Genome-wide identification of calcium-dependent protein kinase (CDPK) family members in Phaseolus vulgaris L. and expression analysis during abiotic stresses (#119361)

First submission

Guidance from your Editor

Please submit by 26 Jun 2025 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

12 Figure file(s)

6 Table file(s)

1 Other file(s)

DNA data checks

Have you checked the authors <u>data deposition statement</u>?

Can you access the deposited data?

Has the data been deposited correctly?

Is the deposition information noted in the manuscript?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Genome-wide identification of calcium-dependent protein kinase (CDPK) family members in Phaseolus vulgaris L. and expression analysis during abiotic stresses

Gülşen Güçlü Corresp. 1

1 Vocational School of Health, Cumhuriyet (Republik) University, Sivas, Center, Turkey

Corresponding Author: Gülşen Güçlü Email address: gulsenguclu@cumhuriyet.edu.tr

Background: Calcium-dependent protein kinases (CDPKs) constitute a family of enzymes that play crucial roles in plant signaling pathways. These kinases are activated in response to changes in calcium ions (Ca +2) concentration under stress conditions. The objective of this research, is to perform a genome- wide analysis of the *CDPK* gene family in *Phaseolus vulgaris* and evaluate the expression patterns of these genes under salt and drought stress conditions.

Methods: In this study, comprehensive bioinformatics analyses were conducted on the CDPK gene family members in *P. vulgaris* to reveal the phylogenetic relationships, chromosomal locations, structural features, motif patterns, regulatory elements in promoter regions and expression profiles of the genes in the salt and drought stresses. Results: Within this research, 25 *PvCDPK* genes were identified in the bean genome. The lengths of proteins vary between 298 and 582 amino acids, and their molecular weights range from 33.43 kDa to 65.13 kDa. The majority of the *PvCDPKs* located on a total of 8 chromosomes have 6 introns. Phylogenetic analysis indicates that PvCDPK proteins cluster in three main groups with *Arabidopsis thaliana* and *Glycine max* species. The divergence times for 6 pairs of segmental duplicated genes ranged from 48.94 million years ago (MYA) to 65.57 MYA, while tandem duplicates ranged from 32.09 to 84.95 MYA.

Conclusions: Comparative expression analysis of *PvCDPK* genes revealed varying expression levels depending on the two bean cultivars. Furthermore, these observations suggest that *PvCDPK* genes could be essential for the growth and development of bean in reaction to abiotic stresses such as drought and salt. This is the first study to investigate the CDPK gene family in P. vulgaris, and these identified genes obtained can be directly evaluated as candidate genes for marker-assisted selection or gene editing approaches. In addition, the findings are expected to contribute to the development of resilient cultivars capable of withstanding climate change.

1 **Genome-Wide Identification of Calcium-Dependent** 2 Protein Kinase (CDPK) Family Members in Phaseolus 3 vulgaris L. and Expression Analysis During Abiotic **Stresses** 5 6 7 8 Gülşen Güçlü¹ 9 10 ¹Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey 11 Corresponding Author: 12 Gülsen Güclü¹ 13 14 Sivas Cumhuriyet University, Vocational School of Health Services, Sivas, Turkey Email address: gulsenguclu@cumhuriyet.edu.tr 15 16 Abstract 17 18 **Background:** Calcium-dependent protein kinases (CDPKs) constitute a family of enzymes that play crucial roles in plant signaling pathways. These kinases are activated in response to changes 19 in calcium ions (Ca⁺²) concentration under stress conditions. The objective of this research, is to 20 perform a genome- wide analysis of the *CDPK* gene family in *Phaseolus vulgaris* and evaluate 21 22 the expression patterns of these genes under salt and drought stress conditions. 23 **Methods:** In this study, comprehensive bioinformatics analyses were conducted on the CDPK 24 gene family members in *P. vulgaris* to reveal the phylogenetic relationships, chromosomal 25 locations, structural features, motif patterns, regulatory elements in promoter regions and 26 expression profiles of the genes in the salt and drought stresses. 27 **Results:** Within this research, 25 PvCDPK genes were identified in the bean genome. The lengths of proteins vary between 298 and 582 amino acids, and their molecular weights range 28 29 from 33.43 kDa to 65.13 kDa. The majority of the *PvCDPKs* located on a total of 8 30 chromosomes have 6 introns. Phylogenetic analysis indicates that PvCDPK proteins cluster in 31 three main groups with Arabidopsis thaliana and Glycine max species. The divergence times for 32 6 pairs of segmental duplicated genes ranged from 48.94 million years ago (MYA) to 65.57 33 MYA, while tandem duplicates ranged from 32.09 to 84.95 MYA. 34 **Conclusions:** Comparative expression analysis of *PvCDPK* genes revealed varying expression levels depending on the two bean cultivars. Furthermore, these observations suggest that 35 36 PvCDPK genes could be essential for the growth and development of bean in reaction to abiotic stresses such as drought and salt. This is the first study to investigate the CDPK gene family in P. 37 vulgaris, and these identified genes obtained can be directly evaluated as candidate genes for 38

marker-assisted selection or gene editing approaches. In addition, the findings are expected to contribute to the development of resilient cultivars capable of withstanding climate change.

40 41 42

43

46

47

48 49

50

51

52

53 54

55

56

57

58 59

60

61

62 63

64

65

66 67

68 69

70

39

Introduction

44 45

Plants are continuously subjected to biotic and abiotic stresses during their developmental process. Highly complex mechanisms are activated to respond to the effects of abiotic stresses like salinity, temperature, drought, and heavy metal (Krasensky & Jonak, 2012; Takahashi et al., 2020). In this way, plant adaptation develops rapidly and the negative effects are minimized. Secondary messengers play important roles in providing this adaptation. Ca⁺², one of these secondary messengers, is an ion that undergoes alterations in plants during stress and is crucial to plant growth (Rav, 2017). Proteins that detect changes in the cytoplasmic Ca⁺² content inducing a phosphorylation process in the plant, which starts the reaction of signaling pathways (Boudsoca et al., 2010; Valmonte et al., 2014; Luan & Wang, 2021). Ca⁺²-dependent protein kinases (CDPKs), calmodulin (CaM), calcineurin B-like proteins and CAM-like proteins (CMLs) are some of the classes of Ca^{+2} -binding proteins in plants (*Ranty et al.*, 2016; *Mohanta et al.*, 2017). Particularly, CDPKs are crucial calcium-binding proteins that are only present in protists, green algae, and plants—not in fungi or animals (*Hamel et al.*, 2014; Wang et al., 2015b). Ca⁺², whose concentration varies under stress, binds to the CaM-like domain to activate CDPKs, which allow the plant to react appropriately throughout growth and development (Wang et al., 2015a). Researchs are showing that CDPKs are effective under stress conditions. In rice (Oryza sativa), OsCDPK4 has been reported to protect the cell membrane from oxidative damage and thus increase salt and drought tolerance (Campo et al., 2014). AtCPK28 was revealed to decode cold-affected Ca⁺² signals in *Arabidopsis thaliana* and increase plant resistance to cold by phosphorylating Nin-Like Protein 7 (NPL7) (Shi et al., 2018; Ding et al., 2022). In another study, it was reported that the transcription of TaCDPK25-U-AS1 and TaCDPK25-U-AS2 increased under drought stress in wheat (Triticum aestivum) and this increased the drought resistance of the plant (*Linghu et al.*, 2023). It has been revealed that FaCDPK1 and FaCDPK3, FaCDPK4 and FaCDPK11, which are among the CDPKs in strawberry (Fragaria x ananassa), form a strong response to salt, while FaCDPK4 and FaCDPK11 form a strong response to drought, and that drought-related genes are significantly affected by ABA treatment. It was also claimed that this may affect drought-related proteins (Crizel et al., 2020).

71

Phaselous vulgaris (common bean) belongs to the family Fabaceae, which has 640 genera and is

72 a member of the genus *Phaselous*, which is known to have 240 species (*Broughton et al.*, 2003).

73 Common bean is a plant of high nutritional value and economic importance that is widely grown

74 and consumed worldwide. Among the common causes of crop loss in *P. vulgaris*, abiotic stress

factors such as salinity and drought play a significant role. 75

76 The present study utilized bioinformatics data to identify and characterize the CDPK genes in

77 beans. Additionally, the qRT-PCR technique was utilized to clarify the functions of these genes

in response to drought and salt stressors. Furthermore, this study provides molecular targets for 78

the development of stress-tolerant bean varieties. The characterization of these genes provides a integrative understanding of bean metabolism.

81 82

Materials & Methods

83 84

Identification of *PvCDPK* gene family and analysis of basic parameters

- 85 Amino acid sequences of the *P. vulgaris CDPK* gene family were retrieved from the Phytozome
- 86 v12.1 database (https://phytozome-next.jgi.doe.gov/) under accession number PF03492
- 87 (http://pfam.xfam.org). The genomes of A. thaliana and Glycine max were examined in the same
- 88 database to identify potential CDPK proteins (Lamesch et al., 2012; Valliyodan et al., 2019). The
- 89 default configurations of the Hidden Markov Model (HMM) validated the CDPK protein
- 90 sequences. Table S1 enumerates the CDPK protein sequences of various plants. The HMMER
- 91 database (http://www.ebi.ac.uk) was utilized to examine the CDPK domains within the
- 92 sequences. The amino acid count, molecular weight, and other properties of the CDPK proteins
- 93 were assessed utilizing the "ProtParam tool" (https://www.expasy.org/protparam/). The
- 94 phylogenetic studies employed the neighbor-joining (NJ) technique with a bootstrap value of
- 95 1000 replicates. The ClustalW algorithm was employed to align the PvCDPK protein sequences
- 96 (Thompson et al., 1997). Evolutionary diagrams were produced via MEGA v7 (Tamura et al.,
- 97 2011). The iTOL database was utilised to construct the phylogenetic tree (*Letunic & Bork*,
- 98 *2011*).

