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ABSTRACT
Abiotic stresses such as high temperature, humidity fluctuations, and excessive light
negatively impact grapevine physiological functions, resulting in irregular vegetative
growth and reduced productivity. Natural plant growth regulators and essential oils
offer potential eco-friendly strategies to mitigate these adverse effects. This study
investigated the effects of foliar applications of 24-epibrassinosteroid (Br) at
concentrations of 1, 2, and 3 mg/L and jasmine oil (JO) at 500, 1,000, and 1,500 µL/L
on Flame Seedless grapevines exposed to abiotic stress. The treatments aimed to
enhance vegetative development, nutrient uptake, biochemical attributes, and yield.
Results showed that all treatments successfully improved the vegetative growth of
Flame Seedless grapevines by increasing leaf area, shoot length, diameter, number of
leaves/shoots, pruning wood weight, internode length, and coefficient of wood
ripening. They also improved the mineral content in leaf petioles, total carbohydrates
in canes, chlorophyll contents in leaves, and yield per vine. In addition, the quality of
the Flame Seedless grapevine was improved by increasing cluster weight, length,
width, berry firmness, length, width, soluble solids content (SSC), titratable acidity
(TA), SSC/TA ratio, total sugars, phenols, anthocyanin, and flavonoids, activities of
peroxidase (POX), phenylalanine ammonialyase (PAL), polyphenoloxidase (PPO)
and catalase (CAT) enzyme in berry. Application of Br at 3 mg/L yielded the highest
significant values for vegetative growth parameters, yield, and physical
characteristics. While JO at a rate of 1,500 µL/L increased the total phenols,
flavonoids, and anthocyanin, as well as PPO, PAL, POX activity, and CAT in the
berry. Foliar application of Br and JO effectively mitigated the adverse effects of
abiotic stress in Flame Seedless grapevines.
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INTRODUCTION
Grapes are in the genus Vitis, one of the sixteen genera of the Vitaceae family (Wen et al.,
2018). Among the most significant and prevalent crops in the world is the grapevine
(Chacón-Vozmediano et al., 2020). Red grapes are a valuable source for the food industry
due to their high nutritional value, including organic acids, aromatic compounds, soluble
sugars, vitamins, and antioxidants like phenolic compounds (anthocyanins, phenolic acids,
stilbenes, and flavonols) and β-carotene (Abdel-Sattar et al., 2022). The Egyptian market
places red grape varieties in a prominent marketing position, especially the Flame Seedless
grape, one of the earliest seedless red grape varieties to ripen, and is highly sought after by
consumers, as it closes a business gap in the market and is the most lucrative (Belal,
El Kenawy & Omar, 2022).

Climatic conditions influence grapevine growth efficiency and crop phenology, with
temperature being the primary driver of shifts in grapevine phenological stages (Cameron,
Petrie & Barlow, 2022). For the grapevine, 25 �C to 35 �C is the ideal photosynthetic
temperature (Kun et al., 2018). Heat acclimation mechanisms are triggered at temperatures
above 35 �C, while physiological processes decrease at temperatures below 25 �C (Bernardo
et al., 2018; Zhang et al., 2018). Because plants’ development rate is strongly temperature
sensitive, a warmer climate will impair vegetative growth and productivity (Hatfield &
Prueger, 2015). Long, hot, dry summers and brief, comparatively wet winters with
moderate to high temperatures define the Mediterranean basin, one of the world’s greatest
wine-growing regions (Venios et al., 2020). Due to the semi-arid climate, vineyards
increasingly suffer from severe summer stress (Chacón-Vozmediano et al., 2020).
Therefore, when the conditions necessary to meet developmental requirements are not
suitable, specific disorders may occur that can be addressed through horticultural
practices. These practices can be used to complete the vegetative growth and fruit
metabolism stages, employing different approaches and methodologies, such as foliar
spraying with brassinosteroids and jasmine oil.

Brassinosteroids (BRs) are a group of hormones with strong growth-regulating effects
that function both independently and together with other phytohormones to control
various BR-regulated activities (Zullo, 2018; Peres et al., 2019). 24-epibrassinolide is the
most widely used BRs in research on the physiological effects of exogenous steroid
phytohormones on plants (Fedina et al., 2017) because of its strong biological activity and
extensive distribution (Bartwal et al., 2013). BRs serve critical and decisive functions in a
wide range of growth and developmental responses during the plant life cycle (Manghwar
et al., 2022), and they can create biological effects at extremely low concentrations
(Abdel-Sattar et al., 2024). BRs regulate a variety of processes, including stem and root cell
elongation and division, reproductive development, photomorphogenesis, leaf senescence,
and stress response (Kim et al., 2012; Fariduddin et al., 2014;Wang, Yu & Xie, 2020). It can
also contribute to higher chlorophyll content, enhanced photosynthesis efficiency, and the
promotion of root development and seedling, blooming, and maturation, and it might be
in charge of enhancing plants’ ability to withstand harsh environmental conditions like
cold, drought, salt, and acid (Chen et al., 2017; El-Banna et al., 2022). Numerous
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physiological and molecular reactions in plants, including vascular differentiation,
anthocyanin biosynthesis regulation, cell elongation, cell division, photomorphogenesis,
gene expression, protein synthesis, and differentiation of numerous cell types, were
demonstrated by BRs (Peres et al., 2019; Sun et al., 2020). Over the past few decades, plant
scientists have become interested in BR research because of its adaptability in mitigating
various environmental challenges (Divi, Rahman & Krishna, 2016;Manghwar et al., 2022).
Furthermore, BR applied exogenously, or changes made to their production and signaling,
may increase crop yields (Abdel-Sattar et al., 2024). Consequently, these substances can be
applied to crops as biostimulants to increase plant efficiency and induce abiotic stress
tolerance (Trevisan et al., 2020).

Recently, natural plant extracts have been explored as new alternatives to enhance plant
productivity and fruit quality while serving as environmental and human safety agents
(Shahbaz et al., 2022). Essential oils are increasingly recognized as natural antioxidants,
making them a promising option for preserving agricultural crops (Yeamsuriyotai et al.,
2025). Although the use of jasmine essential oil has been widely studied in many countries
worldwide, research into the application of jasmine oil remains relatively limited
(Phuc et al., 2019). Jasmine oil plays a role in stress prevention by biostimulating plant
growth and yield, in addition, improving the physicochemical properties of the fruit
(Ahmed et al., 2016; Prosche & Stappen, 2024). To our knowledge, there have only been a
few reports on the influence of natural oils on plant development and yield, including the
study by El-Tanany, El-Moghazy & Abdul-Aziz (2018) and Farouk et al. (2021), which
demonstrated the possibility of employing essential oils as biostimulants to enhance plant
growth and production. So, extra research is needed to examine the growth and yield of
crops and the full biochemical characteristics of the effect of natural oils on crop
productivity.

