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ABSTRACT
We present PKPy, an open-source Python framework designed to automate population
pharmacokinetic analysis workflows. The framework emphasizes user accessibility by
minimizing the need for manual parameter initialization while maintaining analytical
rigor. PKPy implements both one-compartment and two-compartment pharmacoki-
netic models (with and without first-order absorption) with integrated capabilities
for parameter estimation, covariate analysis, and comprehensive diagnostics. The
framework’s performance was evaluated through simulation studies across varying
sample sizes (20–100 subjects) and model complexities. Results demonstrated robust
parameter estimation for clearance and volume of distribution, with bias consistently
below 3% and recovery rates exceeding 98% in one-compartment models. The
framework successfully identified true covariate relationships with 100% accuracy
across all scenarios, while maintaining high model fit quality (R2

≥ 0.97). For two-
compartment models, the framework showed comparable performance with slightly
higher parameter bias (5–10%) but maintained excellent fit quality (R2

≥ 0.99).
Advanced validation metrics including average fold error (AFE) and absolute average
fold error (AAFE) were implemented, with AFE values ranging from 1.01–1.03 and
AAFE < 1.05 across test scenarios, indicating excellent prediction accuracy. The key
pharmacokinetic parameters estimated by the framework include clearance (CL), vol-
ume of distribution (V or V1/V2 for two-compartment models), inter-compartmental
clearance (Q), and when applicable, the absorption rate constant (Ka). Application
to the classic Theophylline dataset demonstrated PKPy’s practical utility, achieving
comparable results whether or not initial parameter estimates were provided. The
framework successfully estimated population parameters with good model fit (R2

=

0.933) and automatically identified physiologically plausible covariate relationships.
Comprehensive comparisons with existing software packages (Saemix+PKNCA, and
simulated comparisons with nlmixr2) revealed PKPy’s advantages in computational
efficiency, with installation times of 16s versus 96s and analysis times of 13–15s versus
101–102s. While PKPy employs a two-stage approach rather than full nonlinear mixed-
effects modeling, it achieved consistent parameter estimates withminimal bias for data-
rich scenarios. PKPy leverages Python’s scientific computing ecosystem to provide
an accessible, transparent platform for pharmacokinetic analysis. The framework’s
automated approach, support for multiple compartment models, and comprehensive
workflow integration demonstrate the potential for reducing barriers to entry in
pharmacometric analysis while maintaining scientific rigor.
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INTRODUCTION
Pharmacokinetic (PK) analysis plays a crucial role in drug development and clinical
pharmacology, providing essential insights into drug absorption, distribution, and
elimination processes. Population pharmacokinetic (PopPK) approaches, introduced
by Sheiner & Beal (1980) (Ette & Williams, 2007b) have become increasingly important in
understanding drug behavior across patient populations. These methods allow researchers
to quantify both population-typical parameters and their variability, while also identifying
significant covariates that influence drug disposition (Holford & Buclin, 2012; Rajman,
2008).

Among the tools available for pharmacokinetic (PK) modeling and population
pharmacokinetic (PopPK) analysis, several software packages have become industry
standards due to their robustness, flexibility, and user-friendly interfaces. One of the most
widely used programs is Nonlinear Mixed Effects Modeling (NONMEM), which has been
a cornerstone of PopPK analysis since its inception (Beal et al., 1989). NONMEM excels
in handling complex models and large datasets, making it ideal for estimating population
parameters and identifying covariates (Holford, 2005). It uses a structured data input format
and supports a variety of estimation methods, including First-Order (FO) approximation
method, First-Order Conditional Estimation (FOCE), and Bayesian approaches (Mould
& Upton, 2012). The broad community support and extensive validation in regulatory
submissions have solidified NONMEM’s reputation (US Food and Drug Administration,
2019). Another popular software is Phoenix Nonlinear Mixed Effects (NLME), a module
within the Phoenix platform developed by Certara. Phoenix NLME provides a graphical
interface that simplifies model-building and analysis workflows (Certara, 2021). It is
particularly valued for its ability to integrate PK/PDmodeling with other drug development
tools, enhancing its utility in both clinical and preclinical studies (Ette & Williams, 2007a).
Monolix, part of the Lixoft suite, is another advanced tool for PopPK and PK/PDmodeling.
Known for its efficiency in handling nonlinear mixed-effects models, Monolix employs the
Stochastic Approximation Expectation Maximization (SAEM) algorithm, which ensures
robust convergence even with sparse data (Lixoft, 2020). Monolix is particularly favored in
academic and industrial settings for its automation and interactive visualizations (Lavielle,
2014). For researchers seeking open-source alternatives, R-based packages such as nlme,
saemix, and mrgsolve provide flexibility and integration with other statistical analyses
(Zhang, Beal & Sheiner, 2002). While these tools may require a steeper learning curve, they
are highly customizable and cost-effective.

These established tools predominantly employ nonlinear mixed-effects (NLME)
modeling approaches, which simultaneously estimate population parameters and between-
subject variability by considering the entire dataset as a hierarchical structure. In contrast,
two-stage approaches first fit individual subject data separately, then derive population
parameters from the distribution of individual estimates. While NLME methods are
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statistically more efficient, particularly for sparse data, two-stage approaches offer
computational simplicity and transparency, making them valuable for exploratory analyses
and educational purposes.

These methods rely on the estimation of fundamental pharmacokinetic parameters
that characterize drug disposition in the body. For one-compartment models, the primary
parameters include:

• Clearance (CL): Represents the volume of blood or plasma that is completely cleared of
drug per unit time, directly affecting drug elimination
• Volume of distribution (V): A theoretical parameter that relates the total amount of
drug in the body to the plasma concentration, reflecting drug distribution throughout
the body
• Absorption rate constant (Ka): In oral administration models, describes the rate at
which the drug enters the systemic circulation from the site of administration

For two-compartment models, additional parameters are required to describe the drug’s
distribution between central and peripheral compartments:

• Central volume of distribution (V1): Volume of the central compartment, typically
representing blood and highly perfused organs
• Peripheral volume of distribution (V2): Volume of the peripheral compartment,
representing less perfused tissues
• Inter-compartmental clearance (Q): The clearance between central and peripheral
compartments, characterizing the drug transfer rate

The accurate estimation of these parameters is crucial for understanding drug behavior
and optimizing dosing regimens across patient populations. Model evaluation increasingly
relies on advanced metrics beyond traditional R2 and RMSE. average fold error (AFE)
quantifies systematic bias in predictions (AFE = 1 indicates no bias, >1 indicates
overprediction, <1 indicates underprediction), while absolute average fold error (AAFE)
measures overall prediction accuracy regardless of direction (AAFE <1.5 is considered
excellent, <2.0 is good).

Despite the fundamental importance of PopPK analysis, several challenges persist in
its practical implementation. First, traditional PopPK software solutions often require
extensive expertise in both pharmacology and programming, creating a significant barrier
to entry for many researchers. Second, the initial specification of model parameters
frequently relies heavily on user input and prior knowledge, which may not always be
available or reliable. Third, the identification of significant covariate relationships often
involves manual, iterative processes that can be both time-consuming and prone to user
bias. Additionally, many existing tools require commercial licenses or complex installation
procedures, limiting accessibility for researchers in resource-constrained settings.

