (1)

conversely Csq represents the conserved number of proteins from S when aligned to Q;
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Figure 1 Schematic overview of POCP and POCPu calculation and the overall benchmarking work-
flow. (A) Three simplified examples of bacterial genomes (two from the same genus and one from a dif-
ferent genus) to illustrate how the percentage of conserved proteins (POCP) or percentage of conserved
proteins using unique matches (POCPu) were calculated. Details on the formula for POCP and POCPu
calculation are provided in the Methods. (B) Overview of the benchmarking workflow. Shortlisted, high-
quality genomes from the Genome Taxonomy Database (GTDB) were used to compare different protein
alignment methods (top-right) and to evaluate the potential of POCP and POCPu for genus delineation
(bottom-right).
Full-size Gl DOL: 10.7717/peerj.20259/fig-1

Tq+ Ts represents the total number of proteins in the two genomes being compared
(adapted from Qin et al. 2014). The range of POCP is theoretically [0; 100%]. Conserved
proteins are defined as protein sequences matches from the query with an e-value <107, a
sequence identity >40%, and an aligned region >50% of the query protein sequence length
(Qinetal, 2014).

Definition of Percentage of Conserved Proteins using only unique
matches (POCPu)

During the alignment process, protein sequences from the query can match multiple
subject sequences in the case of duplicated genes (Fig. 1A). Whilst briefly mentioned in the
original article that “The number of conserved proteins in each genome of strains being
compared was slightly different because of the existence of duplicate genes (paralogs)” (Qin
et al., 2014, p. 2211), the impact of this on POCP values was not determined. Therefore,
we defined the POCP with unique matches (POCPu) between two genomes Q and S as:

Cugs+Cusq

POCPu=
To+Ts

x 100% (2)
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where C,,s represents the conserved number of proteins from the unique matches of Q
when aligned to S and, conversely, C,sq the conserved number of proteins from the unique
matches of S when aligned to Q; T + T’ represents the total number of proteins in the
two genomes being compared. We hypothesized that the impact of paralogs on POCP
will decrease with unique matches as only one pair of duplicated conserved genes will be
counted instead of two (Fig. 1A).

Pairwise comparisons between a query sequence (Q) and a subject sequence (S) were
defined by banning self-comparisons (Q # S) and considering reciprocal comparisons
(Q—S and S — Q) only within the same family to avoid unnecessary expansion of the
comparison landscape.

Finding suitable protein sequence alignment methods to scale
BLASTP-based POCP calculations

In Qin et al. (2014), guidance was provided on how to implement the computation of
POCP, including the use of BLASTP. As ‘standard’ POCP method, we used BLASTP
v2.14.0+ (Camacho et al., 2009) with parameters from Qin et al. (2014) (Table S2). We
also considered a modified implementation of the BLASTP method, named BLASTPDB
where BLAST databases are first built for the two genomes considered (Table S2). This
allows parallel alignments on multiple CPU, which is not possible with BLASTP. We
then included two tools that were designed as faster local-protein-alignment methods
and used as alternatives to BLASTP: DIAMOND v2.1.6 (Buchfink, Reuter ¢ Drost, 2021)
and MMseqs2 v15.6f452 (Steinegger ¢ Soding, 2017). The former is used in Holzer (2024)
while the latter is used in EzAAI (Kim, Park ¢» Chun, 2021). Similar to BLASTPDB, these
methods require that a protein database is built for each genome before performing the
alignment (Table 52). DIAMOND and MMseqs2 were both used with four different
sensitivity thresholds proposed recently (Table S2) (Buchfink, Reuter ¢» Drost, 2021). This
benchmark (Fig. 1B) was run on a subset of 1,235 GTDB genomes. We used genomes from
a wide range of bacterial phylogenetic diversity across four phyla: Bacillota (6 families, 23
genera, 561 species), Pseudomonadota (6 families, 16 genera, 333 species), Bacteroidota (3
families, 7 genera, 217 species) and Actinomycetota (2 families, 6 genera, 124 species).

