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Background: Calcium-dependent protein kinases (CDPKs) constitute a family of enzymes
that play crucial roles in plant signaling pathways. These kinases are activated in response
to changes in calcium ions (Ca +2 ) concentration under stress conditions. The objective of
this research, is to perform a genome- wide analysis of the CDPK gene family in Phaseolus
vulgaris and evaluate the expression patterns of these genes under salt and drought stress
conditions.

Methods: In this study, comprehensive bioinformatics analyses were conducted on the
CDPK gene family members in P. vulgaris to reveal the phylogenetic relationships,
chromosomal locations, structural features, motif patterns, regulatory elements in
promoter regions and expression profiles of the genes in the salt and drought stresses.
Results: Within this research, 25 PvCDPK genes were identified in the bean genome. The
lengths of proteins vary between 298 and 582 amino acids, and their molecular weights
range from 33.43 kDa to 65.13 kDa. The majority of the PvCDPKs located on a total of 8
chromosomes have 6 introns. Phylogenetic analysis indicates that PvCDPK proteins cluster
in three main groups with Arabidopsis thaliana and Glycine max species. The divergence
times for 6 pairs of segmental duplicated genes ranged from 48.94 million years ago (MYA)
to 65.57 MYA, while tandem duplicates ranged from 32.09 to 84.95 MYA.

Conclusions: Comparative expression analysis of PvCDPK genes revealed varying
expression levels depending on the two bean cultivars. Furthermore, these observations
suggest that PvCDPK genes could be essential for the growth and development of bean in
reaction to abiotic stresses such as drought and salt. This is the first study to investigate
the CDPK gene family in P. vulgaris, and these identified genes obtained can be directly
evaluated as candidate genes for marker-assisted selection or gene editing approaches. In
addition, the findings are expected to contribute to the development of resilient cultivars
capable of withstanding climate change.
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Abstract

Background: Calcium-dependent protein kinases (CDPKs) constitute a family of enzymes that
play crucial roles in plant signaling pathways. These kinases are activated in response to changes
in calcium ions (Ca*?) concentration under stress conditions. The objective of this research, is to
perform a genome- wide analysis of the CDPK gene family in Phaseolus vulgaris and evaluate
the expression patterns of these genes under salt and drought stress conditions.

Methods: In this study, comprehensive bioinformatics analyses were conducted on the CDPK
gene family members in P. vulgaris to reveal the phylogenetic relationships, chromosomal
locations, structural features, motif patterns, regulatory elements in promoter regions and
expression profiles of the genes in the salt and drought stresses.

Results: Within this research, 25 PvCDPK genes were identified in the bean genome. The
lengths of proteins vary between 298 and 582 amino acids, and their molecular weights range
from 33.43 kDa to 65.13 kDa. The majority of the PvCDPKs located on a total of 8
chromosomes have 6 introns. Phylogenetic analysis indicates that PvCDPK proteins cluster in
three main groups with Arabidopsis thaliana and Glycine max species. The divergence times for
6 pairs of segmental duplicated genes ranged from 48.94 million years ago (MYA) to 65.57

MY A, while tandem duplicates ranged from 32.09 to 84.95 MYA.

Conclusions: Comparative expression analysis of PvCDPK genes revealed varying expression
levels depending on the two bean cultivars. Furthermore, these observations suggest that
PvCDPK genes could be essential for the growth and development of bean in reaction to abiotic
stresses such as drought and salt. This is the first study to investigate the CDPK gene family in P.
vulgaris, and these identified genes obtained can be directly evaluated as candidate genes for
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marker-assisted selection or gene editing approaches. In addition, the findings are expected to
contribute to the development of resilient cultivars capable of withstanding climate change.

Introduction

Plants are continuously subjected to biotic and abiotic stresses during their developmental
process. Highly complex mechanisms are activated to respond to the effects of abiotic stresses
like salinity, temperature, drought, and heavy metal (Krasensky & Jonak, 2012; Takahashi et al.,
2020). In this way, plant adaptation develops rapidly and the negative effects are minimized.
Secondary messengers play important roles in providing this adaptation. Ca*, one of these
secondary messengers, is an ion that undergoes alterations in plants during stress and is crucial to
plant growth (Ray, 2017). Proteins that detect changes in the cytoplasmic Ca*? content inducing a
phosphorylation process in the plant, which starts the reaction of signaling pathways (Boudsocq
etal., 2010; Valmonte et al., 2014; Luan & Wang, 2021). Ca*™-dependent protein kinases
(CDPKs), calmodulin (CaM), calcineurin B-like proteins and CAM-like proteins (CMLs) are
some of the classes of Ca*?-binding proteins in plants (Ranty et al., 2016, Mohanta et al., 2017).
Particularly, CDPKs are crucial calcium-binding proteins that are only present in protists, green
algae, and plants—not in fungi or animals (Hamel et al., 2014, Wang et al., 2015b).

Ca'2, whose concentration varies under stress, binds to the CaM-like domain to activate CDPKs,
which allow the plant to react appropriately throughout growth and development (Wang et al.,
2015a). Researchs are showing that CDPKs are effective under stress conditions. In rice (Oryza
sativa), OsCDPK4 has been reported to protect the cell membrane from oxidative damage and
thus increase salt and drought tolerance (Campo et al., 2014). AtCPK28 was revealed to decode
cold-affected Ca*? signals in Arabidopsis thaliana and increase plant resistance to cold by
phosphorylating Nin-Like Protein 7 (NPL7) (Shi et al., 2018, Ding et al., 2022). In another
study, it was reported that the transcription of TaCDPK25-U-AS1 and TaCDPK25-U-AS2
increased under drought stress in wheat (7riticum aestivum) and this increased the drought
resistance of the plant (Linghu et al., 2023). It has been revealed that FaCDPK1I and FaCDPK3,
FaCDPK4 and FaCDPK1 1, which are among the CDPKs in strawberry (Fragaria x ananassa),
form a strong response to salt, while FaCDPK4 and FaCDPK] 1 form a strong response to
drought, and that drought-related genes are significantly affected by ABA treatment. It was also
claimed that this may affect drought-related proteins (Crizel et al., 2020).