99 100

- The discovery of PvCDPK members, their structures, chromosome locations,
- and gene duplications; Comparative mapping with A. thaliana and G. max;
- 102 and the conserved motif
- 103 The coding and non-coding sections of the *PvCDPK* gene were retrieved utilizing the Gene
- Structure Display v2.0 web tool using the genomic and CDS sequences (http://gsds.gao-lab.org/)
- 105 (Hu et al., 2015). The positions of PvCDPK genes on the chromosome were derived from the
- 106 Phytozome v12.1 database (https://phytozome-next.jgi.doe.gov/). *PvCDPK* genes were
- delineated on each chromosome of *P. vulgaris* utilizing MapChart (*Voorrips*, 2002). MCScanX
- 108 (The Multiple Collinearity Scan Toolkit) (Wang et al., 2012), utilizing default settings, determine
- the orthologous relationship between *P. vulgaris* and *G. max CDPK* gene.
- 110 The substitution ratios (Ka, Ks, and Ka/Ks) between duplicate pairs of *PvCDPK* genes were
- estimated using PAL2NAL (http://www.bork.embl.de/pal2nal/#Ref) (Suyama et al., 2006) and
- AML interface tool (http://abacus.gene.ucl.ac.uk/software/paml.html) (Yang, 2007). Synteny
- 113 maps were made with TBtools (Chen et al., 2020). $T = Ks/2\lambda$ ($\lambda = 6.56E-9$) was used to estimate
- 114 CDPK gene duplication and divergence time (Mya) (Yang & Nielsen, 2000; Lynch & Conery
- 115 *2003*).
- 116 To uncover more conserved PvCDPK protein motifs, the "MEME Tool" (https://meme-
- suite.org/meme/index.html) was used (*Bailey et al., 2006*). The parameters 2, 50, and 10 were

- 118 used for minimum and maximum width and maximum number of motifs, respectively. There are
- 119 200–300 theme zones. Area distribution repetitions might be any number. Motifs were analyzed
- with the InterPro database as outlined by Quevillon et al., (2005). The WEBLOGO online web
- tool (http://weblogo.berkeley.edu/logo.cgi) produced CDPK domain sequence logos for
- 122 conserved area sequence analysis (*Crooks et al., 2004*).
- Subcellular Localization and Analysis of cis-acting Elements of PvCDPK Gene
- 124 Family

131132

137

148

- The upstream sections (Table S1) containing 2-kb DNA segments of each *PvCDPK* gene family
- 126 member were analysed using the PlantCARE
- 127 (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) database for cis-acting element
- analysis (*Lescot et al.*, 2002). A figure showing cis-acting elements was generated using
- TBTools (*Chen et al., 2020*). WoLF PSORT (https://wolfpsort.hgc.jp) predictor was used to
- predict the subcellular localization of PvCDPK proteins (*Horton et al., 2007*).

Bean Homology Modeling for CDPK Proteins

- The Phyre2 database (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index) was used to
- acquire the 3D structures, and protein homology modeling was obtained using previously
- identified CDPK protein sequences (*Kelley et al., 2015*). The best 3D image was obtained by
- 136 comparing the protein models' reliability rates.

An analysis of the ontology of genes and the links between CDPK proteins in

- 139 *P. vulgaris*
- 140 Protein–protein interactions were examined to ascertain their functional and physical
- relationships using the STRING (https://string-db.org) database. The obtained information was
- 142 categorized and integrated with the confidence level for every interaction between proteins. The
- 143 Cytoscape program changed the way that proteins interact with one another (Shannon et al.,
- 144 2003). An essential prerequisite for the functional annotation of novel sequence data in plant
- biotechnology research is the deployment of functional genomics techniques. Ontology data for
- 146 PvCDPK genes were acquired using the Blast2GO program, and this information was utilized to
- 147 access the functional characteristics of PvCDPK proteins (*Conesa et al., 2005*).

149 In Silico Gene Expression Analysis

- 150 RNA-seq data of *P. vulgaris* under salt and drought stress was taken from NCBI's SRA
- 151 collection. The used accession numbers were SRR957668 (leaf subjected to salt stress),
- 152 SRR958469 (leaf salt control) (*Hiz et al., 2014*), SRR8284481 (leaf subjected to drought stress),
- and SRR8284480 (leaf drought control). Gene expression data were normalized utilising reads
- per kilobase of transcript per million mapped reads (RPKM) (*Mortazavi et al., 2008*). The
- Orange software (*Demsar et al.*, 2013) was employed to transform the RPKM data to log2 and
- 156 generate a heatmap.

157158

Experimental Plant Materials and Treatments

- The *P. vulgaris* cultivars "Elkoca-05" and "Serra" employed in this study were obtained from the
- 160 Molecular Biology and Genetics Department, Erzurum Technical University. The genotype-
- specific seeds underwent surface sterilization for 5-7 minutes with a 1% (v/v) NaOCl solution.
- Subsequently, perlite was utilized for the germination process. The seedlings were relocated to a
- hydroponic medium comprising 0.2 L of modified 1/10 Hoagland solution upon attaining the
- developmental stage specified by Büyük et al., (2019). *P.vulgaris* seedlings were grown at 25 °C
- and 70% relative humidity in a controlled cultivation room with light and a photosynthetic
- photon flux of 250 mmol m⁻² s⁻¹. After bean seedlings reached the first trifoliate stage in the
- growth chamber, the control group was treated with 0 mM NaCl and the stress treatment group
- was subjected to salt stress for nine days using Hoaglands solution and 150 mM NaCl (for
- medium salinity stress). Concurrently, drought-stressed bean plants grown in the same conditions
- were kept for 24 hours in Hoagland solution that was treated with either 0 (control) or 20%
- 171 PEG6000 (Aygören et al., 2023). Two different common bean cultivars' root and leaf tissues
- were taken after the ninth day of stress treatment. Following the specified duration, the leaf
- 173 tissue of the bean genotypes was stored in liquid nitrogen and preserved at -80 °C until the
- analysis was performed. Three biological replicates of the bean genotypes utilized in the study
- were cultivated, and these replicates were employed for qRT-PCR analysis. The root and leaf
- 176 tissues were subjected to distinct qPCR analyses.

177178

In vitro qRT-PCR Analysis

- 179 Trizol Reagent (Invitrogen Life Technologies, ABD) was used to extract total RNAs. The
- Multiskan Go spectrophotometer (Thermo Fisher Scientific, Vantaa, Finland) was employed to
- quantify RNA, while a 1.5% agarose gel was utilized to evaluate the quality of the sample. In
- order to carry out complementary DNA synthesis, the SensiFAST cDNA Synthesis Kit (Cat No:
- 183 Bio-65053, UK) was utilized, following the instructions provided by the manufacturer. The qRT-
- PCR study was focused on five *PvCDPK* genes that were selected from the RNAseg data. The
- 185 qRT-PCR reactions were conducted using the RotorGene Q Real-Time PCR System (Corbett
- 186 Research, Qiagen GmbH, Germany) and ABT SYBR Green Mix (Cat. No.: Q03-02-01, Ankara,
- 187 Turkey). A total of 20 μL of qRT-PCR mix was used, including 10 μL of ABT SYBR Green Mix
- 188 (2x), $0.4 \mu L$ of each primer (1 μM forward and reverse), and 200 ng cDNA. The reaction was
- carried out as follows; 10 min. at 95°C to be 1 cycle;15 sec. at 94°C, 30 sec. at 60 °C, 30 sec. at
- 190 72°C, to be 40 cycles.
- 191 The housekeeping gene used was the β -actin gene from P. vulgaris. The $2^{-\Delta\Delta CT}$ technique for
- relative quantification was used to standardize the qRT-PCR data (*Livak & Schmittgen, 2001*).
- 193 Information on the primers used in this study is presented in Table S2. Two-way analysis of
- variance (ANOVA) with Dunnett's test at the 0.05 significant level was utilized to conduct
- statistical studies in GraphPad Prism 7.

196

197 **Results**

198

199 Identification and Physicochemical Characteristics of CDPK Gene Family in *P. vulgaris*

- 200 Here, 25 CDPKs were identified in *P.vulgaris* genome through bioinformatics tools and renamed
- 201 PvCDPK1.1 to PvCDPK32 according to their locations on chromosomes. The number of amino
- acids, protein molecular weight and theoretical pI (isoelectric point) of the proteins were
- identified (Table 1). The number of amino acid sequence lengths of *PvCDPK*s ranged from 298
- 204 (PvCDPK4.2) to 582 (PvCDPK2). The molecular weights ranged from 33.43 kDa (PvCDPK4.2)
- to 65.13 kDa (PvCDPK2) and the pI values ranged from 4.82 (PvCDPK4.2) to 9.21
- 206 (*PvCDPK16*).

207208

Chromosomal location and duplication events

- The 25 PvCDPK genes were distributed unevenly on eight chromosomes: Chr1 (4 genes), Chr2
- 210 (4 genes), Chr3 (3 genes), Chr6 (1 gene), Chr7 (6 genes), Chr8 (4 genes), Chr9 (2 genes), and
- 211 Chr11 (1 gene) but not on the other chromosomes (4,5,6 and 10) of common bean (Table 2).
- 212 The investigation of gene duplication revealed that; PvCDPK1.1/PvCDPK2 and PvCDPK3.1/
- 213 PvCDPK3.2 genes had a Ks value of 0.64, PvCDPK8/PvCDPK32 genes had a Ks value of 0.81,
- 214 *PvCDPK10.1/PvCDPK10.2* genes with 0.86 Ks, *PvCDPK11.1/PvCDPK11.2* genes with 0.74
- 215 Ks and PvCDPK17.1/PvCDPK17.2 genes with 0.69 Ks. PvCDPK4.1 / PvCDPK4.2 and
- 216 PvCDPK29.1/PvCDPK29.2 genes were found to be tandemly duplicated with Ks values of 0.42
- and 1.11, respectively (Table 3). These genes had Ks/Ks ratios ranging from 0.08 to 0.28.
- 218 Natural selection during duplication events is represented by values equal to 1, purifying
- 219 selection is indicated by values less than 1, and positive selection in the evolutionary process is
- shown by Ka/Ks values greater than 1 (*Juretic et al., 2005*). Accordingly, it can be said that all
- 221 PvCDPK genes are subjected to purifying selection (Fig. 1). The fact that PvCDPK genes were
- subjected to purifying selection suggests that this gene family was effective in the expansion of
- 223 this plant genome.
- In addition, the differentiation time of 6 pairs of segmental duplicated genes ranged from 48.94
- 225 million years ago (MYA) to 65.57, while tandem pairs ranged from 32.09 to 84.95 MYA.