Grapevine productivity varies significantly between years due to climatic conditions.
Given the projections of increased climate change, grape production, harvest quality, and
longevity will be substantially affected. Therefore, this study seeks to stabilize productivity
fluctuations and enhance the sustainability of grapevine supply in terms of quantity and
quality using BR and JO under a semi-arid Mediterranean climate, particularly in Dakahlia
Governorate, Egypt. So, the primary objective of this study is to investigate the effect of
spraying BR and JO on improving grape growth and the physical and chemical quality of
grape clusters in Flame Seedless grapes.

MATERIALS AND METHODS
Plant materials and experimental procedure
During two seasons in 2023 and 2024, 10-year-old Flame Seedless grapevines grafted on
Freedom grape rootstocks were studied in clay soil with a 1.5-m groundwater table and a
flood irrigation system on the El-Baramon experimental farm in the Dakahlia Governorate
(31�11′98′′ N, 31�45′13′′ E). Grapevines were cultivated using a quadrilateral cordon
training system of short spurs in a Spanish baron trellis. All grapevines were spur pruned
by the third week of January in both seasons, retaining 68 buds per vine (four cordons,
each with three five-bud spurs and one two-bud renewal spur).
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The irrigation supply was the Nile River, water samples were taken for analysis, the
quality was determined, and referred to in Ali et al. (2014). Soil samples under each
treatment were-collected from the root zone (0–90 cm) and assessed as a clay soil with an
average of 7.3 pH, 1.06% organic material, 0.61 dS m−1 E.C., 1.7% CaCO3, 0.35 meq
100 g−1 HCO3−, 3.78 meq 100 g−1 SO2−

4 , 1.0 meq 100 g−1Cl−, 0.85 meq 100 g−1 Na+,
0.75 meq 100 g−1 Ca2+, 0.82 meq 100 g−1 Mg2+, 24.6 mg kg−1 N, 16.0 mg kg−1 P, and
247.0 mg kg−1 K across seasons. The flood irrigation system was applied, and the irrigation
water amount was based on climatic data collected from the nearest meteorological station.
The applied irrigation requirement (IR) for each irrigation interval during the two growing
seasons was calculated using the plant’s phonological stages and the percentage of growth
shaded by the tree canopy. The total amount of water used was 1,090.9 m3/ha for each of
the 11 irrigations over the season. During the growing season (March–October), the
overall rate is around 12,000 m3/ha. Irrigation was done once a month during both
seasons, except for May, June, and July, when it was done twice a month (Gaser, Abo
El-Wafa & Abd El-Hameed, 2018). The control group consisted of grapevines at the study

Table 1 Weather data from the El-Baramon experimental, Dakahlia Governorate, Egypt, from September 2022 to August 2024.

Month Year Temperature
(�C)

Humidity
(%)

Rainfall
(mm month−1)

Wind speed
(km h−1)

Cloud
(%)

Sun
(h month−1)

UV
index

September 2022 32.2 58 0 12.4 5 376 7

2023 29.5 56 0 13.5 5 375 7

October 2022 29.5 60 0.8 11.3 10 386 6

2023 31 64 0.3 12.1 11 386 5

November 2022 25.8 67 2.6 11.4 8 375 6

2023 27.1 62 1.8 10.6 27 356 6

December 2022 17.7 71 4.2 13.4 22 377 5

2023 19.5 70 5.3 10.5 19 367 4

January 2023 15 59 4.1 14.2 31 366 4

2024 19.5 64 3 13.3 19 382 5

February 2023 16.2 62 10 12.5 31 331 4

2024 19.7 65 4.6 12.8 27 321 4

March 2023 18.5 63 2.3 14.9 23 368 7

2024 21.3 67 6.7 14.5 14 391 5

April 2023 21.9 56 0.8 13.6 15 379 7

2024 27.2 56 3.8 15.6 9 383 8

May 2023 27 43 0 14.5 10 390 7

2024 37.9 42 0 13.6 3 395 8

June 2023 30.6 49 0 13.8 7 383 8

2024 37.3 46 0 13.2 1 383 9

July 2023 34.7 51 0 12.8 8 395 8

2024 37.7 46 0 13.5 2 395 9

August 2023 34.1 52 0 13.1 4 395 8

2024 34 48 0 12.1 2 395 8
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site under climate stresses, whose weather data are shown in Table 1, which received no
treatments other than water spraying.

Jasmine essential oil (100%) was obtained from EL-Masrayia Company for Natural Oils
in Cairo, Egypt, and stored in opaque bottles at 4 �C until used. GC-MS was used to
identify the essential oil components at the National Research Center’s central laboratory
in Giza, Egypt (Fig. 1). The source of brassinosteroid was 24-epibrassinosteroid, which was
purchased from the Sigma Aldrich Company, St. Louis, MO, USA.

Experimental design and treatments
This experiment included 63 grapevines as uniform as possible in vigor, canopy structure,
and trunk diameter, planted at a spacing of 2 m × 3 m and free of any physiological
diseases or nutrient deficiencies. The grapevines selected were foliar-sprayed with seven
spray treatments, including the control treatment at the study site, whose weather data are
shown in Table 1, which was sprayed with water. In both seasons, the same nine vines were

Figure 1 Chemical composition of jasmine oil (Jasminum grandiflorum L.) essential oil by GC–MS
analysis. Full-size DOI: 10.7717/peerj.20181/fig-1
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subjected to the same treatment as follow: the control, distilled water-sprayed vines (T1),
24-epibrassinosteroid at 1 mg/L (T2), 24-epibrassinosteroid at 2 mg/L (T3),
24-epibrassinosteroid at 3 mg/L (T4), jasmine oil 500 µL/L (T5), jasmine oil 1,000 µL/L
(T6) and jasmine oil 1,500 µL/L (T7). The vine had received ≈2.5 L until run-off at three
different times: 2 weeks after the beginning of vegetative growth, when shoot length
reached about 25–30 cm, after berry set, and the veraison stage.

Measurement and determinations
In mid-February during seasons 2023 and 2024, on each side of the vine, five non-fruiting
shoots from the renewal spurs were selected at random and labeled to measure vegetative
growth. The number of leaves per shoot, average shoot length using a measuring tape to
the nearest centimeter (cm) in three separate readings and the average shoot diameter were
calculated using a digital caliper. Twomature leaves on each marked shoot (i.e., the 6th and
7th from the shoot tip) were collected to measure leaf area (cm2) using a LI-3100 leaf area
meter. The average leaf area was then determined. During dormant seasons, internode
length (cm) was measured in five shoots per vine from the third base internode using a
digital caliper with an accuracy of 0.01. Pruning products were weighed in kilograms per
vine using a digital bench scale (Rotation Scales, Batavia, IL, USA) model PC-500. Wood
ripening was recorded by labeling twelve shoots of the current season’s growth of each
replicate to follow up on the average of wood ripening. According to Elsayed &
El-Shewaikh (2023), five ripe cane samples were collected during the dormant season
during the first week of November, and the coefficient of wood ripening was calculated by
dividing the length of the ripened part of the shoot by the total shoot length.