Phaselous vulgaris (common bean) belongs to the family Fabaceae, which has 640 genera and is
a member of the genus Phaselous, which is known to have 240 species (Broughton et al., 2003).
Common bean is a plant of high nutritional value and economic importance that is widely grown
and consumed worldwide. Among the common causes of crop loss in P. vulgaris, abiotic stress
factors such as salinity and drought play a significant role.

The present study utilized bioinformatics data to identify and characterize the CDPK genes in
beans. Additionally, the qRT-PCR technique was utilized to clarify the functions of these genes
in response to drought and salt stressors. Furthermore, this study provides molecular targets for
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the development of stress-tolerant bean varieties. The characterization of these genes provides a
integrative understanding of bean metabolism.

Materials & Methods

Identification of PvCDPK gene family and analysis of basic parameters

Amino acid sequences of the P. vulgaris CDPK gene family were retrieved from the Phytozome
v12.1 database (https://phytozome-next.jgi.doe.gov/) under accession number PF03492
(http://pfam.xfam.org). The genomes of A. thaliana and Glycine max were examined in the same
database to identify potential CDPK proteins (Lamesch et al., 2012; Valliyodan et al., 2019). The
default configurations of the Hidden Markov Model (HMM) validated the CDPK protein
sequences. Table S1 enumerates the CDPK protein sequences of various plants. The HMMER
database (http://www.ebi.ac.uk) was utilized to examine the CDPK domains within the
sequences. The amino acid count, molecular weight, and other properties of the CDPK proteins
were assessed utilizing the "ProtParam tool" (https://www.expasy.org/protparam/). The
phylogenetic studies employed the neighbor-joining (NJ) technique with a bootstrap value of
1000 replicates. The ClustalW algorithm was employed to align the PvCDPK protein sequences
(Thompson et al., 1997). Evolutionary diagrams were produced via MEGA v7 (Tamura et al.,
2011). The iTOL database was utilised to construct the phylogenetic tree (Letunic & Bork,
2011).

The discovery of PvCDPK members, their structures, chromosome locations,
and gene duplications; Comparative mapping with A. thaliana and G. max;

and the conserved motif

The coding and non-coding sections of the PvCDPK gene were retrieved utilizing the Gene
Structure Display v2.0 web tool using the genomic and CDS sequences (http://gsds.gao-lab.org/)
(Hu et al., 2015). The positions of PvCDPK genes on the chromosome were derived from the
Phytozome v12.1 database (https://phytozome-next.jgi.doe.gov/). PvCDPK genes were
delineated on each chromosome of P. vulgaris utilizing MapChart (Voorrips, 2002). MCScanX
(The Multiple Collinearity Scan Toolkit) (Wang et al., 2012), utilizing default settings, determine
the orthologous relationship between P. vulgaris and G. max CDPK gene.

The substitution ratios (Ka, Ks, and Ka/Ks) between duplicate pairs of PvCDPK genes were
estimated using PAL2NAL (http://www.bork.embl.de/pal2nal/#Ref) (Suyama et al., 2006) and
AML interface tool (http://abacus.gene.ucl.ac.uk/software/paml.html) (Yang, 2007). Synteny
maps were made with TBtools (Chen et al., 2020). T = Ks/2A (A =6.56E-9) was used to estimate
CDPK gene duplication and divergence time (Mya) (Yang & Nielsen, 2000, Lynch & Conery
2003).

To uncover more conserved PvCDPK protein motifs, the "MEME Tool" (https://meme-
suite.org/meme/index.html) was used (Bailey et al., 2006). The parameters 2, 50, and 10 were
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used for minimum and maximum width and maximum number of motifs, respectively. There are
200-300 theme zones. Area distribution repetitions might be any number. Motifs were analyzed
with the InterPro database as outlined by Quevillon et al., (2005). The WEBLOGO online web
tool (http://weblogo.berkeley.edu/logo.cgi) produced CDPK domain sequence logos for
conserved area sequence analysis (Crooks et al., 2004).

Subcellular Localization and Analysis of cis-acting Elements of PvCDPK Gene
Family

The upstream sections (Table S1) containing 2-kb DNA segments of each PvCDPK gene family
member were analysed using the PlantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) database for cis-acting element
analysis (Lescot et al., 2002). A figure showing cis-acting elements was generated using
TBTools (Chen et al., 2020). WoLF PSORT (https://wolfpsort.hgc.jp) predictor was used to
predict the subcellular localization of PvCDPK proteins (Horton et al., 2007).

Bean Homology Modeling for CDPK Proteins

The Phyre2 database (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index) was used to
acquire the 3D structures, and protein homology modeling was obtained using previously
identified CDPK protein sequences (Kelley et al., 2015). The best 3D image was obtained by
comparing the protein models' reliability rates.

An analysis of the ontology of genes and the links between CDPK proteins in

P. vulgaris

Protein—protein interactions were examined to ascertain their functional and physical
relationships using the STRING (https://string-db.org) database. The obtained information was
categorized and integrated with the confidence level for every interaction between proteins. The
Cytoscape program changed the way that proteins interact with one another (Shannon et al.,
2003). An essential prerequisite for the functional annotation of novel sequence data in plant
biotechnology research is the deployment of functional genomics techniques. Ontology data for
PvCDPK genes were acquired using the Blast2GO program, and this information was utilized to
access the functional characteristics of PvCDPK proteins (Conesa et al., 2005).