All protein matches were filtered to only keep matches with >40% identity to all the
query sequences matches for POCP (Cgs and Csq in Eq. (1)) and only unique query
sequence matches for POCPu (Cqgs and Csq in Eq. (2)). The filtering was adapted to the
method as the range of percentage of identity in MMsegs2 is [0 — 1] and [0 — 100] for
BLAST and DIAMOND. The total number of proteins per genomes (T and T in Eqs. (1)
and (2)) was computed using seqKkit stats v2.2.0 (Shen et al., 2016). Linear regressions were
implemented using R version 4.3.1 (2023-06-16) to fit the expected POCP (or POCPu)
values obtained via the BLASTP reference method against the other methods considered.
The coefficient of determination R? of the linear regression is used as an interpretable
and bounded goodness-of-fit measure between the expected and measured values instead
of other measurement errors (Chicco, Warrens ¢ Jurman, 2021). We did not rely on the
adjusted coefficient of determination as the linear regressions had only one predictor,
namely the POCP (or POCPu) values of the evaluated method.
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Evaluate POCP and POCPu with known within-genus versus between-
genera pairs

This analysis was run as described above except that only the scalable approach to compute
POCP (or POCPu) was used on the full set of genomes (N = 4,767) to capture additional
diversity (Fig. 1B): Pseudomonadota (15 families, 66 genera, 1,736 species), Actinomycetota
(eight families, 27 genera, 1,584 species), Bacteroidota (six families, 27 genera, 886 species)
and Bacillota (six families, 23 genera, 561 species). Next, we computed classification metrics
with a positive event defined as “both genomes belong to the same genus”. Thus, for a pair
of bacterial genomes with a POCP (or POCPu) >50%, the pair was a true positive (TP) if it
belonged to the same genus, else it was considered as a false positive (FP). Conversely, for
a pair of bacterial genomes with a POCP (or POCPu) < 50%, the pair was a false negative
(FN) if it belonged to the same genus, else it was considered as a true negative (TN ). We
then assessed the classification performance of both POCP and POCPu using Matthews
correlation coefficient (MCC; Eq. (3)).

B TP x TN — FP x FN

~ J(TP¥FP)(TP+FN)(IN +FP)(IN +FN)

The MCC coefficient ranges from —1 to 1 and is high in the case of a perfect classification,

MCC (3)

whilst a value of 0 indicates random classification. Negative MCC values indicate perfect
misclassification, as in a swap between positive and negative events. In addition, the MCC
compensates for imbalanced datasets compared to other metrics such as accuracy or
Fl-score (Chicco & Jurman, 2020). Finally, we used one dimensional optimization (Brert,
1972) to find family-specific POCPu thresholds maximizing MCC values and separating
between-genera from within-genera distributions. The optimization was run using the
optimize() function from the stats package (R Core Team, 2023).

Benchmarking workflow implementation

Automatic protein sequences download, data pre-processing, many-versus-many protein
alignments, POCP computation and delineation metrics calculations have been included
in a workflow using nextflow v23.10.0 (Di Tommaso et al., 2017), based on components of
nf-core (Ewels et al., 2020). The tools used are provided within Docker container (Merkel,
2014) or bioconda (The Bioconda Team et al., 2018) environments to ensure reproducibility
and scalability and to facilitate future extension of the present benchmarking work.
Nextflow natively keeps track of the time, CPU, memory, and disk usage of each process in
an execution trace log file, which we used to evaluate the computing resources utilization.
Process duration is available as wall-time and real-time, the CPU usage is reported as a
percentage of usage of a unique CPU, meaning multi-threaded processes will have a value
higher than 100%. Statistical analyses and visualization were conducted in R using targets
v.1.7.0 (Landau, 2021).

RESULTS

Finding an alternative to BLASTP-based POCP calculations
First, we set out to identify a scalable alternative to BLASTP to compute the POCP to
delineate genera (Fig. 1). We evaluated ten protein alignment methods (Table 52) based
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Figure 2 Adequacy between POCP values computed with the reference method BLASTP and methods
of faster alternatives: DIAMOND (Buchfink, Reuter ¢ Drost, 2021) and MMSEQS2 (Steinegger ¢ Sid-
ing, 2017). Each point (n = 70,602 per tool) represents a POCP value between two genomes (see Eq. (1)).
The colors represent the number of data points binned together in hexagons to avoid over-plotting. Coef-
ficient of determination (R ?) and associated p-value are shown on top of each linear regressions.

