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ABSTRACT
Sporulation represents a key adaptive strategy among Firmicutes, facilitating bacterial
persistence under environmental stress whilemediating host colonization, transmission
dynamics, and microbiome stability. Despite the recognized ecological and biomedical
significance of spore-forming Bacilli and Clostridia, most taxa remain uncultivated,
limiting phenotypic characterization of their sporulation capacity. To bridge this
knowledge gap, we developed SpoMAG, an ensemble machine learning framework that
predicts sporulation potential of metagenome-assembled genomes (MAGs) through
supervised classification models trained on the presence/absence of 160 sporulation-
associated genes. This R-based tool integrates Random Forest and support vector
machine algorithms, achieving probabilistic predictions with high performance (AUC
= 92.2%, F1-score = 88.2%). Application to fecal metagenomes from humans, cattle,
poultry, and swine identified 63 putatively spore-forming MAGs exhibiting distinct
host- and order-specific patterns. Bacilli MAGs from Bacillales and Paenibacillales
orders showed high sporulation probabilities and gene richness, while ClostridiaMAGs
exhibited more heterogeneous profiles. Predictions included undercharacterized fam-
ilies in the spore-forming perspective, such as Acetivibrionaceae, Christensenellaceae,
and UBA1381, expanding the known phylogenetic breadth of sporulation capacity.
Nine genes were consistently present across all predicted spore-formers (namely pth,
yaaT, spoIIAB, spoIIIAE, spoIIIAD, ctpB, ftsW, spoVD, and lgt ), suggesting conserved
genetic elements across uncultivated Firmicutes for future research. Average nucleotide
identity (ANI) analysis revealed seven cases of species-level sharing (ANI value > 95%)
among hosts, including a putative novel Acetivibrionaceae species, suggesting possible
cross-host transmission facilitated by sporulation. In all 63 genomes predicted to
sporulate, we identified nine genes across sporulation steps. In addition, SHapley
Additive exPlanations (SHAP) analysis indicated 16 consensus genes consistently
contributing to predictions (namely lytH, cotP, spoIIIAG, spoIIR, spoVAD, gerC, yabP,
yqfD, gerD, spoVAA, gpr, ytaF, gdh, ypeB, spoVID, and ymfJ ), bringing biologically
meaningful features across sporulation stages. By combining gene annotation with
interpretable machine learning, SpoMAG provides a reproducible and accessible
framework to infer sporulation potential in uncultured microbial taxa. This tool
enhances targeted investigations intomicrobial survival strategies and supports research
inmicrobiome ecology, probiotic discovery, food safety, and public health surveillance.
SpoMAG is freely available as an R package and expands current capabilities for
functional inference in metagenomic datasets.
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INTRODUCTION
Sporulation is a key survival mechanism employed by members of the Firmicutes phylum
(also known as Bacillota), allowing the formation of metabolically dormant spores highly
resistant to extreme environmental stresses such as heat, desiccation, and low pH conditions
(Eichenberger & Driks, 2014b). This evolutionary adaptation promotes bacterial persistence
across different ecosystems (Swick, Koehler & Driks, 2016a; Li et al., 2024) and underlies
significant practical applications in health and industry. The extensively characterized
Bacilli and Clostridia classes include species of clinical relevance as well as strains used in
biotechnology (Eichenberger & Driks, 2014a; Talukdar et al., 2015; Li et al., 2022; Guerrero
& Gloria, 2023). While spores contribute to pathogen transmission (Paredes-Sabja &
Sarker, 2009; Fischetti et al., 2019), they also enable beneficial functions, including use in
probiotic formulations (Hong, Duc & Cutting, 2005; Elisashvili, Kachlishvili & Chikindas,
2019) and engineered delivery systems (Isticato, 2023; Saggese et al., 2023).

Despite ecological and biomedical relevance, most spore-forming bacterial diversity
remains uncultured. This leaves the sporulation potential of many taxa unknown and
limits our understanding of their capacity to form spores (Kapinusova, Lopez Marin &
Uhlik, 2023; Machado et al., 2024). Although conventional methods require laboratory
induction of sporulation in cultured isolates, metagenomics allows direct investigation of
uncultivated species through the recovery of metagenome-assembled genomes (MAGs).
This approach enables genome-based assessment of functional traits such as sporulation
(Dias et al., 2025). This is particularly relevant for studying the human gut sporobiota,
which accounts for about half of the gut microbiome (Tetz & Tetz, 2017; Egan et al., 2021).

Spore-forming gut bacteria contribute to host metabolism and examples include
Clostridium, Blautia, and Ruminococcus species, which produce short-chain fatty acids such
as butyrate, acetate, and propionate, regulating energy supply, cholesterol synthesis, and
glucose homeostasis (Hou et al., 2022). They also modulate immune responses by inducing
anti-inflammatory cytokines and strengthening gut barrier integrity (Dekeukeleire et al.,
2025), influence serotonin biosynthesis and gastrointestinal motility (Yano et al., 2015),
and facilitate microbial transmission and ecosystem stability (Swick, Koehler & Driks,
2016b; Choo et al., 2017). Determining sporulation potential in gut microbial communities
is essential, as disturbances in spore-forming populations have been linked to dysbiosis
and intestinal pathologies (Johanesen et al., 2015).

However, predicting sporulation potential from MAGs remains challenging, primarily
because most candidate taxa cannot be cultured for phenotypic validation. Accurate
prediction is critical for understanding host colonization dynamics,microbial transmission,
and the maintenance of host homeostasis (Swick, Koehler & Driks, 2016a). Current
sporulation prediction relies on conserved genomic markers, such as Spo0A or sporulation-
specific sigma factors, identified in model organisms like Bacillus subtilis (Abecasis et al.,
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2013). Nevertheless, the generalizability of these markers to a broader taxonomic range
(Galperin et al., 2022), especially when dealing with incomplete or poorly characterized
MAGs, remains uncertain.

To address the challenge of inferring sporulation potential in bacterial MAGs, we
developed SpoMAG, a supervised machine learning tool designed to predict sporulation
potential directly from MAG annotations. SpoMAG enables high-throughput inference
of sporulation capability in uncultivated bacteria, supporting applications in probiotic
development, microbiome engineering, pathogen surveillance, and food safety monitoring.
Importantly, it can also be applied to complete or draft genomes of pure strains, extending
its usability beyond metagenomic datasets. To our knowledge, no other machine learning
tool currently exists for predicting sporulation potential across MAGs or pure strain
genomes. Thus, SpoMAG offers a critical resource for future studies into deciphering the
ecological and biomedical roles of spore-forming bacteria across uncultivated microbial
diversity.

