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ABSTRACT

Background. Sepsis is a life-threatening condition characterized by systemic inflam-
mation and dysfunction of multiple organs. Recently, regulatory cell death (RCD) has
emerged as a distinct pathological feature and serve as a potential source of biomarkers
or therapeutic targets in sepsis.

Methods. Comprehensive transcriptomic datasets of sepsis were accessed from the
Gene Expression Omnibus (GEO) database. Genes involved in 18 RCD pathways were
compiled from databases and published literature. The limma package was utilized
to identify differentially expressed genes (DEGs). The Gene Set Variation Analysis
(GSVA), CIBERSORT, Weighted Gene Co-expression Network Analysis (WGCNA),
and receiver operating characteristic (ROC) analyses were combined to identify key
RCDs pathways. Core RCD-related DEGs (RRDs) were selected using Least Absolute
Shrinkage and Selection Operator (LASSO), Support Vector Machine (SVM), and
Random Forest (RF) machine learning methods. The expression patterns and diagnostic
performance of the core RRDs were validated across multiple datasets and further
confirmed through meta-analysis. Immune localization of RRDs was examined using
single-cell transcriptomic data. Prognostic significance was evaluated using multivariate
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were identified as independent risk factors for sepsis. Their significantly elevated mRNA
expression in septic mice was confirmed by qRT-PCR.

Conclusion. Findings from this study underscored the crucial role of RCD pathways in
© Copyright the development of sepsis. Notably, ZDHHC3 and TLR5 were identified as novel and
2025 Cao etal. robust biomarkers for sepsis.

Distributed under
Creative Commons CC-BY-NC 4.0
Subjects Bioinformatics, Genomics, Immunology, Infectious Diseases, Translational Medicine

OPEN ACCESS Keywords Sepsis, Regulatory cell death, Machine learning, scRNA, CLP

How to cite this article Cao S, Xiao W, Pan S, Liu S, Hua T, Yang M. 2025. Unraveling the role of regulatory cell death in sepsis: an inte-
grated analysis of bulk and single-cell sequencing data. Peer] 13:¢20167 http://doi.org/10.7717/peerj.20167


https://peerj.com
mailto:yangmin@ahmu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.20167
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
http://doi.org/10.7717/peerj.20167

Peer

BACKGROUND

Sepsis is a life-threatening syndrome that accounts for a substantial proportion of cases
among critically ill patients (Vincent et al., 2013). It is frequently accompanied by varying
degrees of multiple organ dysfunction, and clinical outcomes may differ significantly due to
factors such as geographic disparities, microbial heterogeneity, and individual variability.
Despite the advancements in our understanding of the underlying mechanism of sepsis,
the mortality rate remains alarmingly high—persistently exceeding 25-30% and reaching
up to 40-50% in severe cases (Vincent et al., 2014). These statistics highlight the urgent
need to improve the understanding of sepsis.

Regulatory cell death (RCD) is an umbrella term encompassing various forms of
programmed cellular events that occur under both physiological and pathological
conditions. Various RCD pathways have been identified and extensively studied, including
NETotic cell death, oxeiptosis, alkaliptosis, anoikis, among others (Legrand et al., 2019; Del
Re et al., 2019). In sepsis, inflammatory episodes and immunodeficiency lead to alterations
in intra- and extracellular homeostasis, including immune cell apoptosis, parenchymal cell
injury, and dysregulation of organelles such as mitochondria and lysosomes. Thus, RCD is
hypothesised to play a critical role in the development of sepsis. Nevertheless, a systematic
and comprehensive understanding of the contribution of RCD to sepsis remains lacking.

We aim to identify and characterize a panel of sepsis-associated, RCD-related target
genes through multiple analytical approaches. This strategy may provide valuable insights
for both basic research and the development of novel therapeutic interventions for sepsis.

MATERIALS AND METHODS

Animals

Male C57BL/6] (6—8 weeks, 20-25 g) were allowed free access to food and water. The mice
were maintained in a standardized housing environment, with temperature and relative
humidity controlled at 22 + 2 °C and 60 + 5% respectively. The mice were procured
from Ziyuan Laboratory Animal Technology Co., Ltd. (Hangzhou, Zhejiang, China). The
production qualification of experimental animals was approved by the Zhejiang Provincial
Department of Science and Technology (No. SCXK [Zhe] 2024-0004). All experimental
procedures were performed in compliance with the guidelines of the Ethics Committee
for Laboratory Animals of Anhui Medical University and Centre for Laboratory Animal
Research of Anhui Medical University (Approval LLSC-20242423). Mice were randomly
assigned and housed in standard cages (30 x 20 x 15 cm).