226227

228

Phylogenetic Relationships and synteny analysis of *PvCDPK*s in *P.vulgaris* and different

- Using the protein sequences from the common bean, A. thaliana, and G. max, a phylogenetic tree
- was created to ascertain the phylogenetic relationships for the bean's *CDPK* gene family. A total
- of 98 protein sequences, 25 of which belong to *P.vulgaris*, 34 of which belong to *Arabidopsis*
- and 39 of which belong to *G.max*, were used in the phylogenetic analysis. As illustrated in Fig.1,
- the genes were clustered into three major subfamilies: A, B and C. Group A is the largest with 69
- 234 genes while Group C is the smallest with 9 genes. PvCDPK4.2 was noticed relatively
- 235 independently of other *PvCDPKs*. Within the three groups formed in this phylogenetic tree,

- 236 which is important in explaining the molecular evolutionary process, it is seen that PvCDPK
- 237 genes are homologously distributed, especially with AtCDPK genes (Fig. 2).
- 238 Synteny analysis was performed to examine shared structural changes in the genome, including
- 239 chromosomal fission and fusion. The analyses revealed 57 syntenic relationships between
- 240 *P. vulgaris* and *G. max* and 23 syntenic relationships between *P. vulgaris* and *A. thaliana*. While a
- 241 syntenic relationship was found between all PvCDPK genes and G.max genes, no syntenic
- 242 relationship was found between AtCDPK genes and PvCDPK genes only in PvChr-6. This
- indicates a strong evolutionary similarity between *G.max* and *P.vulgaris*. It can also be said that
- 244 there is a strong syntenic relationship between A. thaliana and P. vulgaris in terms of
- 245 chromosomal significance. In addition, *CDPK* genes are equally distributed in these genomes,
- 246 indicating that these gene pairs are widely distributed within the genomes (Fig. 3).

247248

Gene structure and motif analysis of PvCDPK gene family

- 249 The gene structure analysis indicated that all 25 PvCDPK gene family members contain total 169
- introns and 195 exons. PvCDPK16 and PvCDPK28 have 11 introns, PvCDPK3.1, PvCDPK3.2,
- 251 *PvCDPK8, PvCDPK9, PvCDPK17.1, PvCDPK17.2, PvCDPK21, PvCDPK24, PvCDPK29.1,*
- 252 PvCDPK29.2 and PvCDPK32 have seven introns, PvCDPK1.1, PvCDPK1.2, PvCDPK2,
- 253 PvCDPK4.1, PvCDPK6, PvCDPK10.1, PvCDPK10.2, PvCDPK11.1, PvCDPK11.2, PvCDPK13
- and PvCDPK20 have six introns and PvCDPK4.2 has five introns (Fig.4).
- 255 A total of 10 conserved motifs were identified with lengths ranging in length from 8 to 50 amino
- acids using MEME (Fig 5; Table S1). All proteins were discovered to include the motifs 2,5 and
- 7 whereas other motifs were identified only in specific subgroups (Fig.4). As an example, motif
- 8 only found in one subgroup (Fig.4). Except PvCDPK16 and PvCDPK28 all PvCDPKs have
- 259 four motif 2.

260261

Analysis of *PvCDPK*s promoter cis-elements

- The regulatory mechanisms of PvCDPK genes were explored by analyzing the $\frac{2 \text{ kb}}{2 \text{ kb}}$ upstream
- sequences from their start codons for cis-regulatory element composition.
- As a direct result, a total of 341 cis-acting regulatory elements were identified in the promoters
- of *PvCDPK* genes (Fig.6; Table S1.) In addition, a total of 14 cis-acting regulatory elements
- were identified in the promoters of *PvCDPK* genes. The cis-acting elements were divided into
- four main categories: abiotic/biotic stress-responsive including 11 elements (MYB, MBS, LTR,
- 268 etc.), development including elements (CCAAT-box) core elements and binding sites (W box)
- and hormonal-responsive (as-1) including only one elements.
- 270 The greatest number of cis acting elements were determined in MYC and MYB and these
- elements together with MBS element are associated with drought stress defense. While MYC
- and MYB were found in all genes, MBS was found to be associated with PvCDPK -1.2, -3.1, -
- 273 4.1, -4.2, -9, -10, -11.1, -13, -17.1, -20, -29.1 and -29.2 genes. Biotic and abiotic stress
- 274 represented by the highest number of elements indicating *PvCDPK* genes have important roles in

- 275 response to biotic and abiotic stress (Fig.6; Table S1.). Considering this viewpoint, it is likely
- 276 that these *PvCDPKs* participate in multiple biological functions.
- 277 Three-dimensional homology modelling, Protein Interaction Network of PvCDPKs' and
- 278 GO analysis
- 279 Proteins interact with each other to achieve their roles, thus understanding the linkages and how
- 280 intricate biological processes work is crucial. PvCDPK protein sequences were used to identify
- 281 their PPIs using the STRING interface. Here, it was found that 25 proteins interacted with five
- 282 different common bean proteins. These proteins were V7BRL4 PHAVU-Phvul.006G142500
- and V7BS13_PHAVU-Phvul.006G157600 (calcium binding protein 39), V7BH71_PHAVU-
- Phvul.007G22340 (heat stress transcription factor A-3), V7CME5 PHAVU-Phvul.002G160700
- 285 (respiratory burst oxidase homolog protein F-related) and V7CPP5 PHAVU-Phvul.002G293700
- 286 (PTHR11972/PTHR11972:SF81 NADPH oxidase) (Fig. 7; Table S1). All PvCDPK proteins
- interacted with V7CME5 PHAVU-Phvul.002G160700. PvCDPK17.1 and PvCDPK17.2
- interacted with PvCDPK24. Remaining proteins showed no interaction within each other.
- 289 Gene ontology helps to understand gene function by comparing it to known function genes in
- other species. In the biological process, *PvCDPK* genes are enriched in the peptidyl-serine
- 291 phosphorylation, protein autophosphorylation and intracellular signal transduction. Cellular
- 292 component category included nucleus, cytoplasm and intracellular anatomical structure. Protein
- 293 serine kinase activity, calcium ion binding activity, calmodulin-dependent protein kinase
- 294 activity, calmodulin binding activity and calcium-dependent protein serine/threonine kinase
- activity were categorized in molecular function (Fig. 8; Table S1).

Homology Modeling of PvCDPK Proteins

- 298 CDPK proteins were identified through Phyre2 database and homology modelling was visualized
- by 3D modelling method. The study's identified proteins' 3D homology models are shown in Fig.
- 300 9.

301

302

296 297

In silico Expression Profiles of PvCDPK gene family drought and salt stress

- 303 Throughout their period of development and growth, plants are greatly impacted by a wide
- variety of environmental conditions, including low temperatures, high salt, and drought.
- 305 Expression pattern analysis can help understand the biological functions of *PvCDPK* in tissue
- 306 specific or abiotic stresses such as salt and drought. To comprehensively analyze the mRNA
- expressions of PvCDPK genes, RNA-Seq data from four normal and treatment samples from the
- 308 NCBI SRA database were obtained and FPKM values of 25 PvCDPK genes were evaluated.
- 309 Five different tissues were taken for evaluation in this study. All the PvCDPK genes expressed at
- 310 least in one tissue. Different PvCDPK genes revealed differential expression patterns. For
- 311 example, only *PvCDPK17.1* and *PvCDPK24* displayed expression in flowers but no other
- 312 tissues. PvCDPK11.2 was the most expressed PvCDPK in leaves and stem whereas PvCDPK6
- 313 expressed significantly in flowers, nodules, root and stem (Fig. 10a; Table S1). With these
- findings, it can be said that CDPK genes actively contribute to bean organ development.

- In this study, *in silico* gene expression analysis under drought and salt stresses were determined.
- 316 PvCDPK16 and PvCDPK6 expressions were higher than control plants compared to drought and
- 317 salt treated plants. PvCDPK11.2, PvCDPK10.2, PvCDPK32, PvCDPK21, PvCDPK13 and
- 318 PvCDPK10.1 genes expressed higher than control under drought stress however these genes
- 319 expressions showed lower expression under salt stress (Fig 10b; Table S1). PvCDPK28 and
- 320 PvCDPK3.2 induced after salt treatments but their expressions reduced after drought treatment.
- No important change was determined in the expression patterns of other gene. On the other hand,
- 322 among these genes only *PvCDPK10.2* expression displayed the same expression level between
- 323 control and treated plants. These findings suggest that PvCDPKs may be involved in the
- 324 response to a range of abiotic stresses, with different genes displaying distinct responses to
- 325 stress.