The nutritional status of grapevines was assessed by determining the chlorophyll
content of leaves, including chlorophyll a, b, and total chlorophyll, the mineral content of
leaf petioles, and the cane total carbohydrate content. Two weeks following fruit set,
samples of twenty fresh and mature apical fifth and sixth leaves from the leaves opposite
the basal clusters on each shoot were collected from each side of the vine to determine the
levels of chlorophyll a and b, as well as total chlorophyll, as defined by Lichtenthaler &
Wellburn (1994). Chlorophyll b and chlorophyll a were measured at wavelengths of 646
and 663 nm, respectively, by a spectrophotometer (UV/Visible spectrophotometer, Libra
SS0PC, Thermo Fisher Scientific, Waltham, MA, USA). Total chlorophyll contents (mg g−1

fw) were calculated using the following equations:

Totalchlorophyll¼ ½ððchlorophyllaþ chlorophyllbÞ� extractvolumeÞ=ð1000� fwÞ: (1)

At dormant seasons, four non-fruiting shoots off the renewal spurs, two shoots at each
side of the vine, were randomly selected by the end of the growing season in late December
to assess total carbohydrates. Total carbohydrates as a percentage of dry weight were
calculated using a spectrophotometer set (UV/Visible spectrophotometer, Libra SS0PC,
Thermo Fisher Scientific, Waltham, MA, USA) at 490 nm. To determine macro- and
micronutrient content, samples of 15 leaf petioles per replicate were dried at 60 �C for 72 h
to constant weight. Following the pulverization of dried leaf petioles with the mortar and
pestle equipment, concentrated sulfuric acid with repeated additions of 30% hydrogen
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peroxide was used to digest the powder (Wolf, 1982). Total nitrogen (g 100 g−1dw) and
phosphorus (g 100 g−1dw) were measured colorimetrically using the generated solution
and a spectrophotometer (UV/Visible spectrophotometer, Libra SS0PC, Thermo Fisher
Scientific, Waltham, MA, USA) (Jones, Wolf & Mills, 1991). Potassium (g 100 g−1dw) was
determined using the flame photometer (Tendon, 2005). Magnesium (mg g−1dw), calcium
(g g−1dw), iron (mg g−1dw), manganese (mg g−1dw), and zinc (mg g−1dw) were determined
using an atomic absorption spectrometer according to Carter (1993).

A sample of 27 clusters per treatment (three clusters/vine) was harvested in the second
week of May during the 2023 and 2024 seasons, when the berries reached full color.
Average yield/vine (cluster weight multiplied by the number of clusters/vine) was
calculated for each treatment (kg/vine). To determine the physical qualities, ten clusters
from each vine were randomly harvested. Each cluster was weighed individually, and the
average cluster weight (g) was recorded. The average berry weight (g) was calculated by
weighing 100 randomly selected berries from each cluster. Cluster length (cm) and width
(cm) were measured from the uppermost berry to the lowest berry. A digital caliper with
0.01 mm accuracy was used to measure the diameter and length of the berries (mm). Berry
firmness was measured and quantified in newtons (N) using a handheld digital
penetrometer (FT-02) with a 2 mm plunger tip.

To determine the chemical properties of the berry juice, another random sample of
vine berries was collected. At an air-conditioned room temperature (about 20–22 �C),
the soluble solids content (�Brix) was measured using a handheld refractometer model
N-1E (Atago Co., Ltd., Tokyo, Japan). Using phenol-phthalein as an indicator and
NaOH (0.1 N), titratable acidity (TA) was estimated as a percentage of tartaric acid in
10 mL of juice (Association of Official Analytical Chemists (AOAC), 2019), and the SSC/TA
ratio was calculated. The total sugars were measured colorimetrically using the phenol and
sulfuric acid technique reported by Dubois et al. (1956). The spectrophotometer was used
to measure the absorbance at 490 nm, and the concentration of total sugars was computed
as g glucose 100/g fw (as a percentage).

The total anthocyanin, flavonoids, and total phenols content in berry skin (2 g) was
determined using a methanolic HCL extraction solvent according to the method of Lee &
Francis (1972) using a UV-Vis Spectrophotometer at wavelengths of 760, 510, and 535 nm,
respectively. Total phenolic and total flavonoid contents were evaluated according to the
protocol of Slinkard & Singleton (1977). The Folin-Ciocalteau reagent was used to measure
a calibration curve for gallic acid concentrations to determine the total phenolic content as
gallic acid equivalents (mg/100 g dry weight). A measurement of mg catechin equivalents/
100 g (constant weight) was used to express total flavonoids by measuring a calibration
curve for known catechin concentrations. Anthocyanin pigment was expressed as
mg/100 g fresh weight.

The phenylalanine ammonia-lyase (PAL) contents of the grape juice extract were
measured according to Jones (1984), using an aspectrophotometer at a wavelength of 290
nm at room temperature. Calculated PAL activity using the following equation:

PAL activity ðUmin g�1FWÞ ¼ ðDA290=6:22Þ � ð1=30Þ � ð1=1Þ;
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where ΔA290 is the change in absorbance at 290 nm, and 6.22 is the extinction coefficient
of L-Phe. The peroxidase enzymatic activity was determined using a Hitachi U-2000
spectrophotometer (l = 460 nm) by the procedure outlined by Clemente & Pastore (1998).
The polyphenoloxidase activity (l = 420 nm) was measured using the method described by
Siddiq, Sinha & Cash, 1992. POX and PPO enzyme activity (U min g−1 FW). Catalase
activity was determined using the method of Aebi (1984), and absorbance was measured at
a wavelength of 240 nm using a spectrophotometer. Catalase activity was calculated using
the following equation:

Catalase activity ðUmin g�1FWÞ ¼ ðDA240=0:0436Þ � ð1=30Þ � ð1=1Þ;
where ΔA240 is the change in absorbance at 240 nm, and 0.0436 is the extinction
coefficient of hydrogen peroxide according to Bergmeyer (1983). Units of catalase (U),
which are the amount of enzyme needed to break down 1 mmol of hydrogen peroxide per
minute at 25 �C and pH 7.0, are used to evaluate catalase activity.

Statistical analysis
Treatments were organized in a randomized complete block design (RCBD) system
with three replicates, each replicate consisting of three vines. Data were first examined
using the Shapiro-Wilk and Levene tests for normality and variance homogeneity,
respectively. Before analyzing variance (ANOVA), the percentage data were first converted
to the values of the Arcsine square root. The outcomes were then shown as
back-transformed means. The ANOVA was performed using the CoStat program,
version 6.311 (CoHort software, Monterey, CA, USA). Probability (p) < 0.05 was used for
mean comparisons using Tukey’s honest significant difference (HSD) test. The score and
loading plot for vegetative growth and biochemical parameters were generated using a
principal component analysis (PCA) (Jolliffe, 2011). The two-way hierarchical cluster
analysis (HCA) and heat map were generated using the means of the data matrices
(Michie, 1982). Both PCA and HCA were performed using JMP Pro 16 (SAS Institute,
Cary, NC, USA).