Cecal ligation and puncture (CLP) surgery

After a one-week acclimatization phase, twelve mice were arbitrarily divided to three
groups: a sepsis group with mice sacrificed at 6 and 24 h post-operation, and a sham
group. Prior to the procedures, all mice underwent a 6-hour fast with ad libitum access
to water. Mice in the sepsis group underwent cecal ligation and puncture (CLP) surgery.
Briefly, after anesthesia with 2.0% pentobarbital sodium (50 mg/kg, intraperitoneally), a
2-cm incision was conducted in the abdominal wall. The cecum was then exposed, and
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feces were gently pushed from the proximal end to the distal end. The cecum was ligated
at 75% of its length from the tip using 4-0 silk sutures. A 22-gauge needle was used to
puncture the distal cecum, allowing a small quantity of fecal material to be released. The
ligated cecum was then returned to the abdominal cavity, and the incision was closed with
4-0 silk sutures. In the sham group, all surgical procedures were conducted except for
feces manipulation, ligation, and puncture. Following CLP surgery, mice showed signs of
sepsis, including piloerection, diarrhea, and lethargy. Postoperative care and monitoring
were implemented to safeguard the health and welfare of the animals, including access to
sufficient water and food; efforts were made to minimize pain and discomfort, promoting
proper wound healing. At the end of the experiment, mice were anesthetized with an agent
that induced rapid unconsciousness to minimize pain and distress. Under light isoflurane
anesthesia, blood specimens were collected through retro-orbital venous plexus sampling
to reduce discomfort as much as possible. Mice were monitored for any signs of distress
following the procedure. Mice that died prematurely were not included in the analysis
as they were unable to provide the relevant data. Tissue and blood sample collection was
performed by personnel blinded to the group assignments.

Data acquisition

Bulk sequencing datasets (GSE28750, GSE95233, GSE65682, GSE69528, GSE26440,
GSE26378, and GSE13904) (Sutherland et al., 2011; Tabone et al., 2019; Scicluna et al.,
2015; Pankla et al., 2009; Wong et al., 2009b; Wynn et al., 2011; Wong et al., 2009a) and
single-cell RNA sequencing (scRNA-seq) dataset (GSE167363) (Qiu et al., 2021) were all
obtained from the GEO database. Regulatory cell death (RCD)-related genes were retrieved
from the GeneCards database, the Molecular Signatures Database (MSigDB), and relevant
review articles (Zou et al., 2022). RCD genes with relevance scores below the mean level,
as determined by the GeneCards database, were excluded based on a filtering criterion.
Finally, a list of genes associated with 18 distinct patterns of cell death was compiled
(Table S1).

Data processing

The GSE28750 dataset included 20 healthy controls, 10 sepsis patients, and 11 post-surgical
participants. The GSE95233 included 51 septic shock patients and 22 healthy controls.
After selecting sepsis/septic shock patients and healthy controls, we merged GSE28750 and
(GSE95233, which share the same GPL platform (GPL570), using the “SVA” algorithm
(Leek et al., 2012). Finally, a combined dataset including 61 sepsis/septic shock patients and
42 healthy controls was used as the testing cohort. Differentially expressed genes (DEGs)
analysis was performed through the “limma” R package. The datasets GSE65682 (479
sepsis patients and 42 controls), GSE69528 (83 sepsis and 28 controls), GSE26440 (98
sepsis and 32 controls), GSE26378 (82 sepsis and 21 controls), and GSE13904 (158 sepsis
and 18 controls) are all considered as validation groups. We used the “Seurat” R package
to analyze scRNA-seq data. The analysis workflow included Seurat object creation, quality
control, normalization, identification of highly variable genes (HVGs), and dimensionality
reduction. Quality control thresholds were defined as follows: (1) the number of unique
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molecular identifiers (nUMIs) between 500 and 25,000; (2) the expressed genes per cell
(nGene) between 200 and 4,000; and (3) the percentage of mitochondrial genes (mitoRatio)
<10% per cell. The “SingleR” R package was employed to annotate each cell based on
the Human Primary Cell Atlas and Blueprint Encode databases. Data visualization was
primarily performed using uniform manifold approximation and projection (UMAP),
along with violin plots.