Full-size Gl DOI: 10.7717/peerj.20259/fig-2

on three tools—BLASTP (Camacho et al., 2009), DIAMOND (Buchfink, Reuter ¢ Drost,
2021) and MMseqs2 (Steinegger ¢ Siding, 2017).

We processed 1,235 genomes and conducted 1,412,040 pairwise comparisons with a
total of 32,316 CPU-Hours (3.7 in years). All the methods tested were faster than the
reference BLASTP (Table S3). BLASTPDB, the database method of BLASTP (Table S2)
that enables paralleled computations, was only half the time of BLASTP on average. In
contrast, all DIAMOND and MMSEQS2-based methods ran at 20x and 11x the speed of
BLASTP, respectively at the cost of using more memory, CPU, and disk usage (Table S3).
Thus, as expected, more sensitive methods consumed more resources in general. An
important criterion for a BLASTP alternative is to ensure that the increased speed does not
compromise the accuracy of POCP calculation.

DIAMOND provides POCP values as accurate as with BLASTP
BLASTPDB produced the exact same POCP values as BLASTP (Fig. S2). The other methods
did not perform as good. All methods of DIAMOND had a coefficient of determination
(R?) above 0.99, except for DIAMOND_FAST that deviated from the expected values
(Fig. 2).

All DIAMOND methods, especially DIAMOND_FAST, tended to underestimate POCP
values (all dots were below the reference dashed line), meaning that they might assign
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Table 1 POCP and POCPu linear regressions results for each alternative method to BLASTP.

Method POCP POCPu

R? p-value R? p-value
BLASTPDB 1.0000000 <0.001 1.0000000 <0.001
DIAMOND_ULTRASENSITIVE 0.9920389 <0.001 0.9997605 <0.001
DIAMOND_VERYSENSITIVE 0.9919744 <0.001 0.9997574 <0.001
DIAMOND_SENSITIVE 0.9916398 <0.001 0.9997438 <0.001
DIAMOND_FAST 0.8967444 <0.001 0.9913959 <0.001
MMSEQS2_S7DOT5 0.9379505 <0.001 0.9722865 <0.001
MMSEQS2_S6DOTO0 0.9369705 <0.001 0.9720813 <0.001
MMSEQS2_S2DOT5 0.9242783 <0.001 0.9713977 <0.001
MMSEQS2_S1DOTO0 0.8659630 <0.001 0.9713360 <0.001

Notes.

Cocfficient of determination (R2) and associated p-value for linear regressions matching the POCP and POCPu values com-

puted by each method against the respective POCP and POCPu values of the reference method BLASTP. Each linear regres-

sion are based on 1= 70,602 comparisons per method. Methods are sorted by decreasing POCPu values.
genomes to different genera when they are from the same genus (top panels). Deviation
from the BLASTP reference was aggravated when using the MMSEQS2_S1DOTO method,
mainly through underestimation of POCP values (bottom panels). The other MMSEQS2
methods performed better, but still less good than the DIAMOND methods. They also
tended to overestimate more than underestimate. All in all, the DIAMOND methods,
especially with increased sensitivity, generated POCP values nearly as accurate as BLASTP
for a fraction of the time, but we refrained from using the MMSEQS2 methods due to
being less accurate.

Proposal for clear and fast computation of POCP values

We observed that all methods generated POCP values exceeding the supposed upper limit
of 100%. Hence, we investigated the underlying reasons and provide a clearer definition of
POCP, termed POCPu (see Eq. (2)).

POCP values above 100% disappeared when using POCPu (Fig. 3 and Fig. S3). In
general, the same patterns observed for POCP hold for POCPu, though with higher values
of coefficient of determination (Fig. 3 and Table 1). The three different sensitive methods
of DIAMOND produced POCPu values that matched perfectly the ones produced by the
reference method BLASTP, with no underestimation as in the case of POCP. In contrast, the
MMSEQS2 methods, whilst better with POCPu than POCP, still tended to underestimate
POCPu values. All in all, DIAMOND-based POCPu is closer to its reference than POCP
(Fig. 3), guiding our choice to create an accurate BLASTP alternative.

