

1 **Two new sympatric species of *Phrynobius* (Anura:
2 **Strabomantidae) from the Elfin Forests of Cordillera
3 de Yanachaga in central Peru****

4

5

6 Pablo J. Venegas^{1,2}, Luis A. García-Ayachi^{1,2}, Lesly Lujan², Vilma Duran², Ana Motta³

7

8 ¹ Rainforest Partnership, Austin, Texas, USA.

9 ² Instituto Peruano de Herpetología, Lima, Peru.

10 ³ Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, USA.

11

12 Corresponding Author:

13 Ana Motta

14 1345 Jayhawk Boulevard, Lawrence, Kansas, 66045-7561, USA

15 Email address: motta@ku.edu

16 **Abstract**

17 We describe two new sympatric species of the terrestrial-breeding genus *Phrynobius* from elfin
18 forests (3280 m a.s.l.) of the Cordillera Yanachaga, Yanachaga-Chemillén National Park, in
19 central Peru. We used Maximum Likelihood approach to infer a molecular phylogeny on a
20 dataset composed of 97 terminals, including three terminals representing the new species, and
21 4271 bp of concatenated mtDNA and nuDNA fragments. Our phylogenetic analyses support the
22 placement of the two new species in the genus *Phrynobius*. The first new species is a medium-
23 sized species characterized by having upper eyelids bearing small tubercles, heel bearing one or
24 two subconical tubercles, outer edge of tarsus bearing a row of broad conical tubercles, and red
25 coloration in the groin, anterior and posterior surface of thighs, and concealed surface of shanks.
26 The second new species is characterized by lacking tubercles on the heel and tarsus and by black
27 coloration in the groin and the hidden surfaces of the hind limbs. Both new species are only
28 known from the type locality and occur sympatrically with two other species of *Phrynobius* (*P.*
29 *miroslawae* and *P. tribulosus*).|

Kommentiert [KJ1]: Maybe describe a bit more detailed the relationships of the two new species here and skip some of the morphological characters.

30
31 **Introduction**

32 Terrestrial breeding frogs of the family Strabomantidae are highly diverse, with more than 800
33 species distributed in tropical and subtropical South America and lower Central America (Frost
34 2024). It is assumed that all species of this group deposit their eggs in terrestrial sites and the
35 eggs undergo direct development, lacking the aquatic tadpole stage. This mode of life history,
36 not associated with aquatic environments, was responsible for their success in inhabiting a
37 variety of environments, from cloud forest to grasslands (Duellman & Lehr 2009; Frost 2024;
38 Hedges et al. 2008). Strabomantid species comprise about half of all species of frogs known to
39 inhabit Peru, and are distributed in 12 genera (*Bryophryne*, *Lynchius*, *Microkayla*,
40 *Niceforonia*, *Noblella*, *Oreobates*, *Phrynobius*, *Phyllonastes*, *Pristimantis*, *Qosqophryne*,
41 *Strabomantis* and *Yunganastes*), occupying a variety of habitats such as Pacific dry forest,
42 humid lowland tropical forests, montane forests, puna and paramo (Duellman & Lehr 2009;
43 Frost 2024; von May et al. 2024).

Kommentiert [KJ2]: actually, this is documented for only a minority of strabomantids and we should not a priori exclude other reproductive modes for this group of frogs.

Kommentiert [KJ3]: they also inhabit lowland forests and dry forests. I suggest to delete this part here.

44
45 The high Andean strabomantid frogs share a similar external morphology (the “phrynoboid”
46 morphology) that led them to be historically considered part of a single natural group, the genus
47 *Phrynobius* (De la Riva 2020). *Phrynobius* was re-erected to include 14 species of small frogs,
48 with short limbs and simple digits, broadly distributed in the high Andes from Colombia to
49 Bolivia (Lynch 1975). Subsequently, the genus experienced a rapid increase in species numbers
50 and drastic changes in its composition (De la Riva 2007; De La Riva et al. 2008; Lehr 2006).

Kommentiert [KJ4]: ???

51
52 The monophyly of *Phrynobius* sensu Lynch (1975) was rejected by molecular phylogenetic
53 analyses, revealing a scenario where high-elevation lineages have independent origins (Hedges et
54 al. 2008). The non-monophyletic *Phrynobius* was split into a number of genera, and the genus
55 *Phrynobius* was restricted to a clade of 21 species that occur in upper humid forests and

56 grasslands of the Cordillera Oriental in Peru (Hedges et al. 2008). In the following decade, 16
57 new species of *Phrynobates* were described and the redefined genus faced another increase in its
58 number of species (Chaparro et al. 2008; Chávez et al. 2015; Lehr et al. 2012; Lehr & Rodríguez
59 2017; Lehr et al. 2017; Mamani & Malqui 2014; Rodriguez & Catenazzi 2017; Trueb & Lehr
60 2008; Venegas et al. 2018; von May et al. 2018). With *P. curator* and *P. nicoleae* being
61 considered synonyms of *P. tribulosus* (von May et al. 2018), *P. ayacucho* (Lehr, 2007) being
62 transferred to the genus *Oreobates* (Padial et al. 2012), and the recent descriptions of *P.*
63 *apumantarum*, *P. remotum*, and *P. sanctostobali*, the genus now comprises 37 species,
64 distributed in the Cordillera Oriental and Central of Peru, restricted to a region between 6° and
65 13° of latitude (Chávez et al. 2020; 2023; Diaz et al. 2023; Venegas et al. 2018). Species have
66 been recorded at elevations between 2,600–4,490 m, and most of them show very restricted
67 distribution ranges, both horizontally and vertically (Chávez et al. 2023; Rodriguez & Catenazzi
68 2017).

69
70 Even with the discovery of numerous new species resulting from recent fieldwork, the diversity
71 of species of *Phrynobates* is still considered underestimated, as many remote regions of the slopes
72 of the Andes in Peru have not yet been explored and probably are inhabited by additional
73 microendemic taxa (De la Riva et al. 2018). The Yanachaga-Chemillén National Park in the
74 Pasco Department of Peru has a remarkable diversity of amphibians (41 species have been
75 recorded for the area, including undescribed species; Angulo et al. 2016), and fieldwork in the
76 area has led to the discovery of new species of strabomantid frogs, including new species of
77 *Phrynobates* (Duellman & Hedges 2005; Duellman & Hedges 2008; Hedges 1990; Lehr et al.
78 2012; 2017). Fieldwork in this region conducted by some of the authors of this study revealed
79 the existence of two unnamed species of *Phrynobates*. We use phylogenetic analyses of nuclear
80 and mitochondrial genes to assess their phylogenetic relationships and combine morphological
81 and molecular data to support the recognition of the two species that we name and describe
82 herein.

83 84 Materials & Methods

85 Morphology, Voucher specimens and Permits

86 Character definition and terminology follow that of Duellman & Lehr (2009). Measurements,
87 taken with digital calipers (to nearest 0.1 mm), are as follow: **SVL** (snout–vent length), **TL** (tibia
88 length), **FL** (foot length, distance from proximal margin of inner metatarsal tubercle to tip of Toe
89 IV), **HL** (head length, obliquely from angle of jaw to tip of snout), **HW** (head width, at level of
90 angle of jaw), **ED** (eye diameter), **IOD** (interorbital distance), **EW** (upper eyelid width), **IND**
91 (internarial distance), **E-N** (eye–nostril distance, straight line distance between anterior corner of
92 orbit and posterior margin of external nares). Fingers are numbered preaxially to postaxially
93 from I–IV. Comparative lengths of Toes III and V were determined when both were adpressed
94 against Toe IV; lengths of Fingers I and II were estimated when adpressed against each other.
95 Specimens were preserved in 10% formalin and stored in 70% ethanol and were sexed externally

Kommentiert [KJ5]: Please add info about the descriptive scheme used.

96 by the presence or absence of vocal slits and internally by the condition of the gonads. All
97 specimens were deposited in the herpetological collection of the Centro de Ornitología y
98 Biodiversidad (CORBIDI), Lima, Peru. Institutional abbreviations follow (Sabaj 2020). We
99 obtained our research permit through the Dirección General Forestal y de Fauna Silvestre,
100 Ministerio de Agricultura y Riego, Peru, which issued the Contrato de Acceso Marco a Recursos
101 Genéticos, numbered 359-2013-MINAGRI-DGFFS-DGEFFS. Our research was approved by the
102 Institutional Animal Care and Use Committee of University of Kansas (AUS 279-01).
103 Specimens examined are listed in Appendix 1.

