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ABSTRACT
Background. The external human ear is a polymorphic and polygenic structure with
individual uniqueness, making it a valuable target in forensic DNA phenotyping (FDP)
studies. Previous genome-wide association studies have identified multiple genetic loci
associatedwith variation in ear characteristics. However, research focused on predicting
earmorphologywithin the context of FDP remains limited. This study aimed to develop
DNA-based predictive models for external ear morphology in the Chinese population.
Methods. Digital photographs of 675 volunteers were used to score 13 ear pheno-
types, each categorized into three levels. Multinomial logistic regression (MLR) was
applied for genetic association analysis. Five predictive models—MLR, support vector
machines, random forest, AdaBoost, and k-nearest neighbors—were developed and
evaluated using 10-fold cross-validation.
Results. Genetic association analysis identified several influential single-nucleotide
polymorphism (SNPs) for each ear phenotype. Among the five models, AdaBoost and
MLRdemonstrated superior performance, achieving area under the curve (AUC) values
above 0.7 for predicting absent tragus cases (level_0). To simplify classification, binary
models incorporating genetic interactions were constructed for absent tragus cases.
Specifically, the AdaBoost model achieved an AUC of 0.74, while the binary logistic
regression (BLR) model reached an AUC of 0.72.
Conclusions. These findings highlight the potential forensic application of genetic
markers in predicting ear morphology within the Chinese population, contributing
to the advancement of FDP research and practice.

Subjects Anthropology, Genetics, Genomics, Data Mining and Machine Learning
Keywords Human ear morphology, Forensic DNA phenotyping, Externally visible characteristics,
DNA-based prediction, Single nucleotide polymorphisms

INTRODUCTION
Forensic DNA phenotyping (FDP) refers to the prediction of a person’s externally visible
characteristics (EVCs) based on DNA extracted from human biological samples collected
at a crime scene (Dabas et al., 2022; Kayser et al., 2023). By predicting biological traits
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such as appearance, biogeographic ancestry, and age, FDP plays a vital role in criminal
investigations, disaster victim identification, and archaeological research (Alshehhi et al.,
2023). For instance, in a 2009 cold case resolution, FDP analysis of blood evidence enabled
phenotypic reconstruction of a suspect’s skin color, eye color, and freckling, supporting an
arrest in 2016 (Kennedy, 2022). Since 2011, DNA panels for predicting eye, hair, and skin
color have been established, such as IrisPlex (Walsh et al., 2011), HIrisPlex (Walsh et al.,
2013), andHIrisPlex-S (Chaitanya et al., 2018). Additionally,moreDNAmarkers have been
discovered for physical appearance, including eyebrow color (Peng et al., 2019), freckles
(Hernando et al., 2018; Kukla-Bartoszek et al., 2019), hair shape (Liu et al., 2018), baldness
(Liu et al., 2016; Hagenaars et al., 2017), height (Liu et al., 2019), and facial features (Liu
et al., 2021; Zhang et al., 2022). However, research on predicting external ear morphology
remains in its early stages.

The external ear, as an integral part of facial features, plays a significant role in shaping an
individual’s overall appearance (Guyomarc’h & Stephan, 2012; Hiware et al., 2024). Unlike
other facial features, ear morphology remains relatively stable, unaffected by emotional
states or the use of face masks, thus serving as a crucial target in FDP studies (Hiware et
al., 2024; Benzaoui et al., 2023). This stability, combined with its high degree of variability
among individuals, makes the external ear a valuable tool in forensic investigations for
individual identification (Rani et al., 2020; Rani, Krishan & Kanchan, 2022; Fakorede et al.,
2021; Baroniya, Harshey & Srivastava, 2021). Moreover, variations of ear morphology are
influenced by factors such as age (Sforza et al., 2009), sex (Rani et al., 2020; Rani et al., 2021;
Krishan, Kanchan & Thakur, 2019), ethnicity (Verma et al., 2016), and bilateral asymmetry
(Rani et al., 2020; Rani et al., 2021; Krishan, Kanchan & Thakur, 2019), with even subtle
differences observed between twins (Zulkifli, Yusof & Rashid, 2014).

The variability in ear morphology is ultimately shaped by the interaction between
genetic factors and environmental conditions (Rani, Krishan & Kanchan, 2022; Samuel
& Prainsack, 2019). Genome-Wide Association Studies (GWAS) have identified several
genetic loci associated with ear morphology across populations, providing a solid research
foundation for FDP (Adhikari et al., 2015; Shaffer et al., 2017; Wang et al., 2022; Li et al.,
2023). In an FDP study on the Pakistani population, Noreen et al. (2023) demonstrated
the feasibility of predicting 11 ear traits using 20 single-nucleotide polymorphism (SNPs),
achievingmoderate to goodprediction accuracy. Their finding has preliminarily highlighted
the potential for DNA-based prediction of ear morphology. However, this study utilized a
relatively small sample size of 300 individuals, limiting the generalizability of its conclusions.
Moreover, given the genetic disparity across populations, the predictive performance of
these previously reported loci requires additional validation in the Chinese cohort.