The emergence of Python as a leading platform for scientific computing has created
new opportunities for developing more accessible and automated approaches to PopPK
analysis. Python’s extensive scientific computing ecosystem, including libraries such
as NumPy, SciPy (Virtanen et al., 2020), and Pandas, provides a robust foundation

Kong et al. (2025), PeerJ, DOI 10.7717/peerj.20258 3/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.20258


for implementing sophisticated pharmacometric algorithms. Additionally, modern
computational techniques, such as just-in-time compilation through Numba (Lam,
Pitrou & Seibert, 2015), enable efficient processing of large datasets without sacrificing the
accessibility of high-level Python code. Python’s package management system (pip) and
widespread availability across platforms make it an ideal choice for developing accessible
scientific software, though users should note that Git (version 2.0 or higher) is required for
installation from source repositories.

We present PKPy, an open-source framework designed to address these challenges
through automated parameter inference and streamlined workflow integration. PKPy
implements a novel approach to parameter initialization that leverages data-driven
heuristics, significantly reducing the need for user-specified initial estimates. The
framework supports both one-compartment and two-compartment PK models, with and
without first-order absorption, coveringmany common scenarios in drug development and
clinical pharmacology while maintaining simplicity and accessibility. Unlike traditional
NLME software, PKPy employs a computationally efficient two-stage approach that is
particularly well-suited for data-rich scenarios where multiple samples per subject are
available.

PKPy’s architecture integrates several key innovations. The parameter inference engine
employs multiple optimization strategies with intelligent fallback mechanisms, enhancing
convergence reliability without requiring user intervention. The framework automatically
handles common data preprocessing tasks, including the detection and treatment of below-
limit-of-quantification (BLQ) observations and irregular sampling times. For covariate
analysis, PKPy implements an automated stepwise selection algorithm that systematically
evaluates potential relationships while controlling for statistical significance.

The framework also emphasizes comprehensive diagnostics and validation. It
automatically generates standard goodness-of-fit plots, visual predictive checks, and
parameter correlation analyses, along with advanced metrics such as AFE and AAFE for
thorough model evaluation. These diagnostics are crucial for model validation but often
require significant manual effort to produce. By automating these processes, PKPy allows
researchers to focus on interpretation rather than implementation.

A key design principle of PKPy is the integration of traditional noncompartmental
analysis (NCA) with population modeling. This approach allows researchers to compare
results between methods and provides additional validation of population parameter
estimates. The framework automatically calculates standard NCA parameters such as area
under the curve (AUC), Cmax, and terminal half-life, alongside population parameter
estimates, facilitating a more comprehensive understanding of the drug’s pharmacokinetic
properties.

From an implementation perspective, PKPy leverages modern software engineering
practices to ensure maintainability and extensibility. The framework’s modular
architecture, illustrated in Fig. 1, separates core computational components from model
definitions and diagnostic utilities. This design allows for easy extension to new model
types and estimation methods while maintaining a consistent interface for users.
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Figure 1 Architectural overview of PKPy framework. The core framework consists of four main com-
ponents: models.py (model definitions), fitting.py (parameter estimation), simulation.py (population
simulations), and covariate_analysis.py (covariate relationship analysis). The workflow.py module serves
as the central coordinator, receiving input data and orchestrating the analysis pipeline by integrating core
components with auxiliary functions from utils.py. Arrows indicate the primary direction of data flow be-
tween components. Input data includes concentration–time profiles and demographic information, while
output consists of comprehensive analysis reports including parameter estimates, model diagnostics, and
covariate effects.

Full-size DOI: 10.7717/peerj.20258/fig-1

In the following sections, we detail the mathematical foundations of PKPy’s parameter
inference approach, present validation results from simulation studies, and demonstrate
the framework’s application to real-world scenarios. We also discuss the framework’s
limitations and potential future developments, particularly in the context of more complex
PK/PD models and alternative estimation methods.

METHODS
Model implementation and mathematical framework
PKPy implements four fundamental pharmacokinetic models: one-compartment and
two-compartment models, each with and without first-order absorption. For the basic
one-compartment model, the concentration–time relationship is described by C(t) =
(Dose/V) * exp(-CL/V * t), where C(t) is the concentration at time t, V is the volume of
distribution, and CL is clearance. The one-compartment model with absorption extends
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this framework by incorporating a first-order absorption rate constant (Ka), yielding:

C(t)= (Dose∗Ka)/(V∗ (Ka−CL/V))∗ (exp(−CL/V∗ t)−exp(−Ka∗ t)).

For two-compartment models, the drug distribution is characterized by central (V1) and
peripheral (V2) compartments connected by inter-compartmental clearance (Q). The
two-compartment model without absorption uses the analytical solution:

C(t)=A∗exp(−α∗ t)+B∗exp(−β∗ t)

where α and β are hybrid rate constants calculated from the micro-constants (k10 =
CL/V1, k12 = Q/V1, k21 = Q/V2), and A and B are coefficients determined by the dosing
conditions. The two-compartment model with absorption requires numerical integration
of the differential equations due to the additional complexity introduced by the absorption
phase.

These analytical and numerical solutions are implemented using Numba-accelerated
functions to optimize computational performance, particularly for population-level
analyses involving multiple subjects. The framework includes robust handling of numerical
edge cases, such as when Ka approaches k (flip-flop kinetics) or when rate constants differ
by orders of magnitude (stiff systems).

The parameter estimation process employs a two-stage approach rather than full
nonlinear mixed-effects modeling. In the first stage, individual subject data are fitted
separately using maximum likelihood estimation with log-transformed parameters to
ensure positivity. The objective function for individual fits is:

6[(log(Cobs)− log(Cpred))2/σ2]+penalty terms.

In the second stage, population parameters are calculated as the geometric mean of
individual estimates, and between-subject variability is quantified through the covariance
of log-transformed parameters. This approach differs from NLME methods, which
simultaneously estimate all parameters using the full hierarchical data structure. While
NLMEmethods are statistically more efficient for sparse data, the two-stage approach offers
advantages in computational speed, transparency, and robustness for data-rich scenarios.

The framework implements a combined proportional and additive error model for the
residual error, with the proportional error being the primary component, and additional
error included for low concentrations. The implementation includes robust error handling
and multiple optimization attempts with different initial estimates to ensure convergence.

Software architecture and implementation
Figure 1 illustrates PKPy’s architecture, whereworkflow.py serves as the central coordinator,
integrating core analytical components (models, fitting, simulation, and covariate analysis)
with support utilities. This design enables automated end-to-end pharmacokinetic analysis
while maintaining modularity and extensibility.

PKPy follows a modular architecture organized into six primary components: models.py
for compartmental model definitions and parameter specifications, fitting.py for parameter
estimation algorithms, simulation.py for population-level Monte Carlo simulations
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with covariate effects, covariate_analysis.py for stepwise covariate model building and
relationship assessment, utils.py for non-compartmental analysis and diagnostic functions
including AFE/AAFE calculations, and workflow.py for integrated analysis pipelines. The
framework utilizes object-oriented programming principles, with the CompartmentModel
base class defining common interfaces for different PK models.

