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ABSTRACT
Haasgat is a primate-rich fossil locality in the northeastern part of the Fossil Hominid
Sites of South Africa UNESCO World Heritage Site. Here we report the first hominin
identified from Haasgat, a partial maxillary molar (HGT 500), that was recovered from
an ex situ calcified sediment block sampled from the locality. The in situ fossil bearing
deposits of the Haasgat paleokarstic deposits are estimated to date to slightly older
than 1.95 Ma based on magnetobiostratigraphy. This places the hominin specimen at
a critical time period in South Africa that marks the last occurrence of Australopithecus
around 1.98Ma and the first evidence of Paranthropus andHomo in the region between
∼2.0 and 1.8 Ma. A comprehensive morphological evaluation of the Haasgat hominin
molar was conducted against the current South African catalogue of hominin dental
remains and imaging analyses using micro-CT, electron and confocal microscopy. The
preserved occlusal morphology is most similar to Australopithecus africanus or early
Homo specimens but different from Paranthropus. Occlusal linear enamel thickness
measured from micro-CT scans provides an average of ∼2.0 mm consistent with
Australopithecus and early Homo. Analysis of the enamel microstructure suggests an
estimated periodicity of 7–9 days. Hunter–Schreger bands appear long and straight as
in some Paranthropus, but contrast with this genus in the short shape of the striae of
Retzius. Taken together, these data suggests that the maxillary fragment recovered from
Haasgat best fits within the Australopithecus—early Homo hypodigms to the exclusion
of the genus Paranthropus. At ∼1.95 Ma this specimen would either represent another
example of late occurring Australopithecus or one of the earliest examples of Homo
in the region. While the identification of this first hominin specimen from Haasgat is
not unexpected given the composition of other South African penecontemporaneous
site deposits, it represents one of the few hominin localities in the topographically-
distinct northern World Heritage Site. When coupled with the substantial differences

How to cite this article Leece et al. (2016), The first hominin from the early Pleistocene paleocave of Haasgat, South Africa. PeerJ
4:e2024; DOI 10.7717/peerj.2024

https://peerj.com
mailto:justin.adams@monash.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.2024


in the mammalian faunal communities between the northern localities (e.g., Haasgat,
Gondolin) and well-sampled Bloubank Valley sites (e.g., Sterkfontein, Swartkrans,
Kromdraai), the recovery of the HGT 500 specimen highlights the potential for further
research at the Haasgat locality for understanding the distribution and interactions
of hominin populations across the landscape, ecosystems and fossil mammalian
communities of early Pleistocene South Africa. Such contextual data from sites like
Haasgat is critical for understanding the transition in hominin representation at ∼2
Ma sites in the region from Australopithecus to Paranthropus and early Homo.

Subjects Anthropology, Evolutionary Studies, Paleontology
Keywords Paranthropus, Australopithecus, Homo, Paleomagnetism, Paleokarst, Enamel
microstructure

INTRODUCTION
The Haasgat fossil site is a paleokarstic deposit consisting of a large cave passage completely
in-filled with calcified cave sediments and interstratified speleothem, the latter of which was
largely removed by lime mining at the turn of the 20th century. This mining activity also
generated a large talus slope outside the cave consisting of fossil bearing paleocaves sediment
blocks that have yielded the Haasgat ex situ faunal assemblage (HGD; Keyser, 1991; Keyser
& Martini, 1991; McKee & Keyser, 1994; Plug & Keyser, 1994; Adams, 2012). The Haasgat
primate community is unique relative to that reported from most Bloubank Valley sites
(e.g., Sterkfontein, Swartkrans, Cooper’s, Kromdraai), with the most demographically
diverse and potentially oldest sample of the basal Papio species, Papio angusticeps, in
the African fossil record (Freedman, 1957; Gilbert et al., 2015). Haasgat is also the only
site currently documenting multiple fossil colobine species (Cercopithecoides haasgati,
Cercopithecoides williamsi, Cercopithecoides sp.) in South Africa (McKee & Keyser, 1994;
McKee, Von Mayer & Kuykendall, 2011; Kegley, Hemingway & Adams, 2011; Adams, 2012;
Adams et al., 2015). The overall mammalian faunal assemblage is also unusual in the low
representation ofOrderCarnivora, aswell as the recovery of primitive alcelaphins/ovibovins
and a high proportion of extremely large klipspringers (Oreotragus sp.) that aremore similar
to those from the Makapansgat Member 3 deposits (3.03–2.58 Ma;Herries et al, 2013) than
those recovered from the nearby Gondolin GD 2 deposits (∼1.8 Ma; Herries et al., 2006;
Adams, 2010; Adams, 2012). Despite this rich and regionally-unique faunal community
established through the ex situ HGD assemblage, no hominins were recovered during the
first phases of paleontological sampling at Haasgat. This paper provides a comprehensive
morphological and dental microstructure analysis of the first hominin specimen, a partial
maxillary molar (HGT 500; Fig. 2), that was recovered from a calcified ex situ dumpsite
block collected in 2011 from the site.

