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ABSTRACT

Microbiomes play crucial roles in human health, disease development, and global
ecosystem functioning. Understanding the origins, movements, and compositions of
microbial communities is essential for unraveling the principles governing microbial
ecology. Microbial source tracking (MST) approaches have emerged as valuable tools
for quantifying the proportions of different microbial sources within target commu-
nities, enabling researchers to track transmissions between hosts and environments,
identify similarities between microbiome samples, and determine sources of contami-
nation in various settings. Current MST methods like SourceTracker2 and FEAST have
advanced the field by employing Bayesian and expectation-maximization approaches,
respectively, but are limited by computational inefficiency with high-dimensional data
and inability to infer directionality in source-sink relationships. This study presents
a novel computational framework for microbial source tracking called FastST. FastST
infers the relative contributions of source environments to sink microbiomes while also
determining directionality when source-sink relationships are not predefined. Through
extensive simulation studies with varying numbers of sources and complexity, FastST
demonstrates superior performance in both accuracy and computational efficiency
compared to FEAST and SourceTracker2, maintaining consistent execution times even
as the number of source environments increases. Furthermore, the proposed method
achieved over 90% accuracy in directionality inference across all tested scenarios, even
when multiple major sources are present, broadening its applicability in practical
microbiome research and environmental monitoring. FastST and data simulation codes
are publicly available at https:/github.comjoungmin-choi/FastST.

Subjects Bioinformatics, Microbiology
Keywords Microbial source tracking, Microbiome, Generalized least squares

INTRODUCTION

The microbiome refers to a collection of microorganisms inhabiting a specific environment,
which forms complex and diverse communities of multiple interacting species (Castro-
Nallar et al., 2015). Previous studies have demonstrated the profound impact of the
microbiome in complex diseases such as diabetes, inflammatory bowel disease, colorectal
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cancer, and allergy outcomes (Marchesi et al., 2011; Qin et al., 2012; Kostic, Xavier ¢ Gevers,
2014; Fujimura & Lynch, 2015), which indicates the potential of human microbes as
biomarkers for disease diagnosis or as therapeutic targets for treatment (Manor et al.,
2020). Microbes also play a crucial role in various environments, along with the capacity
to maintain a healthy global ecosystem responding to the climate change (Cavicchioli et
al., 2019) and participating in essential biogeochemical cycling events, such as carbon and
nitrogen fixation (Gougoulias, Clark ¢ Shaw, 2014).

Prediction of the structure and dynamics of the microbial community is essential for
understanding microbiome development and ecosystem function (Meroz et al., 2021).
Insights into the origins of microbial communities and the movement of microbes across
different ecosystems can help unravel the rules that govern microbial ecology. The key,
albeit challenging, step in this analysis is to characterize the composition of microbial
communities, as they typically comprise multiple source environments, including various
contaminants and other microbial communities that have interacted with the sampled
habitat (Shenhav et al., 2019). To resolve this, microbial source tracking (MST) approaches
have been presented, which aim to quantify the proportion of different microbial samples
(sources) in a target microbial community (sink) (Shenhav et al., 2019; Knights et al., 2011;
McGhee et al., 2020). Through microbial source tracking (MST), transmissions between
different hosts and environments can be tracked and similarities between microbiome
samples can be identified (Briscoe, Halperin ¢ Garud, 2023). MST can be applied to the
determination of discrete sources of fecal pollution (Unno et al., 2018), tracking bacterial
contamination routes of municipal water (Liu et al., 2018) and natural fresh water systems
including rivers and lakes (Staley et al., 2018), and disease prevention (Fu ¢ Li, 2014).

The most recent approaches for microbial source tracking includes Source-
Tracker2 (Knights et al., 2011), FEAST (Shenhav et al., 2019), STENSL (An et al., 2022), and
SourceID-NMF (Huang, Cai & Sun, 2024) methods. These methods use species abundance
profiles of the sample of interest and potential sources to calculate the percentages of
sinks that are attributable to each potential source. Based on a Bayesian framework,
SourceTracker2 employs Markov chain Monte Carlo (MCMC) to estimate contamination
proportions in metagenomics studies. On the other hand, FEAST determines the fraction
of each source environment in a target microbial community by modeling mixture
proportions for various source microbial samples in a given sink sample, using expectation
maximization for improved computational efficiency. STENSL, derived from the FEAST
algorithm, incorporates unsupervised source selection via least-squares optimization
with L1-norm regularization. Source]ID-NMF employs non-negative matrix factorization
(NME) to identify source contributions to sink communities.