Pathway and functional enrichment analysis

The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene
Set Enrichment Analysis (GSEA) analyses were performed using the “clusterProfiler”
package to enhance the understanding of gene functions and associated pathways (7he
Gene Ontology Consortium, 2019; Kanehisa et al., 2016; Yu et al., 2012). Gene Set Variation
Analysis (GSVA) was conducted using the “GSVA” package to investigate functional
differences in various cell death pathways between septic patients and control samples
(Hdnzelmann, Castelo & Guinney, 2013).

Immune analysis

For the purpose of immune analysis, CIBERSORT was applied to estimate composition
and abundance of immunocytes in sepsis and healthy controls through deconvolution
algorithm (Chen et al., 2018).

Construction of the weighted gene co-expression networks (WGCNA)
and identification of key modules

Weighted Gene Co-expression Network Analysis (WGCNA) employed to identify the
modules most relevant to RCD pathways (Langfelder ¢ Horvath, 2008). To ensure the
co-expression network followed a scale-free topology, we calculated the soft-threshold
power, and distinct modules were identified via the dynamic tree-cutting method. The
module most strongly associated with each RCD pathway was selected for further analysis.
Receiver operating characteristic (ROC) analysis was employed to assess how effectively
each cell death pathway diagnosed sepsis, dependent on the area under the curve (AUC).

Feature selection of RCD-related genes by various machine learning
Least Absolute Shrinkage and Selection Operator (LASSO) is a regularization method that
performs variable selection by shrinking the coefficients of less important variables to
zero, thereby reducing model complexity and preventing overfitting, especially in high-
dimensional settings. Support Vector Machine (SVM) effectively identifies features that
contribute most to classification boundaries by maximizing the margin between classes,
making it particularly useful for distinguishing disease from control samples. Random
Forest (RF), an ensemble-based algorithm, robustly estimates variable importance by
aggregating decision trees and capturing non-linear relationships and variable interactions.
To ensure robust and reliable identification of key RCD-associated genes in sepsis, the
overlapping genes identified by LASSO, SVM, and RF were considered core RCD-related
genes for sepsis, enhancing the stability, generalizability, and biological relevance of the
results. The diagnostic efficacy of these hub RCD-related genes was evaluated using ROC
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analysis. A meta-analysis further confirmed their diagnostic performance. Sensitivity
analysis was conducted via the “metainf” function to assess their robustness. Transcription
factor (TF) information was obtained from the NetworkAnalyst, while a protein-protein
interaction (PPI) network was performed with Cytoscape software (version 3.10.2).

As the bulk RNA-seq data were obtained from a public database, only limited clinical
metadata (age and sex) were available. To account for potential confounding effects, we
performed multivariate Cox regression analyses incorporating gene expression, age, and
sex to evaluate survival prognosis. The results were reported as hazard ratios (HRs), 95%
confidence intervals (Cls), and p-values.

Causal analysis between ZDHHC3, TLR5 and sepsis-related outcomes
After localizing the expression of Zinc Finger DHHC-Type Containing 3 (ZDHHC3) and
Toll-Like Receptor 5 (TLR5) at the single-cell level, a Mendelian randomization (MR)
approach was used to further investigate their potential relationship with sepsis. The
individuals involved in the MR analysis were of European descent. The cis-expression
quantitative trait locus (cis-eQTL) data were collected from the eQTLGen Consortium.
The outcome data were derived from the UK Biobank based on the IDs obtained from
the Integrative Epidemiology Unit (IEU) OpenGWAS project database. The outcomes
analyzed encompassed three parts: the incidence of sepsis, sepsis requiring critical care
admission, and 28-day mortality within the intensive care unit (ICU).

The MR analysis was dependent upon three key assumptions: (1) the instrumental
variables (IVs) are correlated with the exposure; (2) there are no confounding factors
affecting the IV—outcome association; and (3) the IVs influence the outcome solely
through the exposure. Initially, IVs with a p-value less than 5 x 10~8 were identified
as single nucleotide polymorphisms (SNPs) associated with the exposure, fulfilling
assumption 1. Subsequently, linkage disequilibrium (LD) clumping was performed to
identify independent SNPs, satisfying assumption 2. Cis-eQTLs were defined as SNPs
located within 1 megabase (Mb) of the target gene. In the cis-eQTL analysis, LD was
defined as having an 7% < 0.3 within a clumping distance of 100 kilobases (kb). Next,
the same SNPs present in the outcome data were extracted. The effect alleles of SNPs
were then harmonized to ensure consistency between the exposure and outcome datasets.
Palindromic SNPs exhibiting intermediate allele frequencies were excluded to preclude
strand ambiguity. Meanwhile, F-statistics were computed to evaluate the strength of
instrumental variables (IVs). Finally, MR results were obtained through the “mr” function
(TwoSampleMR R package) and were evaluated in terms of odds ratios (ORs). Furthermore,
sensitivity analysis was conducted. Heterogeneity and pleiotropy were assessed primarily
using MR-Egger and inverse variance weighted (IVW) methods.