326 327 **qRT-PCR** analyses

328

- In this study, common bean seedlings were treated with drought and salt to examine the function
- 329 of *PvCDPK* gene members. Here, two cultivars Elkoca-05 and Serra were used. qRT-PCR
- analyses were performed for 5 specific primers (PvCDPK1, PvCDPK4, PvCDPK10, PvCDPK20
- and PvCDPK29) designed using RNAseq data and the results are shown in Figure 11. Firstly, it
- was determined that no non-specific results were obtained in the negative control analyses
- performed in qPCR. Under drought stress PvCDPK1, PvCDPK4, PvCDPK10 and PvCDPK29
- genes expressions were increased in Elkoca-05. However, there was no significant change in the
- 335 expressions of *PvCDPK* analyzed, *PvCDPK* genes in Serra neither in leave nor in root.
- 336 Under salt stress different expression patterns was observed compared to drought stress.
- 337 PvCDPK1 and PvCDPK29 induced in leaf while PvCDPK4 induced in root in Serra cultivar.
- 338 Besides *PvCDPK4* expression also increased in Elkoca-05 root. No significant change was
- observed for *PvCDPK4* expression in leaf under salt stress both in Serra and Elkoca-05.
- 340 As a result, while gene expression levels of *PvCDPK* gene family members differed according to
- 341 cultivars, the same genes examined in drought stress did not differ in Elkoca-05 cultivar
- according to tissues. Although the expression levels of *PvCDPK1* and *PvCDPK29* in Elkoca-05
- 343 cultivar increased in drought stress treatment their expression decreased in salt treatment in all
- 344 tissues. PvCDPK4 induced both under drought and salt stress in both two cultivars. These
- 345 findings are in agreement with *in silico* analyses.

346347

348

Discussion

- 349 *Phaseolus vulgaris* (common bean), a legume species of high economic importance, serves as a
 - 350 major dietary protein and nutrient source globally. However, abiotic stressors—particularly
 - 351 salinity and drought—pose significant threats to its yield and productivity. While previous
 - genome-wide studies in *P. vulgaris* have identified various gene families (*Büyük et al., 2019*;
 - 353 Akbulut et al., 2022; Aygören et al., 2022; de Souza Resende et al., 2022; Muslu et al., 2023;
 - 354 Aygören et al., 2023; Chakraborty et al., 2023; Kasapoğlu et al., 2024), comprehensive

- investigations on Ca²⁺-related gene families remain limited. The present study provides the first
- genome-wide identification and systematic characterization of the CDPK gene family in P.
- 357 *vulgaris*. The findings provide important clues to the potential functions of the gene family in
- 358 both evolutionary conservation and stress responses.
- 359 *CDPKs*, similar to transcription factors, are key regulators of gene expression and mediate
- diverse physiological responses through calcium signaling. These kinases are activated by
- intracellular Ca²⁺ fluctuations and play essential roles in the perception and transduction of
- 362 abiotic stress signals. Previous reports have documented varying numbers of CDPK genes across
- 363 plant species, ranging from 11 to 85 (Cheng et al., 2002; Ray et al., 2007; Wang et al., 2016;
- 364 *Crizel et al.*, 2020; Fan et al., 2023; Linghu et al., 2023; Yang et al., 2023; Burra et al., 2023;
- 365 Xiong et al., 2024). In this study, 25 PvCDPK genes were identified, a number consistent with
- 366 findings in related species.
- 367 Phylogenetic analysis revealed that the PvCDPK proteins clustered into three main clades
- 368 together with their *Arabidopsis thaliana* homologs, indicating a high degree of evolutionary
- 369 conservation. However, the independent clustering of some members, such as PvCDPK4.2,
- 370 suggests that these genes may have acquired species-specific functions. This allows the
- 371 development of new hypotheses that PvCDPK4.2 may be involved in specific developmental
- processes (e.g. flowering or symbiotic nitrogen fixation) in P. vulgaris other than abiotic stress
- 373 response. Moreover, structural analyses showed that the *PvCDPK* genes collectively contained
- 374 169 introns and 195 exons. The diversity in exon-intron architecture suggests functional
- 375 divergence and evolutionary adaptation within the gene family.
- 376 Subcellular localization predictions indicated that most PvCDPK proteins are cytosolic, although
- 377 several members are also localized to the nucleus, chloroplast, peroxisome, and mitochondria.
- 378 These findings are partially consistent with previous reports in Fragaria \times ananassa
- 379 (strawberry), where CDPKs localize to the plasma membrane, cytoplasm, nucleus, and
- 380 chloroplast (*Crizel et al., 2020*). In contrast, CDPKs in *Gossypium hirsutum* (cotton) were
- predominantly localized in the nucleus (Lv et al., 2024), highlighting species-specific differences
- in subcellular distribution and potentially distinct physiological roles.
- 383 Genomic mapping revealed widely distribution of 25 *PvCDPK* genes across eight chromosomes.
- Notably, chromosomes Chr1, Chr2, Chr7, and Chr8 harbored a higher density of CDPK loci,
- whereas others such as Chr4, Chr5, Chr6, and Chr10 lacked any *PvCDPK* genes. Similarly, in a
- study in G. barbadense, 84 CDPK genes were reported to be widely distributed on 26
- chromosomes, and in tomato, 29 CDPK genes were reported to be widely distributed on 12
- 388 chromosomes (*Hu et al.*, 2016; *Shi & Zhu*, 2022). Such distribution patterns likely reflect
- 389 chromosomal rearrangements and duplications that contributed to the diversification of this gene
- 390 family during evolution.
- 391 Promoter analysis revealed that PvCDPK genes contain a large number of stress-related
- 392 regulatory elements such as MYB, MBS and LTR. The presence of a large number of these
- 393 elements suggests that CDPK genes have the potential to respond not only to salt and drought,
- but also to other environmental influences such as cold, oxidative stress (*Han et al.*, 2024). MYC

- and MYB motifs were detected in the promoter regions of all PvCDPK genes, while the MBS
- 396 element was found in 12 genes. These findings are consistent with prior studies in *Ipomoea*
- 397 batatas (sweet potato) and wheat, where these elements have been linked to abiotic stress
- 398 tolerance (Li et al., 2022; Linghu et al., 2023), suggesting that PvCDPKs may act as upstream
- 399 regulators in stress-responsive transcriptional networks.
- 400 Gene ontology (GO) enrichment analysis provided additional insights into the functional roles of
- 401 PvCDPK genes. Biological process annotations included peptidyl-serine phosphorylation,
- 402 autophosphorylation, and intracellular signal transduction. Molecular function categories were
- 403 dominated by protein serine/threonine kinase activity, calcium ion binding, and calmodulin-
- 404 dependent protein kinase activity. Cellular component classifications indicated nuclear,
- 405 cytoplasmic, and organelle-associated localizations. These functional predictions are consistent
- 406 with recent findings in other plant systems (*Li et al.*, 2022).
- Expression profiling using RNA-Seq datasets demonstrated that *PvCDPK* genes exhibit distinct
- 408 tissue-specific expression patterns. For instance, *PvCDPK17.1* and *PvCDPK24* were exclusively
- expressed in floral tissues, whereas *PvCDPK11.2* showed high expression in leaves and stems.
- 410 PvCDPK6 displayed elevated expression in flowers, nodules, roots, and stems. These results
- support the hypothesis that CDPKs function in organ development, tissue differentiation, and
- 412 stress adaptation. This is in agreement with previous reports implicating CDPKs in root
- development, pollen maturation, and phytohormone signaling pathways (Li et al., 2018; Wen et
- 414 al., 2020; Li et al., 2022). Particularly, the high expression of PvCDPK6 in flower, tuber, root
- and shoot raises the hypothesis that this gene may be associated with developmental transitions
- and hormone signaling. This suggests that *PvCDPK6* may be a regulator that responds to growth
- 417 regulators such as jasmonate or gibberellin (*Xu and Huang*, 2017)
- 418 To further validate these findings, qRT-PCR analyses were conducted to assess *PvCDPK* gene
- 419 expression under drought and salinity stress conditions in two *P. vulgaris* cultivars. The results
- 420 revealed cultivar-specific and stress-dependent expression dynamics. In particular, PvCDPK1
- and *PvCDPK29* were significantly upregulated in Elkoca-05 under drought stress but were
- downregulated in all tissues under salinity stress. For example, PvCDPK1 and PvCDPK29 were
- 423 up-regulated only in Elkoca-05 in response to drought, indicating that these genes are regulated
- by different mechanisms in response to genetic background. It is thought that these differences
- 425 may constitute the molecular basis of the variation in abiotic stress tolerance among cultivars.
- 426 This finding supports the idea that PvCDPK genes can be used as target gene candidates in the
- 427 development of lines with high stress tolerance through biotechnological applications. Notably,
- 428 PvCDPK4 was induced under both drought and salt treatments in both cultivars. These results
- 429 corroborate the RNA-Seq data and emphasize the regulatory role of *PvCDPKs* in abiotic stress
- 430 responses.
- 431 Collectively, this study presents the first comprehensive characterization of the CDPK gene
- family in *P. vulgaris*, offering novel insights into their structure, evolution, regulatory potential,
- and functional relevance under stress conditions. The findings provide a valuable foundation for