104 **DNA extraction and sequencing**

105 We extracted total DNA from ethanol preserved tissues, following standard high-salt protocol
106 adapted for microcentrifuge tubes (Lyra et al. 2017; Maniatis et al. 1982). We amplified two
107 mitochondrial encoded gene fragments: one including the partial sequences of 12S rRNA,
108 tRNA-val and 16S rRNA genes (H1 fragment) and a fragment of the cytochrome c oxidase I
109 (COI); and two nuclear genes: partial sequences of tyrosinase (TYR), and partial sequences of
110 recombination activating 1 (RAG-1). Amplifications were carried out in a 22 μ l reaction using
111 Ampliqon Taq DNA Polymerase Master Mix (Amplicon A/S, Odense M, Denmark), with
112 primers listed in Table S1. For the mitochondrial genes we followed polymerase chain reactions
113 (PCR) conditions described in Lyra et al. (2017) (UP reaction protocol). For nuclear genes we
114 used the following PCR cycling protocol: 3min of denaturation at 95°C, followed by 45 cycles of
115 20s of denaturation at 95°C plus 20s of annealing at 56°C plus 1 min of extension at 68°C,
116 followed by 3 min of final extension at 68°C, and stored at 12°C. PCR products were purified
117 using an enzymatic reaction containing 1 unit of Exonuclease I and 0.5 unit of Alcaline
118 phosphatase (Thermo Fisher Scientific Inc.) and were sent to Macrogen, Inc., Seoul, Republic of
119 Korea, for sequencing. Sequence files were checked for quality and contigs were assembled
120 using Geneious R11 (Biomatters).

121 **Phylogenetic analysis**

122 We used phylogenetic trees to assess generic assignment and investigate the relationship of the
123 two new species focal samples. We chose the mitochondrial 12S rRNA and partial sequence of
124 16S rRNA genes, and the protein-coding gene cytochrome c oxidase subunit I (COI) as well as
125 nuclear genes recombination-activating gene 1 (RAG1) and tyrosinase precursor (tyr) to perform
126 our analyses. We supplemented our sequences with all sequences available on GenBank
127 belonging to species of *Phrynobatrachus* and for which the chosen gene fragments were available. One
128 new species is represented by the terminal CORBIDI 7379, and the other one by the terminals
129 CORBIDI 7382 and CORBIDI 7385. Our ingroup sample includes 63 terminals of *Phrynobatrachus*
130 representing 24 nominal species, two unnamed species (*Phrynobatrachus* spI and *Phrynobatrachus* sp. of von
131 May et al. 2018), and the two species we name herein. As outgroups we included one terminal
132 per species of the related genera *Lynchius* (n = 8) and of *Oreobates* (n = 25) and rooted all our
133 analyses with the distantly related species *Haddadus binotatus* (Padial et al. 2014). Specimen
134 voucher numbers for newly produced sequences and GenBank accession numbers for all
135 sequences used in this study are listed in Appendix 2.

Kommentiert [KJ6]: and lineage divergence, right?

136 We performed multiple sequence alignments in MAFFT online v7 using the G-INS-i strategy,
137 which is considered appropriate for alignments that consist of large numbers of sequences
138 (Katoh & Standley 2013).

139
140 We generated Maximum Likelihood (ML) phylogenograms using IQ-TREE v1.6 (Nguyen et al.
141 2015) from the concatenated sequence of the five gene fragments included in our dataset. We
142 determined the best-fit substitution model for each gene via ModelFinder, implemented within
143 IQ-TREE (Kalyaanamoorthy et al. 2017) and performed a partitioned analysis by partitioning
144 according to codon position within the protein-coding genes (COI, RAG, and tyr). We calculated
145 branch support with 10,000 bootstrap replicates using the Ultrafast Bootstrapping algorithm
146 (Hoang et al. 2018). Alignments, script, and output files, including partitions and trees, are
147 available as supplementary files.

148 **Nomenclatural act**

149 The electronic version of this article in Portable Document Format (PDF) will represent a
150 published work according to the International Commission on Zoological Nomenclature (ICZN),
151 and hence the new names contained in the electronic version are effectively published under that
152 Code from the electronic edition alone. This published work and the nomenclatural acts it
153 contains have been registered in ZooBank, the online registration system for the ICZN. The
154 ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
155 through any standard web browser by appending the LSID to the prefix <http://zoobank.org/>. The
156 LSID for this publication is: urn:lsid:zoobank.org:pub:513EDEF4-3F07-4097-8902-
157 8DFED468E4C3. The online version of this work is archived and available from the following
158 digital repositories: PeerJ, PubMed Central SCIE and CLOCKSS.

159

160 **Results**

161 **Phylogenetic relationships**

162 The optimal similarity-alignment of our concatenated dataset comprises 4271 character columns
163 for 97 terminals. Our analysis recovered the genera *Phrynobatrachus* as monophyletic, with 100%
164 bootstrap support and supported the placement of the two new species in the genus *Phrynobatrachus*
165 (Fig. 1). The two new species are recovered as part of a highly supported clade (0.90) that
166 includes *P. apumantaram*, *P. badius*, *P. barthlenae*, *P. bracki*, *P. bufooides*, *P. horstpauli*, *P. inti*,
167 *P. kaueorum*, *P. miroslawae*, *P. pesantesi*, *P. sanctostobali*, *P. tautzorum* and *Phrynobatrachus* sp.
168 The phylogenetic position and morphological distinctiveness of the newly collected specimens
169 support the description of the two new species, which we name and diagnose below.

Kommentiert [KJ7]: 90%

170

171 **Taxonomy**

172 ***Phrynobatrachus manuelriosi* sp. nov.**

173 urn:lsid:zoobank.org:act:86453AE1-9A6A-4ABD-9681-CF9E372B877D

174 Figs 2–4; Table 1

175 **Holotype**

Kommentiert [KJ8]: maybe better talk about lineage divergence here. The phylogenetic position does not necessarily justify species recognition. You may also consider to provide uncorrected p-distances for the 16S barcoding gene to further support lineage divergence.

176 CORBIDI 7385 (Fig. 2), adult female, Santa Barbara, Distrito de Huancabamba, Provincia de
177 Oxapampa, Región de Pasco, Peru, (10°20'29.1"S, 75°38'27.1"W, 3280 m a.s.l.), collected by
178 Pablo J. Venegas, Vilma Duran, Caroll Z. Landauro, and Lesly Lujan, on 25 August 2010.

179 **Paratypes (9)**

180 Nine specimens in total, four adult females CORBIDI 7380, 7382–83, 7387 and five adult males
181 CORBIDI 7381, 7386, 7388–90 collected with the holotype on the same date and locality, and
182 by same collectors.

183 **Diagnosis**

184 A species in the genus *Phrynobius* characterized by (1) skin on dorsum shagreen with scattered
185 low tubercles, more abundant and prominent on flanks and hind limbs, usually bearing
186 interorbital fold, \/ -shaped fold on scapular region, and / \ -shaped fold on the middle of dorsum;
187 skin on venter areolate; groins smooth or weakly areolate; dorsolateral folds absent;
188 supratympanic fold conspicuous and long, slightly curved above the tympanic region; discoidal
189 fold present only as thoracic fold or completely absent; (2) tympanic membrane and annulus
190 absent; (3) snout moderately short, bluntly rounded in dorsal view and in profile; (4) upper eyelid
191 bearing small tubercles, narrower than IOD; cranial crests absent; (5) vomerine teeth absent; (6)
192 vocal slits present and nuptial pads absent; (7) Finger I shorter than Finger II; tips of fingers
193 rounded and narrow; (8) fingers lacking lateral fringes; subarticular tubercles small and rounded
194 in dorsal view, and flat on lateral view; (9) ulnar tubercle present, more evident in males; (10)
195 heel bearing one or two subconical tubercles and outer edge of tarsus bearing a row of broad
196 conical tubercles; inner tarsal fold absent; (11) inner metatarsal tubercle ovoid, about equal in
197 size to rounded outer metatarsal tubercle; subarticular tubercles small and rounded in dorsal
198 view, and flat on lateral view; supernumerary plantar tubercles present; (12) toes lacking lateral
199 fringes; webbing absent; Toe V longer than Toe III; tips of toes rounded; (13) in life, dorsum of
200 head, body, and limbs pale brown, yellowish brown or grayish brown with dark brown markings;
201 groin, anterior and posterior surface of thighs, and concealed surface of shanks red; ventral
202 surface yellowish brown, grayish brown or yellow with or without dark brown flecks in the
203 throat and belly; (14) SVL in five males 11.3–17.4 mm, in five females 19.4–27.1 mm.