Hematoxylin and Eosin (H&E) staining

The lungs of mice were excised and then fixed in 4% paraformaldehyde (PFA) for at
least 24 h and embedded in paraffin. The tissue was sectioned into four pm slices for
Hematoxylin and Eosin (H&E) staining, and lung pathological injury was evaluated under
a light microscope.
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Quantitative Real time Polymerase Chain Reaction (qRT-PCR)

The whole blood of each mouse was obtained through orbital blood collection and
collected in an Ethylenediaminetetraacetic acid (EDTA)-treated tube. qRT-PCR was
utilized to validate the mRNA expression level of the target genes. Total RNA from
whole blood was derived using the BIOG Blood RNA Isolated Kit (51025) BIOG, Jiangsu,
China) in accordance with the supplier’s protocol. mRNA was reverse-transcribed into
complementary DNA (cDNA) using the cDNA Synthesis Kit (A240-10, GenStar, Jiangsu,
China). mRNA expression levels were quantified using SYBR premix (A308-05, GenStar,
Jiangsu, China) on the CFX Connect™ Real-Time System (Bio-Rad, Hercules, CA, USA).
The 20 pl reaction mixture contained two pl cDNA, 10 pl of 2 xRealStar Universal SYBR
qPCR Mix, 0.4 pl each of forward and reverse primers (10 uM), and 7.2 pl of sterile water.
The cycling conditions were: 95 °C for 2 min (initial denaturation), followed by 40 cycles
of 95 °C for 15 s (denaturation), 60 °C for 30 s (annealing), and 72 °C for 30 s (extension).
The relative levels of mRNA were determined via the 2A- A ACT method. Primer sequences
were synthesized by Shanghai Shenggong Technology Co., Ltd. and listed in Table S2. The
specificity of primers was evaluated through Primer-Basic Local Alignment Search Tool
(BLAST) and melting curve analysis.

Statistical analysis

R software packages were used in all statistical analyses (version 4.4.1). The t-test and
analysis of variance (ANOVA) were used to compare the means of data following a normal
distribution. For data violating the normality assumption, the Kruskal-Wallis test was
employed. Correlation coefficients were calculated using Pearson or Spearman correlation
analysis. A p-value less than 0.05 was deemed statistically significant.

RESULTS

Identification of RCD-DEGs (RRDs) and enrichment functional
analysis
After merging two datasets and correcting for batch effects (Fig. S1), we identified 1,320
DEGs between the sepsis and healthy groups (adjusted p-value < 0.05 and absolute
value of log, fold change (FC) > 0.585). Among them, 501 were upregulated and 819
were downregulated in the sepsis group (Fig. 1A). GSEA showed enrichment in oxidative
phosphorylation, xenobiotic metabolism, and mTORCI signaling, and negative enrichment
in interferon-y response and allograft rejection (Fig. 1B). GO analysis indicated that in the
BP category, these genes were primarily involved in leukocyte differentiation, activation,
and adhesion. In the cellular component (CC) category, the genes were linked to various
lumen-related structures, while in the molecular function (MF) category, they were
associated with immune receptor activity (Fig. 1C). KEGG pathway analysis revealed
enrichment in the programmed cell death protein 1 (PD-1) checkpoint and nuclear
factor-xB (NF-kB) signaling, and the differentiation pathways of Th1, Th2, and Th17 cells
(Fig. 1D).

A comprehensive set of RCD-related genes was compiled, and their involvement in
multiple biological pathways suggested a complex and systemic role (Fig. S1). Intersecting
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Figure 1 Functional enrichment analysis of DEGs among sepsis and healthy controls. (A) Volcano plot
of DEGs. (B, C, D) Ridge plot and barplot of GSEA, GO, and KEGG enrichment analysis for DEGs. (E)
Venn and boxplot of RRDs.
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these genes with DEGs yielded 627 RRDs (Fig. 1E), which were subjected to functional
analyses (Fig. S52). GSEA revealed a positive enrichment in xenobiotic metabolism,
mTORCI signaling, coagulation, and IL6-JAK-STAT3 signaling, and negative enrichment
of inflammatory response, interferon-y response, and allograft rejection. GO and KEGG
analyses yielded results consistent with the previous enrichment analysis of DEGs.
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Characterization of hub RCD pathways and RRDs