Despite their advancements, current microbial source tracking approaches have
limitations that warrant attention for practical applications. Both SourceTracker2 and
FEAST are computationally expensive, especially when handling high-dimensional
microbiome data, though the latter is considered relatively efficient. Furthermore, these
approaches lack the capability to infer directionality, i.e., the requirement to predetermine
which is the source/sink prior to analysis. In certain real-world microbiome studies—for
example, in hospital sink drains (Laco et al., 2025) and newly opened hospital wards (Lax
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et al., 2017)—it can be unclear which community is acting as the source and which as the
sink, underscoring the critical need for methods to discern the directionality of microbial
exchange. Addressing these limitations will enhance the reliability and applicability of
microbial source tracking methods.

In the present study, we propose a novel inference framework, named FastST. FastST
is able to accurately and efficiently estimate the relative contributions of the sources to
the sink of interest, as well as infer the directionality if source and sink relationships are
not known a priori. The estimation accuracy and efficiency are achieved by leveraging the
generalized least squares (GLS) inference based on a multiple linear regression model. The
inference of directionality is further made by selecting the maximized joint likelihood for
observing the sink and source data across all enumerated Bayes network models. Through
simulations, we demonstrate the outperformance of FastST in terms of mean absolute error
and running time, as compared to SourceTracker2, FEAST, STENSL, and SourceID-NMF.
In addition, simulations also show that FastST is able to identify the directionality in the
source and sink environments.

METHODS

Consider a microbiome data of K + 1 observed samples, each consisting of N taxa.
We assume that, among the K + 1 samples, one is treated as the sink and the rest

as K sources. Denote the observed sink and source data by x = (x1,...,x5)T and
yi= Wily---» y,-N)T, 1 <i<K, respectively, based on the corresponding random variable
model:

X ~multinom(C,(ﬂl,...,ﬂN)T)

Y; ~ multinom(C;, (yi1,...,yin) ), 1 <i<K

where C = ZJNZ 1%, Ci = Zj\]: \vij are the total taxa counts of the sink and the ith source, and
Bj,vij denote the relative abundance of taxa j in the sink and the ith source, respectively.

Further assume that, the sink-source relationships are determined by the following mixed-
proportion model:

K

Bi=> aiyj 1<j<N. (1)
i=0

In this model, an unobserved source Yy ~ multinom(Cy, ()/01,...,)/0N)T) is assumed to

contribute to the sink with a proportion «. Our goal is to unveil the dependence structure
between the sink and the sources by estimating the parameters «; based on the observed
data x and y;, for 1 <i <K.

Generally speaking, the estimation of «; can be achieved by maximizing the joint
likelihood of observing (x,y1,...,yx). Since the mixed-proportion model depends
on several latent variables, i.e., the taxa abundances B;,y;; in the sink and sources
and the variables in the unobserved source, the estimation is usually carried out
iteratively. Typical examples include finding (local) maximum likelihood estimates (MLE)
through the Expectation—Maximization (EM) algorithm (Shenhav et al., 2019), or finding
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maximum a posteriori (MAP) estimates by Gibbs sampling (Knights et al., 2011). Although
convergence is generally ensured for the MLE or maximum a posteriori (MAP) estimation,
from a practical perspective, an obvious disadvantage of these iterative methods lies in
their lack of computational efficiency, especially when the number of latent or unobserved
variables is high. This greatly affects the practical use of source tracking in high-dimensional
microbiome data. To address this issue, we simplify the mixed-proportion model by
assuming y;; to be known (if not, they can be approximated by the sample estimates y;/C;),
for 1 <i<K,1<j<N,and propose to estimate ¢;’s by the generalized least square (GLS)
method. This approach is described below.

Multiplying C to both side of Eq. (1), we have

K
E[Xjl=) Cayj,1<j<N.
i=0
For the unobserved source Yy, since both its taxa abundance (o1, ...,%on)" and its

proportion « are unknown, the estimation of these parameters certainly encounters a
nonidentifiability issue. In addition, it is reasonable to treat Yy as a nuisance contributor
to the sink with a negligible proportion, so we may assume that the product ayy; is
common across 1 <j < N. Letting @y = Capypj,1 <j <N and @; = Ca;,1 <i<K, the
above equation describes a multiple linear regression model

K
)(j:do+25{i]/lj+€j,1§j§N7 (2)
i=1

where €; denote the random error term with E[¢;] =0 and

CB(1—=p1) —Chipr - —CpB1BN
—CB1By  CB(1—=p2) -+  —CBpn
Cov(e) = : : . :
—CpB1BN —CBBn -+ CBN(1—BN)

Replacing B; by its sample estimate x;/C and denoting this approximated Cov(€) by X,
we obtain the GLS estimate of & = (&, @, ...,ax)’ by