RESULTS
Vegetative growth
Data presented in Table 2 indicate that spraying Flame Seedless grapevines three times
with Br and JO significantly enhanced the vegetative growth characteristics as compared
with the control. These characteristics include shoot length, diameter, leaf area, number of
leaves/shoots, internode length (cm), pruning wood weight (Kg/vine), and coefficient of
wood ripening during the 2023 and 2024 seasons. In both seasons, the highest significant
values for the above traits were obtained by foliar with Br at 3 mg/L; the control recorded
the lowest values. Data revealed non-significant differences between foliar JO at 1,000 and
1,500 µL/L on shoot length, leaf area, shoot diameter, number of leaves/shoot, internode
length, coefficient of wood ripening, and pruning wood weight in both seasons of the
study. No significant differences were found between foliar Br at 1 and 2 mg/L on shoot
diameter, leaf area, and number of leaves per shoot during the 2024 season. Data also
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showed non-significant differences between foliar with Br at 1 and 2 mg/L on internode
length and wood ripening in both seasons of the study.

The nutritional status
After the application of Br and JO, there were statistically significant differences in the
effect of all spraying via the leaves on the macro and micronutrient content of the Flame
Seedless’ grapevines (p < 0.05). The results in Figs. 2A-2D and 3A-3D indicate that JO and
Br treatments had a significant effect on P, N, Ca, K, Mg, Zn, Fe, and Mn contents in leaf
petioles compared to untreated vines during both seasons. The data indicate that spraying
Br was more effective than jasmine oil in improving the macroelements and
microelements content in leaf petioles of vines. The greatest values of mineral contents
were obtained due to spraying the vines with Br at 3 mg/L. Moreover, no significant
differences were observed in the nitrogen, phosphorus, potassium, calcium, and
magnesium contents of leaf petioles when Br was applied at concentrations of 1 and 2 mg/
L during the two study seasons. Non-significant differences were also observed in the
phosphorus content in leaf petioles in the two seasons, on the one hand, during the two
study seasons, and the calcium content in the second year, on the other hand, when
spraying with JO at concentrations of 500 and 1,000 µl/L. Moreover, no significant
differences were observed between the 1,000 µL JO treatment and the 1 mg/L Br treatment
for their effects on leaf petiole manganese and magnesium content during the first study
season. In addition, no significant difference was observed between the 1 and 2 mg/L Br
treatment and the 1,000 and 5,000 µL JO treatment on leaf petiole zinc content during the
first study season.

Table 2 Effect of 24-epibrassinosteroid (Br) and jasmine oil (JO) on vegetative growth of Flame Seedless grapevines during the 2023 and 2024
seasons.

Season Treatment Shoot length
(cm)

Shoot
diameter
(cm)

Leaf surface
area (cm2)

Number of
leaves per shoot

Internode
length (cm)

Pruning
wood weight
(Kg/vine)

Coefficient of
wood ripening

2023 Control 149.67 ± 2.31 e 1.12 ± 0.01 d 126.67 ± 1.44 e 19.90 ± 0.75 e 7.57 ± 0.19 e 1.65 ± 0.05 d 0.74 ± 0.01 e

Br (1 mg/L) 167.67 ± 2.89 c 1.16 ± 0.03 cd 150.00 ± 1.90 b 22.37 ± 0.20 c 8.44 ± 0.11 c 2.29 ± 0.10 b 0.86 ± 0.01 b

Br (2 mg/L) 175.67 ± 2.52 b 1.24 ± 0.04 ab 154.67 ± 1.83 b 23.47 ± 0.03 b 8.89 ± 0.07 b 2.29 ± 0.01 b 0.89 ± 0.01 ab

Br (3 mg/L) 184.33 ± 2.51 a 1.29 ± 0.04 a 161.00 ± 1.28 a 24.54 ± 0.52 a 9.19 ± 0.04 a 2.51 ± 0.14 a 0.90 ± 0.02 a

JO (500 µL/L) 157.00 ± 2.00 d 1.19 ± 0.01 bc 135.33 ± 2.01 d 20.90 ± 0.17 d 7.97 ± 0.15 de 1.96 ± 0.05 c 0.79 ± 0.01 d

JO (1,000 µL/L) 162.33 ± 1.15 cd 1.22 ± 0.01 bc 140.00 ± 1.60 cd 21.60 ± 0.32 cd 8.17 ± 0.06 d 2.10 ± 0.08 bc 0.81 ± 0.01 cd

JO (1,500 µL/L) 162.67 ± 1.53 c 1.25 ± 0.03 ab 142.33 ± 0.92 c 21.63 ± 0.10 cd 8.28 ± 0.07 d 2.30 ± 0.09 b 0.82 ± 0.01 c

2024 Control 157.67 ± 5.77 e 1.17 ± 0.03 c 128.05 ± 1.75 f 20.97 ± 0.35 e 8.14 ± 0.08 e 1.82 ± 0.06 d 0.74 ± 0.02 d

Br (1 mg/L) 175.67 ± 1.53 c 1.27 ± 0.02 ab 151.64 ± 0.61 c 23.40 ± 0.38 bc 8.90 ± 0.10 c 2.31 ± 0.05 b 0.87 ± 0.01 ab

Br (2 mg/L) 178.33 ± 1.15 b 1.27 ± 0.02 ab 156.35 ± 1.41 b 23.82 ± 0.42 b 9.19 ± 0.05 b 2.45 ± 0.06 b 0.87 ± 0.01 ab

Br (3 mg/L) 192.33 ± 2.16 a 1.33 ± 0.02 a 162.75 ± 1.24 a 25.62 ± 0.44 a 9.80 ± 0.10 a 2.65 ± 0.12 a 0.90 ± 0.01 a

JO (500 µL/L) 162.33 ± 1.15 d 1.25 ± 0.02 b 136.81 ± 2.65 e 21.80 ± 0.30 de 8.51 ± 0.06 d 2.14 ± 0.08 c 0.83 ± 0.01 c

JO (1,000 µL/L) 170.33 ± 3.21 cd 1.28 ± 0.01 ab 141.53 ± 2.80 ed 22.63 ± 0.17 cd 8.81 ± 0.11 c 2.25 ± 0.11 bc 0.84 ± 0.01 c

JO (1,500 µL/L) 172.00 ± 1.00 c 1.25 ± 0.05 bc 143.88 ± 1.04 d 23.10 ± 0.21 bc 8.91 ± 0.10 c 2.19 ± 0.04 b 0.85 ± 0.01 bc