In Silico Gene Expression Analysis

RNA-seq data of P. vulgaris under salt and drought stress was taken from NCBI's SRA
collection. The used accession numbers were SRR957668 (leaf subjected to salt stress),
SRR958469 (leaf salt control) (Hiz et al., 2014), SRR8284481 (leaf subjected to drought stress),
and SRR8284480 (leaf drought control). Gene expression data were normalized utilising reads
per kilobase of transcript per million mapped reads (RPKM) (Mortazavi et al., 2008). The
Orange software (Demsar et al., 2013) was employed to transform the RPKM data to log2 and
generate a heatmap.
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Experimental Plant Materials and Treatments

The P. vulgaris cultivars "Elkoca-05" and "Serra" employed in this study were obtained from the
Molecular Biology and Genetics Department, Erzurum Technical University. The genotype-
specific seeds underwent surface sterilization for 5-7 minutes with a 1% (v/v) NaOCl solution.
Subsequently, perlite was utilized for the germination process. The seedlings were relocated to a
hydroponic medium comprising 0.2 L of modified 1/10 Hoagland solution upon attaining the
developmental stage specified by Biiytik et al., (2019). P.vulgaris seedlings were grown at 25 °C
and 70% relative humidity in a controlled cultivation room with light and a photosynthetic
photon flux of 250 mmol m2 s™!. After bean seedlings reached the first trifoliate stage in the
growth chamber, the control group was treated with 0 mM NacCl and the stress treatment group
was subjected to salt stress for nine days using Hoaglands solution and 150 mM NaCl (for
medium salinity stress). Concurrently, drought-stressed bean plants grown in the same conditions
were kept for 24 hours in Hoagland solution that was treated with either 0 (control) or 20%
PEG6000 (Aygdren et al., 2023). Two different common bean cultivars' root and leaf tissues
were taken after the ninth day of stress treatment. Following the specified duration, the leaf
tissue of the bean genotypes was stored in liquid nitrogen and preserved at —80 °C until the
analysis was performed. Three biological replicates of the bean genotypes utilized in the study
were cultivated, and these replicates were employed for qRT-PCR analysis. The root and leaf
tissues were subjected to distinct qPCR analyses.

In vitro qRT-PCR Analysis

Trizol Reagent (Invitrogen Life Technologies, ABD) was used to extract total RNAs. The
Multiskan Go spectrophotometer (Thermo Fisher Scientific, Vantaa, Finland) was employed to
quantify RNA, while a 1.5% agarose gel was utilized to evaluate the quality of the sample. In
order to carry out complementary DNA synthesis, the SensiFAST cDNA Synthesis Kit (Cat No:
Bi0-65053, UK) was utilized, following the instructions provided by the manufacturer. The qRT-
PCR study was focused on five PvCDPK genes that were selected from the RNAseq data. The
qRT-PCR reactions were conducted using the RotorGene Q Real-Time PCR System (Corbett
Research, Qiagen GmbH, Germany) and ABT SYBR Green Mix (Cat. No.: Q03-02-01, Ankara,
Turkey). A total of 20 uL of qRT-PCR mix was used, including 10 pL of ABT SYBR Green Mix
(2x), 0.4 pL of each primer (1 pM forward and reverse), and 200 ng cDNA. The reaction was
carried out as follows; 10 min. at 95°C to be 1 cycle;15 sec. at 94°C, 30 sec. at 60 °C, 30 sec. at
72°C, to be 40 cycles.

The housekeeping gene used was the B-actin gene from P. vulgaris. The 2722CT technique for
relative quantification was used to standardize the qRT-PCR data (Livak & Schmittgen, 2001).
Information on the primers used in this study is presented in Table S2. Two-way analysis of
variance (ANOVA) with Dunnett's test at the 0.05 significant level was utilized to conduct
statistical studies in GraphPad Prism 7.
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Results

Identification and Physicochemical Characteristics of CDPK Gene Family in P. vulgaris
Here, 25 CDPKs were identified in P.vulgaris genome through bioinformatics tools and renamed
PvCDPK]1.1 to PvCDPK32 according to their locations on chromosomes. The number of amino
acids, protein molecular weight and theoretical pl (isoelectric point) of the proteins were
identified (Table 1). The number of amino acid sequence lengths of PvCDPKs ranged from 298
(PvCDPK4.2) to 582 (PvCDPK?2). The molecular weights ranged from 33.43 kDa (PvCDPK4.2)
to 65.13 kDa (PvCDPK?2) and the pl values ranged from 4.82 (PvCDPK4.2) to 9.21
(PvCDPK]16).