204 **Comparisons**

205 Among the 37 described species of *Phrynobius*, only *P. badius*, *P. bracki*, *P. daemon*, *P.*
206 *heimorum*, *P. inti*, *P. paucari*, *P. peruanus*, *P. unchog* and *P. vestigiatus* show reddish coloration
207 in the groins (Duellman & Lehr 2009; Lehr 2001; Lehr et al. 2012; Lehr & Oroz 2012; Lehr &
208 Rodríguez 2017). *Phrynobius manuelriosi* sp. nov. differs from *P. badius*, *P. bracki*, *P. inti*, *P.*
209 *paucari* and *P. vestigiatus* by having uniformly red groin (groin dark brown with bright orange
210 flecks in *P. badius*; brown with red spots in *P. bracki*; pale grayish with salmon-colored flecks in
211 *P. inti*; greenish yellow with diffuse salmon blotches in *P. paucari*; and dark brown with red
212 well-defined blotches in *P. vestigiatus*). Of the species sharing a uniformly reddish coloration in
213 the groin, *P. manuelriosi* sp. nov. can be distinguished by the presence of heel tubercle (absent in
214 *P. daemon*, *P. heimorum*, and *P. peruanus*), tarsal tubercles (absent in *P. heimorum* and *P.*
215 *peruanus*), and eyelid tubercles (absent in *P. daemon*, *P. heimorum*, *P. peruanus*, and *P.*

Kommentiert [KJ9]: According to the IZN Code, this should be called "Definition"

Kommentiert [KJ10]: What about iris color?

Kommentiert [KJ11]: According to the IZN Code this paragraph should be called "Diagnosis"

216 *unchog*). Moreover, *P. manuelriosi* sp. nov. lacks ~~a~~ tympanic membrane and annulus, which are
217 present in *P. peruanus*.

218
219 The presence of tubercles on the heel and outer edge of tarsus is uncommon in the genus
220 *Phrynoporus*. Only 6 species (*P. bracki*, *P. dagmarae*, *P. kotosh*, *P. oblivious*, *P. tribulosus* and *P.*
221 *vestigiatus*) share the presence of tubercles on the heel and outer edge of tarsus. *P. manuelriosi*
222 sp. nov. differs from *P. bracki* and *P. dagmarae* by having tubercles on the upper eyelids (absent
223 in *P. bracki* and *P. dagmarae*), and *P. dagmarae* has the Toe V shorter than Toe III, while the
224 Toe V is ~~larger~~longer than Toe III in the new species. *P. dagmarae*, *P. kotosh* and *P. oblivious*
225 also differs by lacking \ -shaped fold ~~on~~ in the scapular region and a \ -shaped fold on the
226 middle of dorsum. Moreover, *P. manuelriosi* sp. nov. lacks dorsolateral folds, whereas
227 dorsolateral folds are present in *P. dagmarae* (continuous), *P. kotosh* (discontinuous), and *P.*
228 *vestigiatus* (prominent and undulated). *P. tribulosus* has Toe V equal or slightly shorter than Toe
229 III (von May et al. 2018), while in *P. manuelriosi* sp. nov. the Toe V is ~~larger~~longer than Toe
230 III. In addition, *P. barthlenae* and *P. miroslawae* have tubercles on the heel but lack tubercles on
231 the outer edge of tarsus (present in *P. manuelriosi* sp. nov.) and Toe V shorter in length than Toe
232 III and Toe III equal in length than Toe V, respectively, while *P. manuelriosi* sp. nov. have Toe
233 V longer than Toe III.

234
235 *Phrynoporus horstpauli* ~~is structurally has a habitus~~ similar to *P. manuelriosi* sp. nov., ~~also being~~
236 ~~found in leaf and branches of the understory~~ (Duellman & Lehr 2009; Lehr et al. 2000) ~~and in~~
237 sharing the slender limbs and relative long narrow fingers and toes. *P. manuelriosi* sp. nov. can
238 be easily distinguished from *P. horstpauli* by having one or two subconical tubercle on the heel
239 and a row of conical tubercles on the outer edge of tarsus (absent in *P. horstpauli*), and a smaller
240 size with a SVL of 11.3 to 17.4 mm in males and 19.4 to 27.1 mm in females (17.7 to 25.6 mm
241 in males and 30.8 to 39.7 mm in females of *P. horstpauli*).

242
243 *Phrynoporus melanoinguinis* sp. nov. occurs in sympatry with *P. manuelriosi* sp. nov. and it can be
244 easily distinguished by lacking heel and tarsal tubercles (present in *P. manuelriosi* sp. nov.), and
245 by having dorsolateral and supratympanic folds (absent in *P. manuelriosi* sp. nov.).
246 Due to the variable coloration of *P. manuelriosi* sp. nov., we consider it possible to confuse it
247 with *Nobellia duellmani*, a geographically close species. *N. duellmani* occurs in Pasco
248 Department, at elevations between 2900 and 3500 m, the same elevational range as *P.*
249 *manuelriosi* sp. nov. *N. duellmani* can be easily distinguished from *P. manuelriosi* sp. nov. by
250 having Toe V shorter than Toe III (Toe V longer than Toe III in *P. manuelriosi* sp. nov.), tips of
251 digit slightly expanded and those of Toes III-V slightly acuminate (tips of toes narrow and
252 rounded in *P. manuelriosi* sp. nov.), and skin of belly smooth (areolate in *P. manuelriosi* sp.
253 nov.).

254
255 **Description of holotype**

Kommentiert [KJ12]: this is probably true for more species and not relevant in the diagnosis

Kommentiert [KJ13]: There are several species that are not mentioned in the Diagnosis. Please consider to add one single sentence saying "All other recognized species of *Phrynoporus* not mentioned so far differ in at least"

256 Adult female (Fig. 2, 3); body moderately robust; head about as wide as body, nearly as long as
257 wide; snout bluntly rounded in dorsal view and in profile; canthus rostralis slightly curved in
258 dorsal view, rounded in profile; loreal region nearly flat; lips rounded; nostrils barely
259 protuberant, directed laterally; internarial region barely depressed; top of head flat; width of
260 upper eyelid narrower than interorbital distance (EW/IOD 0.84); eye large, its diameter much
261 greater than its distance from nostril (E-N/ED 0.70); tympanic membrane and annulus absent;
262 supratympanic fold distinct, angling posteroventrally from point behind the tympanic region
263 close to the arm insertion; postrostral tubercles present, rounded. Tongue longer than broad,
264 notched posteriorly, posterior half free; choanae small, round, not concealed by palatal shelf of
265 maxillary; dentigerous processes of vomers absent.
266 Forelimb slender; ulnar tubercles low, diffuse; palmar tubercle low, round, about same size as
267 thenar tubercle; subarticular tubercles distinct, small and rounded in dorsal view, and flat in
268 lateral view; supernumerary tubercles present, weakly defined; fingers slender and long, lacking
269 lateral fringes; relative lengths of fingers I<II<IV<III; tips of fingers narrow, rounded, lacking
270 circumferential grooves. Hind limb long and slender; heel bearing two small subconical tubercles
271 and tarsus bearing three low and broad at base conical tubercles; inner tarsal fold present on
272 distal half of tarsus; inner metatarsal tubercle elevated, round, about twice the size of subconical
273 outer metatarsal tubercle; subarticular tubercles distinct only at the base of toes, small and
274 rounded in dorsal view, and flat in lateral view; supernumerary tubercles present, distinct; toes
275 slender, lacking lateral fringes; relative lengths of toes I<II<III<V<IV; tips of toes narrow,
276 rounded, lacking circumferential grooves. Skin on dorsum shagreen with scattered low tubercles
277 posteriorly, bearing an interorbital fold, a V-shaped fold on scapular region, and a / \-shaped fold
278 on the sacrum; flanks and hind limbs tuberculate; upper eyelids bearing low rounded tubercles;
279 skin on venter areolate; thoracic fold present; skin ventral and ventrolateral to cloaca granular.
280 Measurements (in mm) and proportions of holotype: SVL 26.1; TL 11.5; HW 9.3; HL 8.9; IOD
281 3.1; IND 1.8; EW 2.6; FL 14.1; ED 2.7; E-N 1.9; TL/SVL 0.44; FL/SVL 0.54; HL/SVL 0.34;
282 HW/SVL 0.36; HW/HL 1.04; E-N/ED 0.70; EW/IOD 0.84.