MATERIALS & METHODS
Sample collection and bioinformatics processing
Samples were collected from the GUARANI One Health Brazilian Group Network
(Lemos et al., 2022). Between February and April 2020, rectal swabs were obtained in
triplicates from cattle (n= 30), swine (n= 15), poultry (n= 30), and human fecal samples
(n= 32) (Lemos et al., 2022). The sampling encompassed five Brazilian geographic regions:
Northern (Castanhal-Pará/PA), Southern (Blumenau-Santa Catarina/SC), Southeastern
(Bragança Paulista-São Paulo/SP), Midwestern (Dourados-Mato Grosso do Sul/MS), and
Northeastern (Fortaleza-Ceará/CE), as reported previously (Lemos et al., 2022;Machado et
al., 2024).

DNA extraction, sequencing, and bioinformatics analyses followed established protocols
described by Lemos et al. (2022). MAGs were evaluated for quality using the Minimum
Information about a Metagenome-Assembled Genome (MIMAG) criteria, and only
high-quality MAGs (>90% completeness, <5% contamination) (Bowers et al., 2017) were
retained for downstream analyses. To assess species-level similarity between MAGs from
different hosts, we applied the FastANI method to calculate Average Nucleotide Identity
(ANI), by considering a fragment length of 1,020 bp (–fragLen 1020) (Hernández-Salmerón,
Irani & Moreno-Hagelsieb, 2023).

Selection of sporulation-associated genes
A total of 160 genes associated with bacterial sporulation (Table S1) were selected based
on their conserved presence across Firmicutes species and established functional roles in
sporulation processes (Galperin et al., 2022). Genes primarily involved in housekeeping
functions during vegetative growth were excluded, as they are ubiquitously present in
vegetative cells and do not specifically contribute to sporulation (Galperin et al., 2022).
The selected genes represent key steps in sporulation, including sporulation onset and
checkpoints, Spo0A regulon, engulfment, sigma factor regulons (SigF, SigE, SigG, SigK),
spore cortex formation, spore coat assembly, and germination.
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Selection of publicly available genomes of sporulating and
non-sporulating bacteria
For supervised machine learning model development, we compiled a dataset of 136
high-quality complete bacterial genomes from a published study (Galperin et al., 2022).
The dataset was balanced, comprising 68 sporulating and 68 non-sporulating species
(Table S2), tominimize bias duringmodel training and evaluation. Spore-forming genomes
included 34 Bacilli and 34 Clostridia species, representing the two major lineages known
for sporulation within the Firmicutes phylum, thus ensuring phylogenetic diversity. The
non-sporulating group included 30 Bacilli and 38 Clostridia genomes, selected to closely
match phylogenetic diversity while maintaining a clear functional distinction (i.e., absence
of sporulation capability).

Although certain sporulation-associated genes are partially conserved across Firmicutes,
others are class-specific (e.g., Bacilli-exclusive regulators). Thus, including both Bacilli and
Clostridia allowed the modeling approach to capture both universal and lineage-specific
genetic signatures, enhancing generalizability across diverse Firmicutes species, even
non-described-yet species from metagenomics studies.

All genomes were uniformly processed using the same annotation pipeline applied to
the MAGs to ensure consistency. Open reading frames (ORFs) prediction was performed
using Prodigal v.2.6.3 in single-genome mode (-p single) with a bacterial translation table
(-g 1) (Hyatt et al., 2010). Functional annotations for each genome were performed using
eggNOG-mapper v.2.0.8 (e-value≤ 1e−5, identity > 60%, query/subject coverage> 60%)
(Huerta-Cepas et al., 2017) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (Kanehisa et al., 2025).

Data preparation for supervised machine learning models to predict
sporulation probability
The target variable was encoded as a binary factor with the levels ‘‘Sporulating’’ and ‘‘Non-
Sporulating’’. To guarantee reproducibility, we implemented random stratified partitioning
of the dataset into training (70%) and testing (30%) subsets using the ‘‘createDataPartition’’
function from the caret package in R (Kuhn, 2008), version 7.0.1. A binary presence/absence
matrix of the sporulation genes was constructed prior to model training, representing fixed
biological characteristics for each genome. Genomes included in the test set were completely
withheld from the training process to prevent any form of data leakage. Given that only
high-quality complete isolated genomes were used, missing values were treated as absences
and encoded as zero, reflecting the assumption that unobserved genes were absent in the
genomes.

Model training and tuning
We evaluated four supervised machine learning algorithms: Random Forest (RF), support
vector machine (SVM), eXtreme Gradient Boosting (XGBoost), and neural network (NN).
All models were implemented using caret (Kuhn, 2008) within a 10-fold cross-validation
framework. Model performance was primarily assessed using the area under the receiver
operative characteristic (ROC) curve (AUC).
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The RF model was tuned by varying the number of variables randomly sampled at each
split (mtry = 2, 3, or 4), while the number of trees (ntree) was fixed at 500. SVM was
implemented with a radial basis function kernel. Hyperparameters were tuned over a grid
of cost values (C = 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128), while the kernel coefficient
(sigma) was held constant at 0.0378. The XGBoost model was trained with learning rate
(eta = 0.1), maximum tree depth (max_depth = 6), subsample ratio (subsample = 0.8),
and column subsample by tree (colsample_bytree = 0.8). Early stopping was applied with
a patience of 10 rounds, and the model was trained for a maximum of 100 rounds. Lastly,
the NN was implemented as a feedforward multilayer perceptron using the nnet package,
version 7.3-20 (Venables & Ripley, 2002). The architecture consisted of a single hidden
layer, with the number of neurons tuned via repeated 10-fold cross-validation. Training
was performed using backpropagation with a maximum of 200 iterations.

Development of the SpoMAG meta-classifier using an ensemble
strategy
Based on their superior classification performance, RF and SVM algorithms were selected
as base learners for the development of the SpoMAG, an ensemble classifier designed
to predict probability of sporulation potential in MAGs. SpoMAG employs a stacked
generalization strategy, where the probabilistic outputs of the RF and SVM models are
used as input features for a meta-classifier. This meta-classifier was implemented as an RF
model trained with 10-fold cross-validation (Ghasemieh et al., 2023), enhancing predictive
robustness.

