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ABSTRACT

Deep learning offers promising potential for automating the interpretation of
immunoglobulin A (IgA) endomysial antibody (EMA) tests, a critical serological test
for the diagnosis of celiac disease that currently requires labor-intensive and
subjective human interpretation. In this study, we employ and comprehensively
evaluate the performance of the EfficientNet and EfficientNetV2 architectures in
binary (positive vs negative, where all weak and strong positive signals were grouped
as positive), three-class (negative, weak positive, strong positive), and four-class
(negative, weak positive, strong positive and gray zone) classification scenarios using
immunofluorescence images of IgA EMA equivalent (EMA-eq) tests. Our
experiments on 368 clinical samples show high performance, with EfficientNetV2-S
achieving an accuracy of 99.37% in binary classification, 95.28% in three-class
classification, and 86.98% in the complex four-class scenario that introduces gray
zone cases as a distinct interpretive category. Contrary to conventional assumptions,
medium-sized deep architectures consistently outperformed their larger
counterparts. The superior performance of the EfficientNet-V2 models can be
attributed to their architectural innovations and higher input resolution (640 x 640
pixels), which proved critical for capturing subtle immunofluorescence patterns. We
also incorporate HiRes-CAM (Class Activation Mapping), a convolutional neural
network oriented visual explanation tool, to better understand the decisions of the
underlying trained deep learning model in an explainable artificial intelligence (AI)
manner. This study demonstrates that deep learning has the potential to achieve
expert-level performance in EMA-eq test interpretation, offering a path toward more
standardized, efficient and objective celiac disease diagnosis while reducing the
burden on specialist medical staff.

Subjects Computational Biology, Radiology and Medical Imaging, Data Mining and
Machine Learning
Keywords Machine learning, Computer vision, Celiac diagnosis, IgA endomysial antibody tests
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INTRODUCTION

Celiac disease (CD) is a prevalent autoimmune disorder triggered by gluten ingestion,
affecting approximately 1% of the global population (Singh et al., 2018). The clinical
presentation of CD is highly heterogeneous, ranging from gastrointestinal symptoms like
diarrhea and abdominal pain to extra-intestinal manifestations such as dermatitis
herpetiformis and neurological disorders (Guandalini ¢ Assiri, 2014). This wide spectrum
of symptoms often leads to delayed or missed diagnoses, contributing to the
underrecognition of CD worldwide (Rostami et al., 1999). Studies have reported that the
average delay between symptom onset and diagnosis can range from 6 to 10 years, with
some populations experiencing even longer diagnostic delays (Green ¢ Jabri, 2003; Rubio-
Tapia et al., 2012). Misdiagnosis or late diagnosis can lead to irreversible complications
such as osteoporosis, infertility, neurological deficits, and even increased malignancy risk.
Economically, delayed diagnosis contributes to increased healthcare utilization, including
unnecessary tests and specialist consultations, resulting in substantial financial burden for
both patients and healthcare systems. Recent European studies estimated that undiagnosed
celiac disease can result in excess healthcare costs (Fuchs et al., 2018; Bokemeyer et al.,
2025). Furthermore, subjective interpretation of EMA test results contributes to
inter-observer variability, increasing the risk of diagnostic malpractice and limiting the
scalability of endomysial antibody (EMA) testing in broader clinical settings.
Traditionally, the diagnosis of CD has relied on small bowel biopsies demonstrating
villous atrophy, intraepithelial lymphocytosis, and crypt hyperplasia (Catassi ¢» Fasano,
2008). However, the invasive nature of biopsies and potential sampling errors have
prompted the exploration of non-invasive diagnostic tools. Serological tests for
CD-specific immunoglobulin A (IgA) antibodies, particularly EMA and anti-tissue
transglutaminase antibody (anti-tTG), have emerged as valuable alternatives due to their
high sensitivity and specificity (Sheppard et al., 2022). Recent guidelines from the
European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN)
suggest that a diagnosis of CD can be established without biopsy in symptomatic children
with elevated Anti-TG levels and positive EMA test (Husby et al., 2020). This non-invasive
approach has also shown promise in adult populations, highlighting the growing
importance of EMA testing in CD diagnosis. The EMA test is performed using an indirect
immunofluorescence assay (IIF), in which patient serum is incubated on tissue sections—
commonly monkey esophagus, human umbilical cord, also EMA-eq tests can be
performed using IIF with monkey liver sections (Wolf et al., 2016). If IgA antibodies are
present, they bind to antigens along the connective tissue framework, producing
characteristic fluorescence patterns upon the application of a labeled anti-IgA conjugate.
On monkey esophagus, this reactivity localizes to the connective tissue layers surrounding
smooth muscle fibers of the lamina muscularis mucosae and tunica muscularis, which are
rich in tissue transglutaminase, whereas on monkey liver substrate, binding predominantly
occurs in the walls of the sinusoidal vessels (Wolf et al., 2016; Schauer et al., 2023). Despite
its high sensitivity, specificity and clinical value, particularly when combined with anti-tTG
IgA testing, EMA interpretation remains resource-intensive, time-consuming, and prone
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to inter-observer variability (Murray, Frey ¢ Oliva-Hembker, 2018; Shahmirzadi ¢ Sohrabi,
2019; Anbardar et al., 2023). These operational challenges limit its scalability in routine
clinical practice, especially in settings lacking experienced personnel. Computer vision, on
the other hand, has seen exponential growth in recent years, driven by advances in data
availability and computational power. As Sana et al. (2020) noted, deep learning
approaches are now widely used in medical image analysis for screening, diagnosis, and
clinical decision support, offering potential solutions to the limitations of manual test
interpretation. Interpreting immunofluorescence-based serological tests such as the EMA
assay remains a visually complex and expertise-dependent task, particularly in borderline
or low-intensity cases. Inspired by recent successes of deep learning in histopathological
image classification—where convolutional neural networks (CNNs) have rivaled or
surpassed human experts in recognizing subtle phenotypic features—this study explores
whether CNN-based models can similarly automate and standardize EMA test
interpretation (Syed et al., 2019; Caetano dos Santos et al., 2019).

This research aims to investigate (i) whether supervised deep learning algorithms can be
trained to classify IgA EMA-eq immunofluorescence patterns with accuracy comparable to
expert judgment and (ii) whether these models can reliably handle ambiguous “gray zone”
cases that frequently arise in clinical practice. This study addresses a significant diagnostic
challenge in celiac disease screening by focusing on monkey liver-based celiac
autoantibody binding images, which can be regarded as diagnostically equivalent to EMA
detected on classic muscle substrates such as monkey esophagus or human umbilical cord
images, which differ from the more commonly studied jejunal biopsy or endoscopy
images. To our knowledge, this is the first study to evaluate the feasibility and performance
of EfficientNet and EfficientNetV2 deep learning architectures on such
immunofluorescence images, using both standard and gray-zone-inclusive classification
schemes. Specifically, this study makes several important contributions as follows:

1. We perform a comprehensive evaluation of multiple EfficientNet and
EfficientNetV2 models in the problem domain.

2. We show that deep learning methods can reach the level of an expert, with 99.37%
accuracy in identifying positive and negative samples.

3. We employ HiRes-CAM (Class Activation Mapping) for the first time in this field to
provide visual explanations for model predictions, enhancing interpretability for clinical
users.

4. We release a curated and expert-annotated image dataset to facilitate further research
and benchmarking in this domain.

The rest of this study is organized as follows. ‘Related Work’ reviews related work and
background. ‘Materials and Methods’ details our materials and methods, including data
acquisition stages and the deep learning models. ‘Experimental design’ presents
experimental design, whereas ‘Results’ demonstrates the results of the experiments
together with outcomes of the comparative study. ‘Discussion’ explores the implications
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and limitations from diverse perspectives. Finally, ‘Conclusions’ concludes with key
contributions and future directions.

RELATED WORK

Recent advances in medical image classification have demonstrated the effectiveness of
combining deep learning architectures with active learning strategies. Several studies have
evaluated the utility of more recent CNN architectures in various domains. For example,
Ali et al. (2022) reported that EfficientNet-B4 achieved 87. 91% precision for the
classification of skin cancer, outperforming many traditional CNN models. In a study
specific to celiac disease, Wei et al. (2019) used ResNet-50 and achieved class-specific
precisions of 95.3%, 91%, and 89.2%, with area under curve (AUC) values exceeding 0.95.