434	future functional genomics and molecular breeding efforts aimed at enhancing stress tolerance in
435	common bean.
436	
437	Conclusion
438	Genome-wide bioinformatics analysis, characterization and identification of <i>CDPK</i> genes of <i>P</i> .
439	vulgaris were performed using up-to-date databases and programs. 25 CDPK genes were found
440	in the bean genome based on the results of these investigations. Eight bean chromosomes were
441	identified to contain these genes. Using in silico analysis using various plant tissues, variations in
442	PvCDPK gene expression levels were identified. In addition, in order to strengthen in silico
443	analyses, two different bean cultivars were treated with salt and drought stress and their gene
444	expression levels were analyzed under <i>in vitro</i> conditions. These investigations revealed an
445	important correlation between <i>PvCDPK</i> genes and drought and salt stress. For the first time, the
446	function of <i>CDPK</i> genes—which are known to be crucial for key metabolic activities like
447	blooming, root growth, and fruit ripening in plants—has been studied in bean plants.
448	It is hoped that this comprehensive study using <i>P. vulgaris</i> species will make significant
449 450	contributions to the breeding research of this plant, clarify the metabolic processes and reactions
450 451	of the plant under stress, and benefit the scientists involved. Based on this study, <i>PvCDPK4.2</i> may be involved in species-specific developmental regulation, and silencing this gene with
452	functional genetic approaches such as CRISPR/Cas9 may indicate whether it alters
453	developmental phenotypes. Furthermore, <i>PvCDPK6</i> may be a node of hormone signaling
454	pathways (e.g. ABA, JA). It should be investigated how the expression of this gene changes with
455	hormone treatments.
456	
457	Funding information
458	This study was not founded by any organization.
459	
460	Conflicts of interest
461	The author declare no conflict of interest.
462	
463	References
464	recording 5
465	Akbulut SE, Okay A, Aksoy T, Aras ES, Büyük İ. 2022. The genome-wide characterization of
466	WOX gene family in <i>Phaseolus vulgaris</i> L. during salt stress. <i>Physiology and Molecular</i>
467	Biology of Plants 28:1297–1309 DOI: 10.1007/s12298-022-01208-1.
468	Aygören AS, Aydinyurt R, Uçar S, Kasapoğlu AG, Yaprak E, Öner BM, Muslu S, Isiyel M,
469	İlhan E, Aydin M, Turan M. 2022. Genome-wide analysis and characterization of the pif
470	gene family under salt and drought stress in common beans (Phaseolus vulgaris L.). Türkiye
471	Tarımsal Araştırmalar Dergisi 9: 274–285 DOI: 10.19159/tutad.1109558.
472	Aygören AS, Güneş E, Muslu S, Kasapoğlu AG, Yiğider E, Aydın M, Büyük İ, İlhan E.
473	2023. Genome-wide analysis and characterization of SABATH gene family in <i>Phaseolus</i>

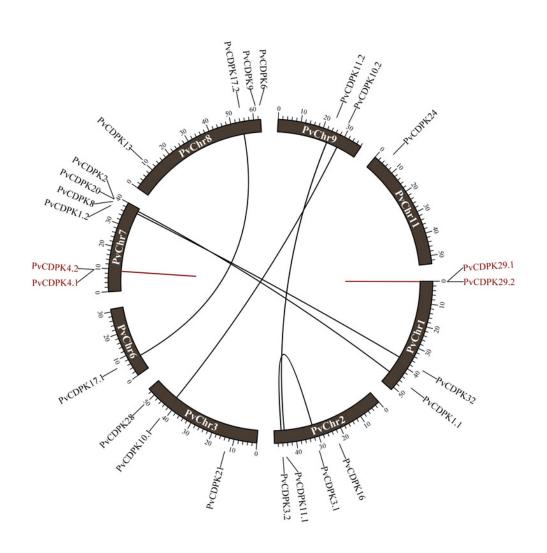
- *vulgaris* genotypes subject to melatonin under drought and salinity stresses. *Plant Molecular*
- 475 *Biology Reporter* **41**:242–259 DOI: 10.1007/s11105-022-01363-5.
- 476 Bailey TL, Williams N, Misleh C, Li WW. 2006. MEME: discovering and analyzing DNA and
- protein sequence motifs. *Nucleic Acids Research* **34:**W369–W373 DOI: 10.1093/nar/gkl198.
- 478 Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng S-H,
- Sheen J. 2010. Differential innate immune signalling via Ca2+ sensor protein kinases. *Nature*480 464:418–422 DOI: 10.1038/nature08794.
- 481 Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J. 2003. Beans
- 482 (*Phaseolus* spp.) model food legumes. *Plant and Soil* **252**(1): 55–128
- 483 DOI:10.1023/A:1024146710611
- 484 Burra S, Rajeshwari KVN, Suma S. 2023. Genome-wide identification, characterization, and
- phylogenetic analysis of calcium-dependent protein kinase in *Zea mays*. *Chelonian Research*
- 486 Foundation **18(2):**1424–1434.
- 487 Büyük İ, İlhan E, Şener D, Özsoy AU, Aras S. 2019. Genome-wide identification of CAMTA
- gene family members in *Phaseolus vulgaris* L. and their expression profiling during salt
- 489 stress. *Molecular Biology Reports* **46:**2721–2732 DOI: 10.1007/s11033-019-04716-8.
- 490 Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, Segundo BS. 2014. Overexpression
- of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing
- membrane lipid peroxidation. *Plant Physiology* **165**:688–704 DOI: 10.1104/pp.113.230268.
- 493 Chakraborty S, Gangwar R, Zahra S, Poddar N, Singh A, Kumar S. 2023. Genome-wide
- characterization and comparative analysis of the OSCA gene family and identification of its
- potential stress-responsive members in legumes. *Scientific Reports* **13:**5914 DOI:
- 496 10.1038/s41598-023-33226-8.
- 497 Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. 2020. TBtools: an
- integrative toolkit developed for interactive analyses of big biological data. *Molecular Plant* **13**:1194–1202 DOI: 10.1016/j.molp.2020.06.009.
- 500 Cheng S-H, Willmann MR, Chen H-C, Sheen J. 2002. Calcium signaling through protein
- kinases. The *Arabidopsis* calcium-dependent protein kinase gene family. *Plant Physiology*
- **129**:469–485 DOI: 10.1104/pp.005645.
- **Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005.** Blast2GO: a
- universal tool for annotation, visualization and analysis in functional genomics research.
- *Bioinformatics* **21(18):**3674–3676 DOI: 10.1093/bioinformatics/bti610.
- 506 Crizel RL, Perin EC, Vighi IL, Woloski R, Seixas A, Da Silva Pinto L, Rombaldi CV, Galli
- **V. 2020**. Genome-wide identification and characterization of the CDPK gene family reveal
- their involvement in abiotic stress response in Fragaria \times ananassa. Scientific Reports
- **10:**11040 DOI: 10.1038/s41598-020-67957-9.
- 510 Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004. WebLogo: a sequence logo
- generator. *Genome Research* **14**:1188–1190 DOI: 10.1101/gr.849004.

- 512 De Souza Resende JS, Santos TBD, De Souza SGH. 2022. Small heat shock protein (Hsp20)
- gene family in *Phaseolus vulgaris* L.: Genome-wide identification, evolutionary and
- 514 expression analysis. *Plant Gene* **31**:100370 DOI: 10.1016/j.plgene.2022.100370.
- 515 Demsar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Možina M, Polajnar
- 516 M, Toplak M, Starič A, et al. 2013. Orange: data mining toolbox in Python. Journal of
- 517 *Machine Learning Research* **14**:2349–2353.
- 518 Ding Y, Yang H, Wu S, Fu D, Li M, Gong Z, Yang S. 2022. CPK28-NLP7 module integrates
- 519 cold-induced Ca2+ signal and transcriptional reprogramming in *Arabidopsis*. *Science*
- 520 Advances 8:26 DOI: 10.1126/sciadv.abn7901.
- Fan S, Yang S, Li G, Wan S. 2023. Genome-wide identification and characterization of CDPK
- gene family in cultivated peanut (*Arachis hypogaea* L.) reveal their potential roles in response
- to Ca deficiency. *Cells* **12**:2676 DOI: 10.3390/cells12232676.
- 524 Hamel L-P, Sheen J, Séguin A. 2013. Ancient signals: comparative genomics of green plant
- 525 CDPKs. *Trends in Plant Science* **19**:79–89 DOI: 10.1016/j.tplants.2013.10.009.
- 526 Han B, Dong X, Shi C, Wang Z, Chen J, Li P, Yan L. 2024. Genome-wide identification and
- 527 characterization of Calcium-Dependent Protein Kinase (CDPK) gene family in autotetraploid
- 528 cultivated alfalfa (*Medicago sativa* subsp. *sativa*) and expression analysis under abiotic
- stresses. *BMC Plant Biology* **24(1):**1241 DOI: 10.1186/s12870-024-04550-y.
- 530 Hiz MC, Canher B, Niron H, Turet M. 2014. Transcriptome analysis of salt tolerant common
- bean (*Phaseolus vulgaris* L.) under saline conditions. *PLoS ONE* **9**:e92598 DOI:
- 532 10.1371/journal.pone.0092598.
- Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. 2007.
- WoLF PSORT: protein localization predictor. *Nucleic Acids Research* **35:**585–587 DOI:
- 535 10.1093/nar/gkm259.
- Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: an upgraded gene feature
- visualization server. Bioinformatics 31:1296–1297 DOI: 10.1093/bioinformatics/btu817
- 538 Hu Z, Lv X, Xia X, Zhou J, Shi K, Yu J, Zhou Y. 2016. Genome-wide identification and
- expression analysis of calcium-dependent protein kinase in tomato. Frontiers in Plant Science
- **7:**469 DOI: 10.3389/fpls.2016.00469.
- Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE. 2005. The evolutionary fate of
- MULE-mediated duplications of host gene fragments in rice. *Genome Research* **15**: 1292–
- 543 1297 DOI:10.1101/gr.4064205.
- Kasapoğlu AG, Muslu S, Aygören AS, Öner BM, Günes E, İlhan E, Yiğider E, Aydin M.
- **2024**. Genome-wide characterization of the GPAT gene family in bean (Phaseolus vulgaris
- L.) and expression analysis under abiotic stress and melatonin. *Genetic Resources and Crop*
- 547 Evolution 71:4549–4569 DOI: 10.1007/s10722-024-01899-3.
- 548 Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal
- for protein modeling, prediction and analysis. *Nature Protocols* **10:**845–858 DOI:
- 550 10.1038/nprot.2015.053.