The unique nature of the fossil assemblage may also reflect the fact that the site is
formed within the Eccles Formation of the Malmani dolomite in the northern sector
of the Hominid Fossil Sites of South Africa UNESCO World Heritage Site (known
locally as the Cradle of Humankind or ‘Cradle’; Fig. 1: ∼50 km north-northwest of
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Figure 1 Location and site plan of the Haasgat paleocave system. (A) topographic contour map indi-
cating the position of Haasgat relative to other South African late Pliocene and early Pleistocene sites and
location of these sites within South Africa. (B) plan and section views of the excavated Haasgat paleocave
system. Scale bars as indicated.

Johannesburg in Gauteng Province). This high topographic setting, with upland plateaus
and deeply incised valleys is quite distinct from the southern area of the Cradle and the
Bloubank Valley, from which the majority of the Plio-Pleistocene paleontological data
has been recovered (Sterkfontein, Swartkrans, Kromdraai, Cooper’s). This landscape is
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Figure 2 The HGT 500 Hominini gen. et sp. indet. molar. (A) occlusal view; (B) mesial view; (C) distal
view; (D) buccal view. Scale bar equals 1 mm.

indicative of highly variable erosional processes during the Neogene and reflected in the
variable paleohabitats and mammalian community composition between sites across the
region (Vrba, 1976; Brain, 1981; Reed, 1996; Avery, 2001; Adams & Conroy, 2005; Adams et
al., 2010; Bailey, Reynolds & King, 2011; Adams, 2012; Adams, Kegley & Krigbaum, 2013).
These differences are further reflected in reconstructions that suggest the local environments
during deposition were both mesic and rugged as evidenced by trace geochemical analysis
(Herries et al., 2014) and the dominance of C3-consuming and/or broken terrain adapted
species in the ex situ HGD faunal assemblage (Adams, Kegley & Krigbaum, 2013).
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Unlike the Bloubank Valley caves, Haasgat does not suffer from major phases of
karstification that have caused the mixing of fossils from different aged deposits (Reynolds,
Clarke & Kuman, 2007; Herries & Adams, 2013). While two phases of cave formation
occurred at Haasgat, the later sediment fill is distinct (uncalcified, greyish-brown) from
the older (calcified, reddish-brown) paleocave sediments (Herries & Adams, 2013; Herries
et al., 2014). Given similarities with in situ excavated material, the ex situ derived fauna is
considered a reliable temporal indicator of both the ex situ and in situ fossil assemblages.
Only recently have comprehensive geological, geochemical and paleobiological analyses
been undertaken alongside the first excavations into the rich in situ sediment deposits (Keg-
ley, Hemingway & Adams, 2011; Adams, 2012; Adams, Kegley & Krigbaum, 2013; Herries et
al., 2014; Adams et al., 2015; J Adams, 2016, unpublished data). The recent recovery of
P. angusticeps, C. haasgati, and C. williamsi craniodental remains from the first in situ
excavations (Adams et al., 2015; J Adams, 2016, unpublished data) confirms data from the
ex situ assemblage and has also established the occurrence of partial skeletons within the
deposits. These in situ sediments have been dated to slightly older than 1.95 Ma based on
the occurrence of in situ Equus material (thus <2.3 Ma) within the walls of the deposit as
well as a magnetic reversal correlated to the base of the Olduvai SubChron in the upper
portion of the sediment sequence (Herries et al., 2014). As such, the site covers a critical
time period in the South Africa fossil record with the extinction of Australopithecus by
∼2 Ma (Au. africanus at the end of Sterkfontein Member 4 deposition and Au. sediba from
Malapa) and the first occurrence of Paranthropus, early Homo, and the first mode 1 stone
tools by 1.8 Ma (Herries et al., 2010; Herries & Shaw, 2011; Pickering et al., 2011a; Pickering
et al., 2011b; Herries & Adams, 2013).