The meta-classifier’s hyperparameters, including the number of features considered at
each split (mtry parameter), were optimized to improve classificationperformance. Both the
base models and the ensemble were evaluated using standard metrics, including accuracy,
recall, specificity, precision, F1-score, and AUC. To further assess predictive performance,
we applied a non-parametric bootstrap procedure with 300 resampling iterations of the
training set (Singh et al., 2021). Medians and 95% confidence intervals were calculated for
all evaluation metrics, providing estimates while accounting for variability in the training
data (Mokhtar, Yusof & Sapiri, 2023; Huang & Huang, 2023).

Before prediction, SpoMAG processes the functional annotation file of each MAG
to identify genes based on gene names and KEGG Orthology (KO) identifiers. It then
represents each MAG as a binary matrix encoding the presence or absence of 160
sporulation-associated genes and outputs a probabilistic estimate of sporulation potential
for each genome.

Model interpretation and feature importance
To determine the most predictive genes for sporulation capability, we computed SHapley
Additive exPlanations (SHAP) values (Lundberg & Lee, 2017) for both RF and SVMmodels
using the iml package (Molnar, 2018), version 0.11.4, in R. The SHAP analysis measures
the marginal contribution of each gene to individual predictions, offering an interpretable
and consistent metric of feature importance.

Only genes identified as positive predictors in both RF and SVM models were selected
for final biological interpretation. For visualization of feature importance, a bar plot was
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generated showing the mean absolute SHAP values of the contributing genes, arranged
in descending order to highlight the most significant predictors of sporulation. The
visualization was generated using ggplot2 (Wickham, 2016), version 3.5.1, and ggpubr
(Kassambara, 2023), version 0.6.0, packages in R.

Ordination and multivariate dispersion analyses of sporulation
profiles in Clostridia and Bacilli
To investigate variation in sporulation-associated gene profiles, we performed principal
component analysis (PCA) using the prcomp function from the stats package (R Core
Team, 2024), version 4.3.3. The analysis was based on binary matrices encoding the
presence or absence of sporulation-associated genes across both reference genomes with
known sporulation phenotypes and MAGs predicted as spore-forming by SpoMAG.

To assess potential differences in gene composition between the predicted sporulating
and non-sporulating groups within the Clostridia and Bacilli classes, we performed a
multivariate dispersion analysis using the betadisper function from the vegan package
(Oksanen et al., 2024) (version 2.6.8). First, binary distance matrices were computed using
the dist function (stats package), based on presence/absence profiles. The dispersion,
i.e., within-group variability, was then calculated as the distance of each MAG to the
centroid of its respective phenotypic group. Statistical significance of group dispersion
differences was evaluated using 1,000 permutations and an analysis of variance (ANOVA)
test at a 5% significance level.

RESULTS
An overview of the main steps involved in model development and application is shown in
Fig. 1. The training dataset comprised 136 bacterial genomes with experimentally validated
sporulation phenotypes (Galperin et al., 2022), which were randomly partitioned into
training (70%) and validation (30%) subsets. Four supervised learning algorithms were
systematically evaluated: RF, SVM, XGBoost, and NN. Gene importance was evaluated
using SHapley Additive exPlanations (SHAP) analysis for both RF and SVMmodels. Based
on their performance, RF and SVM were selected as base learners for a stacked ensemble
classifier named SpoMAG. The ensemble architecture used the predicted probabilities
from each base model as input features for a meta-classifier, implemented as an RF model
trained using 10-fold cross-validation.

When applied to our target dataset, SpoMAG generated sporulation predictions for
63 genomes, including nine from the Bacilli class and 54 from Clostridia, confirming
its taxonomic versatility. Genomic analysis revealed two significant gene sets: (1) nine
universally conserved sporulation-associated genes across all predicted spore-formers
(namely pth, yaaT, spoIIAB, spoIIIAE, spoIIIAD, ctpB, ftsW, spoVD, and lgt ), and (2)
sixteen classifier-informative genes identified through SHAP value analysis as consistently
contributing to accurate phenotype prediction (namely lytH, cotP, spoIIIAG, spoIIR,
spoVAD, gerC, yabP, yqfD, gerD, spoVAA, gpr, ytaF, gdh, ypeB, spoVID, and ymfJ ).
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Figure 1 Overview of SpoMAGmodel development and application workflow.
Full-size DOI: 10.7717/peerj.20232/fig-1

The complexity of sporulation gene profiles challenges linear
separation between sporulating and non-sporulating genomes
To explore whether the presence and absence of sporulation-associated genes alone could
distinguish spore-forming from non-spore-forming organisms, we performed a PCA
across the 136 Clostridia and Bacilli genomes, including both phenotypes (Fig. 2). The
first principal component (PC1) accounted for 41.99% of the total variance, followed
by PC2 with 14.48%. While PCA captured discernible clustering patterns, we observed
significant phenotypic overlap between spore-forming and non-spore-forming genomes
in both phylogenetic classes. This substantial overlap demonstrates that dimensionality
reduction of binary gene presence-absence data alone provides insufficient resolution for
reliable sporulation phenotype prediction.

Comparison of supervised machine learning models for classifying
genomes as sporulating or non-sporulating
Among the four supervised classification models evaluated, RF and SVM exhibited the
highest median performance in distinguishing sporulating from non-sporulating bacterial
genomes (Table 1). The RF model showed the highest median accuracy (87.5%) and
specificity (85.7%), reflecting robust generalization and a low false-positive rate, with
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Figure 2 Principal component analysis of sporulating and asporogenic Clostridia and Bacilli genomes,
based on binary presence/absence of sporulation-associated genes. Each geometric shape represents an
individual genome.

Full-size DOI: 10.7717/peerj.20232/fig-2

confidence intervals indicating consistent predictions. Meanwhile, SVM exhibited the
highest median recall (95.2%), indicating a high sensitivity for correctly identifying spore-
forming genomes, albeit with lower specificity (75%). Both models reached comparable
median AUC values (RF 89.7%, SVM 93%), reflecting their discriminative capabilities.

To leverage the complementary strengths of RF and SVM, we developed SpoMAG, a
stacking ensemble classifier that integrates these two base learners. SpoMAG preserved the
high median accuracy of RF (87.5%) and recall (90.5%), also achieving the highest median
F1-score (88.2%) among all models. Importantly, it showed AUCof 92.2%, confirming that
the ensemble approach enhanced predictive balance and stability without compromising
classification performance.
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Table 1 Performance metrics of supervised machine learning models for classifying genomes as sporulating or non-sporulating.Values
represent the median and the 95% confidence interval.