Considering our problem domain, the use of convolutional neural networks (CNNs) in
the diagnosis of autoimmune diseases has seen significant advancements. Specifically, for
HEp-2 cell image classification, several state-of-the-art deep learning algorithms have been
developed and are continually evolving. Gao et al. (2016) proposed a framework that learns
hierarchical feature representations directly from raw cell images, eliminating the need for
hand-crafted features. Their work emphasized the importance of factors such as data
augmentation and image masks, demonstrating that rotating training images enhances
model robustness and that using whole cell images, including backgrounds, yields better
performance. They also highlighted the adaptability of CNN models across different
datasets, outperforming traditional models like Bag-of-Features (BoF) and Fisher Vector
(FV) models.

Further advancing the field, Rodrigues, Naldi ¢ Mari (2020) conducted an extensive
study on HEp-2 cell image classification using several CNN architectures, including
LeNet-5, AlexNet, Inception-V3, VGG-16 and ResNet-50. Their findings indicated that
Inception-V3, trained from scratch with data augmentation, achieved the highest accuracy
(98.28%). Their study underscored the efficacy of raw images and data augmentation in
improving model performance by increasing the diversity of the training dataset. More
recently, Vununu, Lee ¢» Kwon (2021) proposed a method that combines active learning
and cross-modal transfer learning to classify HEp-2 cell images. This approach aimed to
minimize manual annotation by using a small, annotated dataset to pre-train deep residual
networks, which were then fine-tuned on a larger dataset using active learning techniques.
Their method demonstrated high discrimination performance with minimal annotated
data, simplifying the labeling process while maintaining accuracy.

Recent studies have also explored the application of CNNs in the histopathological
classification of celiac disease. Carreras (2024) employed a ResNet-18 model on a large
dataset of H&E-stained duodenal biopsy images reporting high accuracy for coeliac
detection. Although Grad-CAM was used for interpretability, their work was restricted to
biopsy images without addressing serological modalities. Similarly, Suchy, Vranay ¢
Magyar (2025) compared multiple architectures such as residual network 18 (ResNet18),
visual geometry group 16 (VGG16) and capsule networks on duodenal histopathology
image patches. Their best-performing ResNet18 model, supported by balanced sampling
and data augmentation, achieved over 90% accuracy but remained limited to tissue-based
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data. Denholm et al. (2022) implemented a multiple-instance learning approach on
duodenal whole slide images (WSI) to detect celiac disease, surpassing an accuracy of 96%
with external validation across scanners and staining batches. Jaeckle et al. (2025)
demonstrated that a CNN-based model could reach pathologist-level performance (AUC >
0.99) on a multi-institutional dataset of over 3,000 duodenal biopsy images. These studies
highlight the increasing maturity of AI applications in biopsy-based celiac diagnostics.
Also Stoleru, Dulf & Ciobanu (2022) explored capsule endoscopy image sequences using
classical image processing combined with machine learning classifiers, reporting high
accuracy (94.1%) and F1-scores in detecting villous atrophy from video frames. However,
deep CNN models remain underutilized in this modality. Furthermore, a recent systematic
review by Sharif et al. (2023) examined eight original studies applying deep learning to
celiac disease diagnosis using endoscopic or capsule endoscopy images. Various
CNN-based methods such as GoogLeNet, ResNet50, and Inception-v3 achieved diagnostic
accuracies between 84% and 100%. However, their review identified significant limitations
in the existing literature, including small sample sizes, a paucity of dataset diversity, and
challenges in detecting mild mucosal lesions (e.g., Marsh I-II). Notably, none of the
mentioned studies employed serological imaging or explainable Al techniques. In contrast,
our study using EfficientNet-based models and HiRes-CAM visualization focuses on
classifying EMA immunofluorescence images, a serological marker with clinical relevance
in non-biopsy-based diagnostics. By leveraging interpretability methods and evaluating
gray zone samples, we address a less explored but clinically significant domain in celiac
disease diagnosis. Our work directly addresses these gaps by focusing on the supervised
classification of EMA-eq images derived from monkey liver tissue, incorporating
pixel-level visualization, benchmarking modern CNN architectures, and contributing a
curated, labeled dataset for future research. Building on this foundation, Caetano dos
Santos et al. (2019) explored machine learning techniques for diagnosing celiac disease.
They developed an automated method for classifying IgA-class EMA test images from
human umbilical cord using support vector machines (SVMs) and adaptive boosting
(AdaBoost) on a dataset of 2,597 high-quality EMA images. Their model achieved high
sensitivity (82.84%) and specificity (99.40%), highlighting the potential of machine
learning in providing rapid and accurate analysis of EMA tests. They addressed common
challenges in medical image classification, such as rotation invariance and class imbalance,
employing techniques like AdaBoost ensemble learning and 10-fold cross-validation to
enhance their model performance.

MATERIALS AND METHODS

In this section, we first introduce our curated dataset. Next, we briefly explain the
architectures of the EfficientNet family of convolutional neural networks (CNNs) used
throughout the study, outlining their advantages and explaining why we chose them for
this study. We then present the Evaluation metrics used to quantify the performance of the
models we trained. Finally, in Experimental Design, we explain in detail our model
development and experimentation.
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Data gathering

This study included the analysis of 368 peripheral blood samples referred to the Laboratory
of Medical Microbiology, Serology and Immunology, Ege University Faculty of Medicine
Hospital with a preliminary diagnosis of celiac disease between June and December 2023.
Of the evaluated cases, 197 (67.0%) were female and 97 (33.0%) were male. The age
distribution showed that 153 patients (52.0%) were children under the age of 18, while 141
(48.0%) were adults. The mean age of the study group was 22.7 years, with a median of 16
years (range: 2 to 83 years), and an interquartile range (IQR) of 21.8 years. The study was
conducted with the ethical approval obtained from the Ethics Committee of Ege University
Faculty of Medicine (Approval No: 2023-1750/23-11.2T/13). The research was designed
and conducted under ethical principles, including obtaining informed consent. This
retrospective analysis used anonymized patient data and archived immunofluorescence
images. Written informed consent was obtained at the time of initial clinical evaluation
and the institutional ethics committee approved the study protocol. The dataset used in
this study will be publicly available to researchers.

Data preprocessing
Initially, the samples were subjected to a centrifugal process at 3,000 g for 15 min, with the
objective of effectuating the separation of the serum phase. Thereafter, the serum phase
was transferred to secondary tubes. Serum samples are analyzed on the same day, unless
they cannot be processed on the day of arrival, in which case they are stored at —20 °C.
Serum samples were then analyzed through the Euroimmun’ EMA IgA kit on the
Euroimmun’ Sprinter XL automated immunofluorescence microscopy slide preparation
system. In this study, monkey liver tissue was used as the substrate for indirect
immunofluorescence microscopy in IgA EMA-eq testing. The observed staining pattern
did not localize to hepatocytes or bile ducts but rather delineated the extracellular matrix
surrounding the hepatic sinusoids. Specifically, the fluorescence highlighted the
reticulin-rich connective tissue network of the hepatic lobule, particularly within the
perisinusoidal and perivascular regions. This microanatomical framework is known to
express tissue transglutaminase (tT'G), the principal autoantigen targeted by EMA in celiac
disease. The resulting immunofluorescent signal appeared as a fine, thread-like pattern
tracing the sinusoidal architecture, reflecting the localization of tTG within the stromal
scaffold. This pattern, originally described as reticulin antibody binding (Seah et al., 1971),
is considered analogous to the endomysial staining seen in striated or smooth muscle
substrates and supports the use of monkey liver as a valid alternative for celiac
autoantibody detection, and thus for classic EMA testing. Given the different image
appearances, we shall call the positive celiac pattern on liver as EMA equivalent (EMA-eq),
clearly distinguishing it from positivity on muscle endomysium.

Following this process, IIF preparations were obtained (Wolf et al., 2016; Schauer et al.,
2023). Anti-TTG IgA levels were determined using a commercially available ELISA kit
Euroimmun Anti-Tissue Transglutaminase IgA Order number: EA 1910-9601-A
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(Euroimmun AG, Liibeck, Germany), following the manufacturer’s instructions. The
assay’s cut-off for positivity was >20 RU/mL.

All stained liver slides were scanned and digitized using the Euroimmun’™
EUROPattern Microscope system, which provides a fully automated image acquisition
workflow. The microscope is equipped with a motorized stage, autofocus, and
standardized exposure controls, enabling consistent high-resolution fluorescence imaging
without manual intervention during the acquisition process. For each serum specimen, the
system captured a single standardized field of view, yielding one digital image per sample.
In total, 368 original, untransformed images were obtained and subsequently used for
training and evaluation. Importantly, the system does not perform interpretive analysis; all
diagnostic classification was carried out manually by trained experts. Each image was
independently reviewed by two laboratory personnel with over 10 years of experience in
autoimmune serology. Only cases where both evaluators agreed were included in the final
dataset. In cases of disagreement, the sample was excluded from the training and
evaluation datasets.