The parameter estimation module implements a robust optimization approach with
an innovative data-driven parameter initialization strategy. The fitting process uses log-
transformed parameters to ensure positivity constraints and includes both parameter
boundary penalties and protection against numerical instabilities. When initial estimates
are not provided, the framework employsmultiple optimization attemptswith a data-driven
heuristic approach:

• Initial parameter scaling: The framework automatically determines appropriate scale
factors (0.1, 0.5, 1.0, 1.5, 2.0) based on the observed concentration range, applying these
to generate multiple sets of initial estimates.
• Stochastic perturbation: Each initial estimate set is further refined by adding small
random perturbations (log-normal distribution with σ = 0.1) to introduce controlled
variability in the starting points.
• Intelligent fallback: If optimization fails with one set of initial estimates, the framework
automatically attempts optimization with the next set, implementing an intelligent
fallback mechanism to ensure robust convergence.

This automated initialization strategy significantly reduces the reliance on user
expertise in parameter initialization while maintaining estimation accuracy. The primary
optimization employs the Nelder–Mead algorithm, with automatic fallback to Powell’s
method when convergence fails, ensuring robust parameter estimation across diverse
datasets.

Simulation and validation framework
The validation strategy of PKPy follows a two-phase approach: first, a comprehensive
simulation study to validate the framework’s core functionalities under controlled
conditions, and second, application to real-world theophylline data to demonstrate practical
utility. The simulation phase serves as a crucial learning and validation step, where the
framework’s ability to recover known parameters and identify true covariate relationships
can be rigorously evaluated under various scenarios with known true values. This systematic
validation through simulation provides the foundation for confidence in the framework’s
performance with real-world data. The validation framework consists of simulation
scenarios designed to evaluate parameter estimation, covariate relationship detection, and
model stability across different PK models and study designs. The simulation scenarios
were designed to evaluate the framework’s performance under controlled conditions where
true parameter values are known. These reference values were selected based on typical
ranges reported in clinical pharmacokinetic studies and previous population PK analyses.
For instance, the 30% coefficient of variation for inter-individual variability represents a
moderate level of between-subject variation commonly observed in clinical settings. The
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covariate effect magnitudes (power = 0.75 for both CLCR∼CL and V∼WT relationships)
were chosen based on established allometric scaling principles in pharmacology.

Four primary simulation scenarios were evaluated, each with 20, 50, and 100 subjects
to assess the impact of sample size. The one-compartment model (onecomp) employed
100 mg IV bolus administration with 10 evenly spaced timepoints over 24 h, 30% CV for
both CL and V, and covariate effects of CLCR∼CL (power = 0.75) and V∼WT (power =
0.75). The one-compartment model with absorption (onecomp_abs) utilized 100 mg oral
administration with 12 timepoints over 24 h including six intensive samples within the
first 2 h to capture the absorption phase, 30% CV for Ka, CL, and V, and covariate effects
of CLCR∼CL (power = 0.75), VWT (power = 0.75), and Ka∼AGE (exp = −0.2). The
two-compartment model (twocomp) implemented 100 mg IV bolus administration with
18 timepoints over 48 h using dense early and sparse later sampling, 25% CV for CL and V1
and 30% CV for Q and V2, and covariate effects of CLCR∼CL (power = 0.75), V1∼WT
(power= 1.0), and V2∼WT (power= 1.0). The two-compartment model with absorption
(twocomp_abs) employed 100 mg oral administration with 20 timepoints over 48 h, 30%
CV for all parameters, and covariate effects of CLCR∼CL (power= 0.75), V1∼WT (power
= 1.0), and Ka∼AGE (exp = −0.02).

Each scenario is evaluated using the following metrics:
1. Parameter Estimation PerformanceRelative Bias (%)

• Root mean square error (RMSE)
• Coefficient of variation (CV, %)
• Model fit quality (R2)
• Average fold error (AFE)
• Absolute average fold error (AAFE)

2. Covariate relationship detection

• Detection rate for each covariate relationship (%)
• Accuracy of estimated covariate effects

The AFE and AAFE metrics provide additional insights into prediction accuracy:

• AFE = geometric mean(predicted/observed): quantifies systematic bias
• AAFE = geometric mean(|predicted/observed|): measures overall prediction accuracy

Each scenario is evaluated through 100 replicate simulations to ensure stability and
reproducibility of results.

Covariate analysis methodology
The framework’s ability to detect true covariate relationships was evaluated through
detection rates. A ‘‘detection’’ is recorded when the framework successfully identifies a
statistically significant relationship (p< 0.05) between a parameter and its corresponding
covariate, and correctly classifies the relationship type (linear, power, or exponential).
The detection rate represents the percentage of simulations where the true parameter-
covariate relationship was correctly identified. For example, a 100% detection rate for
CL-CRCL indicates that in all simulation replicates, the framework successfully identified
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creatinine clearance as a significant covariate for clearancewith the correct relationship type.
The covariate analysis module implements a forward selection procedure that evaluates
potential parameter-covariate relationships. Three relationship types are considered: linear,
power, and exponential functions. The linear relationship is defined as P = θ1 * (1 + θ2 *
(COV–COVmedian)), the power relationship as P= θ1 * (COV/COVmedian)^θ2, and the
exponential relationship as P= θ1 * exp(θ2 * (COV–COVmedian)), where P represents the
parameter value, COV is the covariate value, and θ1 and θ2 are the estimated coefficients.
For example, some common parameter-covariate combinations include:

• CL∼CRCL: Relationship between clearance and creatinine clearance, typically modeled
using a power function since drug elimination often scales with kidney function
• V∼WT or V1∼WT: Relationship between volume of distribution and body weight,
commonly modeled with a linear or power function to reflect physiological scaling
• V2∼WT: Peripheral volume scaling with body weight in two-compartment models
• Q∼WT: Inter-compartmental clearance scaling with body size
• Ka∼AGE: Relationship between absorption rate constant and age, which may be
modeled using an exponential function to capture age-related changes in absorption

These relationships are physiologically motivated. For instance, the power relationship
between clearance and creatinine clearance (CL= θ1 * (CRCL/CRCLmedian)^θ2) reflects
the common observation that drug clearance changes proportionally with kidney function.
Similarly, the relationship between volume of distribution and body weight often follows
allometric scaling principles.

The forward selection process employs an AIC-based criterion for model selection.
For each parameter-covariate combination, the selection algorithm calculates the objective
function using weighted residual sum of squares of log-transformed data, with the objective
function incorporating both the model fit and a penalty term for model complexity. The
AIC is calculated as n * log(SS_res/n) + 2k, where n is the number of observations, SS_res is
the residual sum of squares, and k is the number of parameters. Relationships are selected
based on both statistical significance (determined by p-value) and improvement in AIC.

To ensure numerical stability and robust estimation, the framework implements several
safeguards in the covariate analysis process. These include protection against extreme
values through parameter boundaries, multiple optimization attempts with different initial
estimates, and automatic reference value selection based on covariate medians. The process
groups covariate relationships by parameter to avoid potential confounding effects and
selects the best relationship for each parameter based on the combined criteria of statistical
significance and AIC improvement.

Diagnostic tools and model evaluation
PKPy automatically generates a comprehensive set of diagnostic plots and statistical
measures. Standard goodness-of-fit plots include observed versus predicted concentrations,
weighted residuals versus time and predictions, and normal Q–Q plots of residuals. The
framework also implements visual predictive checks (VPCs) using Monte Carlo simulation
with 1,000 replicates. Model evaluation metrics include condition number for parameter
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correlation assessment, shrinkage estimation for random effects, and various residual error
measures including the newly implemented AFE and AAFE metrics.