Machine learning models Accuracy (%) AUC (%) Recall (%) Specificity (%) Precision (%) F1-score (%)

Random forest 87.5
(77.5–97.5)

89.7
(80.5–97.2)

90.5
(75–100)

85.7
(68–100)

86.4
(68.6–100)

88
(75–97.3)

Support vector machine 85
(72.5–95)

93
(83.1–99)

95.2
(83.3–100)

75
(55–93.3)

80
(61.9–95)

86.5
(73.7–95.7)

XGBoost 82.6
(72.5–92.5)

93.3
(85.8–99)

95
(85.7–100)

70.2
(52.6–86.4)

76.2
(61.5–89.5)

84.2
(73.7–93)

Neural network 75
(60–87.5)

91.1
(80.3–97.7)

85.7
(68.2–100)

65.2
(43.5–85.7)

71.4
(52.2–88.5)

77.6
(61.1–89.4)

Stacking ensemble (SpoMAG) 87.5
(77.5–97.5)

92.2
(81.1–99.7)

90.5
(75–100)

85.7
(68.2–100)

86.4
(69.6–100)

88.2
(75–97.3)

SpoMAG demonstrates high specificity in predicting the absence of
sporulation in non-Firmicutes genomes
To evaluate the specificity of SpoMAG, we applied the model to a dataset of 496 high-
quality MAGs from bacterial phyla outside Firmicutes, including genomes derived from
cattle (n= 136), poultry (n= 126), human (n= 105), and swine (n= 129). As expected,
SpoMAG assigned a predicted sporulation probability of zero to all MAGs (Fig. 3,
Table S3), demonstrating SpoMAG’s high specificity and its ability to correctly distinguish
non-sporulating genomes, even in complex metagenomic datasets. This performance
underscores SpoMAG’s robustness and affirms its applicability for large-scale genome
annotation across heterogeneous microbiomes.

Sporulation potential across Bacilli-class MAGs reveals order-specific
patterns
A total of 51 high-quality MAGs from the Bacilli class were recovered across cattle (n= 10
MAGs), poultry (n= 15 MAGs), human (n= 20 MAGs), and swine (n= 6 MAGs).
SpoMAG predictions revealed distinct order-level sporulation patterns consistent with
established phenotypic characteristics of Bacilli lineages (Fig. 4, Table S4).

In cattle microbiota, one MAG from the order Paenibacillales (family Paenibacillaceae,
genusCohnella) was predicted to be spore-forming with 99%probability (Fig. 4), consistent
with the established sporulation capability of this order.MAGs fromother orders, including
RF39, ML615J-28, Izemoplasmatales, Erysipelotrichales, and Acholeplasmatales, were all
assigned 0% sporulation probability, corroborating their non-sporulating status (Table S4).

Poultry-derived MAGs exhibited a similar trend, with four MAGs from Paenibacillales
(family Paenibacillaceae with three from Paenibacillus and one from Cohnella) predicted as
spore-formers with 99% probability (Fig. 4). Two Bacillales MAGs (family Planococcaceae,
genusRummeliibacillus) showed an average sporulation probability of 81.1%. All remaining
MAGs from Erysipelotrichales and Lactobacillales scored 0%.

Among human-derived MAGs, two genomes were predicted as sporulating: one from
Bacillales (Planococcaceae, genus Ureibacillus) and another from DSM-1321 family (genus
Pradoshia), both with average sporulation probability of 93%. All other human MAGs,
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Figure 3 Probability density plots of predicted sporulation likelihoods for non-Firmicutes MAGs
from (A) cattle, (B) poultry, (C) humans, and (D) swine.

Full-size DOI: 10.7717/peerj.20232/fig-3

including those from Erysipelotrichales and Lactobacillales, were predicted as non-spore-
forming.

Notably, swine samples lacked Bacillales and Paenibacillales representatives. All
six swine MAGs belonged to orders traditionally considered non-sporulating (e.g.,
Acholeplasmatales, Erysipelotrichales, Lactobacillales, and RFN20), and all were assigned
a 0% probability by SpoMAG.

Analysis of gene content further supported SpoMAG’s predictions, with MAGs from
Paenibacillales and Bacillales containing a higher number of sporulation-associated genes
compared to other Bacilli orders (Fig. 5, Table S5). All MAGs from other Bacilli orders
scored 0% of sporulation probability, reinforcing the tool’s biological consistency and
specificity.

To explore within-group variability in gene profiles, we performed a multivariate
dispersion analysis (Betadisper) in the predicted spore-formers and non-spore-formers
from Bacilli. The analysis revealed significant differences in gene profile dispersions
(F = 12.62, p =0.0007), indicating distinct within-group variability in gene composition.
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Figure 4 Predicted sporulation probabilities for Bacilli-class MAGs across hosts. Percentages represent
average probability scores per host.

Full-size DOI: 10.7717/peerj.20232/fig-4

Figure 5 Comparison of sporulation-associated gene abundance between spore-forming (Paenibacil-
lales and Bacillales) and non-spore-forming Bacilli MAGs. At the end of the order names, SPO indicates
a predicted spore-former, and NONSPO indicates a predicted non-spore-former.

Full-size DOI: 10.7717/peerj.20232/fig-5
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Figure 6 Predicted sporulation probabilities for Clostridia-class MAGs across hosts. Percentages
represent the average probability scores per host.

Full-size DOI: 10.7717/peerj.20232/fig-6

Sporulation potential across Clostridia-class MAGs reveals
order-specific patterns
We recovered 262 high-quality MAGs from the Clostridia class, distributed across cattle
(n= 53 MAGs), poultry (n= 58 MAGs), humans (n= 95 MAGs), and swine (n= 56
MAGs). SpoMAG predictions revealed consistent and order-specific patterns in predicted
sporulation potential (Fig. 6, Table S6).