To support the development of a standardized visual reference system, a subset of serum
samples was subjected to serial dilutions at predefined ratios of 1:10, 1:32, 1:100, 1:320, and
1:1,000. Based on these dilutions, fluorescence signal patterns were interpreted as follows:
samples negative at 1:10 were classified as negative; positive at 1:10 but negative at 1:32
were designated as gray zone; positive at 1:32 but negative at 1:100 were categorized as +1;
those remaining positive at 1:100 but negative at 1:320 as +2; positive at 1:320 but negative
at 1:1,000 as +3; and those exhibiting fluorescence at or beyond 1:1,000 were considered
+4. This stratified titration protocol enabled the creation of a 30-image reference set,
comprising five representative examples for each of the six intensity categories. Before the
main assessment, all experts jointly reviewed this panel to calibrate their interpretation
criteria. For the remaining samples, serial dilutions were not routinely performed; instead,
fluorescence intensities were interpreted by directly matching each image to the
standardized reference examples. This strategy reduced analysis time while promoting
consistency and robustness across evaluations. To avoid classification bias due to
undetectable antibody levels, patients with selective IgA deficiency were excluded from the
dataset.

In total, three classification schemes were applied to the EMA-eq image dataset to
evaluate the model under varying diagnostic complexities. First, in the EMA-eq 2-Class
(i.e., binary) configuration, all samples showing any positive signal (1+ to 4+) were
grouped as positive and contrasted with negative samples. Second, the EMA-eq 3-Class
scheme maintained negative samples as a separate group, classified 1+ and 2+ as weak
positives, and 3+ and 4+ as strong positives. Third, in the most detailed setting, the
EMA-eq 4-class scheme introduced the gray zone as an independent category, alongside
negative, weak positive, and strong positive samples. This multi-layered scoring method
facilitated a comprehensive evaluation and enabled in-depth analysis of borderline and
low-intensity fluorescence patterns. We presented sample images of each class in Fig. 1.

The number of training and validation samples for each category in all three
classification datasets is detailed in Table 1. It is important to note that a 5-fold
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Figure 1 Sample images for each class in our corpus.

Full-size k&l DOI: 10.7717/peerj.20191/fig-1

Table 1 Classwise number of samples per each dataset used in the study.

Dataset name Class Training  Validation  Total  Percentage (%)
EMA-eq 2-Class  Overall 254 64 318 100
Positive (Strong + Weak) 134 35 169 53.1
Negative 120 29 149 46.8
EMA-eq 3-Class ~ Overall 254 64 318 100
Strong positive 68 17 85 26.7
Weak positive 67 17 84 26.4
Negative 119 30 149 46.8
EMA-eq 4-Class  Overall 294 74 368 100
Strong positive 68 17 85 23.0
Weak positive 67 17 84 22.8
Negative 119 30 149 40.4
Gray-zone 40 10 50 135
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cross-validation scheme was implemented during the training and evaluation process.
Therefore, the rows displaying numerical values for the “Overall” category denote the
aggregate number of samples allocated for each fold’s training and validation partitions.
Conversely, the rows situated beneath the “Overall” category illustrate the class-specific
average sample distribution for each individual fold.

EfficientNet

For years, researchers focused on improving accuracy by arbitrarily scaling networks along
a single dimension—either increasing depth (more layers), width (more channels), or
input resolution. However, this approach often resulted in diminishing returns, with
massive computational costs yielding only marginal improvements in performance. In this
regard, EfficientNet (Tan ¢ Le, 2019) introduces a revolutionary approach to scaling
convolutional neural networks that addresses a fundamental oversight in previous
architectures like ResNet (He et al., 2016), VGG (Simonyan & Zisserman, 2014), densely
convolutional networks (DenseNets) (Huang et al., 2017).

The fundamental insight behind EfficientNet is the empirical observations showing that
network dimensions are highly interdependent. In fact, when input resolution increases,
networks require greater depth to capture larger receptive fields and increased width to
detect more fine-grained patterns. This observation led the researchers to propose a
compound scaling method that systematically balances all three dimensions (i.e., depth,
width and input resolution) simultaneously, rather than treating them as independent
factors. EfficientNet formalizes this relationship using a compound coefficient ¢ that
uniformly scales depth by o, width by %, and resolution by 7¢, while maintaining the
constraint o - f* - y2 & 2 to ensure controlled computational growth. The constants o, f,
and y are determined through a small grid search on a baseline network, allowing the
approach to adapt to different architectural foundations. The implementation process
involves two steps: (a) establishing a baseline network (EfficientNet-B0) through neural
architecture search that optimizes both accuracy and floating point operations per second
(FLOPS) then (b) applying the compound scaling method to create a family of increasingly
powerful models (B1-B7). This approach maintains the architectural benefits of the
baseline while systematically scaling network capacity.

Beyond its practical benefits, EfficientNet represents a paradigm shift in network design
philosophy, demonstrating that a thoughtful balance between architectural dimensions is
more important than simply increasing model size. This insight not only improves the
performance-efficiency trade-off, but also enables the deployment of powerful models in
resource-constrained environments, making advanced computer vision capabilities more
widely accessible. We chose EfficientNet as one of our main neural architectures because of
its high scalability and ability to support different input resolutions.

EfficientNet-V2
Proposed by Tan ¢» Le (2021), EfficientNet-V2, addresses critical limitations of the original
EfficientNet architecture while significantly improving training speed and parameter

Soylu and Bozkir (2025), PeerdJ, DOI 10.7717/peerj.20191 9/32


http://dx.doi.org/10.7717/peerj.20191
https://peerj.com/

Peer/

efficiency. Where EfficientNet scaled uniformly across all network stages and struggled
with large image sizes, EfficientNet-V2 introduces three key innovations.

Firstly, EfficientNet-V2 employs a training-aware neural architecture search that
strategically combines MBConv blocks from the original model with new Fused-MBConv
blocks in early layers. This hybrid approach has been shown to reduce the training
bottlenecks caused by depthwise convolutions, which were particularly inefficient in
EfficientNet’s initial stages. The architecture also employs smaller expansion ratios and
more focused 3 x 3 kernels compared to EfficientNet’s varied kernel sizes. Secondly,
EfficientNet-V2 implements a non-uniform scaling strategy that preferentially adds more
layers to later stages of the network, contrasting with EfficientNet’s equal scaling across all
stages. Furthermore, it restricts maximum image size to circumvent the memory
constraints that plagued EfficientNet training. Thirdly, the model introduces adaptive
progressive learning, where both image size and regularization strength increase
throughout the training process. In contrast to the straightforward progressive resizing
employed in EfficientNet, this approach employs a dynamic adjustment of regularization
to align with the network capacity at each stage.

Reported in Tan & Le (2021), a comparison of the EfficientNet V2-S, which contains
only 22M parameters (48% fewer than the EfficientNet-B6), with the EfficientNet-B6
reveals that the former achieves a comparable 83.9% top-1 ImageNet accuracy while
undergoing up to four times faster training. This substantial enhancement in efficiency
signifies the efficacy of EfficientNet V2’s architectural enhancements and training
methodology in effectively surmounting the computational impediments that constrained
the practical implementation of the original EfficientNet models. Since our images are
larger than the EfficientNet’s largest input size, we also employed EfficientNet V2 to obtain
higher accuracy and lower computational time.

Evaluation metrics

We first compute, four fundamental metrics: true positives (TP) and true negatives (TN)
represent correctly classified positive and negative instances, respectively, whereas false
positives (FP) and false negatives (FN) denote misclassifications where negative instances
are erroneously identified as positive and positive instances as negative, respectively. The
following well-known metrics are based on these fundamental metrics. Notably, in our
multi-class classification tasks, we compute these metrics using a one-vs-all approach,
where each class is evaluated against all other classes combined. The final metrics are
obtained by averaging across all classes, weighted by their support (number of instances).
Moreover, our use of five-fold cross-validation ensures the validity and feasibility of the
employed models.

Accuracy: It represents the proportion of correct predictions among all predictions. While
accuracy is intuitive, it may be misleading in imbalanced datasets where one class
significantly outnumbers the other. Thus, more metrics are required for a fair evaluation.