MATERIALS AND METHODS
The HGT 500 specimen was processed from an ex situ block recovered from the calcified
sediment dumpsite in 2011. The original ∼10 cm × ∼25 cm reddish siltstone calcified
block (HGT 11-50) is consistent with deposits occurring in the reversed polarity deposits
at the rear of the paleocave system. The block was processed using a 5% acetic acid
solution and stabilized with the thermoplastic resin ParaloidTM B-72 (Dow Chemical Co.,
USA) following protocols of the fossil preparation lab at the Plio-Pleistocene Section,
Ditsong National Museum of Natural History, Pretoria (the repository institution of
Haasgat fossil specimens collected since 2009; all assigned a ‘HGT’ prefix to identify them
relative to the previously collected, ex situ HGD fossils from the site curated with the
Council for Geosciences, Pretoria). The HGT 500 specimen is one of only three identifiable
macromammalian craniodental specimens recovered from the block, with the other two
representing an indeterminate Class II (sensu Brain, 1981: Table 1) bovid central cavity
(Family Bovidae, Order Cetartiodactyla; HGT 557) and a partial hyrax (Procavia sp.; Family
Procaviidae, Order Hyracoidea) molar (HGT 558). One partial right coracoid (HGT 554)
and one right distal humerus (HGT 560) are likely derived from a single indeterminate
avian. The remaining 58 fossils recovered from the block consist of: six <1 cm indeterminate
taxon enamel fragments, one partial indeterminate epiphysis, and indeterminate element
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Table 1 South African hominin specimens used in comparative analysis of HGT 500.

Species Locality Specimen

Paranthropus robustus Drimolen DNH 44, 47, 84, 107, 108
Kromdraai B KB 5222, 5383, TM 1536, 1517, 1601c, 1603
Swartkrans Member 1HR SK 13, 14, 31, 36, 41, 42, 46, 47, 48, 52, 57, 62, 83, 98, 102,

829, 831, 832, 833, 834, 835, 836, 838, 849, 870, 872, 3975,
3977, 25605
SKW 11, 14, 3114

Australopithecus africanus Sterkfontein Member 4 (Type Site) STS 1, 2, 8, 19, 12, 17, 19a, 21, 22, 23, 24, 32,
37, 43, 52, 53, 54, 57, 71, 72, 1881, 3009
TM 1512, 1561

Sterkfontein Member 5c (West Pit) SE 255, 1508
Makapansgat Limeworks MLD 11/30
Sterkfontein STW 151b

Australopithecus sediba Malapa MH 1
Homo erectus (sensu lato) Swartkrans Member 1HR SK 27
South African Early Homo Drimolen DNH 35, 67/70/71, 83

Swartkrans Member 1HR SK 874
Swartkrans Member 2 SKX 267
Kromdraai B KB 5223c

Notes.
These materials are curated at the Ditsong National Museum of Natural History in Pretoria, South Africa and at the Evolutionary Studies Institute, University of Witwatersrand
in Johannesburg, South Africa (Table 1).

aAhern (1998) and Lockwood & Tobias (2002); Argued to represent early Homo by Kimbel & Rak (1993).
bUnknown provenience; Recently published as ‘‘Indeterminate Hominin’’ (Smith et al., 2015).
cOriginally assigned to Paranthropus (Grine, 1982) but recently ascribed to Homo (Braga & Thackeray, 2003).