Chromosomal location and duplication events

The 25 PvCDPK genes were distributed unevenly on eight chromosomes: Chrl (4 genes), Chr2
(4 genes), Chr3 (3 genes), Chr6 (1 gene), Chr7 (6 genes), Chr8 (4 genes), Chr9 (2 genes), and
Chrl1 (1 gene) but not on the other chromosomes (4,5,6 and 10) of common bean (Table 2).
The investigation of gene duplication revealed that; PvCDPK1.1/ PvCDPK?2 and PvCDPK3.1/
PvCDPK3.2 genes had a Ks value of 0.64, PvCDPKS8/ PvCDPK32 genes had a Ks value of 0.81,
PvCDPK10.1/ PvCDPK10.2 genes with 0.86 Ks, PvCDPK11.1/ PvCDPK]I1.2 genes with 0.74
Ks and PvCDPK17.1/ PvCDPK17.2 genes with 0.69 Ks. PvCDPK4.1 / PvCDPK4.2 and
PvCDPK29.1/ PvCDPK?29.2 genes were found to be tandemly duplicated with Ks values of 0.42
and 1.11, respectively (Table 3). These genes had Ks/Ks ratios ranging from 0.08 to 0.28.
Natural selection during duplication events is represented by values equal to 1, purifying
selection is indicated by values less than 1, and positive selection in the evolutionary process is
shown by Ka/Ks values greater than 1 (Juretic et al., 2005). Accordingly, it can be said that all
PvCDPK genes are subjected to purifying selection (Fig. 1). The fact that PvCDPK genes were
subjected to purifying selection suggests that this gene family was effective in the expansion of
this plant genome.

In addition, the differentiation time of 6 pairs of segmental duplicated genes ranged from 48.94
million years ago (MYA) to 65.57, while tandem pairs ranged from 32.09 to 84.95 MYA.

Phylogenetic Relationships and synteny analysis of PvCDPKs in P.vulgaris and different
plants

Using the protein sequences from the common bean, 4. thaliana, and G. max, a phylogenetic tree
was created to ascertain the phylogenetic relationships for the bean's CDPK gene family. A total
of 98 protein sequences, 25 of which belong to P.vulgaris, 34 of which belong to Arabidopsis
and 39 of which belong to G.max, were used in the phylogenetic analysis. As illustrated in Fig.1,
the genes were clustered into three major subfamilies: A, B and C. Group A is the largest with 69
genes while Group C is the smallest with 9 genes. PvCDPK4.2 was noticed relatively
independently of other PvCDPKs. Within the three groups formed in this phylogenetic tree,
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which is important in explaining the molecular evolutionary process, it is seen that PvCDPK
genes are homologously distributed, especially with AtCDPK genes (Fig. 2).

Synteny analysis was performed to examine shared structural changes in the genome, including
chromosomal fission and fusion. The analyses revealed 57 syntenic relationships between
P.vulgaris and G.max and 23 syntenic relationships between P.vulgaris and A.thaliana. While a
syntenic relationship was found between all PvCDPK genes and G.max genes, no syntenic
relationship was found between A/CDPK genes and PvCDPK genes only in PvChr-6. This
indicates a strong evolutionary similarity between G.max and P.vulgaris. It can also be said that
there is a strong syntenic relationship between A. thaliana and P. vulgaris in terms of
chromosomal significance. In addition, CDPK genes are equally distributed in these genomes,
indicating that these gene pairs are widely distributed within the genomes (Fig. 3).

Gene structure and motif analysis of PvCDPK gene family

The gene structure analysis indicated that all 25 PvCDPK gene family members contain total 169
introns and 195 exons. PvCDPK16 and PvCDPK28 have 11 introns, PvCDPK3.1, PvCDPK3.2,
PvCDPKS, PvCDPK9, PvCDPK17.1, PvCDPK17.2, PvCDPK21, PvCDPK24, PvCDPK29.1,
PvCDPK?29.2 and PvCDPK32 have seven introns, PvCDPK1.1, PvCDPK]1.2, PvCDPK?2,
PvCDPKA4.1, PvCDPK6, PvCDPK10.1, PvCDPK10.2, PvCDPK11.1, PvCDPK]I1.2, PvCDPKI3
and PvCDPK20 have six introns and PvCDPK4.2 has five introns (Fig.4).

A total of 10 conserved motifs were identified with lengths ranging in length from 8 to 50 amino
acids using MEME (Fig 5; Table S1). All proteins were discovered to include the motifs 2,5 and
7 whereas other motifs were identified only in specific subgroups (Fig.4). As an example, motif
8 only found in one subgroup (Fig.4). Except PvCDPK16 and PvCDPK28 all PvCDPKs have
four motif 2.

Analysis of PvCDPKs promoter cis-elements

The regulatory mechanisms of PvCDPK genes were explored by analyzing the 2 kb upstream
sequences from their start codons for cis-regulatory element composition.

As a direct result, a total of 341 cis-acting regulatory elements were identified in the promoters
of PvCDPK genes (Fig.6; Table S1.) In addition, a total of 14 cis-acting regulatory elements
were identified in the promoters of PvCDPK genes. The cis-acting elements were divided into
four main categories: abiotic/biotic stress-responsive including 11 elements (MYB, MBS, LTR,
etc.), development including elements (CCAAT-box) core elements and binding sites (W box)
and hormonal-responsive (as-1) including only one elements.

The greatest number of cis acting elements were determined in MYC and MYB and these
elements together with MBS element are associated with drought stress defense. While MYC
and MYB were found in all genes, MBS was found to be associated with PvCDPK -1.2, -3.1, -
4.1,-4.2,-9,-10,-11.1,-13, -17.1, -20, -29.1 and -29.2 genes. Biotic and abiotic stress
represented by the highest number of elements indicating PvCDPK genes have important roles in
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response to biotic and abiotic stress (Fig.6; Table S1.). Considering this viewpoint, it is likely
that these PvCDPKs participate in multiple biological functions.