Note:
Mean values within a column for each season, followed by different letters, are significantly different at p ≤ 0.05.
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The foliar application repercussions of JO and Br on chlorophyll a, chlorophyll b, and
total chlorophyll contents in leaves, and total carbohydrates in cane contents of Flame
Seedless grapevines grown in the 2023 and 2024 seasons are presented in Figs. 4A-4D. The
foliar applications of JO and Br significantly improved leaf chlorophyll a, chlorophyll b,
and total chlorophyll contents and cane carbohydrate content compared with the control.
Foliar application with 3 mg/L Br was the most effective treatment in this study.
Non-significant differences were found between foliar Br at 1 and 2 mg/L on leaf
chlorophyll a, chlorophyll b, total chlorophyll contents, and cane carbohydrates content in
both study seasons. Foliar spray data also showed no significant differences between
different jasmine oil concentrations on total carbohydrates and chlorophyll a in the two

Figure 2 Effect of the sprayed 24-epibrassinosteroid (Br) and jasmine oil (JO) on leaf contents of N (A), P (B), K (C), and Ca (D) of Flame
Seedless grapevines during the 2023 and 2024 seasons. The means with the same letters are insignificantly different at p ≤ 0.05 using Tukey’s HSD
test. Full-size DOI: 10.7717/peerj.20181/fig-2

Alebidi et al. (2025), PeerJ, DOI 10.7717/peerj.20181 10/27

http://dx.doi.org/10.7717/peerj.20181/fig-2
http://dx.doi.org/10.7717/peerj.20181
https://peerj.com/


seasons of the study, and different Br concentrations on chlorophyll a in the first season of
the study. There were also no significant differences between spraying jasmine oil at
concentrations of 1,000 and 1,500 µL/L on leaf chlorophyll b and total chlorophyll in the
second season of the study.

Total yield
Data on the influence of the two applied treatments, Br and JO, on the yield of Flame
Seedless grapevines in both seasons are shown in Fig. 5. The data show that, in the 2023
and 2024 seasons, all applied treatments significantly improved yield per vine as compared
to the control. The results revealed that the effect of Br concentrations was superior to that

Figure 3 Effect of the sprayed 24-epibrassinosteroid (Br) and jasmine oil (JO) on leaf contents of Mg(A), Fe (B), Zn (C), and Mn (D) of Flame
Seedless grapevines during the 2023 and 2024 seasons. The means with the same letters are insignificantly different at p ≤ 0.05 using Tukey’s HSD
test. Full-size DOI: 10.7717/peerj.20181/fig-3
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of jasmine oil concentrations on yield, which gradually improved with increasing Br and
JO concentrations. After careful analysis of the data, it was found that, compared to all
treatments in the seasons, the application of Br at 3 mg/L produced the highest significant
yield/vine, while the control group had the lowest yield/vine. The data also showed no
significant differences between JO at concentrations of 1,000 and 1,500 µl/L in vine
productivity in both study seasons.

Physical characteristics
In the experiment, the physical characteristics of the clusters and berries in Flame Seedless
grapevines changed in both seasons as a result of the foliar treatments of Br and JO

Figure 4 Effect of the sprayed 24-epibrassinosteroid (Br) and jasmine oil (JO) on chlorophyll a (A), chlorophyll b (B), total chlorophyll content
(C), and total carbohydrates (D) of Flame Seedless grapevines during the 2023 and 2024 seasons. The means with the same letters are insig-
nificantly different at p ≤ 0.05 using Tukey’s HSD test. Full-size DOI: 10.7717/peerj.20181/fig-4
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(Table 3). The data show that, in the 2023 and 2024 seasons, all applied treatments
significantly improved physical properties, including cluster weight, length, width, and
weight of 100 berries per cluster, as well as berry length, berry width, and berry firmness,
compared to the control in both seasons. As compared with the other treatments in both

Figure 5 Effect of the sprayed 24-epibrassinosteroid (Br) and jasmine oil (JO) on yield per vine of
Flame Seedless grapevines during the 2023 and 2024 seasons. The means with the same letters are
insignificantly different at p ≤ 0.05 using Tukey’s HSD test. Full-size DOI: 10.7717/peerj.20181/fig-5

Table 3 Effect of 24-epibrassinosteroid (Br) and jasmine oil (JO) on physical characteristics of Flame Seedless grapevines during the 2023 and
2024 seasons.

Season Treatment Cluster length
(cm)

Cluster width
(cm)

Cluster weight
(g)

weight of 100
berries per cluster (g)

Berry length
(mm)

Berry diameter
(mm)

Berry firmness
(N)

2023 Control 21.00 ± 0.60 d 12.37 ± 0.39 c 469.33 ± 5.04 f 205.67 ± 3.16 e 14.67 ± 0.58 f 14.33 ± 0.58 c 1.95 ± 0.02 e

Br (1 mg/L) 24.33 ± 0.58 bc 13.07 ± 0.31 bc 541.33 ± 11.02 c 231.00 ± 3.96 c 18.33 ± 0.58 bc 16.67 ± 0.58 ab 3.50 ± 0.03 a

Br (2 mg/L) 25.67 ± 0.58 ab 13.97 ± 0.40 ab 566.00 ± 2.00 b 242.33 ± 3.11 b 19.00 ± 0.58 b 17.67 ± 0.58 a 3.62 ± 0.01 a

Br (3 mg/L) 27.67 ± 0.58 a 14.57 ± 0.50 a 598.00 ± 8.98 a 261.00 ± 4.72 a 20.33 ± 0.58 a 17.67 ± 0.58 a 3.71 ± 0.03 a

JO (500 µL/L) 21.37 ± 0.78 d 12.43 ± 0.12 c 495.33 ± 6.43 e 211.00 ± 3.56 ed 15.67 ± 0.58 ef 15.00 ± 1.00 bc 2.50 ± 0.02 d

JO (1,000 µL/L) 22.37 ± 1.18 cd 12.73 ± 0.06 c 505.33 ± 5.03 de 219.00 ± 3.00 d 16.33 ± 0.58 de 15.33 ± 0.58 bc 2.86 ± 0.02 c

JO (1,500 µL/L) 23.00 ± 1.00 cd 12.9.0 ± 0.20 c 521.00 ± 7.00 cd 223.00 ± 4.46 cd 17.33 ± 0.58 cd 16.00 ± 0.10 abc 3.24 ± 0.01 b

2024 Control 20.57 ± 0.51 f 12.67 ± 0.31 c 451.67 ± 2.31 f 207.70 ± 3.20 f 14.67 ± 0.58 c 15.67 ± 0.58 c 2.33 ± 0.15 f

Br (1 mg/L) 24.53 ± 0.40 c 14.67 ± 0.49 ab 531.67 ± 8.08 c 233.28 ± 2.07 c 17.67 ± 0.58 ab 18.00 ± 1.00 a 3.84 ± 0.10 bc

Br (2 mg/L) 25.83 ± 0.40 b 15.47 ± 0.38 a 560.33 ± 9.02 b 244.73 ± 3.17 b 17.33 ± 0.58 ab 18.67 ± 0.58 a 3.94 ± 0.07 b