diaphyseal fragments (1–2 cm: 32, 2–3 cm: 17, 3–4 cm: 2). All assessable elements record
minimal evidence of cortical exfoliation from environmental exposure (Weathering Stage
0: 7, Stage 1: 9, Stage 2: 3; sensu Behrensmeyer, 1978), porcupine gnawing is evident on
at least two indeterminate diaphyseal specimens (HGT 568 and HGT 576; possibly HGT
756), and possible carnivore-induced gnawing on two elements (HGT 568 and HGT 575).
Although a further 24 fossiliferous ex situ calcified blocks were collected from across the
exposed surface of the HGD dumpsite during the same field season, processing of these
blocks did not yield fossil specimens that can be confidently associated with those from
HGT 11-50 (J Adams, 2016, unpublished data).

Direct morphological comparison
The specimens used in comparative analysis included craniodental remains attributed to
Paranthropus robustus, Australopithecus africanus, Australopithecus sediba, South African
early Homo, and Homo habilis (Table 1).

Specimen imaging
MicroCT
Preparation of the HGT 500 for analysis included removal of residual ParaloidTM , which
allowed a naturally-fractured section of the crown to separate (this sectionwas rejoined after
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Figure 3 MicroCT derived surface render of the HGT 500. (A) mesial view of the specimen demonstrat-
ing the section plane used for evaluating enamel thickness. (B) section plane through the molar demon-
strating enamel thickness and morphology of the EDJ and dentin horns.

scanning was completed). This larger portion of HGT 500 was scanned and reconstructed
on a SCANCO microCT 50 (SCANCO Medical, Brüttisellen, Switzerland) housed at the
Institute for Genetic Medicine, University of Southern California. Acquisition settings
were: 70 kVp, 200 uA, 750 ms exposure, 750 projections, 10 micron isotropic resolution
(FOV: 15.1×15.1×10.58 mm, Grid: 1,510×1,510×1,058). The resulting microCT TIFF
stack is openly available for download through Morphosource (10.17602/M2/M8952) as
part of the Ditsong National Museum of Natural History Digital Archive (Adams et al.,
2015). Images were converted to DICOM format (NEMA Standard PS3) and imported
into AMIRA c© 5.4.0 (FEITM Visualization Sciences Group, Hillsboro, OR, USA) for
volume/surface rendering and measurement. Linear measurements (in millimetres) of
enamel thickness were taken from the enamel dentine-junction to the outer-most enamel
surface from virtual sections in various planes following a similar methodology to Grine &
Martin (1988). Given the wear on this specimen, the linear measurements are not exactly
taken at the true occlusal plane (to the cusp tip). No attempts were made to estimate the
loss of enamel. Instead, the thickness represents a point between the occlusal and lateral
enamel, also recorded byGrine & Martin (1988) in the specimens described therein. Virtual
cross-sections were aligned perpendicular to a horizontal plane using the cemento-enamel
junction as a reference and passing near the dentine horn (Fig. 3A).
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Portable confocal microscopy
A portable confocal scanning optical microscope was used to analyze the enamel
microstructure using 10× and 20× objective lenses following previously describedmethods
(Bromage et al., 2007; Lacruz et al., 2008).

RESULTS
Comparative morphological description
The HGT 500 specimen is a partial molar preserving one complete cusp, small portions of
two additional cusps, and veryminimal root structures below the cemento-enamel junction
(Fig. 2). Due to the incomplete nature of this specimen, crown and root measurements
could not be taken for the purposes of comparison. The overall occlusal shape of the
remaining cusp is indicative of a left maxillary molar, as it does not demonstrate the
smaller, more closely-packed cusps seen in mandibular molars (Grine, 1984).