283 *Coloration of holotype in life*

284 *In life*, **D**dorsal coloration of head, body, and limbs pale brown with pale and dark markings that
285 include a dark brown interorbital bar with a cream border in the anterior margin, a brownish
286 cream V-shaped fold with a dark brown border in the posterior margin, one dark brown chevron
287 with brownish cream borders in the middle of the dorsum, one diagonal stripe on the flanks with
288 a pale cream border, and two transverse bars on the hind limbs; dark brown head markings
289 include a bold canthal and supratympanic stripes with cream borders, and a bold labial bar below
290 the eyes with a cream border in the posterior margin (Fig. 2A); groin, anterior and posterior
291 surface of thighs, and concealed surface of shanks red; ventral surface yellowish brown with
292 palms, soles and ventral surface of thighs brown (Fig. 2B); iris dark or light bronze with fine
293 black reticulations and a faint reddish stripe across the middle.

294 *Coloration of holotype in preservative*

Kommentiert [KJ14]: Please remove this subheading.
It is part of "Description of holotype"

Kommentiert [KJ15]: Same here

295 In preservative, Ddorsum of head, body, limbs, and sides of head grayish brown with the same
296 dark brown markings and the same pale borders (now grayish cream) such as described above;
297 groin, anterior and posterior surface of thighs, and concealed surface of shanks grayish brown;
298 ventral surface on throat and chest pale tan, belly grayish cream, with palm, soles, and limbs
299 brown (Fig. 3).

300 **Variation**

301 Sexual dimorphism is evident in respect to snout-vent length, with males being smaller than
302 females: SVL 11.3—17.4 mm in males and 19.4—27.1 mm in females (Table 1). In life, the
303 ventral coloration of males and females can be variablevary from brownish cream to yellowish
304 cream (Figs. 4C, 4F, and 4J); only one male (CORBIDI 7381) has a grayish venter with dark
305 brown flecks in the throat and belly (Fig. 4H). The dorsal coloration is variable: one female
306 (CORBIDI 7380) has a dull brown dorsum without distinct markings except for a dark brown
307 interorbital bar (Fig. 4A); one female (CORBIDI 7383) has a fine pale middorsal stripe (Fig.
308 4E); one male (CORBIDI 7381) has a grayish brown dorsum with dark brown blotches, a black
309 labial bar below the eyes and lack canthal stripe (Fig. 4G); one male (CORBIDI 7381) has dark
310 yellow flanks (Fig. 4L); one female (CORBIDI 7387) has an orange hue on dorsum with the
311 same markings than the holotype except the canthal stripe (Fig. 4K); one male (CORBIDI 7386)
312 has a distinct black canthal and supratympanic stripe (Fig. 4I).

Kommentiert [KJ16]: line?

313 **Distribution and natural history**

314 *Phrynobius manuelriosi* sp. nov. is only known from the type locality in the west margin of Río
315 Huancabamba at an elevation of 3280 m a.s.l., Provincia de Oxapampa, Departamento de Pasco,
316 on the eastern slope of Cordillera Oriental in central Peru (Fig. 5). Eighteen individuals, of which
317 ten were collected, were found in 5 hours surveying amphibians at night by four collectors. All
318 individuals were found on the ground in the elfin forest, and perched on leaves and branches
319 about 20–100 cm above the ground in the forest and in the riparian vegetation. The herpetological
320 survey in Santa Barbara occurred in the dry season and no rainfall was recorded during the four
321 days of survey in this locality. The two new species described herein were found in sympatry in
322 the elfin forest of Santa Barbara. *Gastrotheca griswoldi* also occurs in the area, but above the
323 tree line in the Puna grasslands. Two other species of *Phrynobius* are known to occur in the same
324 area of Santa Barbara: *P. miroslawae* and *P. tribulosus*. *P. miroslawae* is found in the elfin
325 forest and might be syntopic with *P. manuelriosi* sp. nov., whereas *P. tribulosus* inhabits the
326 Puna grasslands (Chaparro et al. 2008), although we did not observe either species during our
327 surveys in Santa Barbara. The sympatric *P. auriculatus* and *P. bracki* occur 38 km airline SE of
328 Santa Bárbara, 5.5 km E Oxapampa 2600 m, on mountains at the opposite side of the Oxapampa
329 valley (Chaparro et al. 2008), while while *P. badius* is closer at the eastern margin of Río
330 Huancabamba (20 km airline SE of Santa Barbara).

Kommentiert [KJ17]: Think this is not of relevance for
the new species.

331 **Etymology**

332 The name is patronym for Manuel Ríos, a Peruvian forest engineer and professor at the Faculty
333 of Forestry at Universidad Nacional Agraria La Molina (UNALM), Lima, Peru, from 1970 to
334 2017, who has dedicated his life to preserving the natural heritage of his country. As professor,

335 Manuel trained hundreds of students, inspiring them to become committed advocates for
336 resource conservation, wildlife management and the protection of natural areas. He is also a
337 founder and life member of the Board of Directors of the Peruvian Foundation for the
338 Conservation of Nature (Pro Naturaleza), an organization that has played a key role in the
339 preservation and protection of environment in Peru. Likewise, he was Director of the
340 Conservation Data Center (CDC-UNALM) between 1983 and 1998, and his legacy is present in
341 the creation and planning of some of the most emblematic protected areas in Peru: the Paracas
342 National Reserve, the Titicaca National Reserve, the Lachay National Reserve, the Abiseo
343 National Park, and the Tabaconas Namballe National Sanctuary, among many others.
344

345 ***Phrynobatrachus melanoinguinis* sp. nov.**

346 urn:lsid:zoobank.org:act:13A87303-F889-41BD-A67E-F00D4C611F17

347 Figs, 6–7

348 **Holotype**

349 CORBIDI 7379 (Fig. 6), adult female, Santa Barbara, Distrito de Huancabamba, Provincia de
350 Oxapampa, Región de Pasco, Peru (10°20'29.1''S, 75°38'27.1''W, 3280 m a.s.l.), collected by
351 Pablo J. Venegas on 25 August 2010.

352 **Diagnosis**

353 A species in the genus *Phrynobatrachus* characterized by (1) skin on dorsum smooth with scattered
354 granules and areolate on the flanks; that on venter areolate; dorsolateral folds present, short;
355 discoidal fold present only as thoracic fold; supratympanic fold conspicuous and long, slightly
356 curved above the tympanic region; (2) tympanic membrane and annulus absent; (3) snout
357 moderately short, bluntly rounded in dorsal view and in profile; (4) upper eyelids bearing low
358 small tubercles, narrower than IOD; cranial crests absent; (5) vomerine teeth absent; (6) males
359 unknown; (7) Finger I shorter than Finger II; tips of fingers rounded and narrow; (8) fingers
360 lacking lateral fringes; subarticular tubercles small, rounded, weakly defined in dorsal view and
361 flat in lateral view; supernumerary tubercles present, weakly defined; (9) ulnar tubercles absent;
362 (10) heel and outer edge of tarsus lacking tubercles; inner tarsal fold absent; (11) inner metatarsal
363 tubercle ovoid, prominent, about equal in size to lower, rounded, outer metatarsal tubercle;
364 subarticular tubercles small, round, distinct only at the base of toes in dorsal view and flat on
365 lateral view; supernumerary plantar tubercles absent; (12) toes lacking lateral fringes; webbing
366 absent; Toe V slightly longer than Toe III; tips of toes rounded; (13) in life, dorsum dark brown
367 without marks; groin, anterior and posterior surface of thighs, and concealed surface of shanks
368 black; ventral surface brown with a black blotch on the throat; iris bluish gray with fine black
369 reticulation; (14) SVL of single female 23.6 mm.