Br (3 mg/L) 27.53 ± 0.70 a 15.77 ± 0.40 a 597.00 ± 7.07 a 263.58 ± 4.80 a 17.67 ± 0.58 a 19.00 ± 0.10 a 4.16 ± 0.05 a

JO (500 µL/L) 21.83 ± 0.55 e 13.53 ± 0.25 bc 473.67 ± 6.02 e 213.08 ± 4.02 df 15.33 ± 0.58 bc 17.00 ± 0.10 bc 2.95 ± 0.01 e

JO (1,000 µL/L) 22.53 ± 0.21 de 14.00 ± 0.20 b 489.00 ± 5.29 de 221.16 ± 3.52 d 15.67 ± 0.58 bc 17.00 ± 1.00 bc 3.58 ± 0.08 d

JO (1,500 µL/L) 23.50 ± 0.52 cd 13.90 ± 0.53 b 509.67 ± 7.55 d 225.20 ± 3.50 d 16.67 ± 0.58 ab 17.67 ± 0.58 ab 3.72 ± 0.11 cd

Note:
Mean values within a column for each season that are followed by different letters are significantly different at p ≤ 0.05.

Alebidi et al. (2025), PeerJ, DOI 10.7717/peerj.20181 13/27

http://dx.doi.org/10.7717/peerj.20181/fig-5
http://dx.doi.org/10.7717/peerj.20181
https://peerj.com/


seasons, the physical characteristics increased at a Br dose of 3 mg/L in both experimental
years. Also, the results revealed that the effect of Br concentrations is better than that of JO
concentrations on the physical properties of the clusters and berries. There were no
significant differences in cluster weight, length, width, and 100-grain weight per cluster
between JO at concentrations of 1,000 and 1,500 µl/L in the first and second seasons. The
data are also clear, with no significant differences between the Br treatments at
concentrations of 2 and 3 mg/L in cluster weight during the two study seasons. Also, data
showed that no significant differences between foliar Br at 1, 2, and 3 mg/L on berry
firmness in the first season of the study.

Chemical characteristics
The data shown in Table 4 revealed that SSC, SSC/TA ratio, total sugars, total phenols,
total anthocyanin, and flavonoids were improved gradually while decreasing acidity in
both seasons, with increasing concentrations of JO and Br compared to the control. Also,
the results revealed that the effect of JO concentrations is better than that of Br
concentrations on the TA, SSC, SSC/TA ratio, total sugars, total anthocyanin, total
phenols, and flavonoids of berries. According to additional data analysis, the application of
JO at 1,500 µL/L in this study was the most effective in raising the SSC, SSC/TA ratio, total
sugars and decreasing TA in comparison to the other treatment, while control reduced
SSC, SSC/TA ratio and total sugars and increasing TA. Also, data showed that no
significant differences between foliar JO at 500, 1,000, and 1,500 µL/L on total phenols in
both seasons of the study.

Table 4 Effect of 24-epibrassinosteroid (Br) and jasmine oil (JO) on chemical characteristics of Flame Seedless grapevines during the 2023 and
2024 seasons.

Season Treatment SSC (�Brix) TA (%) SSC/TA ratio Total sugars
(%)

Total
anthocyanins
(mg/g fw)

Total phenols
(mg/100 g fw)

Flavonoids
(mg/100 g fw)

2023 Control 16.60 ± 0.15 f 0.66 ± 0.01 a 24.97 ± 0.28 c 13.66 ± 0.09 f 29.83 ± 0.20 f 40.84 ± 0.40 c 13.77 ± 0.71 d

Br (1 mg/L) 17.07 ± 0.12 e 0.64 ± 0.00 b 26.69 ± 0.09 c 14.04 ± 0.15 e 30.31 ± 0.10 ef 42.47 ± 0.56 bc 14.74 ± 0.50 d

Br (2 mg/L) 17.33 ± 0.12 de 0.62 ± 0.00 c 28.17 ± 0.09 c 14.36 ± 0.09 de 30.85 ± 0.32 de 44.31 ± 0.82 b 14.87 ± 0.03 cd

Br (3 mg/L) 17.47 ± 0.12 d 0.59 ± 0.01 c 29.37 ± 0.09 ab 14.53 ± 0.06 d 31.18 ± 0.14 cd 44.35 ± 0.96 b 16.70 ± 0.51 b

JO (500 µL/L) 17.93 ± 0.12 c 0.56 ± 0.01 d 32.29 ± 0.09 bc 14.69 ± 0.05 c 31.79 ± 0.19 bc 59.01 ± 0.31 a 16.28 ± 0.45 bc

JO (1,000 µL/L) 18.27 ± 0.23 b 0.53 ± 0.01 e 34.64 ± 0.18 bc 14.90 ± 0.07 b 32.45 ± 0.31 b 60.73 ± 0.64 a 16.99 ± 0.45 b

JO (1,500 µL/L) 18.73 ± 0.12 a 0.48 ± 0.00 f 38.81 ± 0.09 a 15.23 ± 0.11 a 33.34 ± 0.19 a 61.53 ± 0.08 a 18.51 ± 0.54 a

2024 Control 16.87 ± 0.13 f 0.64 ± 0.01 a 26.52 ± 0.40 d 13.95 ± 0.11 f 30.21 ± 0.15 e 41.24 ± 0.40 c 13.27 ± 0.50 e

Br (1mg/L) 17.33 ± 0.23 e 0.58 ± 0.02 bc 29.85 ± 1.80 c 14.33 ± 0.11 e 30.98 ± 0.11 d 42.88 ± 0.57 bc 14.46 ± 0.47 de

Br (2mg/L) 17.73 ± 0.12 d 0.54 ± 0.00 c 32.80 ± 0.60 bc 14.67 ± 0.10 d 31.79 ± 0.02 c 44.75 ± 0.83 b 15.00 ± 0.01 cd

Br (3mg/L) 17.93 ± 0.12 cd 0.49 ± 0.01 d 36.75 ± 1.06 a 14.83 ± 0.10 cd 32.12 ± 0.22 bc 44.79 ± 0.97 b 16.54 ± 0.73 c

JO (500 µL/L) 18.13 ± 0.12 c 0.60 ± 0.02 ab 30.36 ± 2.18 bc 15.00 ± 0.10 c 32.61 ± 0.32 b 59.59 ± 0.30 a 16.45 ± 0.45 c

JO (1,000 µL/L) 18.40 ± 0.20 b 0.55 ± 0.01 c 33.41 ± 1.54 b 15.22 ± 0.08 b 33.27 ± 0.21 a 61.33 ± 0.64 a 19.03 ± 0.50 b

JO (1,500 µL/L) 18.80 ± 0.20 a 0.49 ± 0.01 d 38.37 ± 1.03 a 15.55 ± 0.11 a 33.69 ± 0.12 a 61.93 ± 0.31 a 20.74 ± 0.63 a