Following this positioning the preserved cusps represent a complete metacone and
portions of the paracone, protocone, and metaconule. The metacone is complete from the
cervical margin to the occlusal margin and the premetacrista and postmetacrista through
the trigone basin are visible on the occlusal surface. The paracone is broken along the
coronal plane with only a distal portion preserved showing the postparacrista from the
cervical margin to the trigone basin. The mediodistal portion of the protocone is preserved
at the trigone basin. The buccal-most portion of the metaconule is preserved along the
cervical margin and does not reach the occlusal surface. The crown displays a significant
flaring at the cemento-enamel junction on the distal face while the buccal face is very
straight, running vertically to the occlusal surface. The lack of bulbous lateral faces is
distinct from the morphological suite observed in Paranthropus robustus and is more
suggestive of Australopithecus orHomo. Minor torsion in the preserved state of this smaller
fragment makes it appear to protrude further than it would have prior to deposition.

The occlusal surface preserves a portion of a dentine exposure. It has been estimated that
this exposure would have occupied the majority of the absent protocone. This level of wear
indicates moderate to heavy attrition. A shallow groove is visible between the metacone and
remaining paracone. This is distinctly different from the deeply incised buccal groove seen
in P. robustus and is instead more similar to those seen in both Australopithecus africanus
and Australopithecus sediba (Grine, 1984; Berger et al., 2010).

The lack of a distal interproximal facet on the preserved surface of this specimen may
indicate that it represents either an M3 or an M2 lacking this facet with the M3 not yet
in occlusion. The absence of this feature may eliminate the possibility of the specimen
representing an M1 given that the advanced wear would imply that the M2 would have
been in occlusion. Alternatively, it is possible the portion of the distal face expected to show
an interproximal wear facet has not preserved.

The linear enamel thickness measured along three planes of the larger fragment provided
an average of 2.03 mm (range 1.99 mm–2.13 mm) in the occlusal area (Fig. 3). This linear
enamel thickness average is inconsistent with values previously reported for P. robustusM2,
and instead falls within the upper boundary of enamel thickness for early South African
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Table 2 Enamel thickness of South African hominin species by element.

Species M1Mean M1Min-Max M2Mean M2Min-Max M3Mean M3Min-Max Species Mean

Australopithecus africanusa 1.63
Max 1.59 − − − 1.67 −

Mand 1.68 1.31–2.05 1.36 1.23–1.49 1.33 0.98–1.60
Paranthropus robustusa 2.03
Max 2.04 1.68–2.39 − − 1.78 1.37–2.03
Mand 1.85 1.35–2.33 1.56 −

Early Homob −

Max − − 2.2 − − −

Mand 1.77 − − − − −

Notes.
aData from Olejniczak et al. (2008).
bData from Smith et al. (2015).

Homo M2 (Table 2). However, if HGT 500 represents either an M1 or an M3, it would
result in an enamel thickness outside the range of early South African Homo and instead
within the range of A. africanus (Table 2).

Enamel microstructure
Analysis of the perikymata packing pattern along the cervical portion of the tooth revealed
relatively packed perikymata (Fig. 4A). Enamel microstructural details (Hunter–Schreger
bands, striae of Retzius shape, cross striations) were observed more clearly on the naturally
broken surface. Hunter–Schreger bands appeared long and straight (Fig. 4B). Confocal
microscopy revealed striae of Retzius in places along the lateral and cervical portion of the
enamel but appeared faint at the occlusal enamel. Where visible, the overall shape of the
striae tend to be short and not curving rapidly toward the occlusal portion of the enamel
(Fig. 4B). Limited data were obtained on cross striation length as these were only visible
in a few areas of the mid-to-outer lateral enamel. In those areas, cross striations measured
on average ∼4.1 µm. Although the striae periodicity could not be clearly determined, a
range of 7–9 days was obtained by measuring cross striations in the vicinity and applying
this measurement to the distance between two adjacent striae, an approach similar to that
described in Lacruz, Ramirez-Rozzi & Bromage (2006) (Figs. 4B and 4C).