Currently, machine learning (ML) has emerged as a powerful tool for addressing
classification challenges across various domains (Faragalli et al., 2025; Kapoor, Sharma &
Sharma, 2024; Tian, Tian & Zhao, 2024; Jung et al., 2024). The ML algorithms are trained
on datasets to estimate model parameters and make informed decisions (Katsara et al.,
2021). Most FDP studies utilized logistic regression (LR) algorithms for phenotypic
prediction (Chaitanya et al., 2018; Hernando et al., 2018; Kukla-Bartoszek et al., 2019).
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However, complex phenotypes exhibit intricate non-linear relationships and high-
dimensional data patterns, making it challenging for a single model to capture these
characteristics effectively. Therefore, a comparative analysis of multiple ML models is
essential to achieve optimal predictive performance.

To address these issues, this study explored genetic markers associated with ear
phenotypes and investigated gene-gene interactions in a cohort of 675 Chinese individuals.
MultipleDNA-based predictionmodels were established for both three-category and binary
ear phenotypes. Using cross-validation methods, our work established and evaluated the
predictive efficacy of DNA-based models for ear morphology. By developing an analytical
framework for ear morphology, this study is expected to extend FDP applications to a novel
phenotypic domain, providing fundamental insights to EVC reconstruction in forensic
casework.

MATERIALS & METHODS
Samples collection
A total of 675 Chinese volunteers, aged 18–93 years (429 males and 246 females),
participated in this study. DNAwas extracted from oral swabs using the phenol–chloroform
isoamyl alcohol (Butler, 2012) and quantified by NanodropTM 2000 spectrophotometer
(Thermo Scientific, Waltham, MA, USA). Five digital photographs of the head were taken
at the Frankfort horizontal plane using a Canon 80D camera: the left side (90◦), the left
angle (45◦), a frontal view (0◦), the right angle (45◦), and the right side (90◦) (Adhikari
et al., 2015). This study was approved by the Ethics Committee at Sichuan University
(k2020032). This work was carried out in accordance with the principles of the Declaration
of Helsinki, and all donors gave written informed consent.

Human ear phenotypes
Right side, right angle, and frontal photographs were used to assess 13 ear traits on a three-
point categorical scale (level_0, level_1, and level_2). The ear traits evaluated included
ear protrusion, lobe attachment, lobe size, tragus size, antitragus size, intertragic incisure,
superior helix rolling, posterior helix rolling, folding of the antihelix, antihelix curvature,
crus helix expression, superior crus of antihelix expression, and Darwin’s tubercle (Fig. 1).
These traits and the scoring standards were in accordance with previous studies (Rani,
Krishan & Kanchan, 2022; Adhikari et al., 2015; Verma, Bhawana & Vikas, 2014). Intraclass
correlation coefficients (ICCs) were calculated to assess inter- and intra-observer reliability
(Shrout & Fleiss, 1979). The detailed methods were described in Table S1. All photographs
of the volunteers were scored by the same rater (X.W.). The frequency distribution of the
three categories for each ear trait was presented in Fig. S1. The Spearman’s rank correlation
coefficients were calculated to assess the correlations among the various ear traits.

Candidate marker selection
The SNPs reported by large-scale GWASs that exhibited statistically significant associations
with ear morphology were initially selected (Adhikari et al., 2015; Shaffer et al., 2017;
Wang et al., 2022; Li et al., 2023). Duplicate variants identified across different studies
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Figure 1 Categorical phenotyping of examined ear traits. Each ear trait was scored into three levels:
level_0, level_1, and level_2.

Full-size DOI: 10.7717/peerj.20169/fig-1

were carefully eliminated. We then refined our selection by filtering out markers
with a minor allele frequency (MAF) below 0.05, based on population-specific data
from the Beijing Han Chinese (CHB) and Southern Han Chinese (CHS) of the 1000
Genomes Project Phase 3 (https://www.internationalgenome.org). LDlink online software
(https://ldlink.nih.gov/?tab=home) was utilized to exclude SNPs that were in high linkage
disequilibrium (LD) with each other in the CHB and CHS, based on the GRCh38.p14
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reference genome (Machiela & Chanock, 2015). Specifically, an LD threshold of r2 < 0.5
was set to ensure that our final list of SNPs was as independent as possible.

Multiplex SNaPshot assay
Primers for amplification and single-base extension (SBE) were designed following the
operating instructions of the PyroMarkAssayDesign 2.0 software. To validate the specificity
of the polymerase chain reaction (PCR) primers, in-silico analysis was performed using
the UCSC genome browser (Hendling & Barišić, 2019). Meanwhile, both PCR and SBE
primers were analyzed using Autodimer to detect potential hairpin and primer dimer
formations (Vallone & Butler, 2004). The PCR primers were further examined according
to the results of polyacrylamide gel electrophoresis (PAGE), and the SBE primers were
examined according to the single-site SBE assay.