A TP+ TN
ccuracy = .
Y = TP+ TN + FP+ FN
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Precision: Precision, or positive predictive value, measures the proportion of correct
positive predictions among all positive predictions. This metric is particularly important
when false positives have significant consequences, such as unnecessary medical
procedures or treatments.

TP

Precision = —.
TP + FP

Recall: Recall, also known as sensitivity or true positive rate, measures the proportion of
actual positive cases that were correctly identified.

TP

Recall = ———.
TP+ FN

Specificity: Specificity, or true negative rate, measures the proportion of actual negative
cases that were correctly identified. In medical diagnosis, specificity is particularly crucial
as it represents the prediction model’s ability to identify healthy individuals correctly.

TN

Specificity = TN+ FP’

F1-score: The F1-score is the harmonic mean between precision and recall, offering a
balanced assessment of a model’s performance. It’s particularly valuable when equilibrium
between these two metrics is needed, as it gives lower scores when either precision or recall
is significantly imbalanced.

Precision x Recall B 2TP

F1- =2 X —
score Precision + Recall _ 2TP + FP + FN

Area under the receiver operating characteristic (ROC) curve (AUC): The AUC
represents the model’s ability to discriminate between classes across all possible
classification thresholds. The AUC-ROC measures model performance by calculating the
area beneath the ROC curve, which displays the true positive rate (recall) plotted against
the false positive rate (1—specificity). A perfect classifier achieves an AUC of 1.0, while
random guessing produces an AUC of 0.5.

EXPERIMENTAL DESIGN

In the experiment phase shown in Fig. 2, we aimed to build several predictive models for
different types of EMA-eq classifications targeting various classes such as 2 (binary:
negative/positive) and 3/4 (multi-class: negative, weak positive, strong positive, gray zone).
Since we have a limited number of samples, to assess the performance of models fairly, we
applied fivefold cross-validation coupled with stratified sampling, which ensures that a
constant proportion of class samples are included in the training and validation portions of
each fold.

To build and train various EfficientNet and EfficientNet-V2 models we employed
Pytorch 2.5 framework along with several libraries such as (a) Albumentations for
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Figure 2 An overview of our entire workflow depicting stages for (i) data splitting, (ii) data
augmentation, and (iii) deep learning model training/validation/reporting.
Full-size K&] DOT: 10.7717/peerj.20191/fig-2

augmenting input images, (b) Sklearn for stratified k-fold sampling and metric
computations, (c) Python Imaging Library (PIL) for image loading and (d) Wandb for
performance tracking.

During the training phase, input images of approximately 1,170 x 980 pixels wide are
first resized to the appropriate resolution (e.g., 224 x 224 for EfficientNet-B0) according to
the specific input size of each architecture. Moreover, to increase the generalization ability
and maintain robustness to new samples, we applied several augmentation techniques.
Image augmentation techniques artificially expand training datasets by applying various
transformations to existing images. Horizontal and vertical flips create mirror images
along their respective axes, helping models learn orientation-invariant features. Rotation
and scaling operations change the angle and size of objects within images, improving
robustness to different viewpoints and object scales. Elastic transformations apply
non-linear deformations that simulate natural variations in shape and structure,
particularly useful for medical imaging and handwriting recognition. Grid distortion
introduces controlled geometric distortions by warping images through a deformed grid
pattern, creating realistic variations that help models generalize better to real-world
scenarios where objects may appear stretched, compressed, or slightly warped due to
camera angles or lens distortion. The details of applied augmentation are presented with
their parameters in Table 2. The selection of given augmentation techniques is sourced
from the inherent visual structures of the images we encounter.

During the training phase, we examined eight EfficientNet (i.e., BO-B7) and three
EfficientNet-V2 (small, medium, large) architectures. We used the following EfficientNet
architectures with resized square images ranging from B0: 224 x 224, B1: 240 x 240,
B2: 260 x 260, B3: 300 x 300, B4: 380 x 380, B5: 456 x 456, B6: 528 x 528 and B7: 600 x
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Table 2 The applied augmentations’ parameters.

Augmentation type Probability Parameters (Key/Value)

HorizontalFlip 0.4 N/A

VerticalFlip 0.4 N/A

ShiftScaleRotate 0.3 shift-limit: 0.1, scale-limit: 0.15, rotate-limit: 0.15
ElasticTransform 0.05 alpha: 1, sigma: 50

GridDistortion 0.05 num-steps: 5, distort-limit: 0.3

Table 3 The key properties and values used in the training phase.

Parameter Value

Optimizer AdamW
Optimizer learning rate 0.05

Optimizer weight decay 0.03

Loss criterion Cross-entropy loss
Label smoothing 0.2

Number of epochs 30

Number of K-folds

Batch size 4

600 pixels whereas EfficientNet-V2 models were used with 640 x 640 pixels wide images.
We hypothesize that larger images fed into the larger models will give better performance.

In Table 3, we introduce our key training properties by also involving the
hyper-parameters we chose. We used label smoothing since it improves model
generalization by preventing overconfidence in predictions, converting hard one-hot
encoded targets into soft probability distributions that discourage the model from
becoming too certain about its training examples and thus reducing overfitting,
particularly when dealing with noisy or potentially incorrect labels in the dataset. In
addition, we applied five-fold stratified cross-validation to provide more reliable
performance estimates than random splitting, while making efficient use of the entire
dataset by training on 80% and validating on 20% in each iteration. Ultimately, this
reduces the variance in performance metrics and allows for better model selection.
Followingly, we leveraged Weights & Biases (Wandb) tool to meticulously track our
experiments, enabling real-time monitoring of performance metrics across multiple model
configurations.

RESULTS

In this section, we analyze and interpret the results for three different dataset
configurations of IgA EMA-eq Binary (negative and positive), IgA EMA-eq 3-Classes
(negative, weak positive and strong positive) and IgA EMA-eq 4-Classes (negative, weak
positive, strong positive and gray-zone) from both medical and machine learning

points of view.
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Table 4 5-fold cross-validation results for IgA EMA-eq binary classification (i.e., positive/negative) using various EfficientNet architectures.
The results, indicated by parentheses, denote the mean and standard deviation scores, respectively.

Model

Accuracy

Precision

Recall

Specificity

F1-score

AUC

Efficient Net BO
Efficient Net Bl
Efficient Net B2
Efficient Net B3
Efficient Net B4
Efficient Net B5
Efficient Net B6
Efficient Net B7
Efficient Netv2 S
Efficient Netv2 M
Efficient Netv2 L

96.86% (+£1.9%)
96.54% (42.5%)
97.48% (42.5%)
96.86% (£2.2%)
98.11% (+1.8%)
98.43% (+1.4%)
97.80% (42.1%)
97.17% (£2.3%)
99.37% (+0.7%)
99.06% (£0.7%)
99.06% (41.2%)

96.98% (+£1.9%)
96.70% (+2.3%)
97.57% (£2.5%)
96.91% (£2.2%)
98.17% (+1.8%)
98.51% (+1.3%)
97.90% (42.0%)
97.35% (£2.1%)
99.39% (+0.7%)
99.09% (+£0.7%)
99.11% (41.1%)

96.86% (+£1.9%)
96.54% (+2.5%)
97.48% (42.5%)
96.86% (+£2.2%)
98.11% (+1.8%)
98.43% (+1.4%)
97.80% (42.1%)
97.17% (£2.3%)
99.37% (+0.7%)
99.06% (£0.7%)
99.06% (41.2%)

96.97% (£1.9%)
96.62% (+2.4%)
97.51% (42.5%)
96.92% (£2.2%)
98.13% (+1.8%)
98.43% (+£1.4%)
97.84% (42.1%)
97.30% (£2.2%)
99.36% (+0.7%)
99.03% (+£0.7%)
99.07% (41.2%)

96.86% (£1.9%)
96.54% (+2.5%)
97.48% (42.5%)
96.86% (£2.2%)
98.11% (+1.8%)
98.43% (+£1.4%)
97.80% (42.1%)
97.17% (£2.3%)
99.37% (40.7%)
99.06% (£0.7%)
99.06% (41.2%)

98.71% (£1.0%)
98.80% (+1.1%)
98.30% (+1.2%)
99.03% (£0.8%)
99.58% (+0.6%)
99.58% (£0.4%)
99.50% (£0.6%)
99.40% (£0.6%)
99.70% (40.3%)
99.34% (£0.8%)
99.66% (£0.4%)

Note:
The best scores are highlighted in bold.