The AFE and AAFE calculations follow the formulations:

• AFE = exp(mean(log(predicted/observed)))
• AAFE = exp(mean(|log(predicted/observed)|))

These metrics provide more robust assessment of prediction accuracy compared to
traditional metrics, particularly for data spanning multiple orders of magnitude.

The framework calculates standard pharmacokinetic metrics through non-
compartmental analysis (NCA) methods, providing an additional validation layer for the
population parameter estimates. This integration of NCA with population modeling serves
two key purposes: (1) it enables cross-validation of population parameter estimates through
comparison with model-independent NCA results, and (2) it provides complementary
information about drug exposure and disposition that may not be directly apparent from
the population analysis alone. NCA parameters include AUC, maximum concentration
(Cmax), time to maximum concentration (Tmax), and terminal half-life, calculated using
the linear-up/log-down trapezoidal method with automatic terminal phase detection. The
automated comparison between NCA and population modeling results helps ensure the
reliability of the pharmacokinetic analysis while maintaining workflow efficiency.

Data processing and error handling
The framework implements robust error handling mechanisms for common numerical
and computational challenges in pharmacokinetic analysis. For numerical stability, the
framework employs several protective measures, including minimum value constraints for
concentrations and parameters, and automatic scaling of variables to avoid computational
overflow or underflow conditions.

Error handling is implemented at multiple levels throughout the analysis pipeline.
During parameter estimation, the framework attempts multiple initial estimates with
different scaling factors when optimization fails, providing a fallback mechanism for
convergence issues. The framework includes informative warning messages for common
analysis issues, such as failed optimization attempts or NCA calculation failures for
individual subjects.

For data quality issues, the framework implements basic missing value handling
through numpy’s masked array capabilities and pandas’ built-in missing value handling.
Numerical stability is maintained through log-transformation of concentration data where
appropriate, and automatic protection against zero or negative values in calculations.

The error handling system is designed to be informative and recoverable, providing
users with clear feedback about analysis issues while attempting to continue processing
when possible. Success rates and quality metrics are tracked and reported throughout the
analysis process, allowing users to assess the reliability of results.

Theophylline data analysis
To evaluate the framework’s performance with real-world data, we analyzed the classic
Theophylline dataset (Seay et al., 1994; Pinheiro & Bates, 1995). The dataset consists of
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serum concentration measurements from 12 subjects who each received a single oral dose
of 320 mg theophylline. Blood samples were collected at 11 timepoints (0.25, 0.5, 1, 2, 3.5,
5, 7, 9, 12, 24, and 25 h post-dose) for each subject. Subject weights ranged from 53.6 to
86.4 kg.

We applied PKPy’s one-compartment model with first-order absorption workflow
to analyze this dataset. The framework’s automated workflow handles the entire analysis
process, including parameter estimation, covariate analysis, and diagnostic plot generation.
The analysis requires only the specification of the basic model structure and the input
data, with all other aspects—including initial parameter estimates, between-subject
variability estimation, error model specification, and covariate relationship detection—
being automatically determined by the framework.

The framework also automatically performs non-compartmental analysis as part of its
integrated workflow, using the built-in methods described in the previous section. All
analyses were performed using PKPy version 0.1.0 running on Python 3.11, requiring
only the selection of the absorption model and the input of concentration, time, and
demographic data.

To evaluate PKPy’s performance against existing software solutions, we conducted
comparative analyses using multiple approaches. For Saemix (version 3.0) with PKNCA
(version 0.10.2), we performed direct comparisons on the same dataset. Additionally, we
implemented simulated comparisons with nlmixr2 and commercial software behaviors
to provide a broader context for PKPy’s performance characteristics. The choice of these
packages was driven by several practical considerations. While NONMEM and Monolix
are industry standards, their commercial licensing requirements limit accessibility for
comparative studies. Nlmixr2 faced installation constraints in our testing environment due
to dependency issues. In contrast, Saemix and PKNCA offer open-source alternatives with
established reliability in pharmacometric analysis.

The comparison involved two key scenarios: analysis with and without provided initial
parameter estimates. We measured installation time (including Git setup when required),
analysis runtime, and parameter estimation accuracy. All analyses were performed on the
same computational environment (Google Colab) to ensure fair comparison. Maximum
iteration limit was set to 9,999 for both packages to ensure convergence opportunities.

RESULTS
Parameter estimation performance
The simulation study assessed parameter estimation performance across different model
types and sample sizes. As shown in Tables 1 through 4, estimation accuracy and precision
varied notably between model types and with increasing complexity.

For the basic one-compartment model (Table 1), parameter estimation demonstrated
high accuracy and robustness. Clearance (CL) estimates showed minimal bias, ranging
from −2.88% with 20 subjects to −2.21% with 100 subjects. The recovery rate for CL was
excellent, achieving 98–100% across all sample sizes. Precision of CL estimates improved
as sample size increased, evidenced by the CV% decreasing from 8.81% (n= 20) to 3.87%
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Table 1 Parameter estimation performance for basic one-compartment model. Presents the perfor-
mance metrics for the basic one-compartment model across different sample sizes. The model demon-
strates excellent parameter estimation with minimal bias (<3%) for both clearance (CL) and volume of
distribution (V) estimation precision improved with increasing sample size, as shown by decreasing CV%.
The model maintained strong goodness-of-fit (R2

≥ 0.97). Bias represents the relative difference between
estimated and true parameter values; RMSE is root mean square error; CV% is coefficient of variation; Re-
covery rate indicates percentage of estimates within±20% of true value; R2 represents goodness of fit.

Sample size (N) 20 50 100

CL Bias (%) −2.88 −2.36 −2.21
CL RMSE 0.45 0.27 0.22
CL CV (%) 8.81 5.09 3.87
V Bias (%) 0.77 −1.03 −0.94
V RMSE 3.86 2.40 1.86
V CV (%) 7.66 4.75 3.65
Mean R2 0.98 0.97 0.97

(n= 100). Volume of distribution (V) estimation exhibited similar excellence, with bias
within ±1.03% across all sample sizes and a consistently perfect recovery rate (100%),
indicating highly reliable estimation. Precision of V estimates also improved with larger
sample sizes, with CV% decreasing from 7.66% to 3.65% as the sample size increased from
20 to 100 subjects.

However, performance differed markedly when considering the one-compartment
model with absorption (Table 2), particularly for the absorption rate constant (Ka). As
illustrated in Fig. 2, Ka estimates revealed substantial negative bias, ranging from−42.83%
to−46.56%, alongside poor recovery rates (10%decreasing to 0% as sample size increased).
Although precision of Ka estimates improved with larger sample sizes (CV% decreasing
from 48.97% to 16.35%), the persistent bias indicates systematic underestimation.

Despite these challenges with Ka, the absorption model still maintained reasonable
accuracy for CL and V, albeit with higher bias compared to the basic model. Specifically,
CL estimates showed bias between −9.08% and −10.33% with good recovery rates
(84–99%), while V estimates displayed positive bias ranging from 15.88% to 17.62%
and moderate recovery rates (61–76%). Similar to the basic model, precision for both
parameters improved with increasing sample sizes, demonstrated by decreasing CV%
values.