Note:
Mean values within a column for each season that are followed by different letters are significantly different at p ≤ 0.05.
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Enzyme activity
The data shown in Figs. 6A–6D indicate that the two treatments used, Br and JO, affected
the POX, PAL, PPO, and CAT activities of Flame Seedless grapevines throughout both
seasons. According to additional data analysis, the application of JO at 1,500 µL/L in this
study was the most effective in raising the POX, PAL, PPO, and CAT activities in
comparison to the other treatments, while the control reduced POX, PAL, PPO, and CAT
activities in both seasons. Also, data showed that non-significant differences between foliar
jasmine oil at 1,000 and 1,500 µL/L on POX activity in the both seasons of study and data
showed that non-significant differences between foliar Br at 1 and 2 mg/L on POX activity

Figure 6 Effect of the sprayed 24-epibrassinosteroid (Br) and jasmine oil (JO) on activities of POX (A), PAL (B), PPO (C), and CAT (D)
enzymes of Flame Seedless grapevines during the 2023 and 2024 seasons. The means with the same letters are insignificantly different at p ≤
0.05 using Tukey’s HSD test. Full-size DOI: 10.7717/peerj.20181/fig-6
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Figure 7 Principal component analysis (PCA) showing the score plots (A, C) and loading plots (B, D) of sprayed 24-epibrassinosteroid (Br)
and jasmine oil (JO) on vegetative growth parameters and biochemical attributes of Flame Seedless grapevines during the 2023. Values are the
means of three replicates (n = 3). Full-size DOI: 10.7717/peerj.20181/fig-7
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Figure 8 Two-way hierarchical cluster analysis (HCA) and heat map showing the effect of sprayed 24-epibrassinosteroid (Br) and jasmine oil
(JO) on vegetative growth parameters and biochemical attributes of Flame Seedless grapevines during the 2023 (A) and 2024 (B). Values are the
means of three replicates (n = 3). Full-size DOI: 10.7717/peerj.20181/fig-8
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and pectin methyl in the two seasons of study and data showed that no significant
differences between foliar Br at 2 and 3 mg/L on PAL enzyme activities.

Principal component analysis and hierarchical cluster analysis
The purpose of applying PCA and HCA was to give a more comprehensive image of the
sprayed Br and JO on vegetative growth parameters and biochemical attributes of Flame
Seedless grapevines during the 2023 and 2024 seasons. As for the PCA (Fig. 7), the PCA
score plots demonstrated a clear separation among treatments, with samples treated with
Br (1, 2 and 3 mg/L) distinctly clustering on the positive side of the first principal
component (PC1), reflecting their substantial positive influence on most measured traits in
both seasons (Figs. 7A and 7C). The first two principal components accounted for 64.5%
and 29.0% of the total variance in 2023, and 67.4% and 24.7% in 2024, respectively,
confirming the efficiency of PCA in capturing the major sources of variability. Treatments
with JO at 500, 1,000, and 1,500 µL/L were positioned intermediately between Br and the
control. While the control treatment consistently aligned on the negative side of PC1,
indicating comparatively lower effectiveness.

Across both seasons, Br treatments were strongly associated with the positive side of
PC1, reflecting their pronounced positive impact on parameters such as shoot diameter,
pruning weight, total chlorophyll content, chlorophyll a and b, leaf surface area, cluster
weight, and concentrations of essential macro- and micronutrients (N, P, K, Ca, Mg, Fe,
Zn, Mn). Meanwhile, the control treatment consistently clustered on the negative side of
PC1, corresponding to reduced performance in most studied traits. Notably, variables such
as total anthocyanins, total flavonoids, total phenols, and total sugars contributed
substantially to the variation along PC2 in both seasons, further discriminating between
treatments (Figs. 7B and 7D).

Complementarily, HCA (Figs. 8A and 8B) accompanied by heatmap visualization
further validated these findings. The highest and lowest values are represented with blue
and white colors, respectively. The heatmaps revealed that Br treatments exhibited the
highest values across most evaluated physiological and biochemical traits in both seasons.
JO treatments showed moderate values, whereas the control consistently presented the
lowest values. This clustering pattern confirmed the differentiation observed in PCA,
emphasizing the superior efficacy of Br in enhancing grapevine growth and biochemical
performance.

DISCUSSION
Grape production in the Mediterranean region faces several abiotic stresses, including high
humidity, extreme temperatures, and intense sunlight. These climatic conditions, shaped
by North Africa’s tropical influence, negatively affect grape quality and yield, resulting in
inconsistent productivity (Greer & Weston, 2010; Kun et al., 2018). Stress induces reactive
oxygen species that cause membrane lipid peroxidation, disrupting physiological processes
such as water retention, nutrient balance, and the uptake of essential macro- and
micronutrients (Abdel Samad & Shaaban, 2024). Foliar spraying with JO and Br on
grapevines exposed to heat stress significantly improved vegetative growth (Table 2) and
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consequently, enhanced nutrient uptake, internode length, pruning wood weight, and the
coefficient of wood ripening. This, in turn, enhanced the plant’s ability to withstand
environmental stresses and reduced ROS (Sabry, El-Helw & Abd El-Rahman, 2011;
Ahammed et al., 2020).

These findings might be explained by the significance of plant extract oil’s function in
enhancing numerous physiological and biochemical processes by stimulating meristem
tissue, promoting cell division and elongation, and thereby enhancing all growth
characteristics (Sabry, El-Helw & Abd El-Rahman, 2011; Mahmoud et al., 2024). Jasmine
oil extract significantly improves vegetative growth parameters due to its content of benzyl
acetate, Cis-jasmine, Methylanthranilate, Geraniol, Benzyl benzoate, Phytol, Linalool,
indole, Carvacrol, a-pinene, Limonene, and octen-3-ol (Ahmed et al., 2016; Prosche &
Stappen, 2024). It also maintains a larger leaf area for restored photosynthetic activity,
encouraging plants to gradually accumulate beneficial elements. This is due to the
important role that sugar alcohols such as sorbitol and mannitol play in improving
nutrient mobility within plants by helping their transport over long distances through the
phloem (Mahmoud et al., 2024). The increase in vegetative characteristics may be
attributed to Br, which promotes carbohydrate assimilation, photosynthesis, cell division
and elongation, protein, and nucleic acid synthesis (Asghari & Rezaei-Rad, 2018;
Senthilkumar, Vijayakumar & Soorianathasundaram, 2018; Tanveer et al., 2019;
Ahammed et al., 2020). This, in turn, improves the percentage of total carbohydrates in
canes, pruning wood, weight, and ripening wood.