Three-dimensional homology modelling, Protein Interaction Network of PvCDPKs' and
GO analysis

Proteins interact with each other to achieve their roles, thus understanding the linkages and how
intricate biological processes work is crucial. PvCDPK protein sequences were used to identify
their PPIs using the STRING interface. Here, it was found that 25 proteins interacted with five
different common bean proteins. These proteins were VIBRL4 PHAVU-Phvul.006G142500
and V7BS13 PHAVU-Phvul.006G157600 (calcium binding protein 39), VIBH71 PHAVU-
Phvul.007G22340 (heat stress transcription factor A-3), VICMES PHAVU-Phvul.002G160700
(respiratory burst oxidase homolog protein F-related) and V7CPP5S_PHAVU-Phvul.002G293700
(PTHR11972//PTHR11972:SF81 - NADPH oxidase) (Fig. 7; Table S1). All PvCDPK proteins
interacted with VICMES PHAVU-Phvul.002G160700. PvCDPK17.1 and PvCDPK17.2
interacted with PvCDPK24. Remaining proteins showed no interaction within each other.

Gene ontology helps to understand gene function by comparing it to known function genes in
other species. In the biological process, PvCDPK genes are enriched in the peptidyl-serine
phosphorylation, protein autophosphorylation and intracellular signal transduction. Cellular
component category included nucleus, cytoplasm and intracellular anatomical structure. Protein
serine kinase activity, calcium ion binding activity, calmodulin-dependent protein kinase
activity, calmodulin binding activity and calcium-dependent protein serine/threonine kinase
activity were categorized in molecular function (Fig. 8; Table S1).

Homology Modeling of PvCDPK Proteins
CDPK proteins were identified through Phyre2 database and homology modelling was visualized

by 3D modelling method. The study's identified proteins' 3D homology models are shown in Fig.
9.

In silico Expression Profiles of PvCDPK gene family drought and salt stress

Throughout their period of development and growth, plants are greatly impacted by a wide
variety of environmental conditions, including low temperatures, high salt, and drought.
Expression pattern analysis can help understand the biological functions of PvCDPK in tissue
specific or abiotic stresses such as salt and drought. To comprehensively analyze the mRNA
expressions of PvCDPK genes, RNA-Seq data from four normal and treatment samples from the
NCBI SRA database were obtained and FPKM values of 25 PvCDPK genes were evaluated.
Five different tissues were taken for evaluation in this study. All the PvCDPK genes expressed at
least in one tissue. Different PvCDPK genes revealed differential expression patterns. For
example, only PvCDPK17.1 and PvCDPK24 displayed expression in flowers but no other
tissues. PvCDPK1 1.2 was the most expressed PvCDPK in leaves and stem whereas PvCDPK6
expressed significantly in flowers, nodules, root and stem (Fig.10a; Table S1). With these
findings, it can be said that CDPK genes actively contribute to bean organ development.
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In this study, in silico gene expression analysis under drought and salt stresses were determined.
PvCDPK16 and PvCDPKG6 expressions were higher than control plants compared to drought and
salt treated plants. PvCDPK11.2, PvCDPK]10.2, PvCDPK32, PvCDPK21, PvCDPK]I3 and
PvCDPK10.1 genes expressed higher than control under drought stress however these genes
expressions showed lower expression under salt stress (Fig 10b; Table S1). PvCDPK28 and
PvCDPK3.2 induced after salt treatments but their expressions reduced after drought treatment.
No important change was determined in the expression patterns of other gene. On the other hand,
among these genes only PvCDPK 0.2 expression displayed the same expression level between
control and treated plants. These findings suggest that PvCDPKs may be involved in the
response to a range of abiotic stresses, with different genes displaying distinct responses to
stress.

qRT-PCR analyses

In this study, common bean seedlings were treated with drought and salt to examine the function
of PvCDPK gene members. Here, two cultivars Elkoca-05 and Serra were used. qRT-PCR
analyses were performed for 5 specific primers (PvCDPK 1, PvCDPK4, PvCDPK10, PvCDPK20
and PvCDPK?29) designed using RNAseq data and the results are shown in Figure 11. Firstly, it
was determined that no non-specific results were obtained in the negative control analyses
performed in qPCR. Under drought stress PvCDPK1, PvCDPK4, PvCDPK1( and PvCDPK29
genes expressions were increased in Elkoca-05. However, there was no significant change in the
expressions of PvCDPK analyzed, PvCDPK genes in Serra neither in leave nor in root.

Under salt stress different expression patterns was observed compared to drought stress.
PvCDPK]1 and PvCDPK?29 induced in leaf while PvCDPK4 induced in root in Serra cultivar.
Besides PvCDPK4 expression also increased in Elkoca-05 root. No significant change was
observed for PvCDPK4 expression in leaf under salt stress both in Serra and Elkoca-05.

As a result, while gene expression levels of PvCDPK gene family members differed according to
cultivars, the same genes examined in drought stress did not differ in Elkoca-05 cultivar
according to tissues. Although the expression levels of PvCDPK1 and PvCDPK?29 in Elkoca-05
cultivar increased in drought stress treatment their expression decreased in salt treatment in all
tissues. PvCDPK4 induced both under drought and salt stress in both two cultivars. These
findings are in agreement with in silico analyses.

Discussion

Phaseolus vulgaris (common bean), a legume species of high economic importance, serves as a
major dietary protein and nutrient source globally. However, abiotic stressors—particularly
salinity and drought—pose significant threats to its yield and productivity. While previous
genome-wide studies in P. vulgaris have identified various gene families (Biiyiik et al., 2019,
Akbulut et al., 2022; Aygoren et al., 2022, de Souza Resende et al., 2022; Muslu et al., 2023;
Aygoren et al., 2023; Chakraborty et al., 2023; Kasapoglu et al., 2024), comprehensive
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investigations on Ca?*-related gene families remain limited. The present study provides the first
genome-wide identification and systematic characterization of the CDPK gene family in P.
vulgaris. The findings provide important clues to the potential functions of the gene family in
both evolutionary conservation and stress responses.