370 **Comparisons**

371 *Phrynobatrachus melanoinguinis* sp. nov. is strikingly different from any other known species in the
372 genus by having the groin and the hidden surfaces of the hind limbs black, and a blueish gray iris
373 in life. *P. melanoinguinis* sp. nov. occurs in sympatry with *P. manuelriosi* sp. nov., *P.*
374 *miroslawae*, and *P. tribulosus*, and it differs from those by lacking heel and tarsal tubercles

Kommentiert [KJ18]: see comment above

Kommentiert [KJ19]: See comment above

375 (present in *P. manuelriosi* sp. nov., *P. miroslawae*, and *P. tribulosus*), and by having dorsolateral
376 and supratympanic folds (absent in *P. manuelriosi* sp. nov. and *P. tribulosus*). Three other
377 species of *Phrynobius* occur within the Yanachaga-Chemillén National Park: *P. auriculatus*, *P.*
378 *badius*, and *P. bracki* (Chaparro et al. 2008; Duellman & Lehr 2009; Lehr & Oroz 2012). *P.*
379 *melanoinguinis* sp. nov. differs from those species by lacking heel and tarsal tubercles (heel
380 tubercle present in *P. auriculatus* and *P. bracki*; tarsal tubercle present in *P. bracki*), by having
381 eyelid tubercles (absent in *P. auriculatus*, *P. badius*, and *P. bracki*), and by having dorsolateral
382 folds (absent in *P. bracki*) and supratympanic folds (absent in *P. badius*, and *P. bracki*).
383

384 The absence of heel and tarsal tubercles also distinguishes *P. melanoinguinis* sp. nov. from *P.*
385 *daemon*, *P. dagmarae*, *P. interstinctus*, *P. vestigiatus*, *P. kotosh*, *P. oblivious*, *P. remotum*, and *P.*
386 *unchog*. The combination of dorsolateral and long supratympanic folds also differentiates *P.*
387 *melanoinguinis* sp. nov. from many other species in the genus: *P. barthlenae*, *P. bufoides*, *P.*
388 *capitalis*, *P. chaparroi*, *P. daemon*, *P. dagmarae*, *P. heimorum*, *P. interstinctus*, *P. inti*, *P.*
389 *juninensis*, *P. kauneorum*, *P. lapidoides*, *P. lechriorhynchos*, *P. montium*, *P. oblivious*, *P.*
390 *peruanus*, *P. pesantesi*, *P. remotum*, *P. sanctistobali*, *P. tautzorum*, *P. thompsoni*, *P. valquii*, and
391 *P. vestigiatus*. In the case of *P. bufoides* and *P. sanctistobali*, both species are also easily
392 distinguished from *P. melanoinguinis* sp. nov. by the presence of conspicuous large round or
393 elongate pustules on dorsum and flanks (dorsum smooth with areolate flanks in the new species).
394 Moreover, the absence of tympanic membrane and annulus distinguishes the new species from *P.*
395 *auriculatus*, *P. peruanus* and *P. mariellaleo* (tympanic membrane and annulus present).
396

397 *Phrynobius paucari* differs from *P. melanoinguinis* sp. nov. by having larger subconical tubercles
398 forming discontinuous longitudinal ridges dorsolaterally (dorsal skin smooth) and venter
399 greenish yellow with brown reticulation (dull brown). *P. pesantesi* differs from *P.*
400 *melanoinguinis* sp. nov. by having ulnar tubercles (absent) and the venter brown with gray
401 mottling (dull brown). *P. horstpauli* differs from *P. melanoinguinis* sp. nov. by having the skin
402 of dorsum slightly tuberculate (smooth), Toe V much longer than Toe III (Toe V slightly longer
403 than Toe III), and venter cream with brown blotches (dull brown). *P. barthlenae*, *P. heimorum*
404 and *P. tautzorum* differ from *P. melanoinguinis* sp. nov. by having Toe III larger than Toe V,
405 while Toe III is shorter than Toe V in *P. melanoinguinis* sp. nov.. Furthermore, the dorsum is
406 coarsely tuberculate in *P. barthlenae* and *P. apumantarum*, and smooth in *P. melanoinguinis* sp.
407 nov.. In the case of *P. apumantarum*, this species also has the skin on the entire venter is
408 coarsely areolate, while in *P. melanoinguinis* sp. nov. is areolate peripherally and smooth in the
409 center. *P. kauneorum* and *P. lechriorhynchos* differ from *P. melanoinguinis* sp. nov. by the
410 presence of dentigerous processes of vomers, whereas these are absent in *P. melanoinguinis* sp.
411 nov.; in addition, *P. kauneorum* lacks dorsolateral fold (dorsolateral fold present in the new
412 species), while *P. lechriorhynchos* has the snout spatulate, long and depressed, broadly rounded
413 in dorsal view and sloping anteroventrally in profile (snout short and bluntly rounded in dorsal
414 view and in profile in *P. melanoinguinis* sp. nov.).

415
416 In addition, *P. personatus* from the Río Abiseo National Park (Departamento San Martín) in
417 northern Peru is similar to *P. melanoinguinis* sp. nov. in that both species have the groins and
418 hidden surfaces of hind limbs black (Rodríguez & Catenazzi 2017). However, *P. personatus* has
419 the black surfaces of groins and hind limbs adorned by conspicuous white blotches and the skin
420 of dorsum shagreen with scattered tubercles (dorsum smooth in *P. melanoinguinis* sp. nov.).

421 **Description of the holotype**

422 Adult female (Fig. 6, 7); body moderately robust; head narrower than body, nearly as long as
423 wide; snout bluntly rounded in dorsal view and in profile; canthus rostralis slightly curved in
424 dorsal view, rounded in profile; loreal region nearly flat; lips rounded; nostrils barely
425 protuberant, directed laterally; internarial region flat; top of head flat; width of upper eyelid
426 narrower than IOD (EW/IOD 0.74); eye large, its diameter greater than its distance from nostril
427 (E-N/ED 0.63); tympanic membrane and annulus, absent; supratympanic fold conspicuous and
428 long, slightly curved above the tympanic region; ovoid postocular tubercles present, minute.
429 Tongue slightly longer than broad, not notched posteriorly, posterior half free; choanae small,
430 rounded, not concealed by palatal shelf of maxillary; dentigerous processes of vomers absent.
431

432 Forelimb slender; ulnar tubercles absent; palmar tubercle low, round, slightly longer than thenar
433 tubercle; subarticular tubercles small and rounded in dorsal view, and flat on lateral view; two
434 supernumerary tubercles present, weakly defined; fingers short and slender, lacking lateral
435 fringes; relative lengths of fingers I<II<IV<III; tips of fingers narrow, rounded, lacking
436 circumferential grooves. Hind limb slender; heel and tarsus lacking tubercles; inner tarsal fold
437 absent; inner metatarsal tubercle prominent, round, about twice as much of round outer
438 metatarsal tubercle; subarticular tubercles small, rounded, weakly defined in dorsal view and flat
439 in lateral view; supernumerary tubercles absent; toes slender, lacking lateral fringes; relative
440 lengths of toes I<II<III<V<IV; tips of toes narrow, rounded, lacking circumferential grooves.
441 Skin on dorsum smooth with scattered low and round tubercles, flanks areolate, and hind limbs
442 tuberculate; dorsolateral fold present and short; upper eyelids bearing low small tubercles; skin
443 on throat and chest areolate, on belly weakly areolate in the center and coarsely areolate
444 peripherally; discoidal fold absent, thoracic fold present; skin ventral and ventrolateral to cloaca
445 granular.

446 Measurements (in mm) and proportions of holotype: SVL 23.6; TL 8.9; HW 8.7; HL 9.1; IOD
447 2.7; IND 1.8; EW 2; FL 9.3; ED 2.7; E-N 1.7; TL/SVL 0.38; FL/SVL 0.39; HL/SVL 0.39;
448 HW/SVL 0.37; HW/HL 0.96; E-N/ED 0.63; EW/IOD 0.75.