In human samples, seven MAGs from the order Acetivibrionales were classified as
spore-forming, with an average predicted probability of 98.5%. All belonged to the family
Acetivibrionaceae, including two from the genus Ruminiclostridium and five unclassified at
the genus level. One MAG from the same order, classified under (DSM-8532 family) was
predicted to be non-sporulating (0% probability). Within Christensenellales, only one of
19 MAGs was predicted as a spore-former (Christensenellaceae, unknown genus/species).
Among the remaining, mostly from poorly characterized families and the Borkfalkiaceae,
were classified as non-sporulating. All Clostridiales MAGs (n= 3) were predicted to be
spore-forming, with three from the Clostridiaceae family (one identified as Clostridium
and two unclassified at the genus level). In contrast, all 24 MAGs from Lachnospirales
were classified as non-sporulating, including genera within Lachnospiraceae such as
Herbinix, Lachnoclostridium, Butyrivibrio, UBA4285, RUG115, Blautia, Coprococcus,
Enterocloster, KLE1615, CAG-194, Faecalimonas, Anaerostipes, Mediterraneibacter, CAG-
127,Dorea,Acetatifactor,CAG-603,Bariatricus, andAnaerocolumna, all lacking species-level
classification.

The order Monoglobales included one MAG predicted as a spore-former (family
UBA1381, genus CAG-41) and one as a non-spore-former (family Monoglobaceae, genus
Monoglobus). Among 34 MAGs from Oscillospirales, one was predicted as spore-forming
(family Ruminococcaceae, genusUBA3818), potentially representing a novel spore-forming
species. AllMAGs fromPeptostreptococcales, Tissierellales, andUMGS1883were predicted
to be non-spore-forming.

In swine, SpoMAG predicted sporulation in eight Acetivibrionales MAGs, including
Acetivibrionaceae (n= 7) and DSM-8532 (n= 1), all unclassified at the species level.
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Additionally, threeChristensenellalesMAGswere predicted as spore-formers, including one
from Christensenellaceae and two from poorly defined families (CAG-74 and SZUA-584).
Two Clostridiales MAGs (Clostridiaceae, genus Clostridium) and one Oscillospirales MAG
(Ruminococcaceae, unknown genus and species) were also identified as spore-formers. All
MAGs from DUPQ01, Lachnospirales, Peptostreptococcales, Saccharofermentanales, and
Tissierellales were predicted as non-sporulating.

In cattle, SpoMAG identified six spore-forming MAGs from Acetivibrionales (three
from Acetivibrionaceae, three from DSM-8532), two from Christensenellales (families
Christensenellaceae and SZUA-584), and three from Clostridiales (two Clostridiaceae, one
Caloramatoraceae, unknown genus). Notably, two MAGs from Lachnospirales (Herbinix
genus, family Lachnospiraceae) were also predicted to be spore-forming. One MAG from
Peptostreptococcales (Anaerovoracaceae, genusUBA7709) was classified as a spore-former.

In poultry, SpoMAG predicted all seven Acetivibrionales MAGs as spore-formers
(six from Acetivibrionaceae and one from DSM-8532). All MAGs from Clostridiales
(n = 2) were also classified as spore-forming, along with one Christensenellales
(Christensenellaceae, unknown species) and one Peptostreptococcales (Natronincolaceae,
genus Alkaliphilus). Two MAGs from Lachnospirales (genus Herbinix) were also predicted
as spore-formers.

Gene presence/absence patterns are insufficient to distinguish
sporulation in Clostridia MAGs
We next investigated whether presence/absence patterns of sporulation-associated genes
could distinguish between predicted spore-forming and non-spore-forming MAGs. Unlike
Bacilli, binary gene profiles were insufficient to reliably separate sporulation capability in
Clostridia (Fig. 7, Table S7). Although some differences in gene contentwere observed, there
was substantial overlap between phenotypic groups, suggesting that gene presence alone
may indicate a latent potential to sporulate rather than active functionality. Importantly,
the presence of sporulation-associated genes reflects genetic potential, not active gene
expression at the time of sampling.

To evaluate gene content variation in more detail in the Clostridia class, we performed
PCA on sporulation gene profiles (Fig. 8). In cattle (Fig. 8A), poultry (Fig. 8B), human
(Fig. 8C), and swine (Fig. 8D), there was considerable overlap between predicted spore-
forming and non-spore-forming MAGs. Although distinct ellipses were generated for each
group, indicating some variation, no clear separation was observed in the multivariate
space, further demonstrating that unsupervised ordination methods still insufficient to
resolve sporulation status even for the predicted Clostridia MAGs.

We then assessed within-group dispersion using betadisper analysis. Statistically
significant differences in dispersion were observed in the spore-forming and non-spore-
forming MAGs for all hosts: cattle (F = 7.55, p = 0.0083), swine (F = 43.77, p < 0.001),
human (F = 14.19, p = 3×10−4), and poultry (F = 13.42, p = 6×10−4), indicating that
the two groups differ in internal variability of sporulation gene content, suggesting distinct
levels of genomic variability related to sporulation potential within each group.
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Figure 7 Comparison of sporulation-associated gene content between predicted spore-forming and
non-spore-forming Clostridia MAGs. At the end of the order names, SPO indicates a predicted spore-
former, and NONSPO indicates a predicted non-spore-former.

Full-size DOI: 10.7717/peerj.20232/fig-7

SpoMAG reveals potentially sporulating Firmicutes species shared
across hosts
Our comprehensive pairwise average nucleotide identity (ANI) analysis of high-quality
Firmicutes MAGs revealed distinct distribution patterns among genomes predicted to
be sporulating (Table S8). Most MAGs, both predicted sporulating and non-sporulating,
exhibited ANI values below the 95% species threshold. A notable proportion clustered at
74% ANI, indicating considerable species-level diversity among the recovered genomes
(Fig. 9A).

Despite this diversity, SpoMAG-based predictions revealed seven cases of species-level
sharing (ANI value > 95%) among spore-forming MAGs recovered from different hosts
(Fig. 9A). These included two shared species between poultry and swine, two between
poultry and humans, one between swine and humans, and two between swine and cattle
(Fig. 9B). Notably, a species from the Acetivibrionaceae family exhibited∼99% ANI across
poultry, swine, and human hosts.

MAGs exhibit distinct sporulation gene profiles at the Class and
Order levels across hosts
To explore patterns in sporulation gene content across hosts, we performed PCA on the
binary presence/absence matrices of sporulation-associated genes in MAGs predicted to be
spore-forming by SpoMAG. The ordination revealed class- and order-specific clustering,
as well as host-associated trends.
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Figure 8 Principal Component Analysis of sporulation-associated gene profiles in Clostridia MAGs
from (A) cattle, (B) poultry, (C) human, and (D) swine. Each point represents a MAG, colored by pre-
dicted sporulation phenotype (sporulating vs. non-sporulating). The ellipses represent 95% confidence in-
tervals around the group centroids.