In summary, the BLASTPDB method performed as good as BLASTP (Figs. 52, S3 and
Table 1) in half the time (Table S3), at the cost of using more resources. However, the
DIAMOND sensitive methods were even faster with excellent adequacy with BLASTP,
especially for POCPu (Table 1). Whilst DIAMOND_ULTRASENSITIVE had the highest
R? value using POCPu (Table 1), it also had the highest memory consumption and disk
usage (Table S3). A more sustainable alternative is DIAMOND_VERYSENSITIVE that
performed 10 times faster than BLASTPDB, in less than 5% of the time of BLASTP, while
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Figure 3 Adequacy between POCPu values computed with the reference method BLASTP and meth-
ods of faster alternatives: DIAMOND (Buchfink, Reuter ¢ Drost, 2021) and MMSEQS?2 (Steinegger ¢
Soding, 2017). Each point (n = 70,602 per tool) represents a POCPu value between two genomes (see Eq.
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Coefficient of determination (R %) and associated p-value are shown on top of each linear regressions.
Full-size &l DOL: 10.7717/peerj.20259/fig-3

still maintaining reasonable usage of the computing resources (Table S3). Importantly,
POCPu values calculated using DIAMOND_VERYSENSITIVE delivered results extremely
close to the reference BLASTP (Fig. 3 and Table 1) and were essentially identical to
DIAMOND_ULTRASENSITIVE POCPu R? up to 5 digits (Table 1). Therefore, we
consider DIAMOND_ VERYSENSITIVE to be a valid and scalable alternative to BLASTP
for POCP/POCPu computations.

Evaluate POCP and POCPu using within- and between-genera pairs
Unique matches enhance the accuracy of genus delineation

Next, we evaluated the 50%-threshold of POCP and POCPu to determine their reliability
to delineate bacterial genera. We included all 4,767 genomes (Fig. 1) and calculated POCP
and POCPu for 1,087,630 pairwise comparisons using DIAMOND_VERYSENSITIVE
(Fig. 4).

Instead of two bell-shaped distributions, with the 50% threshold separating between-
genera (left) from within-genus POCP values (right), we observed overlapping POCP
distributions (Fig. 4A). This was associated with a high number of false positives (FP =
188,155), where between-genera values were >50%, especially compared with the number
of true negatives (TN = 133,034), where between-genera values were <50%. Additionally,
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positives and negatives). POCP and POCPu values were calculated with our recommended method DIA-
MOND_VERYSENSITIVE (Table 52); they range from 20 to 236.9 for POCP and 16.9 to 94.6 for POCPu.

The dashed lines indicate the standard 50% threshold for genus delineation.
Full-size &l DOI: 10.7717/peer;j.20259/fig-4

most of the within-genus values were >50% (TP = 220,307), with only few below the
threshold (FN = 2,319).

In contrast, POCPu was much closer to the expected results given the taxonomic
assignments of each genome (Fig. 4B). Between-genera POCPu values followed a bimodal
distribution, with the highest peak and most of the distribution remaining below the
50%-threshold (TN = 253,860). Nonetheless, a fraction of between-genera values were
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higher than the threshold of 50%, representing false positives, i.e., different genera when
they are not (FP = 67,329). As in the case of POCP, within-genus POCPu values were
above the threshold of 50% (TP = 209,660), with a few below the threshold (FN = 12,966).
All in all, considering only unique protein matches improves genus delineation.

To quantify these findings on the confusion matrix (true/false positives and negatives),
we used the MCC (Eq. (3) in the Methods), which is a binary classification rate that gives
a high score only when the classifier correctly predicts most of positive and negative cases.
POCPu (MCC = 0.72) surpassed POCP (MCC = 0.46) to delineate bacterial genera, which
quantitatively confirmed the visual findings (Fig. 4).