The two-compartment models (Tables 3 and 4) introduced additional complexity
with inter-compartmental clearance (Q) and peripheral volume (V2) parameters. The
basic two-compartment model showed moderate bias for all parameters, with CL bias
ranging from 10.32% to 13.21% and Q showing the highest variability (CV% 14.52 at
n= 20). Despite increased parameter bias compared to one-compartment models, the
two-compartment models maintained excellent fit quality with mean R2 values exceeding
0.99.

Model fit quality
Model fit quality was evaluated using R2 statistics, as illustrated in Fig. 3. Despite the
challenges in parameter estimation, all models demonstrated excellent fit to the data.
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Table 2 Parameter estimation performance for one-compartment model with absorption. Shows the
performance metrics for the one-compartment model with first-order absorption. Notable challenges
were observed in Ka estimation, with substantial negative bias (−42.83% to−46.56%). Despite these chal-
lenges with Ka, the model maintained reasonable accuracy for CL (bias−9.08% to−10.33%) and V (bias
15.88% to 17.62%). Parameter precision generally improved with larger sample sizes, as indicated by de-
creasing CV%. Despite parameter estimation challenges, the model achieved excellent overall fit quality
(R2
= 0.99) across all sample sizes. Bias represents the relative difference between estimated and true pa-

rameter values; RMSE is root mean square error; CV% is coefficient of variation; Recovery rate indicates
percentage of estimates within±20% of true value; R2 represents goodness of fit.

Sample size (N) 20 50 100

Ka Bias (%) −42.83 −46.63 −46.56
Ka RMSE 0.51 0.48 0.47
Ka CV (%) 48.97 24.31 16.35
CL Bias (%) −9.36 −10.33 −9.08
CL RMSE 0.71 0.59 0.51
CL CV (%) 11.98 6.33 5.00
V Bias (%) 17.62 15.94 15.88
V RMSE 11.07 8.90 8.43
V CV (%) 11.45 6.88 4.89
Mean R2 0.99 0.99 0.99

Table 3 Parameter estimation performance for two-compartment model. The detection rates for
true covariate relationships across different model types and sample sizes. Detection rates indicate the
percentage of simulations where the framework correctly identified statistically significant (p < 0.05)
parameter-covariate relationships using the automated stepwise selection procedure. CL-CRCL represents
the clearance-creatinine clearance relationship, V-WT and V1-WT represent volume-body weight
relationships (for one- and two-compartment models respectively), V2-WT represents peripheral volume-
body weight relationship, Q-WT represents inter-compartmental clearance-body weight relationship,
and Ka-AGE represents absorption rate-age relationship. All models demonstrated perfect detection
performance (100%) for their respective covariate relationships across all sample sizes (20, 50, and 100
subjects), indicating robust covariate identification capability regardless of model complexity or sample
size. The dash (–) indicates relationships not applicable to specific model types.

Sample size (N) 20 50 100

CL Bias (%) 13.21 11.54 10.32
CL RMSE 0.78 0.51 0.38
CL CV (%) 12.35 8.43 6.21
V1 Bias (%) 1.87 1.65 1.52
V1 RMSE 2.89 1.84 1.35
V1 CV (%) 9.21 6.12 4.53
Q Bias (%) 8.02 7.13 6.54
Q RMSE 1.32 0.89 0.67
Q CV (%) 14.52 9.86 7.34
V2 Bias (%) −0.81 −0.75 −0.69
V2 RMSE 5.93 3.87 2.91
V2 CV (%) 11.43 7.65 5.72
Mean R2 0.992 0.993 0.994
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Table 4 Parameter estimation performance for two-compartment model with absorption. Compares
the computational efficiency and parameter estimation results between PKPy and Saemix+PKNCA for
the Theophylline dataset analysis. Performance metrics include installation time (one-time setup require-
ment) and execution time for complete analysis including parameter estimation, covariate analysis, and
diagnostic generation. The comparison was performed under two scenarios: analysis without initial pa-
rameter estimates (testing automated initialization) and analysis with user-provided initial estimates. Pa-
rameter estimates shown are the final converged values for the one-compartment model with first order
absorption. Ka represents absorption rate constant (h−1), CL represents clearance (L/h), and V represents
volume of distribution (L). PKPy demonstrated 6-fold faster installation (16 s vs 96 s) and 7–8 fold faster
execution times (13–15 s vs 101–102 s) compared to Saemix+PKNCA. PKPy produced consistent param-
eter estimates regardless of initial value specification, while Saemix yielded markedly different estimates
(approximately 4.6-fold higher for both CL and V), suggesting potential convergence or methodological
differences between the approaches.

Sample size (N) 20 50 100

Ka Bias (%) −7.75 −6.82 −6.23
Ka RMSE 0.23 0.16 0.12
Ka CV (%) 18.45 12.34 9.21
CL Bias (%) −11.79 −10.43 −9.65
CL RMSE 0.82 0.54 0.41
CL CV (%) 13.84 9.23 6.87
V1 Bias (%) −10.67 −9.54 −8.92
V1 RMSE 3.54 2.31 1.73
V1 CV (%) 10.95 7.32 5.46
Q Bias (%) 5.45 4.87 4.52
Q RMSE 1.85 1.21 0.91
Q CV (%) 16.72 11.28 8.39
V2 Bias (%) 9.63 8.72 8.15
V2 RMSE 6.41 4.18 3.14
V2 CV (%) 12.38 8.27 6.18
Mean R2 0.986 0.987 0.988

The basic one-compartment model showed consistent R2 values around 0.97−0.98,
with slight improvements as sample size increased. Notably, the model with absorption
achieved even higher R2 values (approximately 0.99) across all sample sizes, despite its
challenges with Ka estimation. This suggests that good model fits can be achieved even
when individual parameters are not optimally estimated.

The two-compartment models showed the highest R2 values overall, with the basic
two-compartment model achieving mean R2 of 0.992−0.994 and the absorption variant
maintaining R2 above 0.986. The variability in model fit quality decreased with increasing
sample size for all models, as evidenced by the reduced spread of R2 values and fewer
outliers in Fig. 3. The onecomp_abs model showed particularly consistent fit quality, with
very few outliers even at smaller sample sizes.

Advanced validation metrics
The implementation of AFE (Average Fold Error) and AAFE (Absolute Average Fold
Error) metrics provided additional insights into model prediction accuracy. These metrics,
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Figure 2 Parameter estimation performance across different sample sizes andmodel types. Box plots
show the distribution of estimated parameter values for clearance (CL), volume of distribution (V),
and absorption rate constant (Ka) across varying sample sizes (20, 50, and 100 subjects). Red dashed
lines indicate true parameter values. The figure displays results for four model types: one-compartment
(onecomp), one-compartment with absorption (onecomp_abs), two-compartment (twocomp), and
two-compartment with absorption (twocomp_abs). All models demonstrate improved precision with
increasing sample size, as evidenced by narrower distributions. CL and V show good estimation accuracy
across all models, while Ka exhibits some estimation challenges in absorption models. Outliers are
represented by individual points beyond the whiskers.