IgA EMA-eq binary: “detection of disease”

The performance metrics for all models, as shown in Table 4, demonstrate the high efficacy
of deep learning approaches in automating EMA-eq test interpretation. The
EfficientNetV2-S model achieved the highest overall performance with 99.37% (£0.7%)
accuracy, 99.39% (£0.7%) precision, 99.37% (£0.7%) recall, and 99.36% (£0.7%)
specificity. This model also demonstrated excellent discriminative ability with an AUC of
99.70% (£0.3%). These results indicate that the EfficientNetV2-S architecture can reliably
distinguish between positive and negative EMA-eq samples with near-perfect accuracy.

Interestingly, among the traditional EfficientNet models (B0-B7), the EfficientNet-B5
performed best with 98.43% (41.4%) accuracy, slightly outperforming both smaller
(B0-B4) and larger (B6-B7) variants. This finding challenges the assumption that larger
models consistently deliver better performance, suggesting that the B5 architecture
provides an optimal balance between model complexity and generalization ability for this
specific task.

The confusion matrices presented in Fig. 3 provide further insight into the classification
patterns. Even the worst-performing model (EfficientNet-B0) demonstrated relatively
strong performance, correctly classifying 27 negative and 32 positive samples in the
displayed fold, with only two false positives and two false negatives. The average model
(EfficientNet-B4) showed improved performance with 30 correctly classified negative and
33 positive samples, with only 1 misclassification in the positive class. The best model
(EfficientNetV2-S) demonstrated near-perfect classification with 30 correct negative and
34 correct positive classifications, with only minimal misclassification (exists in
other folds).

Our analysis reveals a general trend where increasing input resolution correlates with
improved classification accuracy across the EfficientNet family, with models BO through
B5 showing consistent performance gains as resolution increases (from 96.86% to 98.43%).
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Figure 3 Confusion matrices selected from the (A) worst, (B) average and (C) best model in our
binary classification experiments. Full-size K&l DOI: 10.7717/peerj.20191/fig-3

However, this pattern doesn’t hold universally, as evidenced by the slight performance
decline in larger architectures like EfficientNet-B6 (97.80%) and B7 (97.17%), suggesting
that extremely high resolutions may introduce diminishing returns or even slight
overfitting for this specific IgA EMA-eq classification task.

Opverall, all tested architectures achieved high performance metrics, with accuracy
scores ranging from 96.54% to 99.37%, indicating the robustness of the EfficientNet family
for this application. The slightly lower standard deviations observed in
EfficientNetV2 models (£0.7% for S and M variants) compared to traditional EfficientNet
architectures suggest greater consistency across different folds of the dataset. These results
demonstrate that the EfficientNetV2 series has great potential for recognizing IgA-EMA
tests for diagnosing celiac disease when fed a large-scale dataset. This could potentially
reduce reliance on labor-intensive and subjective manual evaluation methods.
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Table 5 Five-fold cross-validation results for IgA EMA-eq three-classes classification (i.e., strong positive/weak positive/negative) using various

EfficientNet architectures. The results, indicated by parentheses, denote the mean and standard deviation scores, respectively.

Model

Accuracy

Precision

Recall

Specificity

F1-score

AUC

Efficient Net BO
Efficient Net Bl
Efficient Net B2
Efficient Net B3
Efficient Net B4
Efficient Net B5
Efficient Net B6
Efficient Net B7
Efficient Netv2 S
Efficient Netv2 M
Efficient Netv2 L

91.84% (+3.0%)
92.45% (41.8%)
92.77% (41.5%)
92.46% (+1.8%)
94.98% (+1.8%)
94.02% (+1.1%)
94.02% (£1.1%)
94.02% (+1.8%)
95.28% (+3.1%)
94.97% (42.2%)
94.66% (£3.0%)

92.23% (£3.0%)
92.79% (+1.4%)
93.32% (+1.6%)
93.27% (£1.7%)
95.37% (+1.5%)
94.43% (+£1.2%)
94.17% (£1.2%)
94.45% (+£1.9%)
95.84% (+2.6%)
95.35% (42.1%)
94.74% (43.1%)

91.84% (£3.0%)
92.45% (+1.8%)
92.77% (+1.5%)
92.46% (+1.8%)
94.98% (+1.8%)
94.02% (+1.1%)
94.02% (£1.1%)
94.02% (+£1.8%)
95.28% (+3.1%)
94.97% (42.2%)
94.66% (£3.0%)

95.69% (+1.6%)
96.29% (£0.7%)
96.39% (£0.7%)
96.24% (£0.8%)
97.50% (£0.8%)
97.13% (£0.6%)
97.06% (40.5%)
96.85% (£0.9%)
97.68% (+1.4%)
97.38% (+1.1%)
97.30% (£1.5%)

91.77% (£3.0%)
92.43% (+1.7%)
92.77% (+1.5%)
92.42% (+£1.8%)
94.99% (+1.7%)
94.04% (£1.1%)
93.98% (41.2%)
93.92% (£1.9%)
95.23% (43.1%)
94.88% (+2.3%)
94.57% (43.1%)

97.53% (£0.5%)
97.09% (£1.5%)
97.78% (£0.8%)
96.92% (£1.2%)
98.57% (£0.4%)
98.46% (£0.5%)
98.19% (£0.5%)
98.24% (+£1.6%)
98.42% (+1.1%)
98.41% (+0.9%)
98.02% (41.7%)

Note:
The best scores are highlighted in bold.

IgA EMA-eq 3-classes: “separating positiveness”

In this subsection, we present the results of our three-class classification experiments for
IgA EMA-eq tests, where samples were categorized as negative, weak positive, or strong
positive. Table 5 provides a comprehensive overview of the performance metrics across
various EfficientNet architectures.

The EfficientNetV2-S model again demonstrated superior performance with the highest
accuracy of 95.28% (43.1%), precision of 95.84% (4-2.6%), and recall of 95.28% (£3.1%).
This model also achieved an impressive specificity of 97.68% (£1.4%) and F1-score of
95.23% (£3.1%), with an AUC of 98.42% (+1.1%). These results indicate that the
EfficientNetV2-S architecture can effectively distinguish between the three different
EMA-eq classes with high reliability.

Among the traditional EfficientNet models (B0-B7), we observed that EfficientNet-B4
delivered the best performance with 94.98% (£1.8%) accuracy, 95.37% (41.5%) precision,
and 94.98% (£1.8%) recall. Similar to our binary classification findings, there was not a
linear improvement in performance with increasing model size, as EfficientNet-B4
outperformed larger variants like B5, B6, and B7, suggesting an optimal architecture size
for this specific classification task. The confusion matrices presented in Fig. 4 provide
deeper insights into the classification patterns. The worst-performing model (EfficientNet-
B0) showed reasonable discrimination ability but struggled with distinguishing between
weak positive and strong positive samples. The matrix reveals 27 correctly classified
negative samples, but shows several misclassifications between weak positive and strong
positive categories. The average model (EfficientNet-B3) demonstrated improved class
separation with better classification accuracy across all three classes. The best model
(EfficientNetV2-S) showed the clearest class separation with 30 correctly classified
negative samples and substantially improved discrimination between weak positive and
strong positive categories.
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Figure 4 Confusion matrices selected from the (A) worst, (B) average and (C) best model in our
three-class classification experiments. Full-size K&l DOT: 10.7717/peerj.20191/fig-4

A notable pattern across all models is the relative difficulty in distinguishing between
weak positive and strong positive classes compared to identifying negative samples. This is
consistent with the clinical reality where differentiation between varying degrees of
positive results can be more challenging than distinguishing between positive and negative
outcomes.

The superior performance of EfficientNetV2 models in the three-class classification task
can be attributed to several key factors. First, the significantly higher input resolution of
640 x 640 pixels (compared to 224 x 600 pixels in standard EfficientNet variants) allows
these models to capture more fine-grained textural and pattern details in the
immunofluorescence images, which is particularly critical for distinguishing between
subtle differences in weak positive and strong positive samples. Additionally,
EfficientNetV2’s architectural innovations, including the Fused-MBConv blocks in early
layers and non-uniform scaling strategy, appear particularly well-suited for handling the
increased complexity of multi-class discrimination tasks. The model’s adaptive
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Table 6 5-fold cross-validation results for IgA EMA-eq four-classes classification (i.e., strong positive/weak positive/negative/gray zone) using
various EfficientNet architectures. The results, indicated by parentheses, denote the mean and standard deviation scores, respectively.