DISCUSSION
The suite of micro- and macro- morphological features preserved on the HGT 500
specimen allows attribution to the Tribe Hominini (sensu Wood & Richmond, 2000) and
is inconsistent with the genus Paranthropus in several key respects. The limits of the
preserved anatomy, however, preclude a definitive generic or species attribution. The
occlusal linear enamel thickness of ∼2.0 mm is beyond reported enamel thickness for
large-bodied cercopithecoid primates (e.g., Theropithecus; Swindler & Beynon, 1993), at
the lower end of values assigned to P. robustus (Grine, 1984) and most consistent with the
reported range for A. africanus and early Homo (Table 2). The 7–9 day striae of Retzius
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Figure 4 Enamel microstructure andmicrowear analyses of the HGT 500 specimen. (A) SEM image of
the cervical portion of the molar demonstrating perikymata packing; (B) confocal microscopy (CM) im-
age of the lateral aspect of the naturally broken enamel surface of the HGT 500 specimen demonstrating
the shape of the striae of Retzius (arrows); (C) CM image of the same exposed enamel region as (B) with
visible cross striations (arrows). Scale bars as indicated.

periodicity is consistent with the 6–9 day range evinced by Australopithecus and earlyHomo
specimens (australopiths: ∼7 days, early Homo: ∼9 days (Lacruz et al., 2008); A. africanus:
∼8.5 days, early South AfricanHomo: just above 7 days (Smith et al., 2015)) to the exclusion
of other large-bodied primates (Bromage et al., 2009). Long and straight Hunter–Schreger
bands are visible on the naturally broken surface; however these features can be quite
variable as they are affected by the plane of the examined section (Ramirez-Rozzi, 1998).
The bands on the HGT 500 specimen are comparable to some of these features described
for Paranthropus (Beynon & Wood, 1986; Ramirez-Rozzi, 1993), but are also seen in some
specimens of east African Australopithecus and some early Homo (Beynon & Wood, 1986;
Lacruz & Ramirez-Rozzi, 2010; Lacruz et al., 2012). Within the HGT 500 specimen, we
observed tight packing of the perikymata on the cervical portion of the tooth. Tightly
packed perikymata are observed in specimens assigned to Australopithecus and early Homo
(Lacruz, Ramirez-Rozzi & Bromage, 2006) and differ from that described for Paranthropus
molars where the perikymata are widely spaced (Dean et al., 1993). The portions of the
striae of Retzius that are visible also suggest that the striae were not long; contrasting with
the long striae described for East and South African Paranthropus species (Beynon & Wood,
1986; Ramirez-Rozzi, 1993; Lacruz, Ramirez-Rozzi & Bromage, 2006).
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Irrespective of a more specific allocation of the specimen, the recovery of HGT 500 from
the already primate-rich Haasgat locality is not unexpected given the taxonomically-diverse
South African Australopithecus and Homo community proposed during the time period
(between 2.3 and 1.95 Ma; but likely closer to 1.95 Ma) encompassed by the Haasgat
in situ paleocave deposits. Australopithecus africanus is ubiquitous on the South African
landscape from approximately 3.0–2.6 Ma (Makapansgat Limeworks and Taung) until
∼2.0 Ma (Sterkfontein Member 4; Herries et al., 2010; Herries & Adams, 2013), and the
genus persists in the South African record later into the Pleistocene than in eastern Africa
viaAustralopithecus sediba dated to approximately 1.98Ma (Malapa;Pickering et al., 2011a).
As such, if HGT 500 is Australopithecus then this is entirely in keeping with what we know
about its temporal range and only slightly extends its geographic range to the north and
east from Malapa. The oldest known fossils attributed to early Homo in South Africa are
from the Swartkrans Member 1 deposits and date to between 2.3 and 1.8 Ma (Pickering et
al., 2011b), although it has been suggested that the deposits date to between 2.0 and 1.8 Ma
(and likely closer to 1.8 Ma; Herries & Adams, 2013). As Grine (2013) has also pointed out,
it is perhaps unlikely that Swartkrans is as old as 2.3Ma based on the age of Australopithecus
bearing deposits at Sterkfontein, as there remains little evidence to suggest that earlyHomo
and Paranthropus overlapped in the region contemporaneously with Australopithecus.
At Sterkfontein the >2 Ma Member 4 deposits are generally considered to contain only
Australopithecus. Although Kimbel & Rak (1993) have argued for the inclusion of Sts 19 in
earlyHomo, this has been challenged by both Ahern (1998) and Lockwood & Tobias (2002).
Early Homo fossils have also been recovered from Drimolen (Moggi-Cecchi et al., 2010),
however the age of the deposits at the site remains only broadly established (between 2.0
and 1.4 Ma; Herries & Adams, 2013).