- 551 Krasensky J, Jonak C. 2012. Drought, salt, and temperature stress-induced metabolic
- rearrangements and regulatory networks. *Journal of Experimental Botany* **63:**1593–1608
- 553 DOI: 10.1093/jxb/err460.
- Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher
- K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz
- L, Singh S, Wensel A, Huala E. 2012. The Arabidopsis Information Resource (TAIR):
- improved gene annotation and new tools. *Nucleic Acids Research* **40:**D1202–D1210 DOI:
- 558 10.1093/nar/gkr1090.
- **Lescot M. 2002**. PlantCARE, a database of plant cis-acting regulatory elements and a portal to
- tools for in silico analysis of promoter sequences. *Nucleic Acids Research* **30:**325–327 DOI:
- 561 10.1093/nar/30.1.325.
- **Letunic I, Bork P. 2011.** Interactive Tree Of Life v2: online annotation and display of
- phylogenetic trees made easy. *Nucleic Acids Research* **39:**W475–W478 DOI:
- 564 10.1093/nar/gkr201.
- Li J, Li Y, Deng Y, Chen P, Feng F, Chen W, Zhou X, Wang Y. 2018. A calcium-dependent
- protein kinase, ZmCPK32, specifically expressed in maize pollen to regulate pollen tube
- growth. *PLoS ONE* **13**:e0195787 DOI: 10.1371/journal.pone.0195787.
- 568 Li X, Zhao L, Zhang H, Liu Q, Zhai H, Zhao N, Gao S, He S. 2022. Genome-wide
- identification and characterization of CDPK family reveal their involvements in growth and
- development and abiotic stress in sweet potato and its two diploid relatives. *International*
- *Journal of Molecular Sciences* **23**:3088 DOI: 10.3390/ijms23063088.
- 572 Linghu B, Xu Z, Chu Y, Yan Y, Nie X, Weining S. 2023. Genome-wide analysis of calcium-
- dependent protein kinase (CDPK) family and functional characterization of TaCDPK25-U in
- response to drought stress in wheat. *Environmental and Experimental Botany* **209**:105277
- 575 DOI: 10.1016/j.envexpbot.2023.105277.
- 576 Livak KJ, Schmittgen TD. 2001. Analysis of Relative Gene Expression Data Using Real-Time
- Quantitative PCR and the $^{2-\Delta\Delta CT}$ Method. *Methods* **25:**402–408 DOI:
- 578 10.1006/meth.2001.1262.
- 579 Luan S, Wang C. 2021. Calcium signaling mechanisms across kingdoms. Annual Review of
- 580 *Cell and Developmental Biology* **37:**311–340 DOI: 10.1146/annurev-cellbio-120219-035210
- Lv WB, Miao CC, Du CH, Cui YT, Liu M, Shen MC, Owusu AG, Guo N, Li DH, Gao JS.
- 582 2024. CDPK protein in cotton: genomic-wide identification, expression analysis, and
- conferring resistance to heat stress. *BMC Plant Biology* **24:**842 DOI: 10.1186/s12870-024-
- 584 05563-x.
- Lynch M, Conery JS. 2003. The evolutionary demography of duplicate genes. *In Springer*
- eBooks, pp. 35–44 DOI: 10.1007/978-94-010-0263-9 4.
- 587 Mohanta TK, Kumar P, Bae H. 2017. Genomics and evolutionary aspect of calcium signaling
- event in calmodulin and calmodulin-like proteins in plants. *BMC Plant Biology* **17:1**–19 DOI:
- 589 10.1186/s12870-017-0989-3.

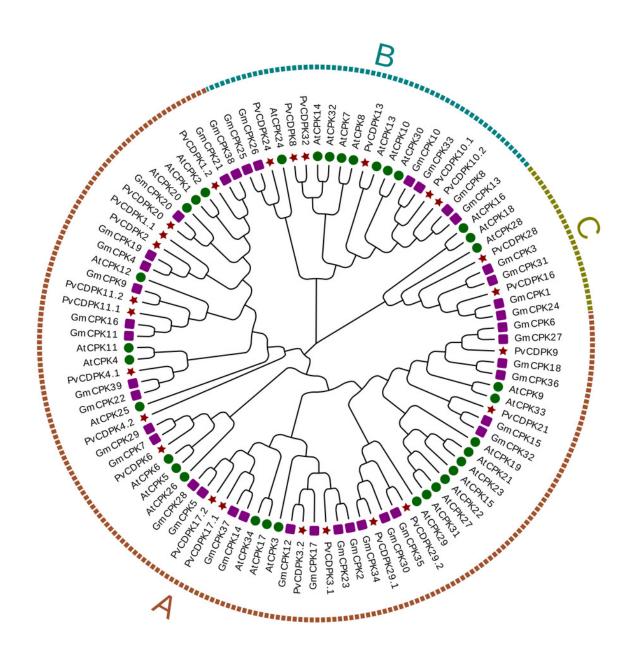
- 590 Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying
- mammalian transcriptomes by RNA-Seq. *Nature Methods* **5:**621–628 DOI:
- 592 10.1038/nmeth.1226.
- 593 Muslu S, Kasapoğlu AG, Güneş E, Aygören AS, Yiğider E, İlhan E, Aydın M. 2023.
- Genome-wide analysis of glutathione s-transferase gene family in P. vulgaris under drought
- and salinity stress. *Plant Molecular Biology Reporter* **42:**57–76 DOI: 10.1007/s11105-023-
- 596 01400-x.
- 597 Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. 2005.
- InterProScan: protein domains identifier. *Nucleic Acids Research* **33:**116–120 DOI:
- 599 10.1093/nar/gki442.
- Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, Mazars C. 2016. Calcium sensors as
- key hubs in plant responses to biotic and abiotic stresses. Frontiers in Plant Science 7:186794
- DOI: 10.3389/fpls.2016.00327.
- 603 Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK. 2007. Expression analysis of calcium-
- dependent protein kinase gene family during reproductive development and abiotic stress
- 605 conditions in rice (Oryza sativa L. ssp. indica). *Molecular Genetics and Genomics* **278:4**93–
- 606 505 DOI: 10.1007/s00438-007-0267-4.
- Ray SD. 2017. Ca2+, the miracle molecule in plant hormone signaling during abiotic stress. In
- Pandey GK (Ed.), Mechanism of Plant Hormone Signaling under Stress 2:45–90 DOI:
- 609 10.1002/9781118889022.ch21.
- 610 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B,
- 611 **Ideker T. 2003.** Cytoscape: a software environment for integrated models of biomolecular
- interaction networks. *Genome Research* **13:**2498–2504 DOI: 10.1101/gr.1239303.
- 613 Shi G, Zhu X. 2022. Genome-wide identification and functional characterization of CDPK gene
- family reveal their involvement in response to drought stress in Gossypium barbadense. PeerJ
- 615 **10**:e12883 DOI: 10.7717/peerj.12883.
- 616 Shi S, Li S, Asim M, Mao J, Xu D, Ullah Z, Liu G, Wang Q, Liu H. 2018. The Arabidopsis
- calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and
- abiotic stress responses. *International Journal of Molecular Sciences* **19:**1100 DOI:
- 619 10.3390/ijms19071900.
- 620 Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence
- alignments into the corresponding codon alignments. *Nucleic Acids Research* **34:**609–612
- 622 DOI: 10.1093/nar/gkl315.
- 623 Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K. 2020. Drought
- stress responses and resistance in plants: from cellular responses to long-distance intercellular
- 625 communication. *Frontiers in Plant Science* **11:**556972 DOI: 10.3389/fpls.2020.556972.
- 626 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular
- 627 Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and
- Maximum Parsimony Methods. *Molecular Biology and Evolution* **28:**2731–2739 DOI:
- 629 10.1093/molbev/msr121.

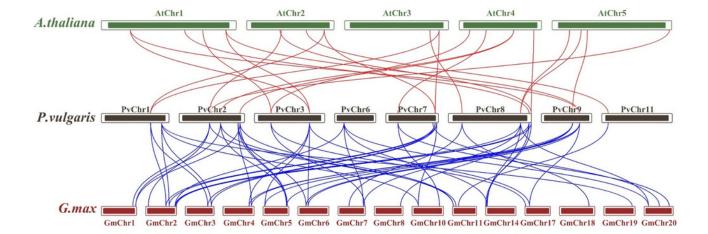
- **Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins DG. 1997.** The CLUSTAL_X
- windows interface: flexible strategies for multiple sequence alignment aided by quality
- analysis tools. *Nucleic Acids Research* **25**:4876–4882 DOI: 10.1093/nar/25.24.4876.
- Valliyodan B, Cannon SB, Bayer PE, Shu S, Brown AV, Ren L, Jenkins J, Chung CY-l.,
- 634 Chan T, Daum CG, Plott C, Hastie A, Baruch K, Barry KW, Huang W, Patil G,
- Varshney RK, Hu H, Batley J, Yuan Y, Song Q, Stupar RM, Goodstein DM, Stacey G,
- 636 Lam H, Jackson SA, Schmutz J, Grimwood J, Edwards D, Nguyen HT. 2019.
- Construction and comparison of three reference-quality genome assemblies for soybean. *The Plant Journal* **100**:1066–1082 DOI: 10.1111/tpj.14500.
- Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. 2014. Calcium-dependent protein
- kinases in plants: evolution, expression and function. *Plant and Cell Physiology* **55:**551–569 DOI: 10.1093/pcp/pct200.
- Voorrips RE. 2002. MapChart: Software for the Graphical Presentation of Linkage Maps and OTLs. *Journal of Heredity* 93:77–78 DOI: 10.1093/jhered/93.1.77.
- 644 Wang J, Pan Y, Wang Y, Ye L, Wu J, Chen L, Zou T, Liu Z, Zhang T, Liu D. 2016.
- Genome-wide identification and functional characterization of the calcium-dependent protein
- kinase (CDPK) gene family in cucumber (*Cucumis sativus* L.). *Frontiers in Plant Science* 7:327 DOI: 10.3389/fpls.2016.00327.
- Wang J-P, Munyampundu J-P, Xu Y-P, Cai X-Z. 2015a. Phylogeny of plant calcium and
 calmodulin-dependent protein kinases (CCaMKs) and functional analyses of tomato ccamk in
 disease resistance. *Frontiers in Plant Science* 6:161086 DOI: 10.3389/fpls.2015.01075.
- Wang J-P, Xu Y-P, Munyampundu J-P, Liu T-Y, Cai X-Z. 2015b. Calcium-dependent
- protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in tomato: genome-
- wide identification and functional analyses in disease resistance. *Molecular Genetics and Genomics* **291**:661–676 DOI: 10.1007/s00438-015-1137-0.
- Wang P, Yin L, Liang D, Li C, Ma F, Yue Z. 2012. Delayed senescence of apple leaves by
 exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. *Journal of Pineal Research* 53:11–20 DOI: 10.1111/j.1600-079x.2011.00966.x.
- Wen F, Ye F, Xiao Z, Liao L, Li T, Jia M, Liu X, Wu X. 2020. Genome-wide survey and
 expression analysis of calcium-dependent protein kinase (CDPK) in grass Brachypodium
 distachyon. *BMC Genomics* 21:1–17 DOI: 10.1186/s12864-020-6475-6.
- Xiong Y, Lin S, Wu J, Lin S. 2024. Identification and Expression Analysis of CDPK Family in
 Eriobotrya japonica, reveals EjCDPK25 in Response to Freezing Stress in Fruitlets. bioRxiv
 (Cold Spring Harbor Laboratory) 2024:5 DOI: 10.1101/2024.05.01.591999.
- Xu W, Huang W. 2017. Calcium-dependent protein kinases in phytohormone signaling
 pathways. *International Journal of Molecular Sciences* 18(11):2436 DOI:
 10.3390/ijms18112436.
- Yang Q, Huang Y, Cui L, Gan C, Qiu Z, Yan C, Deng X. 2023. Genome-wide identification
 of the CDPK gene family and their involvement in taproot cracking in radish. International
 Journal of Molecular Sciences 24:15059 DOI: 10.3390/ijms242015059.