CDPKs, similar to transcription factors, are key regulators of gene expression and mediate
diverse physiological responses through calcium signaling. These kinases are activated by
intracellular Ca?* fluctuations and play essential roles in the perception and transduction of
abiotic stress signals. Previous reports have documented varying numbers of CDPK genes across
plant species, ranging from 11 to 85 (Cheng et al., 2002, Ray et al., 2007; Wang et al., 2016,
Crizel et al., 2020; Fan et al., 2023, Linghu et al., 2023; Yang et al., 2023, Burra et al., 2023;
Xiong et al., 2024). In this study, 25 PvCDPK genes were identified, a number consistent with
findings in related species.

Phylogenetic analysis revealed that the PvCDPK proteins clustered into three main clades
together with their Arabidopsis thaliana homologs, indicating a high degree of evolutionary
conservation. However, the independent clustering of some members, such as PvCDPK4.2,
suggests that these genes may have acquired species-specific functions. This allows the
development of new hypotheses that PvCDPK4.2 may be involved in specific developmental
processes (e.g. flowering or symbiotic nitrogen fixation) in P. vulgaris other than abiotic stress
response. Moreover, structural analyses showed that the PvCDPK genes collectively contained
169 introns and 195 exons. The diversity in exon-intron architecture suggests functional
divergence and evolutionary adaptation within the gene family.

Subcellular localization predictions indicated that most PvCDPK proteins are cytosolic, although
several members are also localized to the nucleus, chloroplast, peroxisome, and mitochondria.
These findings are partially consistent with previous reports in Fragaria * ananassa
(strawberry), where CDPKs localize to the plasma membrane, cytoplasm, nucleus, and
chloroplast (Crizel et al., 2020). In contrast, CDPKs in Gossypium hirsutum (cotton) were
predominantly localized in the nucleus (Lv et al., 2024), highlighting species-specific differences
in subcellular distribution and potentially distinct physiological roles.

Genomic mapping revealed widely distribution of 25 PvCDPK genes across eight chromosomes.
Notably, chromosomes Chrl, Chr2, Chr7, and Chr8 harbored a higher density of CDPK loci,
whereas others such as Chr4, Chr5, Chr6, and Chr10 lacked any PvCDPK genes. Similarly, in a
study in G. barbadense, 84 CDPK genes were reported to be widely distributed on 26
chromosomes, and in tomato, 29 CDPK genes were reported to be widely distributed on 12
chromosomes (Hu et al., 2016, Shi & Zhu, 2022). Such distribution patterns likely reflect
chromosomal rearrangements and duplications that contributed to the diversification of this gene
family during evolution.

Promoter analysis revealed that PvCDPK genes contain a large number of stress-related
regulatory elements such as MYB, MBS and LTR. The presence of a large number of these
elements suggests that CDPK genes have the potential to respond not only to salt and drought,
but also to other environmental influences such as cold, oxidative stress (Han et al., 2024). MYC
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and MY B motifs were detected in the promoter regions of all PvCDPK genes, while the MBS
element was found in 12 genes. These findings are consistent with prior studies in [pomoea
batatas (sweet potato) and wheat, where these elements have been linked to abiotic stress
tolerance (Li et al., 2022; Linghu et al., 2023), suggesting that PvCDPKs may act as upstream
regulators in stress-responsive transcriptional networks.

Gene ontology (GO) enrichment analysis provided additional insights into the functional roles of
PvCDPK genes. Biological process annotations included peptidyl-serine phosphorylation,
autophosphorylation, and intracellular signal transduction. Molecular function categories were
dominated by protein serine/threonine kinase activity, calcium ion binding, and calmodulin-
dependent protein kinase activity. Cellular component classifications indicated nuclear,
cytoplasmic, and organelle-associated localizations. These functional predictions are consistent
with recent findings in other plant systems (Li et al., 2022).

Expression profiling using RNA-Seq datasets demonstrated that PvCDPK genes exhibit distinct
tissue-specific expression patterns. For instance, PvCDPK17.1 and PvCDPK24 were exclusively
expressed in floral tissues, whereas PvCDPK 1.2 showed high expression in leaves and stems.
PvCDPKG6 displayed elevated expression in flowers, nodules, roots, and stems. These results
support the hypothesis that CDPKs function in organ development, tissue differentiation, and
stress adaptation. This is in agreement with previous reports implicating CDPKs in root
development, pollen maturation, and phytohormone signaling pathways (Li et al., 2018; Wen et
al., 2020; Li et al., 2022). Particularly, the high expression of PvCDPK6 in flower, tuber, root
and shoot raises the hypothesis that this gene may be associated with developmental transitions
and hormone signaling. This suggests that PvCDPK6 may be a regulator that responds to growth
regulators such as jasmonate or gibberellin (Xu and Huang, 2017)

To further validate these findings, qQRT-PCR analyses were conducted to assess PvCDPK gene
expression under drought and salinity stress conditions in two P. vulgaris cultivars. The results
revealed cultivar-specific and stress-dependent expression dynamics. In particular, PvCDPK 1
and PvCDPK29 were significantly upregulated in Elkoca-05 under drought stress but were
downregulated in all tissues under salinity stress. For example, PvCDPK1 and PvCDPK29 were
up-regulated only in Elkoca-05 in response to drought, indicating that these genes are regulated
by different mechanisms in response to genetic background. It is thought that these differences
may constitute the molecular basis of the variation in abiotic stress tolerance among cultivars.
This finding supports the idea that PvCDPK genes can be used as target gene candidates in the
development of lines with high stress tolerance through biotechnological applications. Notably,
PvCDPK4 was induced under both drought and salt treatments in both cultivars. These results
corroborate the RNA-Seq data and emphasize the regulatory role of PvCDPKs in abiotic stress
responses.