CIBERSORT analysis revealed higher levels of immune cell infiltration in sepsis compared
to healthy controls. GSVA analysis was utilized to assess the enrichment scores of each
RCD pathway for every sample. Septic patients showed higher enrichment of NETotic cell
death, oxeiptosis, alkaliptosis, anoikis, disulfidptosis, lysosomal cell death, necroptosis,
pyroptosis, mitochondrial permeability transition (MPT), ferroptosis, immunologic cell
death, apoptosis, and lower enrichment in cuproptosis, parthanatos, autosis, and autophagy
(Fig. S1). Except for parthanatos, autosis, necroptosis, autophagy, and entotic cell death,
all other RCD pathways demonstrated statistically significant correlation with immune
cells in sepsis (Fig. 2A). Subsequently, we used one-step network construction function
of the WGCNA R package to identify gene modules strongly associated with oxeiptosis,
lysosomal cell death, ferroptosis, anoikis, and pyroptosis, respectively (Fig. 2B). The
diagnostic values (AUCs) for each pathway were 0.8989, 0.8646, 0.9212, 0.8314, and
0.8177, respectively (Fig. 2C). In conclusion, oxeiptosis, lysosomal cell death, ferroptosis,
anoikis, and pyroptosis were identified as key RCD pathways in sepsis.

By integrating WGCNA results, we identified an additional 151 RRDs (Fig. 2D). GO
analysis of these 151 genes exhibited enrichment in innate immune activation, response to
bacteria and lipopolysaccharide, molecules of bacterial origin, and cell-cell adhesion, while
KEGG analysis revealed enrichment in the nucleotide-binding oligomerization domain
(NOD)-like receptor signaling pathway, cellular senescence, and neutrophil extracellular
trap formation (Fig. 52). These 151 genes were further evaluated using LASSO, RF, and
SVM algorithms to ensure robust feature selection (Fig. S3). Each algorithm offers unique
advantages in identifying informative features. By focusing on the overlapping genes
selected by all three methods, we aimed to reduce model-specific bias and enhance the
biological relevance and reproducibility of identified biomarkers. Consequently, five hub
RRDs were identified: ZDHHC3, Chloride Intracellular Channel 1 (CLIC1), Glutathione
S-Transferase Omega 1 (GSTO1), Biogenesis of Lysosomal Organelles Complex 1 Subunit
1 (BLOC1S1), and TLR5 (Fig. 2E).

Immune localization analysis for hub RRDs at single-cell level

At single-cell level, we annotated 30,192 cells as CD4" T cells, CD8" T cells, B cells,
erythrocytes, monocytes, neutrophils, natural killer (NK) cells, and platelets (Fig. 3A).
The five hub RRDs demonstrated significantly higher expression levels in monocytes
and neutrophils (Figs. 35-3D). Despite their elevated levels in septic group at the bulk
level, a diverse distribution was observed at the single-cell level. The bulk-level expression
difference of ZDHHC3, GSTO1 and TLR5, primarily originated from monocytes, and
BLOCI1S1 was derived from both monocytes and neutrophils. In contrast, the expression
pattern of CLIC1 appeared to be more complex (Fig. 3E). Furthermore, monocytes and
neutrophils from non-survivors showed higher expression levels of ZDHHC3, CLICI,
and GSTOL. Interestingly, BLOC1S1 expression was elevated only in neutrophils in the
non-survivor group, while it was significantly lower in monocytes, NK cells, B cells,
CD4™" T cells, and CD8" T cells (Fig. 3E). Finally, cells co-expressing all five hub RRDs
were identified based on their median expression cut-offs. The proportion of monocytes
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co-expressing hub RRDs was significantly higher in sepsis patients, and co-expressing
neutrophils were more abundant in the non-survivors (Fig. 3F). Conclusively, monocyte-
and neutrophil-related biological processes are likely central to the function of these five
hub RRDs.

Validation of hub RRDs and their GSEA, PPI, immune correlation
analysis

The five hub RRDs identified above demonstrated divergent expression levels between
sepsis patients and controls across all validation cohorts. All five genes exhibited strong
diagnostic performance, with AUC scores exceeding 0.8 (Figs. 4A—4E). To validate these
findings, a meta-analysis using a random-effects model confirmed the diagnostic efficacy
of these genes (Fig. 54).