PeerJ

370	Yang Z, Nielsen R. 2000. Estimating synonymous and nonsynonymous substitution rates under
371	realistic evolutionary models. <i>Molecular Biology and Evolution</i> 17:32–43 DOI:
672	10.1093/oxfordjournals.molbev.a026236.
673	Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and
374	Evolution 24:1586–1591 DOI: 10.1093/molbey/msm088

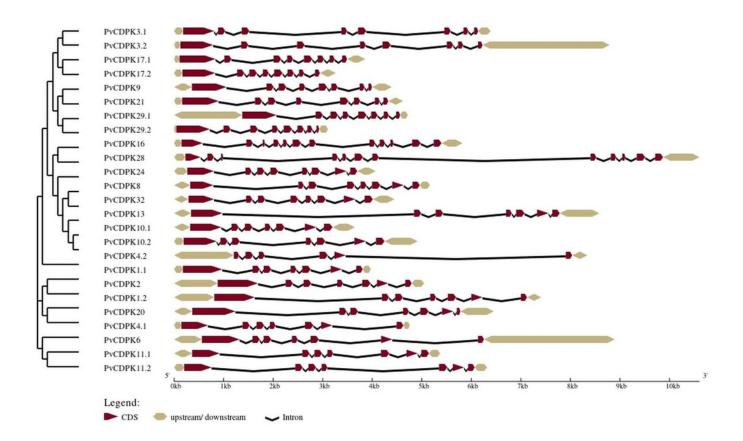
Distribution of *PvCDPK* genes on *P. vulgaris* chromosomes.

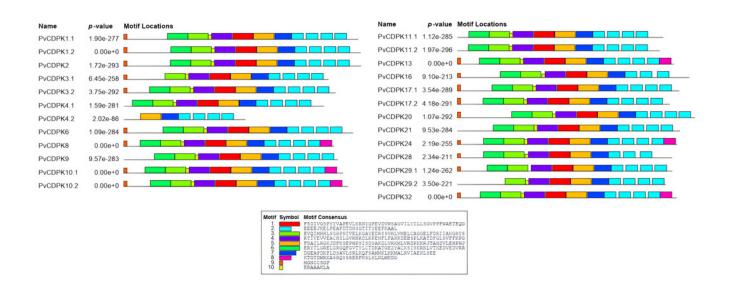

Black lines represent segmental duplicated genes and red lines represent tandem duplicated genes.


Phylogenetic analysis of CDPK proteins from *A. thaliana* (34), *G. max* (39) and *P. vulgaris* (25).

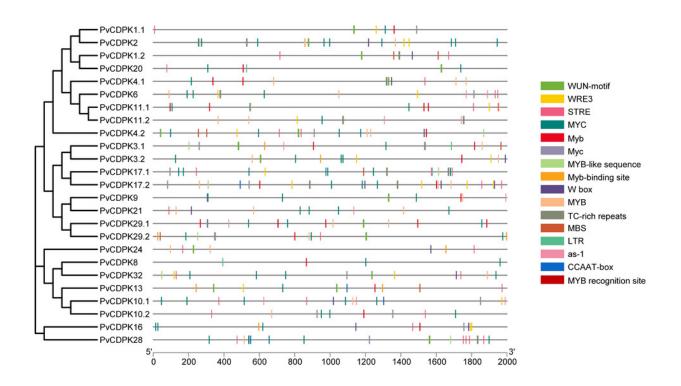
A. thaliana is represented by a green circle, G. max by a purple square and P. vulgaris by a maroon star. G. max sequences were obtained from Liu et al. (2016) and used. The locations of 69 genes in group (A), 20 genes in group (B) and 9 genes in group (C) are shown.

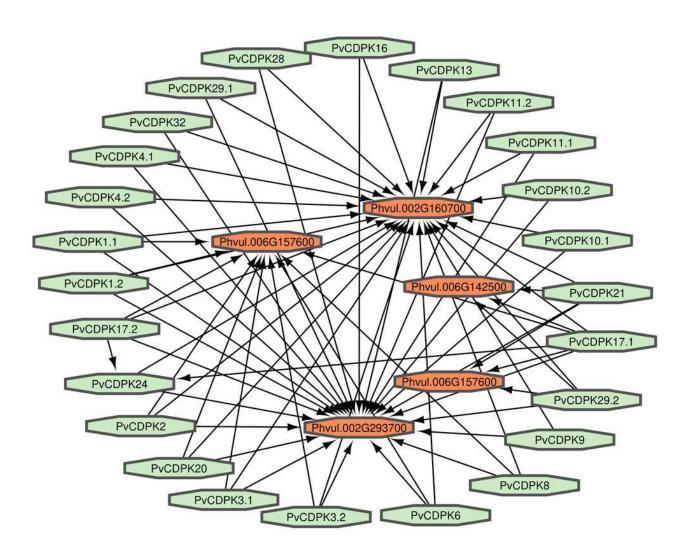
Synteny analysis between A. thaliana, G. max and P. vulgaris CDPK genes.


The red lines highlight the syntenic gene pairs between bean and Arabidopsis, while blue lines highlight the syntenic gene pairs with G.max.


Structural representation of *PvCDPK* genes.

Maroon color represents exon and black lines represent intron regions. Sand colored parts represent 5'and 3' UTR regions. The scale bar indicates 10kb.

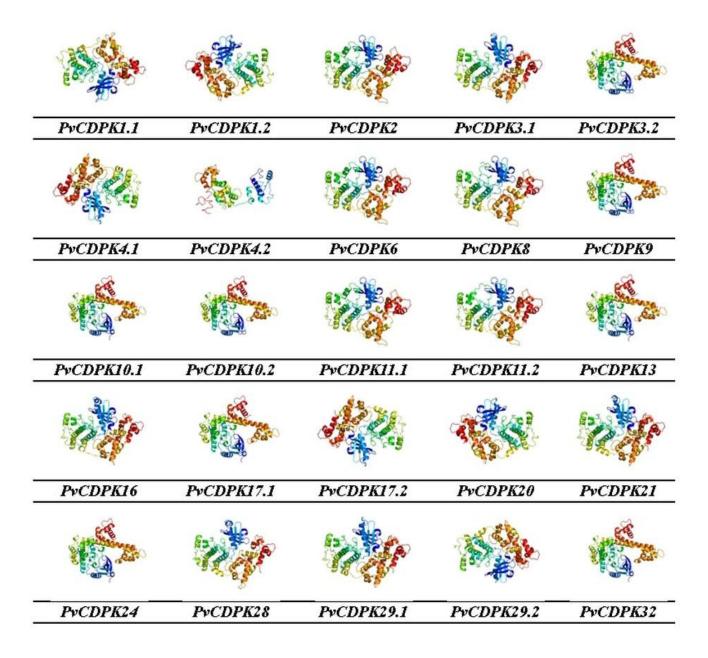

Conserved motif analysis in PvCDPK proteins.



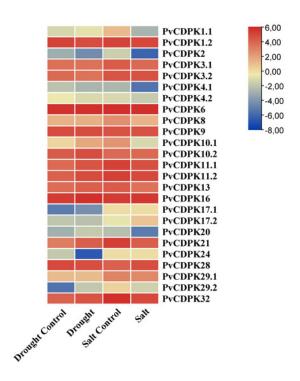
Cis-acting element analysis of PvCDPK genes

The elements on the genes represent those that play a role during plant stress. The different colors of the lines indicate the various cis-acting elements within the 2 kb promoter region located upstream of the *PvCDPK* gene.

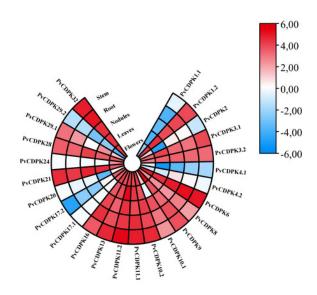
Interaction analysis of PvCDPK proteins both among themselves and with other proteins.