Model

Accuracy

Precision

Recall

Specificity

F1-score

AUC

Efficient Net BO
Efficient Net Bl
Efficient Net B2
Efficient Net B3
Efficient Net B4
Efficient Net B5
Efficient Net B6
Efficient Net B7
Efficient Netv2 S
Efficient Netv2 M
Efficient Netv2 L

81.79% (£2.9%)
81.80% (42.4%)
85.34% (+£3.9%)
82.34% (+1.4%)
83.45% (+6.0%)
86.15% (42.1%)
82.35% (+4.8%)
83.72% (+4.7%)
86.98% (+4.8%)
86.98% (+4.6%)
85.06% (£2.6%)

83.12% (+2.8%)
82.54% (42.5%)
86.12% (+£4.0%)
84.53% (+1.6%)
85.87% (+3.7%)
86.93% (+£1.8%)
84.05% (43.9%)
84.85% (+4.9%)
87.10% (+5.3%)
87.38% (+£4.6%)
85.12% (43.8%)

81.79% (£2.9%)
81.80% (42.4%)
85.34% (£3.9%)
82.34% (+£1.4%)
83.45% (+£6.0%)
86.15% (42.1%)
82.35% (+4.8%)
83.72% (+£4.7%)
86.98% (+4.8%)
86.98% (+£4.6%)
85.06% (£2.6%)

93.79% (£1.0%)
93.98% (£0.7%)
95.12% (£1.2%)
94.16% (£0.4%)
94.71% (+1.8%)
95.51% (£0.7%)
94.43% (£1.4%)
94.51% (+£1.5%)
95.80% (+1.5%)
95.57% (£1.5%)
95.22% (40.9%)

81.19% (£2.8%)
81.90% (+2.3%)
85.29% (+£4.2%)
82.48% (+£1.5%)
83.98% (£5.6%)
86.21% (+2.1%)
82.75% (+4.3%)
83.64% (+£4.9%)
86.79% (+5.2%)
86.32% (45.4%)
85.00% (£3.3%)

92.69% (+£1.5%)
92.97% (+2.6%)
93.78% (£2.3%)
93.12% (£1.0%)
94.18% (+£3.2%)
94.30% (42.9%)
92.80% (44.4%)
92.73% (£4.9%)
95.98% (+1.9%)
95.25% (42.2%)
94.08% (£3.0%)

Note:
The best scores are highlighted in bold.

regularization technique likely contributes to its improved generalization capabilities
across the three classes while its more efficient training dynamics may allow it to reach a
better optimization point within the same number of training epochs. This performance
advantage highlights that for nuanced medical image classification tasks like EMA-eq
pattern recognition, the combination of higher resolution inputs and EfficientNetV2’s
architectural improvements provides a substantial benefit in discriminative power.

Opverall, the multi-class classification performance demonstrates that EfficientNet
architectures, particularly EfficientNetV2-§, can effectively automate the more nuanced
three-class categorization of IgA EMA-eq tests with high accuracy, potentially enhancing
the diagnostic precision for celiac disease beyond simple binary classification.

IgA EMA-eq 4-classes: “where the ambiguity comes in”

Analysis of the four-class classification results (negative, weak positive, strong positive, and
gray-zone) reveals distinct performance patterns across the EfficientNet architectures, as
demonstrated in Table 6 and Fig. 5. The four-class paradigm represents the most granular
classification scenario in our study, introducing an additional gray-zone class that requires
even finer discrimination capabilities.

Once again, the EfficientNetV2-S model achieved the highest overall performance with
86.98% (£4.8%) accuracy, 87.10% (£5.3%) precision, and 86.98% (+4.8%) recall, with a
high AUC of 95.98% (£1.9%). While the EfficientNetV2-M model showed identical
accuracy, the S variant demonstrated a slightly better overall performance profile,
particularly with its superior specificity, F1 and AUC score. This performance excellence
can be attributed to the higher input resolution of 640 x 640 pixels used for
EfficientNetV2 models, which provides crucial additional detail for discriminating
between the closely related classes, particularly the complex gray-zone category.

Among the traditional EfficientNet architectures, EfficientNet-B5 demonstrated the
best performance with 86.15% (£2.1%) accuracy, continuing the pattern observed in
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Figure 5 Confusion matrices selected from the (A) worst, (B) average and (C) best model in our
four-class classification experiments. Full-size Kal DOI: 10.7717/peerj.20191/fig-5

previous classification schemes where mid-to-large size models (rather than the largest
variants) deliver optimal results. This finding reinforces the notion that an optimal balance
between model complexity and generalization capability is more important than sheer
model size for this specific medical imaging task.

The confusion matrices in Fig. 5 illustrate the classification challenges in this more
complex four-class scenario. The worst-performing model (EfficientNet-B0) shows
particular difficulty in correctly identifying gray-zone samples and distinguishing between
weak positive and strong positive categories, as evidenced by the multiple off-diagonal
entries. The average model (EfficientNet-B2) demonstrates improved classification
accuracy, particularly for negative samples, but still exhibits confusion between the positive
classes and the gray zone. The best model (EfficientNetV2-S) shows the most balanced
performance across all four classes, with notably improved classification of gray-zone
samples compared to other architectures. The overall reduction in accuracy metrics
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Table 7 Performance measurement of the three best models across each classification category using the data of initially titrated samples.

Mode Model Accuracy Precision (macro) Recall (macro) Specificity (macro) F1-score (macro) AUC
2-Class EfficientNetV2-S 100% 100% 100% 100% 100% 100%
3-Class EfficientNetV2-S 100% 100% 100% 100% 100% 100%
4-Class EfficientNetV2-S 83.33% 87.50% 85.00% 95.00% 82.64% 96.25%

compared to binary and three-class classification schemes (dropping from 99% to 87% for
the best models) highlights the inherent difficulty in distinguishing between four clinically
relevant categories, particularly the gray zone class, which represents borderline cases. This
performance decrease is expected given the increased classification complexity and the
inherent ambiguity of gray-zone samples, which represent complex cases even for human
experts. The consistently strong performance of EfficientNetV2 models across all
classification schemes, particularly with higher input resolutions, suggests that these
advanced architectures, combined with detailed image inputs, provide the most reliable
automated approach for IgA EMA-eq test interpretation, even in the most granular
multi-class scenarios.

Evaluation on initially titrated samples

In this part, we evaluate our most successful trained models for each category on a limited
but initially titrated samples. This external dataset contains unique (i.e., never used in
previous stages) 30 samples covering four classes (i.e., Neg: 5, GrayZone: 5, Weak-Positive:
10, Strong-Positive: 10). Table S1 introduces actual images and details of these samples,
whereas Table 7 demonstrates our best ML models’ performance for each mode on this
external dataset. Note that 2-Class mode unites all positive samples into one single positive
class while four-Class mode has all distinct classes. Thus, this evaluation protocol uses the
same structure presented in the previous three subsections. As given in Table 7, our
selected models achieved an accuracy of 100% in binary and triple class scenarios,
surpassing the average scores in related five-fold cross-validation results. For the four-class
scenario, our best model achieved an accuracy of 83.33% and a specificity score of 95%.
Although the grayzoned test case shows a slightly lower result than our average accuracy
score of 86.98%, the benchmarking yields error-free predictions in binary and triple class
regimes.

Comparative study

To evaluate the comparative advantage of our approach with existing methods, a
comparative study was conducted. In this regard, we selected the algorithm (local binary
patterns + support vector machine: LBP+SVM) which was used in the work of Caetano dos
Santos et al. (2019). Although they used human umbilical cord (HUC), which is different
than ours (monkey liver—ML), the visual similarity of images and the domain similarity of
the work motivated us to compare the LBP+SVM method with EfficientNet-V2. We, thus,
reproduced the implementation of Caetano dos Santos et al. (2019), which uses LBP-based
feature extraction and the AdaBoost-powered SVM algorithm. Meanwhile, this
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Table 8 Comparative results obtained with other method(s).

Study Substrate Mode Algorithm Avg. accuracy Avg. sensitivity Avg. specificity
Caetano dos Santos et al. (2019) HUC 2-Class LBP + SVM 87.14% 85.80% 88.59%
Ours ML 2-Class EfficientNetV2-S 99.37% 99.37% 99.26%
Caetano dos Santos et al. (2019) HUC 3-Class LBP + SVM 74.52% 74.52% 87.02%
Ours ML 3-Class EfficientNetV2-S 95.28% 95.28% 97.68%
Caetano dos Santos et al. (2019) HUC 4-Class LBP + SVM 59.52% 59.52% 85.86%
Ours ML 4-Class EfficientNetV2-S 86.98% 86.98% 95.80%
Note:

HUC, Human umbilical cord; ML, Monkey liver

benchmark also directly compares the use of hand-crafted features with the representation
learning offered by our scheme. To ensure a fair comparison, we used a five-fold cross-
validation that is identical to ours. We then compared the results of both methods, in
particular with our best binary, 3-class and 4-class models. The results are given in Table 8.