To identify the pathways related to hub RRDs, septic patients were classified into two
groups according to the expression levels of the five hub genes, and GSEA was performed
(Fig. 5). In addition to previously identified pathways, G2M checkpoint, MYC targets,
E2F targets, mTORCI signaling, PI3K-AKT-mTOR signaling, oxidative phosphorylation,
mitotic spindle, protein secretion, and androgen response were activated in sepsis patients
with high RRD expression. Meanwhile, pathways related to E2F, G2M, and MYC targets,
IFN-vy/a responses, and inflammatory responses were inhibited in the high-RRD group.
Additionally, pathways involving DNA repair, heme metabolism, Kirsten rat sarcoma
viral oncogene homolog (KRAS) signaling, myogenesis, and allograft rejection were
inhibited. Correlation analysis between hub RRDs and immune infiltration scores was also
performed. As exhibited in Fig. 6A, ZDHHC3 expression was strongly positively associated
with naive B cells. CLICI expression was positively correlated with neutrophils and
negatively correlated with CD8™ T cells, similar to the pattern observed for TLR5. GSTO1
expression was negatively correlated with y§ T cells. The PPI network analysis indicated
that FOXCI1 may serve as a key TF interacting with all five hub genes (Fig. 6B). To further
evaluate the prognostic value of the hub RRDs, multivariate Cox analysis was performed.
The results revealed that age (HR: 1.02; 95% CI [1.01-1.03]; p < 0.05), ZDHHC3 (HR:
1.74; 95% CI [1.19-2.54]; p < 0.05) and TLR5 (HR: 0.78; 95% CI [0.66—0.92]; p < 0.05)
were independent prognostic factors for sepsis survival.

Causal analysis between ZDHHC3, TLR5 and septic related outcome
To evaluate the prognostic value of ZDHHC3 and TLRS5 in sepsis, we conducted MR
analysis to explore their potential causal roles in sepsis development.

MR analysis showed that the cis-eQTL of ZDHHC3 was associated with an increased
risk of ICU admission in sepsis patients, suggesting a potential causal relationship (OR
= 1.626; 95% CI [1.115-2.371]; p=10.012). A sensitivity analysis was then conducted to
verify the robustness of the outcomes. MR-Egger (Cochran’s Q =5.099; p = 0.826) and
inverse variance weighted (IVW) methods (Cochran’s Q =7.285; p = 0.698) were used to
assess the heterogeneity. The results indicated no significant heterogeneity. The horizontal
pleiotropy test revealed no evidence of pleiotropy among the selected IVs (intercept =
—0.080; standard error (SE) = 0.054; p =0.173). The cis-eQTL of TLR5 was associated
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with an increased risk of sepsis incidence (OR = 1.136; 95% CI [1.083-1.192]; p=1.81 x
10~7) and decreased 28-day mortality (OR = 0.65; 95% CI [0.493-0.857]; p = 0.002).
These sensitivity analyses further confirmed the stability of the findings. The p-values for
heterogeneity and pleiotropy tests were all above 0.05, indicating no significant bias.

All MR analysis results are presented in Figs. S5 and S6.

Validation in septic model

Considering the independent significance of ZDHHC3 and TLRS5 in predicting septic
survival and their potential causal relationships with sepsis development, we examined the
levels of Zdhhc3 and Tlr5 in a septic mouse model.

Significant neutrophil infiltration and alveolar edema were observed in the CLP group
(Fig. 7A). Subsequently, qRT-PCR was utilized to quantify the expression levels of Zdhhc3
and TIr5 in each sample. The results showed that the Zdhhc3 expression was increased in
the septic group at 6 h post-induction, but significantly decreased by 24 h (p < 0.0001). A
slight decline was observed in the 24-hour group compared to the sham group, but it was
not statistically significant (Fig. 7B). A similar expression pattern was observed for Tlr5
(Fig. 7C). Consistently, both Zdhhc3 and TIr5 exhibited increased expression at the 6-hour
time point.

DISCUSSION

Our research successfully identified five key immune-related RRDs—ZDHHC3, CLIC1,
GSTO1, BLOCI1S1, and TLR5—by integrating multiple machine learning methods. Their
pathological relevance to monocytes and neutrophils was also emphasized. To explore the
independent predictive value and potential causal relationships of ZDHHC3 and TLR5 in
sepsis, we validated their expression levels in a septic mouse model and confirmed their
significant upregulation at 6 h after sepsis onset.