Full-size DOI: 10.7717/peerj.20232/fig-8

Human-derived MAGs (Fig. S1, Table S9) had the first two principal components
explaining 42.33% of the total variance. The two Bacilli MAGs were clearly separated from
Clostridia. Within Clostridia, seven Acetivibrionales MAGs (all from Acetivibrionaceae
family) clustered tightly, suggesting conserved sporulation gene profiles. Notably,
two of these MAGs are assigned to Ruminiclostridium genus (bin.488_human and
bin.208_human).

In swine MAGs (Fig. S2, Table S9), only Clostridia were predicted as spore-formers. The
first two components explained 40.57% of the variance and revealed two distinct clusters:
one composed of eight Acetivibrionales MAGs, and another of three Christensenellales
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Figure 9 Average nucleotide identity (ANI) values for MAGs from the four hosts. (A) Frequency of
pairwise genome ANI with a focus on >99% ANI values. (B) Species sharing at the species level across
poultry, swine, human, and cattle hosts. Taxonomic levels were represented by standard prefixes: o_ (or-
der), f_ (family), g_ (genus), and s_ (species). Icon source credit: BioRender.

Full-size DOI: 10.7717/peerj.20232/fig-9

MAGs. The remaining MAGs were mixed into a cluster of two MAGs from Clostridiales
and one from Oscillospirales.

Cattle-derived MAGs (Fig. S3, Table S9) had PC1 and PC2 explaining 34.88% of the
variance. Six Acetivibrionales MAGs formed a cluster, adjacent to two Lachnospirales
MAGs, indicating partial similarity in gene profiles. A single Bacilli MAG (order
Paenibacillales) appeared well separated from Clostridia. A separate group included
MAGs from Christensenellales (n= 2), Clostridiales (n= 3), and Peptostreptococcales
(n= 1).

In poultry-derived MAGs (Fig. S4, Table S9), the first two components explained
49.20% of the variance. Two Bacilli MAGs and four from Paenibacillales formed distinct
clusters outside the main Clostridia group. Within Clostridia, the mixed cluster included
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Figure 10 Principal component analysis of MAGs, from the four hosts, predicted to sporulate by Spo-
MAG.

Full-size DOI: 10.7717/peerj.20232/fig-10

MAGs from Acetivibrionales (n= 7), Christensenellales (n= 1), Clostridiales (n= 2),
Lachnospirales (n= 2), and Peptostreptococcales (n= 1), again reflecting compositional
variability.

When combining all 63 MAGs predicted to be spore-formers, the PCA revealed a
separation between Bacilli and Clostridia, with the first two components explaining
32.21% of the variance (Fig. 10, Table S9). Five Paenibacillales MAGs grouped together,
including one MAG from Bacillales. A well-defined cluster of 28 Acetivibrionales MAGs
confirmed the conservation of sporulation gene profiles within this order, even among
hosts. The remaining Clostridia MAGs formed a broader group, representing the orders
Christensenellales (n= 7), Clostridiales (n= 10), Lachnospirales (n= 4), Monoglobales
(n= 1), Oscillospirales (n= 2), and Peptostreptococcales (n= 2).
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Figure 11 Distribution of distinct sporulation-associated genes in the 63MAGs.Nine genes are consis-
tently present in all MAGs predicted to sporulate (in red). SOAC, sporulation onset and checkpoints.

Full-size DOI: 10.7717/peerj.20232/fig-11

Consistent genes present across the 63 predicted sporulating MAGs
We identified nine genes consistently present in all 63 MAGs predicted as spore-formers
by SpoMAG (Fig. 11). These include: pth, yaaT, spoIIAB, spoIIIAE, spoIIIAD, ctpB, ftsW,
spoVD, and lgt. Although an additional 13 genes were found in 62 of the 63 genomes, we
focused on those shared across all genomes to ensure consistency in gene presence.

Functionally, pth and yaaT are associated with early-stage regulation, while spoIIAB,
spoIIIAE, and spoIIIAD contribute to initiation and engulfment; ctpB and ftsW are linked
to the SigE regulon; spoVD is involved in spore cortex formation; and lgt plays a role in
spore germination.

SHAP analysis identified 16 genes consistently contributing to sporulation prediction
in both Random Forest and Support Vector Machine models (Fig. 12). These include:
lytH, cotP, spoIIIAG, spoIIR, spoVAD, gerC, yabP, yqfD, gerD, spoVAA, gpr, ytaF, gdh, ypeB,
spoVID, and ymfJ. All genes exhibited positive SHAP values, indicating their influence on
model classification decisions.

The genes lytH, yabP, and yqfD are associated with the spore cortex; cotP and spoVID
are involved in the spore coat; spoIIIAG in engulfment; spoIIR, ymfJ are part of the SigF
regulon; spoVAD, spoVAA are related to the SigG regulon; ytaF in SigE regulon; and gerC,
gerD, gpr, gdh, ypeB are involved in germination.

DISCUSSION
Here, we present SpoMAG, an R-basedmachine learning tool for predicting the sporulation
potential of MAGs from uncultivated Firmicutes. Unlike traditional approaches relying
on conserved marker genes or gene counts, SpoMAG combines genome annotations
with an ensemble learning strategy to capture complex presence/absence patterns of
sporulation-associated genes. The model was trained on genome annotations from
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Figure 12 Identification of 16 genes with positive SHAP values impacting SpoMAG’s performance.
Full-size DOI: 10.7717/peerj.20232/fig-12

experimentally validated sporulation phenotypes and provides probabilistic predictions of
sporulation capacity. This advances functional inference for uncultured bacterial species,
particularly relevant given that >70% of gut microbiome members lack cultivation-based
characterization (Almeida et al., 2021).

We first examined whether sporulation-associated gene presence or absence could
distinguish spore-forming from non-spore-forming genomes in Bacilli and Clostridia
using PCA. Notably, substantial overlap was observed between the two phenotypic groups
in both classes, indicating that binary gene profiles alone lack the resolution needed for
accurate classification. Furthermore, genes previously proposed as sporulation markers
(Onyenwoke et al., 2004) have since been identified in non-spore-formers (Galperin et al.,
2012), underscoring the limitations of relying on individual genes as definitive indicators.
This observed complexity supports the necessity for complementary strategies, such as
machine learning, to capture more complex patterns and improve the prediction of
sporulation potential.