Family-specific POCPu thresholds enable clearer genus delineation
Analysing the bacterial families separately questioned the universal threshold of

50% conserved proteins (Fig. 5 and Fig. S4). The large family of Streptomycetaceae
(Actinomycetota, Fig. 5A), was characterized by a very low MCC, and thus many false
cases, including FN = 2,974 (2.8%) and FP = 7,110 (6.8%), despite even more true case
TN = 1,231 (1.2%) and TP = 93,338 (89.2%). In 7 families out of 35, POCPu was clearly
not adequate to delineate genus using a threshold of 50%, as indicated by low MCC (MCC
< 0.25; Fig. 5B). In contrast, POCPu delineated bacterial genera accurately for 18 families
(MCC > 0.7; Fig. 5B).

Due to these differences between families, we explored family-specific POCPu thresholds
by maximizing MCC to improve genus delineation (Fig. 54 and Table 2). With this
procedure, thresholds other than the default 50% would enhance classification for 19
families out of the 35 families. The genus delineation of eight families was improved,
with at least 0.1-point increase in MCC (white squares in Table 2; Actinomycetota:
Streptomycetaceae and Streptosporangiaceae; Bacillota: Amphibacillaceae, Lactobacillaceae
and Metamycoplasmataceae; Pseudomonadota: Acetobacteraceae, Burkholderiaceae_B and
Vibrionaceae). For 11 additional families maximum MCC above 0.7 were even obtained
(black squares in Table 2; Actinomycetota: Micromonosporaceae and Pseudonocardiaceae;
Bacteroidota: Bacteroidaceae and Weeksellaceae; Pseudomonadota: Burkholderiaceae,
Enterobacteriaceae, Halomonadaceae, Pseudomonadaceae, Rhizobiaceae, Rhodobacteraceae
and Xanthomonadaceae). Interestingly, in two cases, the optimal POCPu threshold was
lower than the standard threshold: 43% for Bacteroidaceae (Bacteroidota) and 45.5% for
Metamycoplasmataceae (Bacillota). In 17 cases, new thresholds higher than 50% conserved
proteins better separated genomes from within genus and between genera (Table 2).

Because POCP was previously proposed to be influenced by genome size (Riesco ¢
Trujillo, 2024), we used the large pairwise comparisons dataset to assess whether the
changes in threshold were linked to differences in genome size. If POCPu is influenced, we
reasoned that its genus delineation power should also be influenced, therefore we expected
stronger genome size differences in the families for which an alternative POCPu threshold
was found. We found no evidence that POCPu is affected by differences in genome size
(Fig. S5A) nor proteins number (Fig. S5B).
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Figure 5 POCPu delineates bacterial genera in a family-specific manner. (A) Three representative ex-
amples of family-specific genus delineation capacity where POCPu values can (i) be neatly distinct and al-
low for genus delineation (top; example = Xanthobacteraceae); or (ii) overlap and hamper genus delin-
eation (bottom; example = Streptomycetaceae); or (iii) any scenario in between (middle; example = Lac-
tobacillaceae). The dashed lines indicate the standard threshold of 50% conserved proteins. (B) The ability
of POCPu to delineate genera was quantified for each of the 35 families analysed using the Matthews cor-
relation coefficient (MCC, Chicco & Jurman, 2020). An MCC of —1 and +1 indicates perfect misclassifi-
cation or classification, respectively; random genus delineation corresponds to MCC = 0. The dashed line
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cally; vertical facets in grey) and then by decreasing MCC within each phylum. The visual POCPu distri-
butions for all families are provided in Fig. S4.

Full-size & DOI: 10.7717/peerj.20259/fig-5

DISCUSSION

Qin et al. (2014) proposed to separate bacterial genera using the POCP in genomes more
than 10 years ago. POCP is one of several commonly used metrics to delineate bacterial
genera (others are AAI or 16S rRNA gene sequence identity), but it requires efficient
and accurate calculation. The descriptions of many novel genera report POCP values
oscillating around the proposed threshold value of 50%, suggesting it is not a clear-cut
separation (Wylensek et al., 2020; Afrizal et al., 2022; Hitch et al., 2025). We therefore set
out to re-evaluate genus-level delineation based on POCP using a comprehensive dataset,
and to underline a faster and clearer method. We show that DIAMOND_VERYSENSITIVE
can reliably replace BLASTP, speeding up the computing process by 20x. In addition, we
addressed an assumption made in previous POCP implementations (Hdlzer, 2020; Holzer,
2024; Lin, 2021), and thereby clearly defined an alternative POCP metric—-POCPu-that
uses only unique matches, making genus delineation more accurate.