The multiplex PCR was performed in a five-µl reaction volume containing two µl
PyroMark PCR Master Mix (Qiagen, Hilden, Germany), one µl of mixed PCR primers
(Table 1), two ng of DNA, and RNase-free water. The PCR amplification was carried out
under the following conditions: initial denaturing at 95 ◦C for 15 min, 20 cycles at 94 ◦C
for 30s, 65 ◦C for 90s (drop down 0.5 ◦C each cycle), 72 ◦C for 30s, 19 cycles at 94 ◦C
for 30s, 55 ◦C for 90s, 72 ◦C for 30s, followed by 72 ◦C for 10 min. The following PCR
procedures were carried out as described in Jiang et al. (2023). Specifically, two µl shrimp
alkaline phosphatase (SAP) and one µl of exonuclease I were added to the PCR products,
incubating at 37 ◦C for 1 h to eliminate the single-strand primers and dNTP, followed by
heat inactivation at 80 ◦C for 10 min to eliminate the enzyme. Then, the mini-sequencing
was performed in five µl reactions containing one µl of the PCR products dealt with
digestion, one µl of mixed extension primers (Table 1), 1.2 µl SNaPshot Multiplex Ready
Reaction Mix, and 1.8 µl RNase-free water. It was conducted under 26 cycles of 96 ◦C for
10 s, 50 ◦C for 5 s, and 60 ◦C for 30 s. To remove the remnant ddNTP, one µl SAP was
then added to the product by incubation at 37 ◦C for 1 h, followed by heat inactivation at
80 ◦C for 10 min.

Purified products (one µL) were combined with nine µL of HiDi™ Formamide
sizing standard mixture. This sizing standard mixture was prepared by adding three µL
GeneScan™ 120 LIZ® Size Standard to one mL HiDi™ Formamide. Electrophoresis was
performed on an ABI 3130xl Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA,
USA) with 36 cm capillary arrays and POP-7™ polymer. The specific reaction conditions
for 3,130 were as follows. Samples were injected at 2.5 kV for 10s, and electrophoresed at 13
kV for 600 s at a run temperature of 60 ◦C. Raw data were analyzed in GeneMapper® ID
v3.2 software (Applied Biosystems, Foster City, CA, USA) with a peak detection threshold
of 100 relative fluorescence units (RFU).

Association analysis
Allele frequencies for each SNP were calculated based on our dataset of the Chinese
population. All genotype data were tested for Hardy-Weinberg (HW) equilibrium and LD
analysis using the online software SHEsis (http://analysis.bio-x.cn/myAnalysis.php) (Shi &
He, 2006).
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Table 1 Locations and primer information of SNPMarkers in the SNaPshot assays.

Assay
position

SNP IDa Chr Number
and Regiona

Nearest
Genea

PCR Primer
(5′–3′)

Product
size
(bp)

SBE prime
(5′–3′)

Primer
Concentration
(µM)

Plex1_1 rs3827760 2, missense EDAR F: CCCAATCTCATCCCTCTTCA;
R: CAGCTCCACGTACAACTCTGA

88 GCCTCCTC
CCCCGCCA
CGTTTTCAC
A

PCR: 0.2
SBE: 0.2

Plex1_2 rs17023457 1, intronic CART1 F: AAAAGGCATGAAAAATGATACCG;
R: TGTGTTTTTGGTTAGGAACTGAAG

82 GCCTCCTC
CCCTCCCC
CGACCACT
AACTAATC
AACA

PCR: 0.2
SBE: 0.2

Plex1_3 rs74030209 16, intronic ZFHX3 F: TCTACTCCCCAACACAATACCC;
R: AGTCTTCTGCATGTGGGAACTTT

168 GCCTCCTC
CCCTCCCCT
CCCCTCCTT
ATAATGGA
TACATGC

PCR: 0.8
SBE: 0.9

Plex1_4 rs6802174 3, intronic MRPS22 F: ACCCACTGGGCAGTAGCAGA;
R: CTTTCACGCACAGGGATTGCT

158 GCCTCCTC
CCCTCCCCT
CCCCTCCC
CTCCGAGG
GATCGGTA
TTGTA

PCR: 0.8
SBE: 1.1

Plex1_5 rs10198822 2, intronic SP5 F: TCTGAAGCTGCAGTTCCACTCC;
R: TTTTTCCCTCCTTGTATCAGTCC

129 GCCTCCTC
CCCTCCCCT
CCCCTCCC
CTCCCCTCC
CCTGTCCG
TTTGGGAT
T

PCR: 0.2
SBE: 0.2

Plex2_1 rs6699106 1, intergenic TBX15 F: GTCCTAGGCTTTTCATTGATCAGA;
R: ACATACAACCTGCCAAGACTGAA

115 GCCTCCCC
TGAACAGC
TCAATAAT

PCR: 0.2
SBE: 0.2

Plex2_2 rs1948400 3, intronic MRPS22 F: TTTACAGGTAGGGAGGCTGAGT;
R: ACAATCAGAAAAGTGGGACAGTG

87 GCCTCCTCC
CCTCCTGAG
TGGGGACAG
AG

PCR: 0.6
SBE: 0.8

Plex2_3 rs17034666 2, intronic EDAR F: GACCTGGCCGGGAAGATAA;
R: CTTGCCCAAAGTTGCATAGCT

197 GCCTCCTCC
CCTCCCCTC
CCCTCTCCCT
GAGGGAAGC

PCR: 1.0
SBE: 1.2

Plex2_4 rs7812632 8, intronic HAS2-AS1 F: ACCAAGGAATTTGGCAAAGACT;
R: TACTGTCTGGAAGGGCTAATGACT

215 GCCTCCTCC
CCTCCCCTC
CCCTCCTCA
AGGTCTTTG
TGTCTA

PCR: 1.0
SBE: 1.0

Plex3_1 rs62169501 2, intronic SP5 F: CCAAGTTAGCCTGCTGTAGTTTC;
R: CTGACCCAAAAGTCTTGTACCTTC

60 GCCTCCCCT
TCTGCCAAT
ATCC

PCR: 0.2
SBE: 0.4

(continued on next page)
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Table 1 (continued)