Full-size DOI: 10.7717/peerj.20258/fig-2

evaluated across various test scenarios, demonstrated the framework’s robust performance
under different conditions.

The AFE values ranging from 1.011 to 1.031 indicate minimal systematic bias across
all scenarios, with the framework showing a slight tendency toward overprediction (AFE
>1.0) (Table 5). The AAFE values, all below 1.05, demonstrate excellent overall prediction
accuracy according to established criteria (AAFE <1.5 is considered excellent, <2.0 is good).

Covariate relationship detection
Covariate analysis results, presented in Table 6, demonstrated exceptional performance
across all scenarios. All models achieved 100% detection rates for the true covariate
relationships regardless of sample size.

For the basic one-compartment model, the relationships between CL and creatinine
clearance (CRCL) and between V and body weight (WT) were consistently identified in all
simulations. This perfect detection rate was maintained across all sample sizes, suggesting
that the covariate analysis methodology is highly sensitive even with smaller datasets.
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Figure 3 Model fit quality by sample size andmodel type. Box plots display the distribution of R2 val-
ues across different sample sizes (20, 50, and 100 subjects) for all four model types: one-compartment
(onecomp), one-compartment with absorption (onecomp_abs), two-compartment (twocomp), and two-
compartment with absorption (twocomp_abs). All models demonstrate excellent fit quality (R2 > 0.98)
across all sample sizes. The green line highlights the consistent high performance across models. Model
fit quality shows minimal variability and improves slightly with increasing sample size, as evidenced by
tighter distributions and fewer outliers at n= 100. The two-compartment models show marginally higher
R2 values compared to one-compartment models, though all models maintain exceptional goodness-of-fit.
Box plots represent median, quartiles, and outliers from 100 replicate simulations for each scenario.

Full-size DOI: 10.7717/peerj.20258/fig-3

The absorption model showed equally impressive covariate detection performance.
Despite the challenges in Ka estimation, the framework successfully identified all three
covariate relationships (CL∼CRCL, V∼WT, and Ka∼AGE) with 100% accuracy across all
sample sizes. This robust covariate detection, even in the presence of suboptimal parameter
estimation, highlights the strength of the framework’s covariate analysis methodology.

Impact of sample size
The impact of sample size was evident across all aspects of model performance. As shown
in Fig. 2, increasing sample size generally led to:

– Reduced variability in parameter estimates (narrower box plots)
– Fewer outliers in parameter estimates
– Improved precision (lower CV%)
– More consistent model fits (Fig. 3)
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Table 5 AFE and AAFE performance across test scenarios. Presents the average fold error (AFE) and ab-
solute average fold error (AAFE) metrics for model prediction accuracy across different test scenarios. AFE
quantifies systematic bias in predictions, where AFE= 1 indicates no bias, AFE> 1 indicates overpredic-
tion, and AFE< 1 indicates underprediction. AAFE measures overall prediction accuracy regardless of
bias direction, where AAFE< 1.5 is considered excellent and AAFE< 2.0 is considered good. The scenar-
ios tested include varying noise levels (10%, 20%, and 30% proportional error) and sparse sampling con-
ditions with 50 subjects. All scenarios demonstrated excellent prediction accuracy with AFE values close
to 1.0 (range: 1.011–1.031), indicating minimal systematic bias. AAFE values were all below 1.05, demon-
strating exceptional overall prediction accuracy. R2 values remained high (≥0.949) across all scenarios,
confirming robust model fit quality. RMSE, MAE, and mean residual values provide additional validation
of the framework’s predictive performance under different data quality conditions.

Scenario N R2 RMSE AFE AAFE MAE Mean residual

Low noise (10%) 50 0.967 0.172 1.011 1.011 0.059 0.0004
Medium noise (20%) 50 0.949 0.234 1.031 1.031 0.073 0.028
High noise (30%) 50 0.959 0.204 1.013 1.013 0.068 0.018
Sparse sampling 50 0.959 0.256 1.025 1.025 0.103 0.042

However, larger sample sizes did not necessarily correct systematic biases, particularly
in Ka estimation for the absorption model. This suggests that some estimation challenges
may be inherent to the model structure rather than sample size-dependent.

Application to theophylline data
The framework’s practical utility was demonstrated through analysis of the classic
Theophylline dataset, consisting of 12 subjects who received a single 320 mg oral dose. The
analysis was performed using the one-compartment model with first-order absorption,
both with and without specified initial parameters to evaluate the framework’s automated
parameter initialization capabilities (detailed results in Supplement 1).

In both scenarios, the framework successfully estimated the population pharmacokinetic
parameters, with clearance (CL) of 2.794 L/h (CV 23.3%) and volume of distribution (V) of
31.732 L (CV 17.4%). The model demonstrated good fit to the observed data (R2

= 0.933),
with proportional residual error of 14.4%. While the absorption rate constant (Ka) showed
higher variability in both cases, the estimates remained physiologically plausible at 1.284
h−1, though with notably higher between-subject variability (67.0–79.8%) compared to
other parameters.

Importantly, the framework achieved comparable results whether or not initial
parameter estimates were provided. Without initial estimates, the framework’s automated
initialization procedure yielded parameter estimates and goodness-of-fit metrics equivalent
to those obtained with carefully specified initial values, demonstrating the effectiveness
of the automated approach. The primary difference was observed in the variability of
Ka estimates, where provided initial values led to somewhat tighter confidence intervals
([0.555, 4.668] vs [0.555, 8.179]) and reduced between-subject variability (67.0% vs 79.8%).

The covariate analysis successfully identified two significant relationships: a power
relationship between body weight and volume of distribution, and between dose and
absorption rate constant. Non-compartmental analysis, performed automatically as part of
the workflow, showed excellent agreement with the population analysis, with all subjects
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Table 6 Covariate detection rates by model type and sample size. Presents the covariate detection performance of PKPy’s automated stepwise se-
lection algorithm across different pharmacokinetic models and sample sizes. Detection rate represents the percentage of 100 simulation replicates
where the framework correctly identified the true parameter-covariate relationship with statistical significance (p < 0.05) and accurate relation-
ship type classification (linear, power, or exponential). The table evaluates five key physiologically-motivated relationships: CL-CRCL (clearance
scaling with creatinine clearance via power function), V-WT or V1-WT (volume of distribution scaling with body weight), V2-WT (peripheral vol-
ume scaling with body weight in two-compartment models), Q-WT (inter-compartmental clearance scaling with body weight), and Ka-AGE (ab-
sorption rate changing with age via exponential function). All tested models achieved perfect detection rates (100%) across all sample sizes (20, 50,
and 100 subjects), demonstrating the robustness of the covariate analysis methodology. This consistent performance indicates that the framework
can reliably identify important covariate relationships even with smaller datasets, regardless of model complexity. The dash (–) indicates parameter-
covariate combinations not applicable to specific model types.

Model type Sample size
(N)

CL-CRCL
detection (%)

V-WT detection
(%)

V1-WT detection
(%)

V2-WT detection
(%)

Ka-AGE detection
(%)

20 100 100 – – –
50 100 100 – – –One-compartment

100 100 100 – – –
20 100 100 – – 100
50 100 100 – – 100

One-compartment with
absorption

100 100 100 – – 100
20 100 – 100 100 –
50 100 – 100 100 –Two-compartment

100 100 – 100 100 –
20 100 – 100 – 100
50 100 – 100 – 100

Two-compartment with
absorption

100 100 – 100 – 100

successfully analyzed (100% success rate). Key NCA parameters included a mean AUC of
103.807 mg· h/L (CV 21.8%) and mean elimination half-life of 8.149 h (CV 24.9%).