Genus names occur before species names in the binomial nomenclature of bacteria, and
are therefore an important first contact with bacterial entities. They are key to existing
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Table2 Proposal of family-specific POCPu thresholds for genus delineation.

Family AMCC Threshold MCC Max.
value MCC
(%)
Actinomycetota
Mycobacteriaceae 0.02 52.3 0.89 0.91
Micrococcaceae 0.07 53.9 0.88 0.95
Nocardioidaceae 0.00 48.8 0.74 0.74
g Streptosporangiaceae 0.15 63.1 0 0.72 0.87
Microbacteriaceae 0.10 53.7 0.63 0.73
] Pseudonocardiaceae 0.23 56.2 0 0.63 0.86
] Micromonosporaceae 0.41 57.9 0 0.57 0.98
g Streptomycetaceae 0.33 55.7 0 0.16 0.49
Bacillota
Planococcaceae 0.00 51.3 1.00 1.00
Streptococcaceae 0.03 47.7 0.93 0.97
O Metamycoplasmataceae 0.14 45.5 N 0.81 0.95
Paenibacillaceae 0.06 48.3 0.75 0.81
O Amphibacillaceae 0.21 53.2 0 0.74 0.95
O Lactobacillaceae 0.11 57.9 0 0.71 0.82
Bacteroidota
Hymenobacteraceae 0.01 53.6 0.99 1.00
Spirosomaceae 0.02 52.9 0.98 1.00
Sphingobacteriaceae 0.01 50.4 0.92 0.92
| Bacteroidaceae 0.17 43.0 J 0.63 0.80
Flavobacteriaceae 0.01 51.4 0.59 0.60
] Weeksellaceae 0.63 60.1 0 0.22 0.85
Pseudomonadota
Xanthobacteraceae 0.00 45.8 1.00 1.00
Beijerinckiaceae 0.00 50.1 0.97 0.97
Moraxellaceae 0.02 53.2 0.92 0.94
O Burkholderiaceae_B 0.12 54.1 0 0.85 0.97
Alteromonadaceae 0.01 49.3 0.78 0.79
Sphingomonadaceae 0.10 52.9 0.63 0.73
] Burkholderiaceae 0.22 64.3 0 0.52 0.74
] Rhizobiaceae 0.43 62.5 0 0.48 0.91
] Rhodobacteraceae 0.27 58.1 0 0.43 0.70
| Xanthomonadaceae 0.51 63.7 0 0.33 0.85
O Vibrionaceae 0.28 59.3 0 0.23 0.51
| Enterobacteriaceae 0.60 71.2 0 0.19 0.79
] Halomonadaceae 0.56 59.6 0 0.19 0.76
| Pseudomonadaceae 0.82 63.2 0 0.07 0.89
d Acetobacteraceae 0.63 64.3 0 0.05 0.68
Notes.

The thresholds were obtained after maximizing the MCC value to separate between-genera from within-genera distributions.
Squares indicate that MCC value change was greater than 0.1 with the optimized threshold, filled squares denote rescued fam-
ilies from MCC < 0.7 to MCC > 0.7, whilst empty squares indicate improved genus delineation. Arrows highlight poten-

tial family-specific threshold worth considering to replace the default of 50% with the direction of change. Families without

squares already delineate genera correctly with the default of 50%.
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knowledge in databases or articles and provide intuitive information on the evolutionary
history and ecological roles of the organisms under study (Schoch et al., 2020; Reimer et
al., 2022; Rosonovski et al., 2024). The system works best when resources and tools follow
FAIR principles (Wilkinson et al., 2016; National Microbiome Data Collaborative, 2025;
NFEDI4Microbiota, 2025), as done in this work. In addition, our selected DIAMOND-based
POPCu improves sustainability through faster computation and hence reduced electrical
consumption, although the additional benefit of decreased disk usage is not captured by
the carbon footprint estimator (Lannelongue, Grealey ¢~ Inouye, 2021). We demonstrated
that not all tools and parameters are suitable to speed up BLASTP; some combinations,
whilst extremely fast, under- or overestimate POCP values, resulting in erroneous splitting
or merging of genera.