Assay
position

SNP IDa Chr Number
and Regiona

Nearest
Genea

PCR Primer
(5′–3′)

Product
size
(bp)

SBE prime
(5′–3′)

Primer
Concentration
(µM)

Plex3_2 rs3789101 2, intronic ACOXL F: CCCTCCTGCTTAAATGTCGTATC
R: AGGGTCAAGTGCTGTTGAATCA

174 GCCTCCTCC
CTTTTTGAC
AACTTTCTCT
CT

PCR: 0.2
SBE: 0.2

Plex3_3 rs263156 6, intronic LOC153910 F: GTGATGCCCAAGCACTAAGTT
R: CCTGGGCAGATTCTTGCTC

76 GCCTCCTC
CCCTCCCC
TCCTACCC
TATCATTC
CACC

PCR: 0.2
SBE: 0.2

Plex3_4 rs1960918 4, intronic LRBA F: AGGTTTGCCTGAGATAATTGAGTG
R: GATGCAAATTTCAGGGATTTTGTT

188 GCCTCCTC
CCCTCCCC
TCCCCTCCT
TGAGTGAA
TCTCGGTA
A

PCR: 0.8
SBE: 0.8

Plex3_5 rs7771119 6, intergenic LOC153910 F: CTCTCCTGTTTCAACGTTTTATCC
R: AACTTGTTGCGGGCTTGG

73 GCCTCCTC
CCCTCCCC
TCCCCTCC
CCTCCCCG
CTCTATGTT
GCCTCTTT

PCR: 0.2
SBE: 0.2

Plex3_6 rs1619249 18, intergenic LOC100287225 F: CGGGGTTTTCACTTTATTAGCCAG
R: GGGCGTGGTGGACTTTACATTTAC

121 TTTTTTTTT
TTTTTTTTT
TTTTTTTTT
TTTTTTTTT
TTTTTGGG
CGGATAGG
AGGC

PCR: 0.4
SBE: 0.8

Notes.
aInformation based on the GRCh38 reference genome.
SNP, single nucleotide polymorphism; Chr, chromosome; PCR, polymerase chain reaction; SBE, single-base extension.

DNA variants with an MAF higher than 0.05 were tested for their association with each
ear phenotype on the entire dataset of 675 samples using multinomial LR (MLR) analysis.
Allelic odds ratios (ORs) with 95% confidence intervals and respective p-values were
determined for minor alleles categorized in an additive manner. The effect of SNPs on the
respective phenotypes was measured by the ORs (Noreen et al., 2023). P-value < 0.05 was
considered nominally significant. The association analyses were conducted in R version
4.4.1 using the ‘nnet’ package.

Prediction model
A comparative analysis was conducted to assess the efficacy of five predictive models for
three-class classification: MLR, SVM, RF, AdaBoost, and k-nearest neighbors (KNN). The
SVM model was implemented with a radial basis function kernel and a regularization
parameter set to 1.0, with probability estimates enabled. The RF classifier was constructed
with 100 decision trees. The KNNmodel employed three nearest neighbors, while AdaBoost
model was configured with 100 estimators and utilized the SAMME algorithm. These
parameter selectionswere intended to optimize eachmodel’s performance in themulti-class
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classification setting. Ten-fold cross-validation was employed to guard against arbitrary
partitions of the dataset. Specifically, the dataset was randomly split into ten equal subsets.
During each fold of the cross-validation process, nine of these subsets were designated as
the training set, while the remaining subset served as the testing set. For each category,
positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity,
and area under the curve (AUC) values were calculated based on the average performance
across the ten testing sets obtained from the iterations.

Specific categories of ear traits, exhibiting good predictive performance in their
respective three-class classification tasks, were selected. To simplify the classification
process, binary prediction models were developed for each selected category. Additionally,
interactions between genetic variants were examined using the MDR 3.0.2 software. The
multifactor dimensionality reduction (MDR) method is a powerful strategy for detecting
and interpreting statistical locus-locus epistasis (Moore et al., 2006;Moore, 2004). As a data
mining technique, it is used to detect and characterize non-linear relationships between
variables (Moore & Williams, 2009; Ritchie et al., 2001). The dendrogram graphs provided
by MDR illustrate the presence, strength, and nature of epistatic effects (Moore et al.,
2006). Furthermore, the genetic interactions were tested by including interactions into our
binary prediction models. The predictive workflow was illustrated in Fig. S2. Alternative
thresholds of probability for the phenotype prediction were tested, ranging from p> 0.5 to
p> 0.85 with a 0.05 interval. Prediction modelling was carried out using Python version
3.7.

RESULTS
Qualitative ear phenotypes
The ICCs ranged from 0.47 to 0.97, indicating moderate to good intra-rater and inter-rater
consistency (Table S1). The scores for ear traits examined in the Chinese population showed
a weak correlation between them (Table S2), with Spearman correlation coefficients all
below 0.3. Specifically, there was a correlation between antihelix fold and superior crus
of antihelix expression (r = 0.218). In contrast, lobe size exhibited a significant negative
correlation with the ear protrusion (r = −0.207).