449 **Coloration of holotype in life**

450 In life, Dorsal surface of head, body and limbs, and flanks reddish brown (Fig. 6A); anterior
451 and posterior surface of thighs, groin, and concealed surface of tibia black (Fig. 6B); ventral
452 surface pale reddish brown, with a dark brown blotch on the throat (Fig. 6C); iris bluish gray
453 with fine black reticulation.

454 **Coloration of holotype in preservative**

455 In preservative, Ddorsum dark brown without marks; groin, anterior and posterior surface of
456 thighs and concealed surface of shanks black; ventral surface brown with a black blotch on the
457 throat (Fig. 7).

458 **Distribution and natural history**

459 *Phrynobius melanoinguinis* sp. nov. is known only from the type locality and is syntopic with *P.*
460 *manuelriosi* sp. nov.. The type locality for both new species described here is inside the Peruvian
461 Yanachaga-Chemillén National Park (Fig. 5). The single specimen collected was found on a
462 mossy ground at night in the elfin forest habitat. *P. melanoinguinis* sp. nov. might be syntopic
463 with *P. miroslawae* and sympatric with *P. tribulosus*.

464 **Etymology**

465 The specific name is an adjective derived from the Greek *melano* (meaning black) and the Latin
466 *inguinis* (meaning groin) and is used as a noun in apposition. The name refers to the species'
467 distinctive black groin.

468

469 **Discussion**

470 Most species of *Phrynobius* have a cryptic mode of life restricted to leaf litter and moss layers,
471 making it difficult to find and observe individuals in the field (Lehr & Oroz 2012).
472 Consequently, many species are known only from a limited number of specimens, reflecting the
473 rarity of species in this genus (Lehr & Oroz 2012; Rodriguez & Catenazzi 2017), which leads to
474 descriptions based on a few or even a single specimen, including our description of *P.*
475 *melanoinguinis* sp. nov. The challenge of describing a species based on few specimens is related
476 to the lack of understanding of the intraspecific variation in diagnostic characters (Köhler &
477 Padial 2016). However, that can be mitigated by using multiple lines of evidence (e.g.
478 morphological and molecular in the case of *P. melanoinguinis* sp. nov.) to name well-supported
479 singleton species.

480

481 While *Phrynobius melanoinguinis* sp. nov. is known only from the female holotype, the type
482 series of *P. manuelriosi* sp. nov. is comparatively large (five females and five males). Limited
483 number of male specimens is recurrent in *Phrynobius*, as for three other species only females are
484 known (*P. miroslawae*, *P. thompsoni* and *P. vestigiatus*), while in eight species only one male
485 has been collected (*P. lapidoides*, *P. unchog*, *P. anancites*, *P. capitalis*, *P. personatus*, *P.*
486 *daemon* and *P. chaparroi*). This could represent the female and male ratio in populations but
487 could also be related to natural history aspects of the species. Even though little is known about
488 the reproductive behavior of most species of *Phrynobius*, the “secretiveness of males” can explain
489 why males are harder to find (Lehr 2001). For example, males of *P. bracki* have been reported to
490 call from hidden places in leaf litter and moss vegetation (Hedges 1990) and males of *P.*
491 *peruanus* were found calling from inside the butches of grass (Lehr 2007). Moreover, males of *P.*
492 *badius* and *P. tribulosus* were heard calling, but could not be located in the dense vegetation,
493 despite the collectors' efforts (Lehr et al. 2012).

494

Kommentiert [KJ20]: I consider to delete this sentence.
If only one individual of a species was collected, there
is no possibility to draw any conclusions from it.

495 The occurrence of two or more species of *Phrynobius* in the same locality was considered rare,
496 but recent surveys have reported many cases where species of *Phrynobius* co-occur in the same
497 region (see Chaparro et al. 2008; Chávez et al. 2015; Duellman & Hedges 2008; Lehr 2001; Lehr
498 & Aguilar 2002; Lehr et al. 2002; Lehr et al. 2005; Lehr et al. 2012; Lehr & Oroz 2012; Lehr &
499 Rodríguez 2017; Rodriguez & Catenazzi 2017; Von May 2017). In many cases, sympatric
500 species segregate by elevation or by microhabitat type (Rodriguez & Catenazzi 2017). *P.
501 manuelriosi* sp. nov. and *P. melanoinguinis* sp. nov. were found in sympatry on the ground in the
502 elfin forest at 3280 m elevation, but apparently show some fine-microhabitat segregation, since
503 only *P. manuelriosi* sp. nov. is known to perch on leaves and branches about 20-100 cm above
504 the ground in the forest and in the riparian vegetation.

505
506 The description of two more endemic species of *Phrynobius* supports the idea that the genus
507 shows a high regional diversity and endemism in the eastern slopes of the Andes in Peru (Fig. 8),
508 and the region still bears many species to be discovered (Rodriguez & Catenazzi 2017). -The
509 addition of the two new species also increases the number of species of *Phrynobius* known from
510 Cordillera Yanachaga to seven (*Phrynobius auriculatus*, *P. badius*, *P. bracki*, *P. manuelriosi* sp.
511 nov., *P. melanoinguinis* sp. nov., *P. miroslawae*, and *P. tribulosus*). This region shows the
512 highest regional species diversity of *Phrynobius*, along with Cordillera de Carpish (*P. daemon*, *P.
513 dagmarae*, *P. interstinctus*, *P. kauneorum*, *P. lapidoides*, *P. unchog*, *P. vestigiatus*), and
514 followed by Río Abiseo National Park (*P. anancites*, *P. capitalis*, *P. dumicola*, *P. personatus*, *P.
515 valquii*). Moreover, Santa Barbara is the only type locality for three species of *Phrynobius* (*P.
516 manuelriosi* sp. nov., *P. melanoinguinis* sp. nov., and *P. miroslawae*). Santa Barbara is located in
517 the northwestern extreme of the Peruvian Yanachaga-Chemillén National Park (see Fig. 5) and,
518 like other regions throughout the Peruvian Andes, montane habitats are continuously destructed
519 due to the increase of agricultural land and cattle ranching (Dillon et al. 1995; Venegas 2007;
520 Weigend et al. 2005), which constitutes a serious threat to the species occurring therein. During
521 our survey of amphibians and reptiles for four days in Santa Barbara, we recorded several forest
522 fires in the buffer zone of Yanachaga-Chemillén National Park, and we also found remains of
523 forest fire in the grasslands and at the tree line within the national park's limits (an area deemed
524 barred for resource use). Although both species are present within the park, evidence of habitat
525 destruction in the area raises concerns about whether these species are truly protected. Given that
526 many species of high Andean strabomantid frogs (*Bryophryne*, *Qosqophryne*, *Psychrophrynella*,
527 *Phrynobius*, and some *Pristimantis*) have highly restricted distribution ranges, it is unlikely to
528 find these species of *Phrynobius* in other parts of the national park or its surroundings. Although
529 we agree that it is important to keep records of species that are included in threatened categories
530 lists (i.e., IUCN red list, Peruvian government threatened species list) or in natural protected
531 areas (Aguilar et al. 2010; von May et al. 2008), we believe that the fact that these species are
532 legally protected will not grant their survival, especially if there are no means to secure the park
533 boundaries from intrusions. This needs to be considered when classifying these frogs in species

Kommentiert [KJ21]: If they segregate geographically (here elevation) they are not sympatric in a strict sense.

534 threat categories or analyzing evaluations if they will for becoming a priority for protection in
535 governmental conservation plans.

536

537 **Conclusions**

538 We describe two new species of the Andean genus *Phrynobius*, *P. manuelriosi* sp. nov. and *P.*
539 *melanoinguinis* sp. nov., based on robust morphological and molecular evidence. The new
540 species occur sympatrically within the Andean elfin forest at an elevation of 3280 m, in the
541 Yanachaga-Chemillén National Park in Pasco Department, Peru. Two species of the genus, *P.*
542 *miroslawae* and *P. tribulosus*, are also known to occur in the same locality. *P. melanoinguinis*, *P.*
543 *miroslawae* and *P. tribulosus* are terrestrial, as is typical for most members of the genus, whereas
544 *P. manuelriosi* possesses arboreal habitats. Despite their discovery within the boundaries of a
545 national park, the long-term survival of these new species is not guaranteed if the borders of the
546 protected area are not well protected. Fires observed both within the park and in its buffer zone
547 highlights the urgent need for effective protection measures, particularly given the restricted
548 distribution ranges characteristic of *Phrynobius* species. This highlights the vulnerability of these
549 frogs and the critical importance of conserving their fragile habitats.