Collectively, this study presents the first comprehensive characterization of the CDPK gene
family in P. vulgaris, offering novel insights into their structure, evolution, regulatory potential,
and functional relevance under stress conditions. The findings provide a valuable foundation for
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future functional genomics and molecular breeding efforts aimed at enhancing stress tolerance in
common bean.

Conclusion

Genome-wide bioinformatics analysis, characterization and identification of CDPK genes of P.
vulgaris were performed using up-to-date databases and programs. 25 CDPK genes were found
in the bean genome based on the results of these investigations. Eight bean chromosomes were
identified to contain these genes. Using in silico analysis using various plant tissues, variations in
PvCDPK gene expression levels were identified. In addition, in order to strengthen in silico
analyses, two different bean cultivars were treated with salt and drought stress and their gene
expression levels were analyzed under in vitro conditions. These investigations revealed an
important correlation between PvCDPK genes and drought and salt stress. For the first time, the
function of CDPK genes—which are known to be crucial for key metabolic activities like
blooming, root growth, and fruit ripening in plants—has been studied in bean plants.

It is hoped that this comprehensive study using P. vulgaris species will make significant
contributions to the breeding research of this plant, clarify the metabolic processes and reactions
of the plant under stress, and benefit the scientists involved. Based on this study, PvCDPK4.2
may be involved in species-specific developmental regulation, and silencing this gene with
functional genetic approaches such as CRISPR/Cas9 may indicate whether it alters
developmental phenotypes. Furthermore, PvCDPK6 may be a node of hormone signaling
pathways (e.g. ABA, JA). It should be investigated how the expression of this gene changes with
hormone treatments.
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Figure 1

Distribution of PvCDPK genes on P. vulgaris chromosomes.

Black lines represent segmental duplicated genes and red lines represent tandem duplicated
genes.
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Figure 2

Phylogenetic analysis of CDPK proteins from A. thaliana (34), G. max (39) and P.
vulgaris (25).

A. thaliana is represented by a green circle, G. max by a purple square and P. vulgaris by a
maroon star. G. max sequences were obtained from Liu et al. (2016) and used. The locations

of 69 genes in group (A), 20 genes in group (B) and 9 genes in group (C) are shown.
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Figure 3

Synteny analysis between A. thaliana, G. max and P. vulgaris CDPK genes.

The red lines highlight the syntenic gene pairs between bean and Arabidopsis, while blue

lines highlight the syntenic gene pairs with G.max.

A.thaliana
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Figure 4

Structural representation of PvCDPK genes.

Manuscript to be reviewed

Maroon color represents exon and black lines represent intron regions. Sand colored parts

represent 5'and 3' UTR regions. The scale bar indicates 10kb.
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Figure 5

Conserved motif analysis in PvCDPK proteins.
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Figure 6

Cis-acting element analysis of PvCDPK genes

The elements on the genes represent those that play a role during plant stress. The different
colors of the lines indicate the various cis-acting elements within the 2 kb promoter region

located upstream of the PvCDPK gene.
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Figure 7

Interaction analysis of PvCDPK proteins both among themselves and with other proteins.
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Figure 8

Gene ontology analysis of PvCDPK proteins.

The cellular component in which it is found, the biological process in which it is involved and

the molecular functions it shows are included.
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Figure 9

3D homology models of PvCDPK proteins using Phyre2 database and by 3D modelling.

Models were visualized using rainbow colors from N to C terminus.
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Figure 10

In silico analysis of the expression status of PvCDPK genes under drought and salt stress
with control groups.
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Figure 11

In silico analysis of the expression of PvCDPK genes in root, stem, nodule, leaf and
flower tissues
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Figure 12

Expression analysis of PvCDPK genes under salt an drought stresses in two cultivars'
root and leaf (Serra and Elkoca-05) using gRT-PCR method .

*p < 0.05, *p < 0.01, **p < 0.001, ***p < 0.0001, ns: non-significant.
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Table 1l(on next page)
Characteristics of CDPK proteins in the P. vulgaris genome

pl: Theoretical isoelectric point, EF-hand: EF-hand calcium-binding domain, N-myrist:

myristoylation, N-palmit: palmitoylation, chlo: chloroplast, mito: mitochondrion, cyto: cytosol,

nucl: nuclear, pero: peroxysome
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1 Table 1. Characteristics of CDPK proteins in the P. vulgaris genome (pl: Theoretical

2 isoelectric point, EF-hand: EF-hand calcium-binding domain, N-myrist: myristoylation, N-

3 palmit: palmitoylation, chlo: chloroplast, mito: mitochondrion, cyto: cytosol, nucl: nuclear, pero:
4 peroxysome)

PvGene Name  Amino Acid MW (kDa) pl EF-hand No  N-myrist N-palmit Localization
PvCDPK1.1 575 64.55 5.09 3 No Yes chlo
PvCDPK1.2 581 64.99 5.28 4 No Yes chlo

PvCDPK?2 582 65.13 5.8 4 No Yes chlo
PvCDPK3.1 502 56.71 6.05 4 Yes Yes chlo
PvCDPK3.2 519 58.28 59 4 Yes Yes mito
PvCDPK4.1 491 55.16 543 4 No Yes mito
PvCDPK4.2 298 33.43 4.82 4 No Yes cyto