Five ear traits exhibited weak but statistically significant correlations with sex: superior
helix rolling (r = 0.343), lobe size (r = 0.219), ear protrusion (r =−0.209), lobe attachment
(r = 0.127), and posterior helix rolling (r = −0.178). Separately, age was negatively
correlated with the scores of four ear traits: antitragus size (r = −0.137), superior helix
rolling (r =−0.136), antihelix curvature (r =−0.126), and lobe attachment (r =−0.124)
(Table S3).

Candidate markers selection and multiplex SNaPshot assay
A list of 45 SNPs was initially selected following an exhaustive review of the literature on
ear morphology. MAF screening and LD analysis were then applied to refine our selection,
retaining 23 SNPs. However, designing feasible primers for six SNPs was challenging,
including rs12695694, rs9496426, rs10211400, rs1602631, rs57788627, and rs62169502.
Incorporating SNP rs2742261 into the multiplex system with other SNPs also posed
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Figure 2 Electropherograms of three SNaPshot multiplex assays containing 15 SNPmarkers. SNP, sin-
gle nucleotide polymorphism.

Full-size DOI: 10.7717/peerj.20169/fig-2

difficulties. Furthermore, upon examination of our dataset, we found that the SNP
rs10824309 was monomorphic and thus excluded from the multiplex assays.

Ultimately, after rigorous screening and examination, a total of 15 genetic markers
(rs10198822, rs6802174, rs74030209, rs17023457, rs17034666, rs3827760, rs7812632,
rs1948400, rs6699106, rs263156, rs3789101, rs7771119, rs62169501, rs1619249, rs1960918)
were included in the development of the final multiplex SNaPshot assays (Fig. 2). All peaks
were detected with a 100 RFU threshold and all blood samples were successfully genotyped,
underscoring the successful establishment of the robust and reliable SNaPshot system.

Association analysis
The allele frequencies were shown in Table S4, and deviations from HWE were noted for
eight SNPs (Table S5). Details of LD analysis are shown in Table S6, indicating that all the
SNPs were in linkage equilibrium.

All SNP markers included in the association analysis, except for rs17034666, were found
to be associated with ear traits in the Chinese cohort. Among these SNPs, rs6802174
exhibited significant associations with six ear traits: ear protrusion, lobe attachment, tragus
size, antihelix fold, antihelix curvature, and Darwin’s tubercle. Subsequently, rs74030209
was significantly associated with five ear traits: ear protrusion, lobe attachment, lobe
size, antihelix curvature, and crus helix expression. Similarly, rs1948400 demonstrated
significant associations with five ear traits, including ear protrusion, lobe attachment,
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Figure 3 Associations between ear characteristics and SNPmarkers. The left nodes represent ear traits,
and the right nodes represent SNP markers. The connecting lines indicate significant associations (p <

0.05) between the different nodes. The thicker the line, the stronger the association intensity. SNP, single
nucleotide polymorphism.

Full-size DOI: 10.7717/peerj.20169/fig-3

intertragic incisure, antihelix curvature, and Darwin’s tubercle (Fig. 3). Due to the large
number of ear traits included in our study, we have summarized the SNP marker that
showed the strongest association with each trait, while the detailed information has been
provided in Tables S7 to S20.

Four genetic variants (rs6802174, rs74030209, rs1948400, and rs7771119) were
significantly associated with ear protrusion, with rs6802174 showing the strongest
association. Compared to those with the CC genotype in rs6802174, individuals with
the CG genotype had 3.09 times higher odds of having a large protrusion (level_2) (p-value
= 3.03E−05). Furthermore, individuals with the GG genotype had 2.36 times higher odds
of having a large protrusion (p-value = 0.0468).
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Three SNPs (rs6802174, rs74030209, and rs1948400) were significantly associated with
lobe attachment. Compared to those with the CC genotype in rs6802174, individuals with
the GG genotype had a 2.70-fold increased likelihood (p-value= 0.0122) of having average
lobe attachment (level_1). Three SNPs (rs74030209, rs7812632, and rs263156) explained
the variation in lobe size. Compared to individuals with the CC genotype in rs74030209,
those with the CT genotype have a significantly lower likelihood of having large lobe size,
with ORs of 0.48 (p-value = 0.0176) and 0.35 (p-value = 0.0019), respectively.

Five SNPs (rs6802174, rs3827760, rs263156, rs3789101, rs1960918) were significantly
associated with tragus size. In rs3827760, individuals with the AA genotype were 0.02 times
(p-value= 0.0125) less likely to have large tragus size (level_2) compared to those with the
GG genotype. Two genetic variants, including rs17023457 and rs3827760, were observed
to be associated with antitragus size. In rs17023457, individuals with the CC genotype had
a 2.26-fold increased likelihood (p-value = 0.0155) of having an average antitragus size
compared to those with the TT genotype.

Four genetic predictors (rs10198822, rs1948400, rs62169501, and rs1960918) were
significantly associated with intertragic incisure. Individuals with the TC genotype in
rs10198822 had a 0.44-fold decreased likelihood (p-value = 0.0011) of having horseshoe-
shaped intertragic incisure (level_1) compared to those with the TT genotype. In contrast,
only one SNP, rs10198822, was observed to be associated with superior helix rolling.
Individuals with the TC genotype exhibited a notable increase in the likelihood of a higher
degree of superior helix rolling compared to those with the TT genotype. The odds increased
by 3.58 times (p-value = 0.0443) for partial folded superior helix rolling (level_1), and by
5.72 times (p-value = 0.0057) for over-folded superior helix rolling (level_2).