550

551 **Acknowledgements**

552 For allowing access to herpetological collections, we are grateful with to J. Cordova and C.
553 Aguilar (MUSM). We thank to K. Siu-Ting and J.M. Padial for helpful comments on an earlier
554 version of the manuscript. We are grateful to the staff of the Servicio Nacional de Áreas
555 Naturales Protegidas por el Estado (SERNANP), especially the rangers and volunteers for their
556 cooperation and for the research permits. We also thank to the staff of Consultores Asociados en
557 Naturaleza y Desarrollo (CANDES) and Willy Nañez of CORBIDI for the logistic support in the
558 field, and Daniel Matos and Abel Orihuela of Ministerio del Ambiente (MINAM) for the
559 coordination with the SERNANP.

560

561 **References**

562 Aguilar C, Ramírez C, Rivera D, Siu-Ting K, Suárez J, and Torres C. 2010. Anfibios andinos del
563 Perú fuera de Áreas Naturales Protegidas: amenazas y estados de conservación. *Revista*
564 *Peruana de Biología* 17:5–28. <https://doi.org/10.15381/rpb.v17i1.46>

565 Angulo A, von May R, Icochea J, Chaparro JC, Hedges SB, Lehr E, López DG, Lundberg M,
566 and Moravec J. 2016. Parque Nacional Yanachaga-Chemillén, Pasco, Perú: Anfibios del
567 bosque de nubes y su zona de amortiguamiento. *The Field Museum-Rapid Color Guide* #
568 738:1–6.

569 Chaparro JC, Padial JM, and De La Riva I. 2008. Two sympatric new species of *Phrynobius*
570 (Anura: Strabomantidae) from Yanachaga Chemillén National Park (central Peruvian
571 Andes). *Zootaxa* 1761:49–58. <https://doi.org/10.11646/zootaxa.1761.1.5>

572 Chávez G, García-Ayachi LA, and Catenazzi A. 2020. A new species of frog (Terrarana,
573 Strabomantidae, *Phrynobius*) from the Peruvian Andean grasslands. *PeerJ* 8:e9433.
574 <https://doi.org/10.7717/peerj.9433>

575 Chávez G, García-Ayachi LA, and Catenazzi A. 2023. A new species of frog (Terrarana,
576 Strabomantidae, *Phrynopus*) from the Peruvian Andean Grasslands. *Evolutionary
577 Systematics* 7:105–116. <https://doi.org/10.3897/evolsyst.7.96258>

578 Chávez G, Santa-Cruz R, Rodríguez D, and Lehr E. 2015. Two new species of frogs of the genus
579 *Phrynopus* (Anura: Terrarana: Craugastoridae) from the Peruvian Andes. *Amphibian and
580 Reptile Conservation* 9:15–25.

581 De la Riva I. 2007. Bolivian frogs of the genus *Phrynopus*, with the description of twelve new
582 species (Anura: Brachycephalidae). *Herpetological Monographs* 21:241–
583 277. <https://doi.org/10.1655/07-011.1>

584 De la Riva I. 2020. Unexpected beta-diversity radiations in highland clades of Andean
585 Terraranae frogs. In: Rull V, and Carvajal AC, eds. *Neotropical Diversification: Patterns
586 and Processes*. Switzerland: Springer, 741–764.

587 De la Riva I, Chaparro JC, Castroviejo-Fisher S, and Padial JM. 2018. Underestimated anuran
588 radiations in the high Andes: five new species and a new genus of Holoadeninae, and
589 their phylogenetic relationships (Anura: Craugastoridae). *Zoological Journal of the
590 Linnean Society* 182:129–172. <https://doi.org/10.1093/zoolinnean/zlx020>

591 De La Riva I, Chaparro JC, and Padial JM. 2008. A new, long-standing misidentified species of
592 *Psychrophrynella* Hedges, Duellman & Heinicke from Departamento Cusco, Peru
593 (Anura: Strabomantidae). *Zootaxa* 1823:42–50.
594 <https://doi.org/10.11646/zootaxa.1823.1.3>

595 Diaz V, Mamani L, and Catenazzi A. 2023. A new species of Andean frog of the genus
596 *Phrynopus* (Anura: Strabomantidae) from southeastern Peru. *Zootaxa* 5293:333–348.
597 <https://doi.org/10.11646/zootaxa.5293.2.7>

598 Dillon MO, Sagástegui Alva A, Sánchez Vega I, Llatas Quiroz S, and Hensold N. 1995. Floristic
599 inventory and biogeographic analysis of montane forests in northwestern Peru.

600 Duellman WE, and Hedges SB. 2005. Eleutherodactyline frogs (Anura: Leptodactylidae) from
601 the Cordillera Yanachaga in central Peru. *Copeia* 2005:526–538.
602 <https://doi.org/10.1643/CH-05-019R>

603 Duellman WE, and Hedges SB. 2008. Two new minute species of *Phrynopus* (Lissamphibia:
604 Anura) from the Cordillera Oriental in Peru. *Zootaxa* 1675:59–66.
605 <https://doi.org/10.11646/zootaxa.1675.1.4>

606 Duellman WE, and Lehr E. 2009. *Terrestrial breeding frogs (Strabomantidae) in Peru*.
607 Germany: Natur und Tier - Verlag GmbH.

608 Frost DR. 2024. Frost, Darrel R (2024) Amphibian Species of the World: an Online Reference.
609 Version 6.1. Available at <https://amphiansoftheworld.amnh.org/index.php> (accessed 08
610 May 2024).

611 Hedges SB. 1990. A new species of *Phrynopus* (Anura: Leptodactylidae) from Peru.
612 *Copeia*:108–112. <https://doi.org/10.2307/1445826>

613 Hedges SB, Duellman WE, and Heinicke MP. 2008. New World direct-developing frogs (Anura:
614 Terrarana): Molecular phylogeny, classification, biogeography, and conservation.
615 *Zootaxa* 1737:1–182. <https://doi.org/10.11646/zootaxa.1737.1.1>

616 Hoang DT, Chernomor O, von Haeseler A, Minh BQ, and Vinh LS. 2018. UFBoot2: Improving
617 the Ultrafast Bootstrap Approximation. *Mol Biol Evol* 35:518–522.
618 <https://doi.org/10.1093/molbev/msx281>

Formatiert: Schriftart: Kursiv, Hervorheben

619 Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, and Jermiin LS. 2017.
620 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature methods*
621 14:587–589. <https://doi.org/10.1038/nmeth.4285>

622 Katoh K, and Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
623 improvements in performance and usability. *Molecular biology and evolution* 30:772–
624 780. <https://doi.org/10.1093/molbev/mst010>

625 Köhler J, and Padial JM. 2016. Description and phylogenetic position of a new (singleton)
626 species of *Oreobates* Jiménez de la Espada, 1872 (Anura: Craugastoridae) from the
627 Yungas of Cochabamba, Bolivia. *Annals of Carnegie Museum* 84:23–38.
628 <https://doi.org/10.2992/007.084.0104>

629 Lehr E. 2001. A new species of *Phrynobius* (Anura: Leptodactylidae) from the eastern Andean
630 slopes of central Peru. *Salamandra* 37:11–20.

631 Lehr E. 2006. Taxonomy status of some species of peruvian *Phrynobius* (Anura:
632 Leptodactylidae), wit the description of a new species from the andes od southern Peru.
633 *Herpetologica* 62:331–347. [https://doi.org/10.1655/0018-0831\(2006\)62\[331:TSOSOJ\]2.0.CO;2](https://doi.org/10.1655/0018-0831(2006)62[331:TSOSOJ]2.0.CO;2)

635 Lehr E. 2007. A new species of *Phrynobius* from Departamento Cusco, southern Peru (Anura:
636 Brachycephalidae). *Zootaxa* 1618:61–68. <https://doi.org/10.11646/zootaxa.1618.1.3>

637 Lehr E, and Aguilar C. 2002. A new species of *Phrynobius* (Amphibia, Anura, Leptodactylidae)
638 from the puna of Maraypata (Departamento de Huánuco, Peru). *Zoologische
639 Abhandlungen Staatliches Museum für Tierkunde in Dresden* 52:57–64.