Ultimately, the significance of the HGT 500 specimen lies with the continued expansion
of known hominin localities into the topographically and paleoecologically unique
regions of South Africa outside the Bloubank Valley paleocave systems. Despite the
limited geographic area encompassed by the Fossil Hominid Sites of South Africa
World Heritage Site there are substantial differences in landscape topography and
reconstructed mammalian paleocommunities between the southwestern Bloubank Valley
sites (e.g., Sterkfontein, Swartkrans, Kromdraai, Bolt’s Farm, Cooper’s) and the few fossil
localities, like Haasgat, that have been identified to the north or east of this well-sampled
region (e.g., Gondolin, Gladysvale, Malapa, Motsetse, Hoogland). The northeastern World
Heritage Site area is within the Skurweberg mountain range defined by sharp topographic
relief due to differential erosion of the less chert-rich Monte Cristo dolomites in the
southern region relative to the more chert-rich Eccles Formation dolomites in the northern
region. This somewhat mirrors the higher topographic relief surrounding the Makapansgat
site ∼250 km to the northwest of the Bloubank Valley sites. Faunal data from the Gondolin
GD 2 deposits (Adams & Conroy, 2005; Adams, 2006) and Haasgat (Adams, 2012; Herries
et al., 2014), that lie ∼4 km from each other, support the presence of a proto-Skurweberg
range before 2 Ma, while cosmogenic nuclide exposure dating of quartz near Malapa (Dirks
et al., 2010) also indicates substantial differential erosion of the region since the early
Pleistocene that may have radically reshaped the topography from an upland plateau to
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the modern mountainous topography. Although there are similarities between the Haasgat
and Gondolin faunal assemblages that underlies a regional paleoecological interpretation
of locally rocky and broken terrain by 2 Ma, there are also substantial differences in the
current faunal samples; ranging from significant metric differences between the Haasgat
HGD and Gondolin GD 2 klipspringer (Oreotragus sp.) populations (Adams, 2012),
to the proportions of cercopithecoids (with Gondolin GD 2 lacking any non-hominin
primates; Adams & Conroy, 2005), and hominin representation (with Gondolin recording
two isolated ex situ hominin teeth, only one of which has been specifically attributed
to Paranthropus robustus; Menter et al., 1999; Grine et al., 2012; Herries & Adams, 2013).
Establishing Haasgat as one of few hominin-bearing localities in this unique region affords
more insight into the range of South African paleohabitats hominin populations occupied
and the early Pleistocene paleocommunities that hominin populations interacted with;
particularly critical in establishing the larger ecological context of the major hominin
lineage transitions occurring ∼2 Ma.

CONCLUSION
All of the South African sites from which these hominin species have been recovered
are, for the most part, in an extremely constrained geographical range that would have
presented similar adaptive pressures on early Pleistocene hominin populations. This is
reflected in the considerable overlap across South African hominin species in stable isotope
values (Lee-Thorp et al., 2010), morphological features associated with dietary adaptation
such as enamel thickness (Smith et al., 2015) or dental crown metrics (Moggi-Cecchi et al.,
2010), and retention of shared dental development patterns (Dean et al., 1993; Dean et al.,
2001; Dean, 2010; Smith et al., 2015). These factors, when combined with the incomplete
state of the HGT 500 specimen, contribute to the non-diagnostic nature of HGT 500
for taxonomic attribution. This first recovery of hominin material at Haasgat reinforces
the potential for development of the ∼1.95 Ma site deposits to address outstanding
paleoanthropological and paleontological research questions about hominin, primate,
faunal and paleoecological variability outside the Bloubank Valley in the poorly-sampled
northeastern Malmani dolomites that range between Malapa and Gondolin (Adams &
Conroy, 2005;Herries et al., 2006; Adams et al., 2007; Berger et al., 2010; Adams, 2012; Grine
et al., 2012; Adams, Kegley & Krigbaum, 2013; Gilbert et al., 2015).
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