The statistical significance was obtained for four SNPs (rs6699106, rs7771119,
rs62169501, and rs1619249), which explained the variation in posterior helix rolling. In
rs7771119, the presence of allele A was associated with a decreased risk of having a higher
degree of posterior helix rolling. In rs7771119, allele A was associated with decreased risk
of high-degree posterior helix rolling. Compared to CC, CA had 0.43 times lower odds
(p-value = 0.0083), and AA had odds 0.18 times those of CC (p-value = 0.0149). Three
SNPs—rs6802174, rs7812632, and rs3789101—were associated with the antihelix fold. In
rs7812632, individuals with the GG genotype were 0.27 times (p-value= 0.0372) less likely
to have partial folded antihelix (level_1) compared to those with the CC genotype.

Four genetic predictors (rs6802174, rs74030209, rs1948400, and rs3789101) were
significantly associated with antihelix curvature. In rs3789101, individuals with the
CC genotype had a 0.27-fold decreased likelihood (p-value = 0.0303) of having a
strong antihelix curvature (level_2) compared to those with the GG genotype. Two
variants (rs74030209, rs6699106) were associated with crus helix expression. Compared
to individuals with the CC genotype in rs6699106, those with the TT genotype had a
significantly lower likelihood of having a higher degree of crus helix expression, with ORs
of 0.38 (p-value = 0.0135) and 0.36 (p-value = 0.0359), respectively.

Three SNPs (rs17023457, rs3827760, and rs7812632) explained the variation in the
superior crus of antihelix expression. Compared to those with the GG genotype in
rs3827760, individuals with the GA genotype had an increased odds of having prominent
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antihelix superior crus (level_2) by 2.64 times (p-value = 0.0309). Five SNPs (rs6802174,
rs17023457, rs7812632, rs1948400, and rs263156) were significantly associated with
Darwin’s tubercle. In rs263156, individuals with the GT genotype had a 0.34-fold decreased
likelihood (p-value= 0.0229) of having a prominent Darwin’s tubercle (level_2) compared
to those with the GG genotype.

Prediction results
For the 13 ear traits, themicro-average AUC in the three-class prediction for ear phenotypes
ranged between 0.50 and 0.60. The MLR and AdaBoost models exhibited better prediction
accuracy, whereas the SVM and RF models showed reduced performance, and the KNN
model performed the worst (Fig. 4). Notably, for absent tragus (level_0), the predicted
AUC exceeded 0.70 in the MLR and AdaBoost models (Fig. 4). The indicators describing
prediction accuracy for the five models were presented in Table S21.

For absent tragus (level_0), the AdaBoost model achieved a prediction accuracy with an
AUC of 0.73, an NPV of 0.78, a PPV of 0.45, a sensitivity of 0.54, and a specificity of 0.71.
In contrast, the MLR model demonstrated lower accuracy, with an AUC of 0.71, an NPV
of 0.78, a PPV of 0.49, a sensitivity of 0.54, and a higher specificity of 0.75. For medium
tragus size (level_1), the AdaBoost model demonstrated an AUC of 0.65, an NPV of 0.71,
a PPV of 0.48, a sensitivity of 0.38, and a specificity of 0.76. Meanwhile, the MLR model
showed a lower accuracy, with an AUC of 0.60, an NPV of 0.68, a PPV of 0.38, a specificity
of 0.69, and a sensitivity of 0.35. When dealing with prominent tragus cases (level_2),
the AdaBoost model demonstrated an AUC of 0.62, alongside an NPV of 0.73, a PPV of
0.47, a sensitivity of 0.47, and a specificity of 0.72. The MLR model showed comparable
performance, with an AUC of 0.66, an NPV of 0.72, a PPV of 0.45, a sensitivity of 0.44,
and a specificity of 0.72.

In order to reduce model complexity, the tragus size was further converted into binary
classifications. Specifically, tragus size was categorized into present (level_1 and level_2)
versus absent (level 0). Predictive models for the binary classification task were established
using AdaBoost and binary LR (BLR) models. The AdaBoost model achieved an AUC of
0.73, with an NPV of 0.59, a PPV of 0.68, a sensitivity of 0.65, and a specificity of 0.62
(Table 2). Similarly, the BLR model exhibited an NPV of 0.63, a PPV of 0.70, a specificity
of 0.67, a sensitivity of 0.67, and a lower AUC of 0.71 (Table 2).

MDR analysis revealed a redundant interaction for the absent tragus (level_0) between
rs3827760 in EDAR and rs1960918 in LRBA, which was indicated by blue lines in Fig. S3.
When incorporated into the AdaBoost model, this interaction led to an improvement in
the AUC to 0.74 (1AUC = 0.0061) (Fig. 5A). Similarly, incorporating the interaction
into the BLR model resulted in an AUC increase to 0.72 (1AUC = 0.0172) (Fig. 5B). The
confusion matrices and precision–recall curves of BLR and AdaBoost were displayed in
Figs. S4 and S5, respectively. For both models, prediction accuracy parameters improved
with the increase of the probability threshold (Table S22). For the AdaBoost model, setting
the threshold at p> 0.65 led to high sensitivity, specificity, and PPV, while keeping the
overall prediction error relatively low. However, at higher thresholds, the AdaBoost model
tended to adopt a more conservative approach, resulting in a greater number of samples
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Figure 4 AUC heatmap for three classifications of ear traits. The y-axis depicts the three subclasses un-
der each ear trait category, while the x-axis indicates the five prediction models. Red signifies higher AUC
values, indicating better predictive performance of the model on that particular classification trait. Blue,
on the other hand, represents lower AUC values. The red frame highlights the traits that perform well in
the AdaBoost and MLR models, with AUC values exceeding 0.7. MLR, multinomial logistic regression.
SVM, support vector machines. RF, random forest. KNN, k-nearest neighbors. AUC, area under the curve.