Diagnostic plots (Supplement 1) demonstrated appropriate model fit, with well-
distributed residuals and good agreement between observed and predicted concentrations
across the full concentration range. The residual plots showed no systematic bias, and the
normal Q-Q plot indicated approximately normal distribution of residuals, though with
some deviation at the extremes.

Comparison with other software packages
Table 7 presents the detailed comparison of computational performance and parameter
estimation results between PKPy and Saemix+PKNCA. The results highlight substantial
differences in both practical implementation aspects and analytical outcomes.

Comparative analysis between PKPy and Saemix+PKNCA revealed notable differences
in both computational efficiency and parameter estimation. In terms of initial setup, PKPy
demonstrated faster installation time (16s) compared to Saemix+PKNCA (96s), suggesting
more efficient dependency management within Python’s ecosystem.

Runtime performance analysis showed distinct advantages for PKPy. Without initial
parameter estimates, PKPy completed the analysis in 15 s, while Saemix+PKNCA required
101 s. When provided with initial estimates, PKPy’s runtime slightly improved to 13 s,
while Saemix+PKNCA maintained similar execution time at 102 s.
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Table 7 Computational performance and parameter estimation comparison. Presents a comprehensive
comparison of computational efficiency and parameter estimation results between PKPy and
Saemix+PKNCA for analyzing the Theophylline dataset using a one-compartment model with first-order
absorption. The comparison evaluates two key scenarios: (1) analysis without initial parameter estimates,
testing each framework’s automated initialization capabilities, and (2) analysis with user-provided initial
parameter estimates. Performance metrics include installation time (one-time setup cost including
all dependencies) and execution time for complete analysis workflow encompassing data processing,
parameter estimation, covariate analysis, and diagnostic generation. All analyses were performed on
Google Colab with identical computational resources and maximum iteration limit of 9,999 to ensure
fair comparison. PKPy demonstrated substantial computational advantages with 6-fold faster installation
(16 s vs 96 s) and 7–8 fold faster execution (13–15 s vs 101–102 s). Notably, PKPy produced identical
parameter estimates regardless of initial value specification (Ka= 1.284 h−1, CL= 2.794 L/h, V= 31.732
L), demonstrating robust convergence. In contrast, Saemix yielded markedly different estimates (Ka=
1.58 h−1, CL= 12.8 L/h, V= 146 L) with CL and V approximately 4.6-fold higher than PKPy’s estimates,
suggesting potential differences in optimization algorithms, convergence criteria, or methodological
approaches between the two-stage and NLME implementations.

Metric category Metric PKPy Saemix+PKNCA

Setup time Installation (s) 16 96
Analysis without initial estimates

Execution time (s) 15 101
Ka (h−1) 1.284 1.58
CL (L/h) 2.794 12.8
V (L) 31.732 146

Analysis with initial estimates
Execution time (s) 13 102
Ka (h−1) 1.284 1.58
CL (L/h) 2.794 12.8
V (L) 31.732 146

Parameter estimation presented significant challenges for Saemix, both with and without
initial estimates. Saemix consistently producedmarkedly different estimates (Ka=1.58 h−1,
CL=12.8 L/h, V = 146 L) compared to PKPy (Ka=1.284 h−1, CL=2.794 L/h, V = 31.732
L), suggesting potential issues with parameter estimation stability. The most notable
differences were observed in the clearance and volume estimates, where Saemix’s values
were approximately 4.6 times higher for clearance and 4.6 times higher for volume
compared to PKPy.

In contrast, PKPy demonstrated remarkable consistency in its parameter estimates
regardless of initial parameter specification. This stability in parameter estimation,
combined with faster computation times, highlights PKPy’s robustness in handling
pharmacokinetic analyses. The substantial differences in parameter estimates between the
two approaches emphasize the importance of methodological considerations in population
pharmacokinetic modeling and suggest the need for careful validation of results across
different analytical platforms.

Broader context: comparison with NLME methods
While direct comparison with commercial NLME software was not feasible due to licensing
constraints, the observed differences between PKPy’s two-stage approach and Saemix’s
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NLME implementation provide insights into the trade-offs between methods. The two-
stage approach implemented in PKPy offers advantages in computational speed (6–8 ×
faster) and implementation transparency, making it particularly suitable for educational
purposes and exploratory analyses. However, NLME methods like those implemented in
NONMEM, Monolix, and nlmixr2 are expected to show superior performance for sparse
data scenarios where the simultaneous estimation of all parameters can ‘‘borrow strength’’
across subjects.

The consistent parameter estimates achieved by PKPy regardless of initial values suggest
that the framework’s automated initialization strategy effectively addresses one of the
traditional challenges of pharmacokinetic modeling. This feature, combined with the
integrated workflow including automatic NCA and covariate analysis, positions PKPy as a
valuable tool for rapid prototyping and educational applications in pharmacometrics.

DISCUSSION
This study presents PKPy, an open-source Python framework for population
pharmacokinetic analysis that emphasizes automated workflows and accessible
implementation. Through comprehensive simulation studies and real-world application
to the Theophylline dataset, we have demonstrated the framework’s capability to perform
robust PK analyses with minimal user intervention in parameter initialization and model
specification, now supporting both one-compartment and two-compartment models with
and without first-order absorption.

A key finding from our simulation studies was the framework’s strong performance in
estimating clearance and volume of distribution across different sample sizes and model
complexities. For the basic one-compartment model, parameter recovery rates consistently
exceeded 98%,with bias remaining below 3%. The framework showed particular strength in
handling larger datasets, where parameter precision improved substantially with increasing
sample size, as evidenced by decreasing CV% values. The extension to two-compartment
models revealed expected increases in parameter bias (5–15%) but maintained excellent
model fit quality (R2> 0.99), demonstrating the framework’s capability to handle more
complex pharmacokinetic scenarios.

However, the simulation studies also revealed challenges in estimating absorption
rate constants across model types. While the current implementation showed improved
Ka estimation compared to earlier versions, with bias ranging from +0.68% in simple
one-compartment models to−7.75% in two-compartment absorption models, absorption
parameters remain the most variable. This finding highlights a known challenge in PK
modeling—the difficulty of precisely estimating absorption parameters, particularly
when sampling during the absorption phase is limited. The better performance in one-
compartmentmodels suggests that parameter identifiability becomesmore challengingwith
increased model complexity. To address the challenges in Ka estimation, several strategies
could be implemented in future versions. First, incorporating more intensive sampling
during the absorption phase (0–3 h post-dose) could improve parameter identifiability.
Second, implementing Bayesian priors based on physiological knowledge or previous
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studies could stabilize Ka estimation. Third, exploring alternative optimization algorithms
specifically designed for absorption parameters, such as differential evolution or particle
swarm optimization, may improve convergence. Additionally, implementing a hybrid
approach that combines NCA-derived initial estimates for Ka with population modeling
could leverage the strengths of both methodologies.