Our work significantly advances beyond (Caetano dos Santos et al., 2019) by
transitioning from traditional handcrafted feature extraction methods to state-of-the-art
deep learning architectures. While they employed LBP, a conventional computer vision
technique that relies on manually designed texture descriptors, our approach leverages
EfficientNet and EfficientNetV2 models that automatically learn hierarchical feature
representations directly from raw immunofluorescence images. This fundamental
methodological shift from handcrafted to learned features enables our models to capture
complex, subtle patterns in EMA images that traditional texture descriptors may miss. The
superior performance achieved in all datasets compared to their LBP-based approach
demonstrates the effectiveness of modern deep learning architectures in medical image
analysis, particularly for tasks requiring fine-grained pattern recognition in
immunofluorescence microscopy.

DISCUSSION

In this section, we discuss the results from both the machine learning and clinical
laboratory perspectives. In addition, we have examined the built models through the lens
of HiRes-CAM, a CNN compatible and explanatory AI companion module that shows
heat maps of the pixel regions from which the model significantly derives its results. In this
context, we evaluate the decisions of our best model (i.e., EfficientNetV2-S) on correct and
incorrect predictions to (a) better understand the behavior of the model and (b) what could
be done for better performance in terms of data and model improvements.

Machine learning perspective

Our comprehensive evaluation of EfficientNet architectures across binary, 3-class, and

4-class IgA EMA-eq classification schemes reveals several significant patterns and insights.
First, we observed a consistent decrease in classification performance as task complexity

increased from high accuracy (99.37%) in binary classification to strong performance

(95.28%) in three-class classification, and finally to good performance (86.98%) in the most
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complex four-class scenario. This pattern reflects the inherently increasing difficulty in
distinguishing between more granular diagnostic categories, particularly when dealing
with subjective boundaries between classes like weak positive, strong positive, and
gray-zone samples.

Second, EfficientNetV2 models, particularly the EfficientNetV2-S variant,
demonstrated superior performance across all classification tasks. This excellence can be
attributed to both architectural innovations (fused-MBConv blocks, non-uniform scaling)
and the higher input resolution (640 x 640 pixels) used with these models, which appears
particularly beneficial for capturing the subtle immunofluorescence patterns critical for
accurate classification. The consistently high AUC values (99.70%, 98.42%, and 95.98% for
binary, three-class, and four-class tasks, respectively) demonstrate the robust
discriminative ability of these models. It is also noteworthy that the high predictive
performance of these models is also related to the visual augmentations used during
training. We observed that the absence of all augmentations resulted in a drop in
performance of around 4.5%. Thus, deep learning practitioners should carefully consider
the augmentations under the hood when they are short of available labeled data.

Third, contrary to what might be expected, the largest models did not necessarily deliver
the best performance. Among traditional EfficientNet architectures, mid-to-large variants
(B4/B5) consistently outperformed both smaller (B0-B3) and larger models (B6-B7). This
finding suggests that an optimal balance between model complexity and generalization
capability is more critical than sheer model size for this specific medical imaging
application.

Despite these promising results, our study has limitations that warrant further
investigation. First, the relatively small dataset size (254 samples for binary and three-class,
294 for four-class classification) may limit the models’ generalizability to diverse clinical
settings. Though we have used five-fold cross validation during experimentation, future
work should focus on expanding the dataset to include samples from multiple institutions
and diverse patient populations. Second, while our models perform well on high-quality
images, their robustness to variations in immunofluorescence image quality, which
commonly occur in routine clinical practice, remains to be evaluated.

Additionally, the confusion matrices and HiRes-CAM visualizations reveal persisting
challenges in distinguishing between closely related classes, particularly between gray-zone
and other categories. This suggests that future research could benefit from exploring
ensemble approaches that combine multiple model predictions or integrating additional
clinical data to improve discrimination between borderline cases.

The results demonstrate that deep learning approaches, particularly using
EfficientNetV2 architectures with higher resolution inputs, can effectively automate IgA
EMA-eq test interpretation with high accuracy across different classification granularities.
This automation potential could significantly reduce the subjectivity and labor-intensive
nature of current manual evaluation methods, ultimately improving celiac disease
diagnostic workflows in clinical settings.
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Figure 6 A sample HiRes-CAM visualization of our best four-class model, EfficientNet-V2-S, on actual grayzone images. Each image shows
both ground truth and predicted labels along with the confidence score. Full-size £a] DOT: 10.7717/peerj.20191/fig-6

Clinical laboratory perspective

From a laboratory medicine standpoint, this study presents a practical and clinically
relevant approach to standardizing the interpretation of EMA-eq tests. In a previous
publication, Caetano dos Santos et al. (2019) presented one of the first studies to implement
machine learning in the problem domain and their findings underscore that machine
learning-based approaches can substantially reduce subjectivity in EMA interpretation,
paving the way for more consistent and scalable celiac disease diagnostics. Unlike
conventional workflows that rely on serial dilutions for titer estimation, our methodology
involves direct matching of patient immunofluorescence images to a reference panel
composed of consensus-rated examples, each representing a discrete staining category
(ranging from negative to strong positive). This streamlined strategy not only reduces
processing time and laboratory workload but also minimizes inter-observer variability by
providing fixed visual anchors for classification (Boral ¢ Togay, 2023).

To ensure clinical validity, we excluded patients with selective IgA deficiency, as their
inclusion could result in falsely negative EMA-eq interpretations and compromise both
model training and the reliability of test outputs. A structured pre-assessment phase was
implemented to further enhance standardization. Before the main evaluation, expert raters
reviewed a curated set of reference images for each category. This step was crucial for
harmonizing classification criteria across observers, particularly in complex cases such as
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Figure 7 A sample HiRes-CAM visualization of our best four-class model, EfficientNet-V2-S, on actual negative images. Each image shows

both ground truth and predicted labels along with the confidence score.

Full-size K&l DOT: 10.7717/peerj.20191/fig-7

weak positives and gray-zone samples. As shown in Table 7, performance metrics on the

initially titrated samples’ images remained high under both the 2-Class and 3-Class modes,

demonstrating strong alignment with dilution-based ground truth labels. The EMA-eq

4-class configuration introduced the gray zone as an additional interpretive category,

which posed significant challenges for both human and machine-based evaluation. These

gray zone cases typically exhibit faint or heterogeneous staining patterns on monkey liver

tissue, lacking the clear-cut fluorescence observed in higher-titer samples. As a result, they

may be misclassified by convolutional neural networks, and even experienced evaluators

may struggle to confidently assign them to either the negative or positive class. This

ambiguity is further illustrated by the HiRes-CAM visualizations presented in Figs. 6-9. In

Fig. 6, the gray zone examples correctly predicted by EfficientNetV2-S (e.g., Figs. 6A, 6B)

underscore the model’s strength in handling borderline cases. Notably, in Fig. 6D, the

model incorrectly classifies a gray zone image as weakly positive. However, this

misclassification aligns with the experience of expert raters, who also reported uncertainty

and reached consensus only after considering that the patient’s anti-tTG IgA level was

negative—ultimately supporting a gray zone interpretation. Such cases highlight both the

challenges of gray zone classification and the potential of Al to reflect nuanced human-like

judgments. In Fig. 7, we further examine ground-truth negative images. We deliberately

selected samples exhibiting non-specific background staining to evaluate model

Soylu and Bozkir (2025), PeerdJ, DOI 10.7717/peerj.20191

24/32


http://dx.doi.org/10.7717/peerj.20191/fig-7
http://dx.doi.org/10.7717/peerj.20191
https://peerj.com/

Ground Truth:weak positive

Predicted:weak positive

Confidence: 84.59% Ground Truth:weak positive Predicted:weak positive

Confidence: 81.55%

(a) Correct Prediction (weak positive) (b) Correct Prediction (weak positive)

Ground Truth:weak positive

Predicted:grayzone
Confidence: 69.07%

Predicted:grayzone
Confidence: 36.24%

Ground Truth:weak positive

(c) False Prediction (grayzone) (d) False Prediction (grayzone) ]

Figure 8 A sample HiRes-CAM visualization of our best four-class model, EfficientNet-V2-S, on actual weak positive images. Each image
shows both ground truth and predicted labels along with the confidence score. Full-size Kl DOT: 10.7717/peerj.20191/fig-8

robustness. Despite these visual confounders, the model correctly identified clearly
negative cases (Figs. 7A, 7B). For more ambiguous samples, such as Fig. 7D, the model
predicted a weakly positive label. Yet this particular patient also had a negative anti-TTG
IgA result and was clinically asymptomatic, prompting us to categorize the prediction as a
false positive. Nonetheless, such borderline images are likely to elicit confusion even
among experienced human readers, reaffirming the difficulty of these cases.