Gene ontology analysis of PvCDPK proteins.

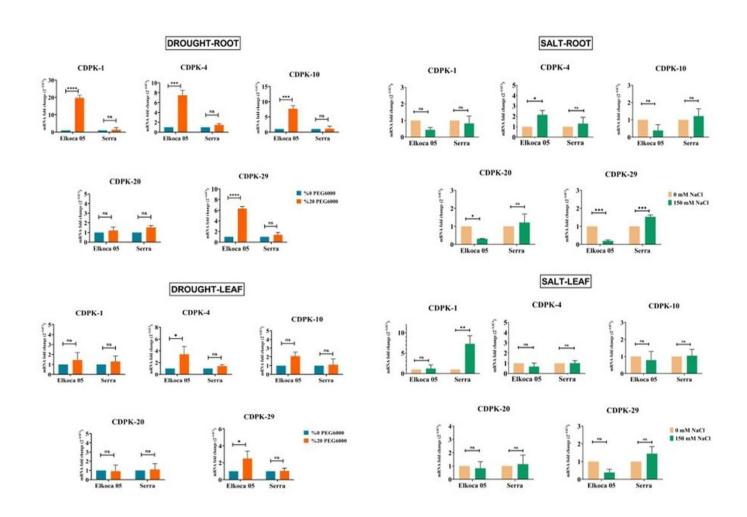
The cellular component in which it is found, the biological process in which it is involved and the molecular functions it shows are included.


3D homology models of PvCDPK proteins using Phyre2 database and by 3D modelling.

Models were visualized using rainbow colors from N to C terminus.



In silico analysis of the expression status of *PvCDPK* genes under drought and salt stress with control groups.


In silico analysis of the expression of *PvCDPK* genes in root, stem, nodule, leaf and flower tissues

Expression analysis of PvCDPK genes under salt an drought stresses in two cultivars' root and leaf (Serra and Elkoca-05) using qRT-PCR method .

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: non-significant.

Table 1(on next page)

Characteristics of CDPK proteins in the P. vulgaris genome

pl: Theoretical isoelectric point, EF-hand: EF-hand calcium-binding domain, N-myrist:

myristoylation, N-palmit: palmitoylation, chlo: chloroplast, mito: mitochondrion, cyto: cytosol,

nucl: nuclear, pero: peroxysome

- 1 Table 1. Characteristics of CDPK proteins in the *P. vulgaris* genome (pI: Theoretical
- 2 isoelectric point, EF-hand: EF-hand calcium-binding domain, N-myrist: myristoylation, N-
- 3 palmit: palmitoylation, chlo: chloroplast, mito: mitochondrion, cyto: cytosol, nucl: nuclear, pero:
- 4 peroxysome)

PvGene Name	Amino Acid	MW (kDa)	pI	EF-hand No	N- myrist	N- palmit	Localization
PvCDPK1.1	575	64.55	5.09	3	No	Yes	chlo
PvCDPK1.2	581	64.99	5.28	4	No	Yes	chlo
PvCDPK2	582	65.13	5.8	4	No	Yes	chlo
PvCDPK3.1	502	56.71	6.05	4	Yes	Yes	chlo
PvCDPK3.2	519	58.28	5.9	4	Yes	Yes	mito
PvCDPK4.1	491	55.16	5.43	4	No	Yes	mito
PvCDPK4.2	298	33.43	4.82	4	No	Yes	cyto
PvCDPK6	562	63.01	5.57	4	No	Yes	nucl
PvCDPK8	516	58.68	6.5	2	No	Yes	chlo, mito
PvCDPK9	525	59.10	6.3	4	Yes	Yes	cyto
PvCDPK10.1	537	60.89	5.96	4	No	Yes	cyto
PvCDPK10.2	550	61.99	6.09	4	No	Yes	cyto
PvCDPK11.1	505	56.93	5.24	4	No	Yes	chlo
PvCDPK11.2	496	55.76	5.32	4	No	Yes	pero
PvCDPK13	531	59.76	5.86	3	No	Yes	cyto
PvCDPK16	569	64.69	9.21	4	Yes	Yes	chlo
PvCDPK17.1	544	60.54	5.09	4	Yes	Yes	cyto
PvCDPK17.2	521	58.49	5.58	4	Yes	Yes	cyto
PvCDPK20	582	64.79	5.35	4	No	Yes	chlo
PvCDPK21	546	60.72	5.76	4	Yes	Yes	cyto
PvCDPK24	539	61.07	6.46	4	Yes	Yes	chlo
PvCDPK28	527	59.72	8.92	4	No	Yes	chlo
<i>PvCDPK29.1</i>	527	60.18	6.11	4	Yes	Yes	cyto_nucl
PvCDPK29.2	511	57.77	5.64	2	No	Yes	cyto
PvCDPK32	538	60.98	6.29	3	No	Yes	cyto

5

6 7

8

9

10

11

12

Table 2(on next page)

CDPK gene family members of *P.vulgaris* with *Arabidopsis* orthologs, chromosome locations, gene start and end point.

1 Table 2. CDPK gene family members of P.vulgaris with Arabidopsis orthologs, chromosome

2 locations, gene start and end point.

PvGene Name	Arabidopsis ortholog locus	Phytozome ID	Chr Name	Strand	Gene Start (bp)	Gene End (bp)
PvCDPK1.1	AT5G04870 (AtCPK1)	Phvul.001G197700.	PvChr1	forward	45693570	45697541
PvCDPK1.2	AT5G04870 (AtCPK1)	Phvul.007G233900.	PvChr7	forward	35767288	35774697
PvCDPK2	AT3G10660 (AtCPK2)	Phvul.007G266100.	PvChr7	reverse	38724008	38729058
PvCDPK3.1	AT4G23650 (AtCPK3)	Phvul.002G161200.	PvChr2	reverse	31597834	31604224
PvCDPK3.2	AT4G23650 (AtCPK3)	Phvul.002G294500.	PvChr2	reverse	46343902	46352694
PvCDPK4.1	AT4G09570 (AtCPK4)	Phvul.007G089200.	PvChr7	forward	9217140	9221899
PvCDPK4.2	AT4G09570 (AtCPK4)	Phvul.007G089301.	PvChr7	forward	9223593	9231935
PvCDPK6	AT2G17290 (AtCPK6)	Phvul.008G292500.	PvChr8	forward	62964859	62973752
PvCDPK8	AT5G19450 (AtCPK8)	Phvul.007G253300.	PvChr7	reverse	37518913	37524077
PvCDPK9	AT3G20410 (AtCPK9)	Phvul.008G266600.	PvChr8	reverse	61203175	61207570
PvCDPK10.1	AT1G18890 (AtCPK10)	Phvul.003G194100.	PvChr3	reverse	41784590	41788241
PvCDPK10.2	AT1G18890 (AtCPK10)	Phvul.009G190566.	PvChr9	reverse	28940689	28945605
PvCDPK11.1	AT1G35670 (AtCPK11)	Phvul.002G279300.	PvChr2	forward	44866006	44871378
PvCDPK11.2	AT1G35670 (AtCPK11)	Phvul.009G160100.	PvChr9	reverse	23666550	23672870
PvCDPK13	AT3G51850 (AtCPK13)	Phvul.008G098400. 1	PvChr8	forward	10295962	10304546
PvCDPK16	AT2G17890 (AtCPK16)	Phvul.002G108700.	PvChr2	reverse	23210281	23216106
PvCDPK17.1	AT5G12180 (AtCPK17)	Phvul.006G015300.	PvChr6	forward	7024909	7028768
PvCDPK17.2	AT5G12180 (AtCPK17)	Phvul.008G201900.	PvChr8	forward	54865627	54868891
PvCDPK20	AT2G38910 (AtCPK20)	Phvul.007G265100.	PvChr7	reverse	38623002	38629456
PvCDPK21	AT4G04720 (AtCPK21)	Phvul.003G078400.	PvChr3	forward	12570425	12575047
PvCDPK24	AT2G31500 (AtCPK24)	Phvul.011G055400.	PvChr11	forward	4877733	4881802
PvCDPK28	AT5G66210 (AtCPK28)	Phvul.003G261700.	PvChr3	reverse	50115856	50126462
PvCDPK29.1	AT1G76040 (AtCPK29)	Phvul.001G002800.	PvChr1	forward	165997	170716
PvCDPK29.2	AT1G76040 (AtCPK29)	Phvul.001G002900.	PvChr1	forward	171533	174640
PvCDPK32	AT3G57530	Phvul.001G135300.	PvChr1	reverse	37388614	37393061

PeerJ

(AtCPK32)

1

3

Table 3(on next page)

Duplication events and evolutionary analysis of *PvCDPK* genes

(MYA: million years ago)

Table 3. Duplication events and evolutionary analysis of PvCDPK genes (MYA: million

2 years ago)

Gene1	Gene2	Ka	Ks	Ka/Ks	MYA	Duplication Type
PvCDPK1.1	PvCDPK2	0.17	0.64	0.27	49.11	Segmental
PvCDPK3.1	PvCDPK3.2	0.09	0.64	0.14	48.94	Segmental
PvCDPK8	PvCDPK32	0.10	0.81	0.12	61.57	Segmental
PvCDPK10.1	PvCDPK10.2	0.07	0.86	0.08	65.30	Segmental
PvCDPK11.1	PvCDPK11.2	0.08	0.74	0.11	56.19	Segmental
PvCDPK17.1	PvCDPK17.2	0.09	0.69	0.13	52.52	Segmental
PvCDPK4.1	PvCDPK4.2	0.12	0.42	0.28	32.09	Tandem
PvCDPK29.1	PvCDPK29.2	0.25	1.11	0.22	84.95	Tandem