640 Lehr E, Aguilar C, and Köhler G. 2002. Two sympatric new species of *Phrynobius* (Anura:
641 Leptodactylidae) from a cloud forest in the Peruvian Andes. *Journal of Herpetology*
642 36:208–216. [https://doi.org/10.1670/0022-1511\(2002\)036\[0208:TSNSOJ\]2.0.CO;2](https://doi.org/10.1670/0022-1511(2002)036[0208:TSNSOJ]2.0.CO;2)

643 Lehr E, Fritzsch G, and Müller A. 2005. Analysis of Andes frogs (*Phrynobius*, Leptodactylidae,
644 Anura) phylogeny based on 12S and 16S mitochondrial rDNA sequences. *Zoologica
645 Scripta* 34:593–603. <https://doi.org/10.1111/j.1463-6409.2005.00212.x>

646 Lehr E, Köhler G, and Ponce E. 2000. A new species of *Phrynobius* from Peru
647 (Amphibia, Anura, Leptodactylidae). *Senckenbergiana biologica* 80:205–212.

648 Lehr E, Moravec J, and Cusi JC. 2012. Two new species of *Phrynobius* (Anura, Strabomantidae)
649 from high elevations in the Yanachaga-Chemillén National park in Peru (Departamento
650 de Pasco). *Zookeys*:51–71. <https://doi.org/10.3897/zookeys.235.3885>

651 Lehr E, and Oroz A. 2012. Two new species of *Phrynobius* (Anura: Strabomantidae) from the
652 Cordillera de Carpish in central Peru (Departamento de Huánuco). *Zootaxa* 3512:53–63.
653 <https://doi.org/10.11646/zootaxa.3512.1.3>

654 Lehr E, and Rodríguez D. 2017. Two new species of Andes Frogs (Craugastoridae: *Phrynobius*)
655 from the Cordillera de Carpish in central Peru. *Salamandra* 53:327–338.

656 Lehr E, von May R, Moravec J, and Cusi JC. 2017. A new species of *Phrynobius* (Amphibia,
657 Anura, Craugastoridae) from upper montane forests and high Andean grasslands of the
658 Pui Pui Protected Forest in central Peru. *Zookeys*:131–157.
659 <https://doi.org/10.3897/zookeys.713.20776>

660 Lynch JD. 1975. A review of the Andean leptodactylid frog genus *Phrynobius*. *Museum of
661 Natural History The University of Kansas* 35:1–51.

662 Lyra ML, Haddad CFB, and de Azeredo-Espin AML. 2017. Meeting the challenge of DNA
663 barcoding Neotropical amphibians: polymerase chain reaction optimization and new COI

Formatiert: Schriftart: Kursiv

Formatiert: Schriftart: Kursiv, Hervorheben

664 primers. *Molecular Ecology Resources* 17:966–980. <https://doi.org/10.1111/1755-0998.12648>

665

666 Mamani L, and Malqui S. 2014. A new species of *Phrynobius* (Anura: Craugastoridae) from the
667 central Peruvian Andes. *Zootaxa* 3838:207–214.
<https://doi.org/10.11646/zootaxa.3838.2.5>

668

669 Maniatis T, Fritsch E, and Sambrook J. 1982. *Molecular Cloning: A Laboratory Manual*. Cold
670 Spring Harbor, NY: Cold Spring harbor laboratory.

671 Nguyen L-T, Schmidt HA, von Haeseler A, and Minh BQ. 2015. IQ-TREE: A fast and effective
672 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol*
673 32:268–274. <https://doi.org/10.1093/molbev/msu300>

674 Padial JM, Chaparro JC, Castroviejo-Fisher S, Guayasamin JM, Lehr E, Delgado AJ, Vaira M,
675 Teixeira Jr M, Aguayo R, and De La Riva I. 2012. A revision of species diversity in the
676 Neotropical genus *Oreobates* (Anura: Strabomantidae), with the description of three new
677 species from the Amazonian slopes of the Andes. *American Museum Novitates* 2012:1–
678 55. <https://doi.org/10.1206/3752.2>

679 Padial JM, Grant T, and Frost DR. 2014. Molecular systematics of terraranas (Anura:
680 Brachycephaloidea) with an assessment of the effects of alignment and optimality
681 criteria. *Zootaxa* 3825:1–132. <https://doi.org/10.11646/zootaxa.3825.1.1>

682 Rodriguez LO, and Catenazzi A. 2017. Four new species of terrestrial-breeding frogs of the
683 genus *Phrynobius* (Anura: Terrarana: Craugastoridae) from Rio Abiseo National Park,
684 Peru. *Zootaxa* 4273:381–406. <https://doi.org/10.11646/zootaxa.4273.3.4>

685 Sabaj MH. 2020. Codes for natural history collections in ichthyology and herpetology. *Copeia*
686 108:593–669. <https://doi.org/10.1643/ASIHCODONS2020>

687 Trueb L, and Lehr E. 2008. A new species of *Phrynobius* (Anura, Strabomantidae) from Peru,
688 with comments on the osteology of the genus. *Phylomedusa* 7:11–24.
<https://doi.org/10.11606/issn.2316-9079.v7i1p11-24>

689

690 Venegas PJ. 2007. A new species of *Eleutherodactylus* (Anura: Leptodactylidae) from the
691 Cordillera Central in Northern Peru. *Journal of Herpetology* 41:394–400.
[https://doi.org/10.1670/0022-1511\(2007\)41\[394:Ansoea\]2.0.Co;2](https://doi.org/10.1670/0022-1511(2007)41[394:Ansoea]2.0.Co;2)

692

693 Venegas PJ, Barboza AC, De la Riva I, and Padial JM. 2018. A new species of *Phrynobius* from
694 the northeastern Andes of Peru, its phylogenetic position, and notes on the relationships
695 of Holoadeninae (Anura: Craugastoridae). *Zootaxa* 4446:501–524.
<https://doi.org/10.11646/zootaxa.4446.4.5>

696

697 Von May R. 2017. Rediscovery of the Endangered frog *Phrynobius montium* (Shreve, 1938)
698 (Amphibia, Anura, Craugastoridae) in the cloud forest of central Peru. *Zootaxa*
699 4338:195–200. <https://doi.org/10.11646/zootaxa.4338.1.13>

700 von May R, Catenazzi A, Angulo A, Brown JL, Carrillo J, Chávez G, Córdova JH, Curo A,
701 Delgado A, and Enciso MA. 2008. Current state of conservation knowledge on
702 threatened amphibian species in Peru. *Tropical Conservation Science* 1:376–396.
<https://doi.org/10.1177/194008290800100406>

703

704 von May R, Díaz MI, Tito A, Santa-Cruz R, and Catenazzi A. 2024. The Rediscovery of
705 *Noblella peruviana* after Mmore than 115 Years hHelps rResolve the mMolecular
706 Pphylogeny and Ttaxonomy of *Noblella* (Amphibia, Anura, Strabomantidae). *Diversity*
707 16:613. <https://doi.org/10.3390/d16100613>

Formatiert: Schriftart: Kursiv, Hervorheben

Formatiert: Schriftart: Kursiv

Formatiert: Schriftart: Kursiv, Hervorheben

Formatiert: Schriftart: Kursiv, Hervorheben

Formatiert: Schriftart: Kursiv, Hervorheben

708 von May R, Lehr E, and Rabosky DL. 2018. Evolutionary radiation of earless frogs in the Andes:
709 molecular phylogenetics and habitat shifts in high-elevation terrestrial breeding frogs.
710 *PeerJ* 6:e4313. <https://doi.org/10.7717/peerj.4313>

711 Weigend M, Rodríguez EF, and Arana C. 2005. The relict forests of northwest Peru and
712 southwest Ecuador. *Revista Peruana de Biología* 12:185–194.
713 <https://doi.org/10.15381/rpb.v12i2.2390>

714