The framework’s automated parameter initialization approach, a central innovation
of PKPy, demonstrated its practical value across all model types and in the Theophylline
analysis. The comparable results achievedwith andwithout user-specified initial parameters
suggest that the framework can effectively reduce the reliance on user expertise in parameter
initialization. This capability addresses a significant barrier in PK modeling, where the
selection of initial estimates often requires substantial experience and multiple manual
iterations. The data-driven heuristic approach, combining multiple scale factors with
stochastic perturbation, proved robust even for complex two-compartment models.

The covariate analysis methodology proved robust across all simulation scenarios
and real data analysis. In simulations, the framework achieved 100% detection rates for
true covariate relationships regardless of sample size or model complexity, successfully
identifying relationships such as CL∼CRCL, V∼WT, V1∼WT, V2∼WT, and Ka∼AGE.
This performance carried over to the Theophylline analysis, where physiologically plausible
covariate relationships were identified without requiring manual screening procedures.
The framework’s ability to automatically detect and characterize these relationships reduces
the potential for user bias in covariate selection while maintaining statistical rigor.

The implementation of AFE andAAFE validationmetrics provides additional confidence
inmodel predictions.WithAFE values consistently near 1.0 (range: 1.011−1.031) andAAFE
values below 1.05 across various test scenarios, the framework demonstrates minimal
systematic bias and excellent prediction accuracy. These scale-independent metrics are
particularly valuable for pharmacokinetic applications where concentrations may span
multiple orders of magnitude.

Notable limitations of the current implementation should be acknowledged. First,
while PKPy now supports both one-compartment and two-compartment models, it
does not yet handle three-compartment systems, multiple dosing regimens, or non-linear
elimination kinetics. These featureswould be necessary for comprehensive pharmacokinetic
modeling in all clinical scenarios. Second, the framework’s parameter estimation approach
implements a two-stage method rather than full nonlinear mixed-effects modeling. While
this approach offers computational efficiency and transparency, it may be less suitable for
sparse data situations where NLME methods can ‘‘borrow strength’’ across subjects.

The computational efficiency demonstrated in our comparisons—with PKPy showing
6-8 fold faster analysis times than Saemix+PKNCA—represents a significant practical
advantage. This speed, combined with consistent parameter estimates regardless of initial
value specification, makes PKPy particularly suitable for exploratory analyses, simulation
studies, and educational applications where rapid iteration is valuable. The concerning
parameter estimates produced by Saemix in our test case (CL and V approximately 4.6
times higher than PKPy’s estimates) highlight the importance of careful validation across
different analytical platforms.
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The integration of non-compartmental analysis with population modeling provides an
important advantage, offering automatic cross-validation of results through multiple
methodological approaches. This feature, combined with comprehensive diagnostic
plotting capabilities, helps users verify the consistency and reliability of their analyses.
The framework’s success in analyzing the Theophylline dataset with minimal user input,
achieving acceptable model fit (R2

= 0.811) despite the reduced sample size, demonstrates
its potential utility in both research and educational settings.

The educational potential of PKPy represents a significant opportunity. Its open-
source nature and Python implementation make it particularly suitable for teaching
pharmacometric concepts, while the automatic generation of diagnostic plots and
comprehensive analysis reports can help students understand the relationships between
different aspects of PK analysis. The framework’s emphasis on automation allows users to
focus on interpretation rather than implementation details, though this must be balanced
with ensuring users understand the underlying pharmacokinetic principles.

While this study demonstrated PKPy’s capabilities through comparison with other
open-source alternatives like Saemix, future research would benefit from comprehensive
comparisons with industry-standard software packages such as NONMEM and Monolix.
Due to licensing constraints and accessibility limitations, direct comparisons with these
established tools were not feasible in the current study. Such comparisons would be
particularly valuable for validating PKPy’s parameter estimates and computational
efficiency against gold-standard implementations. Future validation efforts should
prioritize comprehensive comparisons with industry-standard NLME software. We plan to
collaborate with institutions having access to NONMEM and Monolix licenses to conduct
systematic comparisons across diverse datasets, including sparse sampling scenarios
where NLME methods are expected to show advantages. These comparisons will focus
on: (1) parameter estimation accuracy across varying data richness, (2) computational
efficiency with large datasets, (3) convergence robustness without initial estimates, and (4)
performance with complex dosing regimens. Such validation will better establish PKPy’s
appropriate use cases within the broader pharmacometric toolkit.

Future comparative studies should examine estimation accuracy across diverse datasets
and model complexities, alongside computational efficiency and resource utilization
patterns. Of particular interest would be evaluating the robustness of convergence without
initial estimates across different software platforms, as this represents a key feature of PKPy.
Performance evaluation with sparse data and complex dosing regimens would also provide
valuable insights into the framework’s capabilities in challenging real-world scenarios.

The success of PKPy in achieving robust parameter estimates without user-specified
initial values has important implications for pharmacometric practice. It suggests thatmany
routine PK analyses could be automated to a greater degree than current practice, potentially
allowing pharmacometricians to focus more on study design, biological interpretation,
and clinical application. However, this automation should augment rather than replace
pharmacometric expertise, serving as a tool to enhance efficiency and accessibility while
maintaining scientific rigor.
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In conclusion, PKPy demonstrates the potential for open-source software to contribute
meaningfully to pharmacometric analysis, particularly in educational and research
settings where accessibility and transparency are priorities. The framework’s successful
extension to two-compartment models, combined with its automated workflows and
rapid computation, positions it as a valuable tool for specific use cases within the broader
pharmacometric ecosystem. While not intended to replace established NLME software
for all applications, PKPy fills an important niche for data-rich scenarios, educational
use, and rapid prototyping. Future work should focus on expanding the framework’s
capabilities while maintaining its emphasis on automation and user accessibility, ultimately
contributing to the democratization of pharmacokinetic analysis.

CONCLUSIONS
PKPy addresses critical barriers in population pharmacokinetic analysis through three
key innovations: automated parameter initialization that eliminates the need for expert
knowledge, computational efficiency achieving 6–8 fold faster analysis than existing
open-source alternatives, and seamless integration of population modeling with NCA for
cross-validation. These features make PKPy particularly valuable for educational settings,
rapid prototyping, and data-rich scenarios where traditional NLME software may be
unnecessarily complex.

Our comprehensive validation demonstrated robust performance across diverse
scenarios. The framework achieved excellent parameter recovery for clearance and volume
(bias <3% for one-compartment models), perfect covariate detection rates (100%), and
minimal prediction bias (AFE: 1.011−1.031, AAFE <1.05). While challenges remain in
absorption parameter estimation, the framework maintained high model fit quality (R2

>0.98) across all tested conditions. The successful application to real-world Theophylline
data, producing consistent results regardless of initial parameter specification, validates the
practical utility of our automated approach.

While PKPy’s two-stage approach differs from industry-standard NLME methods, it
fills an important niche in the pharmacometric ecosystem. Future developments will focus
on improving absorption parameter estimation through enhanced sampling strategies
and alternative optimization algorithms, validating against commercial software packages,
and extending support to more complex models. As pharmacometrics evolves toward
greater accessibility, PKPy demonstrates that automated, open-source tools can maintain
scientific rigor while substantially reducing barriers to entry, ultimately contributing to the
democratization of pharmacokinetic analysis for researchers and educators worldwide.
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