Full-size DOI: 10.7717/peerj.20169/fig-4

Table 2 Prediction performance for absent tragus (level_0).

Model Model PPV NPV Sensitivity Specificity AUC

SNPs 0.68 0.59 0.65 0.62 0.73
AdaBoost

SNPs + gene interactions 0.71 0.60 0.64 0.65 0.74
SNPs 0.70 0.63 0.67 0.64 0.71

LR
SNPs + gene interactions 0.71 0.65 0.71 0.63 0.72

Notes.
LR, logistic regression; SNP, single nucleotide polymorphism; AUC, area under the curve; PPV, positive predictive value;
NPV, negative predictive value.

being classified as uncertain. In contrast, the BLRmodel exhibitedmore stable performance
across different thresholds. Specifically, when the threshold was set to p> 0.70, the BLR
model not only achieved high specificity, sensitivity, and PPV but also struck a good balance
between accuracy and the ability to handle uncertain cases.
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Figure 5 Average ROC curves for absent tragus (level_0). (A) ROC curves of the AdaBoost model; (B)
ROC curves of the binary logistic regression model. ROC, receiver operating characteristic. AUC, area un-
der the curve.

Full-size DOI: 10.7717/peerj.20169/fig-5

DISCUSSION
The external human ear is considered to be a polymorphic and polygenic structure with
individual uniqueness that serves as an essential target in FDP studies. This research
explored the associations between genetic markers and ear traits in 675 Chinese individuals
and developed five ML models to evaluate the predictive efficacy of those markers. Among
the five models, AdaBoost and MLR demonstrated comparable and better performance
in predicting ear traits. In binary classifications, the AdaBoost and BLR models achieved
medium predictive performance for the absent tragus (level_0), with AUC values exceeding
0.7. The inclusion of genetic interactions in our prediction models slightly enhanced the
prediction capacity.

The human external ear, as a complex and integrated structure, exhibits varying
degrees of interdependence among its traits. These interdependencies likely originate
from the spatiotemporal regulatory mechanisms during embryonic development, which
coordinate the morphology, sizes, and positions of different ear components (Giraldez &
Fritzsch, 2007; Anthwal & Thompson, 2016; Helwany, Arbor & Tadi, 2024). In our work,
we demonstrated the presence of correlations between ear traits. Previous studies have
reported similar patterns of ear trait correlations in diverse populations (Rani, Krishan &
Kanchan, 2022; Adhikari et al., 2015; Li et al., 2023). These comparable findings indicate
that high correlations between various ear traits might be influenced by genetic variants
with multi-trait effects (Noreen et al., 2023). Consequently, we chose to use the same
SNPs to investigate multiple ear phenotypes, aiming to elucidate the underlying genetic
associations.

Several SNPs deviated from HWE in our study. This result might be attributed to
historical multi-ethnic admixture and migration patterns in Southwest China, which
disrupted random mating assumptions. Additionally, our sample size was smaller than
GWAS, further limiting statistical power for HWE testing (Adhikari et al., 2015; Shaffer
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et al., 2017; Wang et al., 2022; Li et al., 2023). Notably, genetic loci flanking HWE-deviant
SNPs, such as SP5, MRPS22, and EDAR, demonstrated significant associations with ear
morphology in East Asian populations in GWAS (Shaffer et al., 2017; Wang et al., 2022; Li
et al., 2023). Given our primary objective of developing predictivemodels, we retained these
high-effect markers, consistent with Noreen et al.’s (2023) methodology for ear phenotype
prediction.

In our study on the Chinese population, we verified significant associations between
several SNP markers and ear traits. Specifically, we found the following associations:
rs17023457 with antitragus size (Adhikari et al., 2015), rs74030209 (Wang et al., 2022),
rs6802174, and rs1948400 (Shaffer et al., 2017) with lobe attachment, rs17023457 with
the expression of the superior crus of antihelix (Noreen et al., 2023), rs7812632 (Li et al.,
2023) and rs263156 (Adhikari et al., 2015) with lobe size, rs3789101 with folding of the
antihelix (Li et al., 2023), rs263156 with tragus size, and rs1619249 (Adhikari et al., 2015)
with posterior helix rolling. All of these associations were consistent with previous studies’
findings. This consistency reinforces the credibility and generalizability of these associations
across diverse populations. For several genetic markers, inconsistencies were observed
between the current study and previously reported associations with ear phenotypes
(Adhikari et al., 2015; Shaffer et al., 2017; Wang et al., 2022; Li et al., 2023; Noreen et al.,
2023). These may stem from differences in study samples or methodology, leading to
variations in association results.