Varying enrichment levels of RCD, their correlations with immune cells, and strong
diagnostic efficacy collectively exhibit the complex and critical roles of cell death patterns
in sepsis. Oxeiptosis, lysosomal cell death, ferroptosis, anoikis, and pyroptosis were
identified as key RCD pathways in our research. Oxeiptosis, first conceptualized in 2018,
is a pattern of cell death marked by reactive oxygen species (ROS) sensitivity, caspase
independence, and a non-inflammatory mechanism that helps protect tissues from ROS-
induced inflammation (Holze et al., 2018). In Oikawa et al. (2022) confirmed that the
deubiquitinase OTUD1 regulates KEAP1-mediated oxeiptosis in a sepsis model. However,
research on oxeiptosis in sepsis remains limited, highlighting promising directions for
further investigation. Lysosomal cell death is characterized by lysosomal rupture, mediated
by protease or iron. This process may be further intensified and complicated in the presence
of apoptosis, ferroptosis, and autophagy. Recent studies have shown that lipopolysaccharide
(LPS)-induced ROS can promote lysosomal cell death in vitro, offering insights into the
mechanisms underlying liver dysfunction in septic patients (FHsu et al., 2024). However,
further research in this area is still lacking. A surge in inflammatory cytokine production is
a hallmark of early-stage sepsis. Mechanistically, pyroptosis is a key driver of inflammation
during sepsis. It has been extensively discussed in the initiation and progression of sepsis,
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with evidence showing that targeting pyroptosis in macrophages, neutrophils, and other
parenchymal cells may help alleviate sepsis-induced injury (Zhao et al., 2024; Jing et al.,
2022; Liu et al., 2020). Although ferroptosis is known to be driven by iron accumulation
and lipid peroxidation, no specific clinical markers have yet been identified for sepsis
patients. Notably, ZDHHC3 and TLR5 were identified as survival-related genes in our
research.

ZDHHC3 was identified as a key member of the most significant anoikis-related
module in the present study. Anoikis, a unige form of apoptosis, is triggered by loss
of cell adhesions to the extracellular matrix or abnormal cell adhesion, and has been
widely studied in cancer research (Taddei et al., 2012). Notably, resistance to anoikis is
considered as a critical contributor to metastasis and the survival for malignant cells (Shi
et al., 2024). Certain oncoviruses can also facilitate this process (Matarrese et al., 2000;
Kakavandi et al., 2018). In contrast, anoikis showed significantly upregulated enrichment
levels in sepsis, associated with regulatory T cells (Tregs) and resting NK cells. However,
studies on anoikis in sepsis, as well as the role of ZDHHCS3 in this process, remain limited.
ZDHHCS3 is a key zinc finger-aspartate-histidine-histidine-cysteine (DHHC)-cysteine
rich domain (CRD)-type palmitoyltransferase that catalyzes palmitoylation and regulates
intercellular signaling, protein localization, and function. It plays dual roles in various
diseases, including immune responses, neurological disorders, and cancer (Spinelli et
al., 2017; Yao et al., 2019; Lin et al., 2021). Previous studies have shown that elevated
ZDHHCS3 levels may promote cognition impairment related to metabolic disorders,
particularly under a high-fat diet (Lin et al., 2021). Additionally, ZDHHC3-mediated
palmitoylation of PD-L1 has been linked to T-cell responses in tumors and positively
correlated with tumorigenesis (Zhang et al., 2020; Ning et al., 2021). Few studies have
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explored its mechanisms in the initiation and progression of sepsis. Notably, a recent study
showed that ZDHHCS3 stabilizes IRHOM?2 via S-palmitoylation, preventing its ubiquitin-
dependent degradation and prolonging MAP3K7-JNK-NF-kB pathway activation (Xu et
al., 2023). The increased level of Zdhhc3 at 6 h in our study may have partially contributed
to the hyperinflammatory state observed in sepsis. Interestingly, its homolog, ZDHHC?7,
has recently been highlighted as a key regulator of NLRP3 activation in macrophages
and a potential therapeutic target for various inflammatory diseases (Yu et al., 2024).
Other palmitoylating enzymes have also been studied for their roles in pathogen sensing,
NLRP3 inflammasome activation, cytokine production, and pyroptosis. Consistently, our
findings indicate that ZDHHCS3 is independently associated with survival prediction,
sepsis incidence, and disease progression. Its elevated expression in monocytes and
neutrophils, and increased levels at 6 h, suggest a promising role in sepsis pathophysiology.
However, the detailed mechanisms of ZDHHC3-induced anoikis in sepsis remain unclear,
particularly its regulation of the NF-xB pathway, NLRP3 assembly, Gasdermin E (GSDME)
activation, neutrophil extracellular trap (NET) formation, immune cell recruitment, and
oxidative stress during disease onset and progression. Additionally, ZDHHCS3 is involved in
lysosomal cell death and apoptosis, although most reports have focused on its anti-cancer
roles (Kakavandi et al., 2018; Yao et al., 2019). Furthermore, Zdhhc3 also shows clinical
therapeutic potential in some research. For example, inhibition of Gasdermin E (GSDME)
palmitoylation by 2-BP can reduce chemotherapy-induced cell pyroptosis (Hu et al., 2020).
2-BP can also alter gut microbiota composition and exacerbate endothelial injury. However,
the mechanisms of 2-BP in sepsis remain unexplored (Ma et al., 2024; He et al., 2025). Our
study is the first to propose the potential link between ZDHHC3 and sepsis progression.
However, the underlying connection between ZDHHC3 and sepsis requires systematic and
comprehensive investigation.