To overcome these limitations, we applied a stacking ensemble integrating RF and
SVM. The ensemble retained RF’s accuracy (87.5%) and recall (90.5%), while achieving
the highest F1-score (88.2%), reflecting better balance between sensitivity and precision.
SpoMAG also maintained a high AUC (92.2%), suggesting enhanced predictive stability
without compromising performance, a trend consistent with a prior study (Lin et al., 2022).
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Collectively, these results validate the effectiveness of ensemble learning in capturing
complex patterns in biological datasets (Nagi & Bhattacharyya, 2013; Zolfaghari et al.,
2023).

To evaluate SpoMAG’s specificity, we applied it to 496 high-quality MAGs from
bacterial phyla outside Firmicutes. As expected, all were assigned a sporulation probability
of zero, consistent with the understanding that endospore formation is largely restricted
to Firmicutes (De Hoon, Eichenberger & Vitkup, 2010; Galperin, 2013; Remize & De Santis,
2025), and underscores SpoMAG’s robustness in avoiding false positives in distantly related
bacterial species.

Application to Bacilli MAGs confirmed SpoMAG’s ability to recover known spore-
formers. All MAGs from Bacillales and Paenibacillales, two orders known for spore
formation (Galperin, 2016; Zander, Schmid & Kabisch, 2024; Zhang et al., 2025), were
assigned high sporulation probability scores. In contrast, MAGs from non-spore-forming
orders, such as Lactobacillales (Galperin, 2013), were consistently predicted as non-spore-
forming. Comparative gene content analysis further supported these predictions, with
Bacillales and Paenibacillales MAGs containing more sporulation-associated genes than
non-sporulating Bacilli orders. However, we also observed variability in gene counts
within both predicted spore-formers and non-spore-formers, reinforcing that the specific
combination of these genes, rather than just their number in a given genome, are critical
for sporulation possibility.

We expanded our analysis to Clostridia, a class characterized by heterogeneous
sporulation phenotypes, where both spore-forming and non-spore-forming species
frequently co-occur within the same taxonomic orders (Yutin & Galperin, 2013; Liu et
al., 2024; Weis et al., 2024). SpoMAG revealed distinct host-associated and order-specific
sporulation potential patterns among the analyzed MAGs. These findings demonstrate
SpoMAG’s ability to discern functional potential variation across phylogenetically and
ecologically diverse genomes.

The consistent prediction of sporulation across all Acetivibrionaceae members from all
hosts is particularly significant, given this family’s established role in nutrient scavenging
(Dias et al., 2025). SpoMAG’s identification of Ruminiclostridium MAGs in human
samples corroborates its predictive accuracy, as this genus is extensively documented
for both sporulation and carbohydrate fermentation (Yutin & Galperin, 2013; Wu &
Cheng, 2021). These results may facilitate targeted cultivation strategies and enhance
our comprehension of host-microbe interactions. Similarly, SpoMAG’s identification of
spore-forming potential in Christensenellaceae MAGs aligns with recent experimental
evidence of endospore formation in cultured strains from human feces (Sun et al., 2024),
validating the tool’s capacity to detect spore-forming potential traits in poorly characterized
taxa.

All Clostridiales MAGs were classified as spore-formers by SpoMAG, consistent with
their established sporulating capacity (Paredes-Sabja, Setlow & Sarker, 2011; Fischetti et
al., 2019). Conversely, human-derived MAGs from Lachnospirales were predicted as
non-sporulating, in agreement with previous findings that members of this order generally
lack sporulation capability (Abdullah et al., 2023). However, sporadic occurrences of
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sporulation have been observed in certain strains, supporting the recognized phenotypic
heterogeneity within Clostridia (Haas & Blanchard, 2017).

SpoMAG’s divergence prediction of sporulation potential in cattle- versus poultry-
associated Herbinix MAGs emphasizes important host specific differences that may
reflect niche adaptation (Browne et al., 2021). While Herbinix is associated with fiber
degradation (Koeck et al., 2015; Koeck, Hahnke & Zverlov, 2016), the maintenance of
sporulation capacity in cattle-associatedMAGsmay provide an ecological advantage in a gut
environment characterized by long retention times and a fiber-rich diet (Osorio-Doblado
et al., 2023). In poultry, sporulation in Herbinix could instead favor transmission, as the
rapid intestinal transit and constant exposure to the environment might select for spore
formation as a survival and dispersal strategy (Rougière & Carré, 2010; Clavijo & Flórez,
2018). Similar heterogeneity was observed in Peptostreptococcales, where sporulation
potential was restricted to cattle and poultry MAGs suggesting potential ecological
specialization or evolutionary divergence among host-associated lineages. Such lineage-
specific differences may indicate secondary loss of sporulation in non-ruminant/non-avian
hosts or, alternatively, the retention of sporulation as a host-dependent trait shaped by
selective pressures.

SpoMAG’s prediction of sporulation potential in understudied groups as the families
UBA1381 (order Monoglobales) and Ruminococcaceae (genus UBA3818) suggests that
these MAGs may represent previously unrecognized spore-formers worthy of targeted
cultivation efforts. Their presence in both human and swine samples supports their
ecological relevance and may contribute to the evolutionary role of sporulation within
Clostridia, particularly in orders that remain poorly characterized and uncultivated.
These findings illustrate how machine learning approaches can complement culture-based
methods to reveal overlooked microbial functional traits, particularly in challenging-to-
study gut bacteria.