PvCDPK6 562 63.01 5.57 4 No Yes nucl

PvCDPKS 516 58.68 6.5 2 No Yes chlo, mito

PvCDPK9 525 59.10 6.3 4 Yes Yes cyto

PvCDPK10.1 537 60.89 5.96 4 No Yes cyto

PvCDPKI0.2 550 61.99 6.09 4 No Yes cyto

PvCDPKI11.1 505 56.93 5.24 4 No Yes chlo

PvCDPKI1.2 496 55.76 5.32 4 No Yes pero
PvCDPK13 531 59.76 5.86 3 No Yes cyto
PvCDPKI16 569 64.69 9.21 4 Yes Yes chlo

PvCDPK17.1 544 60.54 5.09 4 Yes Yes cyto

PvCDPK17.2 521 58.49 5.58 4 Yes Yes cyto
PvCDPK20 582 64.79 5.35 4 No Yes chlo
PvCDPK21 546 60.72 5.76 4 Yes Yes cyto
PvCDPK24 539 61.07 6.46 4 Yes Yes chlo
PvCDPK28 527 59.72 8.92 4 No Yes chlo

PvCDPK29.1 527 60.18 6.11 4 Yes Yes cyto_nucl

PvCDPK29.2 511 57.77 5.64 2 No Yes cyto
PvCDPK32 538 60.98 6.29 3 No Yes cyto

5
6
7
8
9
10
11
12
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CDPK gene family members of P.vulgaris with Arabidopsis orthologs, chromosome
locations, gene start and end point.
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1 Table 2. CDPK gene family members of P.vulgaris with Arabidopsis orthologs, chromosome

2 locations, gene start and end point.

T oo & o Gom
PvCDPKI.1 A&ig&‘g)o th“1‘0011G197700‘ PvChrl  forward 45693570 45697541
PvCDPKI.2 A&stgglzgo Phvul 0076233900 pyCie7  forward 35767288 35774697
PvCDPK?2 "*(28}1,10(626)0 Ph"“1'0071G266100' PvChi7  reverse 38724008 38729058
PvCDPK3.1 A(xgggs)o Phval003GTO1200- - pychry  reverse 31597834 31604224
PvCDPK3.2 "*(xgﬁié;)o PhV“I'OOZIG”“SOO' PvChr2  reverse 46343902 46352694
PvCDPK4.1 A(xgl())?%o P hV“1‘0071G089200' PvChr7  forward 9217140 9221899
PvCDPK4.2 A(xgg?g)o Phvul 0076089301 pyche7  forward 9223593 9231935
PvCDPKS A(ESII,I?:)O Phvul 008292300 pyChrg  forward 62964859 62973752
PvCDPKS A&Stgfl,?(‘go th“1'0071G253300' PvChi7  reverse 37518913 37524077
PvCDPK9 "*(iiggloél)o Ph"“moglG%“OO' PvChi8  reverse 61203175 61207570
PvCDPKI10.1 ‘?ﬂ&}éfg? PhV“1'0031G194100' PvChr3  reverse 41784590 41788241
PvCDPK10.2 ‘?gtl(%?fg)o PhV“1‘0091G190566' PvChr9  reverse 28940689 28945605
PvCDPKIL1 ‘?ﬂ&?f@ Phvul 002279300 pyChra  forward 44866006 44871378
PvCDPKI1.2 ‘gtlg,ﬁﬂ;) Phvul009G160100 pycirg  reverse 23666550 23672870
PvCDPKI3 ’?ngfg;;’ Ph"“l'00816098400' PvChi8  forward 10295962 10304546
PvCDPKI6 ’?nggfg;’ PhV“"OOZIGIOSmO' PvChr2  reverse 23210281 23216106
PvCDPKI7.1 ‘?gfg}é} g;) P hV“I'OOﬁGms 300 pyChr6  forward 7024909 7028768
PvCDPKI17.2 ‘?gfg,ﬁll%o PhV“I‘OOSIGZO”OO‘ PvChr8  forward 54865627 54868891
PvCDPK20 ‘?gfgigé;) Phvul 0076263100 pycir7  reverse 38623002 38629456
PvCDPK21 ‘gfgfgf;) Ph"“1'0031G078400' PvChr3  forward 12570425 12575047
PvCDPK24 ?23&3152;’ Phvul.01 11005 3400 pChril  forward 4877733 4881802
PvCDPK28 ‘?ngggé? PhV“"OO31G26 1700 puChe3  reverse 50115856 50126462
PvCDPK29.1 ‘?23&71233;) Phvul.00 L0020 pychrl forward 165997 170716
PvCDPK29.2 ‘?gtl(%ggg;) Ph"“l‘OOllGOO”OO‘ PvChrl  forward 171533 174640
PvCDPK32  AT3G57530  Phvul.001G135300. PvChrl  reverse 37388614 37393061
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Duplication events and evolutionary analysis of PvCDPK genes

(MYA: million years ago)
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1 Table 3. Duplication events and evolutionary analysis of PvCDPK genes (MY A: million
2 years ago)

Genel Gene2 Ka Ks Ka/Ks MYA Duplication Type
PvCDPKI.1 PvCDPK?2 0.17  0.64 0.27 49.11 Segmental
PvCDPK3.1 PvCDPK3.2 0.09  0.64 0.14 48.94 Segmental

PvCDPKS8 PvCDPK32 0.10  0.81 0.12 61.57 Segmental
PvCDPK10.1 PvCDPKI10.2 0.07 0.86 0.08 65.30 Segmental
PvCDPKI1.1 PvCDPKI1.2 0.08 0.74 0.11 56.19 Segmental
PvCDPK17.1 PvCDPK17.2 0.09  0.69 0.13 52.52 Segmental

PvCDPK4.1 PvCDPK4.2 0.12 042 0.28 32.09 Tandem
PvCDPK29.1 PvCDPK29.2 0.25 1.11 0.22 84.95 Tandem
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