TLR5, a member of toll-like receptor family, primarily recognizes pathogen-associated
molecular patterns (PAMPs), particularly flagellin, leading to activation of the NF-xB
pathway (Harrison et al., 2008). Unlike TLR4 which recognizes lipopolysaccharide and is a
well-established pathological factor in sepsis, triggering widespread systemic injury, early
researches proposed a protective role of TLR5 in initiating immune response. However,
these studies did not differentiate between survivors and non-survivors (Silva et al., 2014).
In our study, the TLR5 gene was linked to the oxeiptosis-related module. However, the
role of TLR5-mediated ROS-associated cell death in sepsis has not been fully investigated.
In addition to oxeiptosis, TLR5 has also been linked to apoptosis. Apoptosis remains a
major focus of sepsis. Increased apoptosis in macrophages, neutrophils, cardiomyocytes,
and renal cells has been linked to heightened inflammation, immune cells depletion,
and multiple organs dysfunctions (Ge et al., 2021; Zhang et al., 2019; Wang et al., 2021).
Although TLR5-related apoptosis in sepsis has not been extensively discussed, evidence
suggests that TLR5 depletion can inhibit hyperammonaemia-induced liver cell apoptosis
by suppressing NF-«kB pathway and mitogen-activated protein kinase (MAPK) signaling,
indicating its dual regulatory effects on sepsis (Yan et al., 2019). Additionally, several studies
have identified TLR5 as a robust and influential hub gene linking COVID-19, sepsis, and
ARDS (Li et al., 2023). Another research also suggested its diagnostics potential in sepsis
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(Yang et al., 2022). Interestingly, a 2025 study reported a correlation between TLR5 and
up-regulated PD-1/PD-L1 in lung sepsis, implying that interactions between TLRs and these
immune checkpoints may contribute to histopathological changes in lung tissue (Sinos et
al., 2025). However, the underlying mechanisms behind these interactions were not further
explored. In our study, increased TLR5 expression in monocytes and neutrophils may
suggest its role in enhancing their recruitment and activation, contributing to inflammatory
injury in sepsis. This may heighten innate immune sensing and drive neutrophil-mediated
systemic inflammation, consistent with previous studies. QRT-PCR results also showed
elevated TLR5 expression at the 6-hour time point. This may indicate early immunological
dynamics in sepsis. Further systematic studies are needed to confirm these findings.

By integrating multiple datasets and applying various machine learning techniques,
we identified the key biomarkers associated with sepsis. However, several limitations
remain in our study. First, the lack of comprehensive survival and clinical data—such
as comorbidities, medications, and chronic diseases—Ilimited the validation of these
core RRDs. More comprehensive patient data are needed to further evaluate the validity
of these RRDs and control for confounding bias. Second, no additional experiments
were conducted to investigate the relationships between ZDHHC3, TLR5 and sepsis or
sepsis-induced multiple organ dysfunction. Third, the mutual effects of ZDHHC3 and
TLR5, as well as their associated molecular and immune cell subtypes, were not further
investigated in the present study.

CONCLUSION

In summary, this study identified five key RRDs that play an instrumental role in the
diagnosis of sepsis. Among them, ZDHHC3 and TLR5 were identified as predictors of
sepsis survival. The expression of ZDHHC3 and TLR5 was predominantly detected in

monocytes and neutrophils, and was significantly elevated in a septic mouse model at
6 h.
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