In exploring the predictive power of genetic markers for ear phenotypes, our results
showed that the average AUC values for predictions based on 13 ear features ranged from
0.50 to 0.60. This indicated that, given the current dataset, the predictive performance of
these features is relatively low. Notably, Noreen et al.’s (2023) conducted a predictive study
on 11 ear phenotypes among 300 individuals, reporting AUC values generally exceeding
0.77, with the highest reaching a remarkable level of 0.96. These significant findings offer
valuable guidance for research in related fields; however, considering the impact of sample
size on the stability of prediction results is essential. Compared to the study by Noreen et
al. (2023), our research incorporated a larger sample size, enabling the detection of more
subtle genetic variations, thereby statistically enhancing the reliability and robustness of
the findings.

In our study, an additional exploration was conducted to evaluate the predictive
performance of various classifiers for ear phenotypes. According to the results obtained
from five models—MLR, KNN, RF, SVM, and AdaBoost, AdaBoost and MLR models
exhibited significant advantages. Additionally, A prevalent phenomenon was that the
model exhibited better predictive performance for extreme categories (level_0 or level_2)
compared to the intermediate categories (level_1) (Fig. 4, Table S21). This finding is
in accord with previous research on EVC predictions (Walsh et al., 2011; Walsh et al.,
2013; Chaitanya et al., 2018; Kukla-Bartoszek et al., 2019; Katsara et al., 2021; Walsh et
al., 2017). The lower prediction accuracy for intermediate categories may stem from
imprecise phenotype categorization and the fact that certain genetic variants remain
unidentified (Kukla-Bartoszek et al., 2019; Katsara et al., 2021; Liu et al., 2009).
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In binary classification tasks, both AdaBoost and BLR models achieved moderate
predictive performance for absent tragus cases (level_0), with AUC values exceeding
0.7. Incorporating these interactions into BLR and SVM models using MDR led to an
improvement in their performance. Notably, the AdaBoost model, including genetic
interactions, achieved the highest AUC of 0.74. This further highlights the complex nature
of the ear’s unique morphology and underscores the significance of considering gene-gene
interactions when studying ear morphology.

This study has several limitations that should be disclosed to facilitate future
improvement. Given the variations in gene frequencies across sub-populations, GWAS
commonly include sub-population information as covariates to prevent false-positive
results. In our study, we recruited the Han population in Southwest China to reduce the
impact of population stratification. However, due to the limited number of genetic markers
detected, conducting population structure analyses is challenging. Therefore, future studies
are expected to increase the number of SNPs using microarray or sequencing technologies,
enabling more rigorous genetic analyses. Additionally, conclusions derived from this
single-origin cohort require validation in external cohorts to establish generalizability.

Our study employed ear traits reported by priorGWAS to evaluate the predictive capacity
of associated SNPs for these well-established phenotypes (Adhikari et al., 2015; Shaffer et
al., 2017; Wang et al., 2022). While moderate predictive performance was achieved for
absent tragus (AUC > 0.7), most traits demonstrated limited discriminative power with
AUC values below 0.6 (Table S21). The superior NPV and specificity relative to PPV and
sensitivity indicated stronger exclusionary capability in these models. However, when
compared to highly predictable traits, including eye color, hair color, and skin color,
current ear morphology prediction models remain unsuitable for direct forensic or clinical
implementation due to the relatively low accuracy (Walsh et al., 2011; Walsh et al., 2013;
Chaitanya et al., 2018). This limitation stems from constrained SNP coverage relative to
the polygenic architecture of ear phenotypes. Future research is anticipated to extract
quantitative geometric features, texture features, or high-resolution 3D features with
high-density SNP analysis to advance ear phenotype prediction.

Research should also focus on the ethical issues of FDP in forensic identification.
Non-visible traits, such as biogeographic ancestry, raise privacy concerns. Additionally,
potential overlaps between phenotypic prediction and disease variants pose a risk of
accidental disclosure of health information, leading to social discrimination. Moreover,
striking a balance between societal gains and ethical protections is vital. In such a case, if
the public prioritizes solving crimes over discrimination risks, it could lead to the use of
FDP for predicting disease traits (Kayser, 2015). As an EVC, the external ear is recorded
in identification systems, thereby minimizing privacy-related concerns. GWAS targeting
SNPs associated with natural morphological diversity reduces the risk of disease-related
information disclosure. Moreover, given the limited prediction accuracy, the utilization
of ear phenotype prediction for disease prediction is restricted. With the increase in the
number of SNPs and advancements inmodeling algorithms, it is anticipated that regulatory
frameworks for ear traits will be formulated to achieve a balance between forensic utility
and ethical risks.
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CONCLUSIONS
In summary, our study is the first to explore the efficacy of multiple DNA-based predictive
models for ear morphology in the Chinese population. We revalidated several SNPmarkers
for their consistent associations with specific ear phenotypes reported in previous studies,
and concurrently discovered associations between SNPs and different ear phenotypes. Our
models demonstrated moderate predictive performance for absent tragus cases (level_0),
even though the overall AUC for predicting ear traits was below 0.60. For absent tragus
(level_0) predictions, both the AdaBoost model and the BLR model, after incorporating
genetic interactions, achieved an AUC of 0.74 and 0.72, respectively. These findings
underscore the potential practical applications of these SNPs and prediction models in
forensic genetics and anthropology. Future research is expected to explore additional genetic
markers and use alternative methods, such as polygenic risk scoring and deep learning, to
enhance prediction performance. Furthermore, investigating the association between ear
phenotypes and demographic factors, including ancestry, age, sex, and lifestyles, will offer
critical insights into ear morphogenesis.
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