Exogenous JO and Br foliar addition in hot-stressed grapevine helps to improve
macronutrients and micronutrients, chlorophyll, and total carbohydrates content (Figs. 2,
3, 4) by ROS removal, counteracting oxidative stress (Wang et al., 2018; Nazir et al., 2023),
limiting lipid peroxidation of lipids and cell damage (Ahanger et al., 2023; Abdel-Sattar
et al., 2024). The positive effects of JO and Br on improving vegetative growth and mineral
nutrients help overcome abiotic stresses, ultimately increasing the total yield of the
vineyard (Fig. 5) by improving cluster length, width, and weight. These natural oils may
increase yield by stimulating specific physio-biochemical processes, such as enhancing
photosynthetic rate, chlorophyll content, and sugar accumulation, thereby improving the
efficiency of photoassimilate production and its translocation to fruiting organs (Farouk
et al., 2021). Also, the main reason for the positive effects of essential oils on fruit yield may
be due to the enhancement of potassium content, which accelerates photosynthesis
processes and hence biomass production (Muetasam et al., 2022). Furthermore, using
essential oils may enhance productivity by improving pollen grain germination and
viability, as well as enhancing pollination processes by lengthening pollen tubes (Farouk
et al., 2021). Additionally, essential oil application lowers ethylene production, increasing
fruit yield per plant (Fig. 5) (Duque et al., 2021). The positive influence of brassinosteroids
on improving yield may refer to their important role in promoting photosynthesis,
carbohydrate assimilation, cell division, and elongation (Tanveer et al., 2019). BRs provide
plants with resistance to biotic and abiotic stressors, resulting in significant improvements
in physiological processes ranging from flower opening to fertilization and fruit set, with
positive impacts on yield (Ahammed et al., 2020). In addition, BRs have a significant
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impact on fruit yield at harvest because of their extraordinary effect on photosynthetic
carbon absorption efficiency, which promotes fruit set while decreasing fruit abscission
and delayed senescence (Işçi & Gökbayrak, 2015).

The different treatments in both seasons improved the physical characteristics of Flame
Seedless grapevines (Table 3). The physical properties are affected as a result of the
activation of photosynthesis within the vine canopy through increased light penetration,
accompanied by an enhancement in sugars in the berries, which increases their osmotic
pressure and attraction force of water, leading to improved physical properties of the
berries and clusters (El-Tanany, El-Moghazy & Abdul-Aziz, 2018; Garrido et al., 2018).
Additionally, the growth produced by Br and JO as a result of increased cellular
development during cell elongation and cell division due to their loosening impact on the
cell wall also improved carbohydrate supply and reduced stress circumstances, which
enhanced fruit physical properties (Ghorbani, Eshghi & Haghi, 2017; Farouk et al., 2021;
Prosche & Stappen, 2024). The beneficial impact of Br treatments on enhancing the
firmness of berries may be due to increased Ca2+, protopectin, and pectin in cell walls
(Sharma, 2021).

Data presented in Table 4 indicated that spraying vines with Br and JO applications
improved the chemical characteristics (Table 4). As affected by Br and JO, the increase of
TSS could be attributed to alleviating the effect of high ambient temperatures and
translocating sugars from leaves to fruits, or the transport of photo-assimilates to the fruit
via the phloem (Sabry, El-Helw & Abd El-Rahman, 2011;Wang et al., 2019; Li et al., 2021;
Abd El-Baset & ElMongy, 2023). A higher rate of photosynthesis may have led to increased
carbohydrate accumulation in fruits, which would explain the improvement in total sugars
(Abdel-Sattar et al., 2024). The increased sugar content of grapes is attributed to the
overexpression of hexose transporter genes resulting from applying Br or JO (Belal, El
Kenawy & Omar, 2022; Abd El-Baset & ElMongy, 2023). Plant tolerance for abiotic stress
can be triggered by phenolic substances, such as flavonoids and anthocyanins, secondary
metabolites, which can mediate the detrimental ROS scavenging by promoting the
phenylpropanoid pathway and redox homeostasis (Zafari et al., 2020; Ramadan et al.,
2024). It is suggested that external applications of jasmine oil and brassinosteroids affect
enzymes and genes involved in the biosynthesis of phenolic compounds, acting as a
signaling molecule and stimulating the accumulation of secondary metabolites, which was
reflected in the improvement of phenolic compounds (Bartwal et al., 2013; Khetsha et al.,
2022).

The activities of peroxidase (POX), phenylalanine ammonia-lyase (PAL), polyphenol
oxidase (PPO), and catalase (CAT) enzymes were significantly affected by treatments
(Fig. 6). Under normal circumstances, cells protect themselves from ROS damage by
keeping ROS low through the activity of several antioxidant enzymes (Foyer & Noctor,
2005). Thus, many plant species depend on high amounts of POX, PAL, PPO, and CAT to
survive environmental stresses (Deng et al., 2018). Phenylalanine ammonia-lyase (PAL) is
considered a key enzyme in the regulation of anthocyanin accumulation during fruit
ripening and maturation (Xi et al., 2013), as it catalyzes the first step in the phenylpropanoid
pathway, leading to the production of anthocyanin precursors (Winkel-Shirley, 2002).
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In contrast, polyphenol oxidase (PPO) contributes to the formation of certain pigments,
such as browning-related compounds, and plays a crucial role in secondary metabolism,
particularly in the oxidation of phenolic compounds (Araji et al., 2014; Sullivan, 2015). POX
and CAT are regarded as both protective and defensive enzymes that catalyze the oxidation
of a variety of phenolic compounds while also consuming H2O2 and synthesizing lignin and
suberin (Deng et al., 2018). Some specialized pigments are enhanced by stimulating
color-related enzymes such as PPO and PAL, which play a new and essential role in
secondary metabolism. The process of increasing red pigmentation occurs by stimulating
anthocyanin-associated enzymes, such as PAL, which play a crucial role in the anthocyanin
biosynthesis pathway. The increased activity of enzymes linked to secondary metabolism,
the generation of secondary metabolites, and the ensuing scavenging of reactive oxygen
species (ROS) are the reasons why BR therapy raises the activity of PAL and PPO (Xi et al.,
2013; Asghari & Rezaei-Rad, 2018).

CONCLUSIONS
The current study concluded that spraying of 24-epibrassinosteroid (Br) and jasmine oil
(JO) showed efficacy in alleviating the detrimental impacts of abiotic stressors on Flame
Seedless grapevines. Both treatments markedly improved vegetative growth, nutritional
composition, photosynthetic pigments, yield, and fruit quality. Br at 3 mg/L was more
beneficial in enhancing vegetative growth and increasing physical fruit characteristics. Still,
JO at 1,500 µL/L was more impactful in augmenting the biochemical composition of the
berries, especially with antioxidant-related substances and enzyme activities. These results
endorse the possibility of Br and JO as natural, environmentally sustainable agents for
enhancing grapevine performance under adverse environmental circumstances. This
information may be useful in developing new alternatives for natural plant extracts to
reduce great economic losses for farmers under semi-arid climates. However, the roles of
certain hormones, especially brassinosteroids, in meeting developmental requirements due
to the semi-arid climate, are not fully understood and need further investigation.
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