Unlike in Bacilli, where sporulation gene presence/absence correlated with the predicted
phenotype, Clostridia MAGs exhibited partial conservation of sporulation genes even
among non-spore-formers. This is consistent with prior reports of conserved sporulation-
related genes in Clostridia regardless of functional phenotype (Talukdar et al., 2015;Connor
et al., 2019). Despite this, we detected significant dispersion differences between predicted
spore-forming and non-spore-forming groups across all hosts, indicating that while
individual gene presence is unreliable, the complete sporulation network complements
the phenotypic sporulation potential. These findings also highlight why machine learning
approaches such as SpoMAG can outperform gene-counting methods. By evaluating
coordinated patterns across multiple sporulation determinants, SpoMAG effectively
infers sporulation probability even in the presence of partial or incomplete gene sets,
supporting the importance of multivariate strategies for investigating complex traits within
taxonomically diverse groups such as Clostridia. Moreover, the within-group clustering
observed in Clostridia PCA plots suggests that true spore-formers can share conserved
genomic sporulation signatures, reinforcing SpoMAG’s ability to detect functional cohesion
despite incomplete genome recovery.
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ANI analysis revealed seven cases of species-level sharing (ANI> 95%) among predicted
spore-forming MAGs across hosts, including a potentially novel Acetivibrionaceae species
found in poultry, swine, and human microbiomes. While this broad host distribution
indicates that certain spore-formers may occur in multiple hosts, possibly facilitated by
their sporulation ability (Swick, Koehler & Driks, 2016b), it does not provide direct evidence
of cross-species transmission, as ecological and temporal data are lacking. However, it is
important to note that the presence of genetically identical species in phylogenetically
distant hosts challenges traditional views of host specificity in gut microbiota and
raises the possibility of shared environmental reservoirs or dietary transmission routes.
Given that sporulation confers high stability and resilience to environmental stresses,
broadly distributed spore-forming lineages may constitute suitable targets for probiotic
development. In this context, spore formation has been recognized as a key trait for ensuring
product stability and successful gut colonization (Hong, Duc & Cutting, 2005; Bader, Albin
& Stahl, 2012; Ahire, Kashikar & Madempudi, 2021). These findings could contribute to
future research into microbial ecology, zoonotic risk assessment, probiotics development
and the biotechnological exploitation of resilient, broadly distributed bacterial species.

The PCA of sporulation gene presence/absence profiles demonstrated hierarchical
conservation patterns, revealing clear separation between Bacilli and Clostridia that reflects
their divergent evolutionary histories of sporulation gene acquisition and regulation
(Talukdar et al., 2015). Within Clostridia, the 28 Acetivibrionaceae MAGs formed a
tightly clustered group despite being recovered from different hosts, indicating highly
conserved sporulation gene content within this family. This clustering mirrors the ANI-
based similarity among these genomes, reinforcing that both genomic architecture and
sporulation-associated gene content are conserved across host environments.

The combination of ANI and PCA approaches provides complementary information,
while ANI analysis identifies potential cross-host occurrence of specific spore-forming
species, PCA reveals conserved functional patterns associated with sporulation capability
across phylogenetic groups. This is particularly relevant for clinically important pathogens
like Clostridioides difficile, which demonstrate both high transmissibility and zoonotic
potential (Deakin et al., 2012; Tsai et al., 2016; Tsai et al., 2021; Knight & Riley, 2019). Our
detection of genetically identical species in human and animal microbiomes reinforces
these epidemiological concerns and highlights the utility of SpoMAG for public health
surveillance.

Moreover, current spore mitigation strategies, including high-pressure processing to
induce germination followed inactivation (Delbrück et al., 2021), face challenges from
superdormant spore subpopulations resistant to germination, posing challenges to spore
inactivation (Zhang & Mathys, 2018; Delbrück et al., 2021; Delbrück et al., 2022). Thus,
SpoMAG’s ability to characterize sporulation traits could aid in identifying bacterial species
possessing such resistance traits, thereby contributing to novel food safety interventions.

We identified a subset of nine genes consistently present in all 63 MAGs classified as
spore-formers, as well as 16 consensus genes that significantly contributed to classification
performance in both theRF and SVMmodels. These two gene sets likely represent important
components of the sporulation machinery. Functionally, they span multiple stages of the
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sporulation process, from early regulatory checkpoints to forespore engulfment, cortex
synthesis, and spore germination, indicating their potential role in uncultivated Firmicutes.
The consistent presence of these genes and the contribution to predictive modeling
emphasize promising candidates for future experimental validation and potential targets
for antimicrobial strategies (Galperin et al., 2022).

Contamination by spore-forming bacteria is a major concern in the food industry,
particularly in dairy products such as milk powder (Ruis, Fröder & Perez, 2025). Spores
are highly resistant and capable of surviving heat treatments, enabling them to germinate
post-processing and potentially lead to spoilage (Navaneethan & Effarizah, 2023). Current
detection methods, including culture-based techniques and 16S rRNA sequencing, are
limited by low sensitivity or dependence on cultivation (Li et al., 2018; Murphy et al.,
2019). SpoMAG can complement these approaches by predicting sporulation potential.
When integrated with experimental validation in a hybrid framework, it also facilitates
iterative improvement of ML-based classification models, ultimately enhancing SpoMAG’s
robustness and applicability to food safety monitoring.

SpoMAG demonstrates multidisciplinary utility through distinct applications across
microbial sciences. In ecological studies, it facilitates systematic investigation of sporulation
dynamics in natural populations, particularly within host-associated microbiomes
where sporulation influences persistence, transmission, and community stability (Swick,
Koehler & Driks, 2016b; Browne et al., 2021). For clinical applications, SpoMAG enables
identification of spore-forming commensals or opportunistic pathogens capable of resisting
environmental stress or antimicrobial treatment. In biotechnology, SpoMAG supports
targeted selection of industrial-relevant strains for probiotic development, bioremediation
applications, and fermentation processes, where sporulation impacts process efficiency and
product stability.

Notably, bacterial endospores have been identified in bovine feed stocks and manure
deposits, which they can contaminate milk, particularly when bedding materials create
microenvironments conducive to sporulation (Vissers et al., 2007). These epidemiological
observations underscore the necessity of functional prediction tools for dairy safety
monitoring. The systematic identification of sporulation capacity in phylogenetically
diverse, uncultivated lineages represents a critical research frontier in microbial physiology.
SpoMAG addresses this challenge by providing a computational framework that translates
metagenomic signatures into functional sporulation potential.

Future investigations should prioritize experimental validation of SpoMAG
predictions through targeted isolation of putative spore-formers, particularly within
undercharacterized Clostridia lineages. Furthermore, SpoMAG’s application to
environmental metagenomes, including agricultural, food processing, and soil studies,
may reveal previously unrecognized ecological dimensions of sporulation beyond host-
associated ecosystems.
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CONCLUSIONS
This study presents SpoMAG, a supervised machine learning tool that predicts sporulation
potential in MAGs from uncultivated Firmicutes. By combining gene annotations with
ensemble learning, SpoMAG achieved high-accuracy discrimination between spore-
forming from non-spore-forming genomes and revealed biologically relevant gene
patterns across 63 MAGs derived from vertebrate hosts. The tool enabled functional
inference in uncultured bacteria species, overcoming the limitations of marker-based or
purely taxonomic approaches. While experimental validation remains a future direction,
particularly for novel Clostridia candidates, SpoMAG offers a robust and reproducible
effort for investigating bacterial survival strategies in host-associated and environmental
microbiomes.
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