This study has several limitations. While our analysis included phylogenetically diverse
taxa sourced from various environments, we might have missed important taxonomic
groups of interest to readers (e.g., Lachnospiraceae or Clostridiaceae). However, filtering
was necessary to obtain enough data points per taxa to ensure statistical robustness, and
we kept enough genomes to represent a broad bacterial diversity far beyond the type
species of genera. Previous studies on many-vs-many protein alignment comparison used
less phylogenetic diversity: four genomes from four genera in Herndndez-Salmerén ¢
Moreno-Hagelsieb (2020), or up to 167 genomes from five genera in Holzer (2024). Riesco
& Trujillo (2024) evaluated much more genomes, 1,573, but they included only type
strains of type species of genera and calculated POCP—using Bio-Py (Lin, 2021)-only to
compare with AAI and not to evaluate genus delineation. Another limitation is that our
study relies fully on GTDB as the source of genomes and taxonomy due to being a very
comprehensive taxonomic resource and a reference worldwide (Parks et al., 2020; Parks et
al., 2022). The simulation of genomes with defined mutation and recombination rates to
mimic within-genus and between-genera populations could be a useful approach in future
work. We also acknowledge that this work focused on benchmarking POCP; it will be
interesting in the future to compare the accuracy of genus delineation using other OGRI
such as AAI, ANT, or new enhanced approaches that include structural protein information
to consider distant and functional homologs in POCP calculation.

Threshold-based approaches are always a matter of compromise, and do not provide
one-size-fits-all solution. Regarding species delineation, Parks et al. (2022) stated: “The
use of ANI to delineate species despite the lack of clear evidence for discrete species
boundaries in the GTDB dataset is a pragmatic approach for organizing the rapidly
growing biodiversity being discovered with metagenomic approaches”. We share their
vision and propose the use of POCPu as an interpretable and pragmatic approach to
delineate bacterial genera. In an effort to improve this process, we suggest refining
the classification by applying family-specific POCPu thresholds, as shown previously
for Rhizobiaceae (Kuzmanovic et al., 2022). However, one should only deviate from the
standard threshold of 50% if the benefit is greater than the risk of creating more confusion.
We have provided tentative thresholds for several families, for which confidence was high.
Indeed, initiatives like the SeqCode (Hedlund et al., 2022; Jiménez ¢» Rosado, 2024) require
reliable methods to assess taxonomic novelty, and we propose that POCPu is a robust yet
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scalable approach for modern taxonomy. Finally, it is important to remember that accurate
taxonomic placement is best achieved when multiple lines of evidence are considered, as
implemented in Protologger (Hitch et al., 2021). In the case of genera, POCPu decisions
can be supported, for example by assessing the topology of phylogenetic trees, considering
16S rRNA gene identities (Yarza et al., 2014; Hackmann, 2025), and the result of GTDB-Tk
analysis (Chaumeil et al., 2022).

CONCLUSIONS

Percentage of conserved proteins is a widely used index for genus-level delineation of
bacteria but it requires benchmarking using large-scale genomic data. Here we provide
an up-to-date method to identify homologous protein sequences. We optimized POCP
using 2,358,466 pairwise comparisons of genomes from the GTDB. DIAMOND emerged
as a faster yet accurate replacement for BLASTP when using very sensitive settings. Plus,
we refined POCP using unique matches only (POCPu), which improved separating
between-genera from within-genus distributions. Our benchmark enabled us to rapidly
evaluate POCPu values on 143 bacterial genera across 35 families and four phyla, which
highlighted specific POCPu thresholds around the reference 50% value for certain families.
Overall, we consolidated one line of evidence in bacterial taxonomy with a fast and robust
index that will strengthen bacterial genus delineation.
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