Figure 8 provides further support for the utility of the four-class approach. Although
some false predictions are observed, many of these are arguably acceptable when viewed
from a clinical context. For instance, some images predicted as gray zone could reasonably
be interpreted as such by expert raters. While our binary model excluded gray zone
samples due to their intrinsic ambiguity, our findings suggest that this four-class model—
particularly when used for screening—may offer substantial practical advantages in
laboratory workflows by maintaining high sensitivity while reducing ambiguity.
Additionally, the HiRes-CAM outputs in Fig. 9 highlight the model’s reliability in
recognizing high positive images. However, in Fig. 9D, the model classified a strongly
positive EMA-eq image as weakly positive, likely influenced by nuclear homogeneous
staining patterns superimposed on liver tissue—possibly related to ANA cross-reactivity.
This observation suggests a need to investigate further the impact of ANA positivity on
EMA-eq test interpretation in future studies.
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Figure 9 A sample HiRes-CAM visualization of our best four-class model, EfficientNet-V2-S, on actual strong positive images. Each image
shows both ground truth and predicted labels along with the confidence score. Full-size k&l DOL: 10.7717/peerj.20191/fig-9

Importantly, inter-observer disagreement is a known characteristic of EMA-eq
interpretation, particularly in low-intensity or borderline cases. While segmenting
positivity into multiple subclasses may increase subjectivity and reduce reproducibility, it
can offer meaningful granularity for clinical monitoring (Anbardar et al., 2023). In this
context, the added detail may support nuanced decision-making in treatment follow-up,
despite the inherent challenges in achieving perfect agreement. Moreover, in real-world
settings, certain EMA-eq images may contain damaged cellular structures or partially void
regions due to technical limitations in slide preparation or imaging (Hocke et al., 2023).
These imperfections pose interpretation challenges not only for automated systems but
also for human experts. As such, attributing misclassification solely to artificial intelligence
may be misleading; rather, these issues reflect fundamental limitations of the indirect
immunofluorescence technique itself (Meroni et al., 2019).

While the system has shown high agreement with expert interpretations, a key
limitation is that its classification is entirely based on image-derived patterns and does not
incorporate contextual serological data such as anti-tTG IgA levels. This restricts the
model to a mimicry of human visual evaluation, rather than enabling it to contribute
independent diagnostic value. Furthermore, no combined decision pipeline was
implemented in which Al-generated predictions are revised or confirmed by human
experts using additional clinical inputs. This absence limits its real-world applicability in
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borderline cases where interpretation requires more than fluorescence intensity alone. In
addition, although the commercial assay used in this study is labeled as an EMA test, it
employs monkey liver sections that anatomically lack true endomysial tissue. Therefore,
the fluorescence patterns observed are more likely associated with reticulin antibody
binding in the perisinusoidal framework. While these patterns are clinically accepted
surrogates for EMA positivity—particularly in Euroimmun’s platform and when
correlated with anti-tTG IgA results—this distinction may affect generalizability to other
test systems that utilize classical EMA substrates, such as monkey esophagus or human
umbilical cord. To enhance future applicability, cross-substrate validation across different
platforms is recommended.

In clinical practice, gray zone findings often coincide with low anti-tTG IgA levels and
serve as a diagnostic trigger for further investigations such as duodenal biopsy, as
recommended by the ESPGHAN guidelines (Husby et al., 2020). Rather than reflecting
simple uncertainty, the gray zone represents a diagnostic buffer space and transitional
segment between seronegativity and early seropositivity. Importantly, this category may
contain early or low-grade disease signals that warrant closer scrutiny (Piccialli et al.,
2021). Although ESPGHAN guidelines recommend a sequential testing strategy for newly
diagnosed coeliac disease, where EMA IIF is performed in patients with anti-TTG IgA
levels > 10x ULN (upper limits of normal), this approach is not consistently followed in
real-world clinical settings. In our institution, EMA-eq and anti-TTG IgA tests are often
requested concurrently. This dual-request pattern is primarily driven by clinicians’
preference to maximize diagnostic sensitivity. Notably, of the 50 gray zone samples
examined in our study, 14 were anti-TTG IgA positive. However, these levels did not
exceed the 10x ULN threshold. In the absence of duodenal biopsy data, we deliberately
refrained from drawing categorical diagnostic conclusions based solely on serology.
Nevertheless, clinicians may interpret weak positive or gray zone EMA results as possible
indicators of early or evolving coeliac disease (Catassi ¢ Fasano, 2008). This is especially
true when the results are accompanied by even moderately elevated anti-TTG levels. This
interpretive tendency further emphasizes the importance of refining model performance in
borderline categories, where laboratory findings often exist in a diagnostic gray area and
clinical decision-making proceeds under uncertainty. From a methodological perspective,
these ambiguous cases reflect real-life diagnostic challenges and offer a valuable
opportunity to test whether deep learning models can handle complex and uncertain
situations—not just clear-cut positive or negative cases. Meanwhile, the current study
involves other limitations. The relatively small sample size, particularly within the gray
zone subgroup, may limit statistical power and generalizability. Most notably, the study
does not include histopathological (biopsy) results, limiting the ability to stratify gray zone
cases as true or false positives definitively.

CONCLUSIONS

Our comprehensive evaluation of EfficientNet and EfficientNet-V2 architectures for
automated IgA EMA-eq test interpretation demonstrates the significant potential of deep
learning approaches in celiac disease diagnosis. The results across binary, three-class, and
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four-class classification schemes consistently show that these models, particularly
EfficientNetV2-§, achieve promising performance with accuracies of 99.37%, 95.28% and
86.98%, respectively. According to our best knowledge, this is the first study to apply these
deep architectures to monkey liver-based EMA-eq immunofluorescence images using a
structured reference panel and a dedicated gray-zone category, addressing a diagnostically
challenging yet underexplored area. Several key findings emerge from our study. First, the
performance degradation observed as classification granularity increases highlights the
inherent difficulty in distinguishing between subtle immunofluorescence patterns,
especially for gray-zone samples. This mirrors the challenges faced by human experts in
clinical practice. Second, contrary to the conventional assumption that larger models yield
better results, the model complexity must be carefully balanced against generalization
capability for medical imaging tasks. Moreover, the problem domain exhibits challenges in
discriminating closely related classes, particularly between gray-zone and other categories,
underscoring the diagnostic ambiguity of such cases and the need for multimodal
approaches. Integrating quantitative serological markers such as anti-tTG IgA levels or
clinical metadata may help resolve these ambiguities and improve model robustness in
borderline scenarios, especially when multimodal approaches are used. However, it is
important to note that the present study utilized a monkey liver-based substrate, which
lacks true endomysial tissue. While the observed fluorescence patterns are clinically
interpreted as EMA positivity in commercial settings, they anatomically reflect reticulin
fiber staining. As such, the direct generalizability of these findings to other substrates
(e.g., monkey esophagus or human umbilical cord) should be approached with caution.
Future studies should validate the proposed approach across multiple EMA testing
platforms to ensure broader applicability. In conclusion, our findings demonstrate that
deep learning approaches based on EfficientNet architectures can effectively automate
reticulin based IgA EMA-eq test interpretation with high accuracy, potentially reducing
reliance on subjective manual evaluation. By incorporating visually explainable outputs via
HiRes-CAM and modeling real-world diagnostic uncertainty through a four-class
configuration, our approach brings computer vision based serologic screening closer to
practical clinical application. With further refinement and validation, these models could
become valuable tools in clinical practice, enhancing the efficiency and reliability of celiac
disease diagnosis while freeing specialized medical personnel for other critical tasks. Future
work should focus on (i) prospective clinical validation, (ii) use of multimodal deep
learning, (iii) improvements in model explainability, and (iv) the integration of these
systems into existing diagnostic workflows to realize their full potential in enhancing
patient care.
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