2 _ -1 _

a=(y"=7ly) (v'27N),

where p is an N x (K 4 1) design matrix with first column being a vector of 1’s.
Consequently, the estimate of & = (g, 1, .. Lar)T s

a==0"=) (). 3)

It is known that, as a multivariate covariance matrix, Cov(€) is positive semidefinite and
does not have a unique inverse. To overcome this difficulty and calculate the GLS estimate
of &, we may either replace Cov(€) with a non-singular matrix by removing any row and
corresponding column (and accordingly reduce dimension for y and x) (May & Johnson,
1998), or alternatively use the Moore—Penrose inverse (pseudoinverse) of Cov(e€) (Tanabe
& Sagae, 1992).
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In practice, it is often not clear which of the K 41 samples in the microbiome data
plays the role of the sink. Denoting the samples by {Si,...,Sk+1}, we define the kth model,
1<k<K+1,by

Model k : X =35,
yi€S-,1<i<K,

where Sx_ :={S1,...,Sk+1} \ Sk. Our purpose is to determine the correct model from a total
of K 41 candidate models so that the true source and sink relationships are testified. For
convenience, let us represent the directionality of Model k by Sx_ — S. Using a Bayesian
network setting, we write the joint likelihood of observing (x,y1,...,yx) in Model k as

PrX,yi,...,yx) =PrX|yi,....yx)Pr(y1,....yx)
k

=Pr(X|y1,...,yK)1_[P7’(}’i)

i=1

(4)

where the conditional likelihood Pr(x|y,,...,yx) is calculated by using the estimated
parameters from Eq. (3). We then choose the correct model by maximizing Pr(x,y1, ...,y )-
We note that, this directionality inference method employs the concept of structure
learning for Bayesian networks. Briefly speaking, a Bayesian network is a graphical model
that represents a set of random variables and their conditional dependencies via a directed
acyclic graph (DAG), and structure learning for Bayesian networks refers to learning the
structure of the DAG from data. As shown in Fig. 1, we model the microbiome data by
a simple Bayesian network which connects each source y;,1 <i <K to the sink x with
a directed edge. Our directionality inference is essentially a score-based approach which
uses the log-likelihood of the data under the graph structure as a criterion (or score
function) to evaluate how well the Bayesian network fits the data. In practice, score-based
approaches usually introduce a regularization term (e.g., Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC)) to penalize overfitting of the model and
favor simpler models. However, for our directionality inference problem, the regularization
term can be omitted safely in the score function because all candidate graphical models are
of the same complexity—it is just a matter which variable plays the role of the sink.

RESULTS

Experimental design for performance evaluation

To evaluate the proposed method, we designed three experimental settings encompassing
both simulated and real microbiome data. For simulations in Scenarios 1(a) and 2, we
assume N > K, which means that the number of taxa is always greater than the number
of source samples. The case of N < K will be discussed separately in “Discussion and
conclusions”. The three evaluation scenarios are as follows:

Scenario 1: Evaluation using fully simulated microbiome data. This includes two sub-cases:
(a) The sink and sources are clearly defined; that is, the directionality of the microbiome
community is known; (b) The source and sink relationships are not known a priori and
need to be inferred.

Choi et al. (2025), PeerdJ, DOI 10.7717/peerj.20161 5/15


https://peerj.com
http://dx.doi.org/10.7717/peerj.20161

Peer

Figure 1 A schematic plot of the graphical model used for directionality inference.
Full-size &l DOI: 10.7717/peerj.20161/fig-1

Scenario 2: Evaluation using a semi-synthetic dataset generated based on real microbial
taxa distributions.
Scenario 3: Evaluation using real microbiome data.

In Scenario 1, the number of sources K varies from 2 to 100, and we assume that there
are several major sources that contribute to the sink, each major source accounting for at
least 10% of the proportions and their summed proportions fixed at 90%. The true relative
abundance parameters y;; and proportion parameters ;, 0 <i <K,1<j <N, are drawn
from prespecified Dirichlet distributions. The microbiome data were then generated from
the multinomial distributions and the aforementioned mixed-proportion model (Eq. (1)).

In Scenario 2, we adopt a similar generative approach as in Scenario 1, with K varying
from 2 to 50 and major sources collectively accounting for 90% of the total proportion.
However, the microbial taxa distribution is derived from a real microbiome dataset
published by Knights et al. (2011), which includes 180 barcoded pyrosequencing samples
of bacterial 16S rRNA gene sequences collected from diverse environments such as human
skin, oral cavities, feces, and temperate soils (referred as “Knights et al. dataset”).

In Scenario 3, we directly evaluate our method using Knights et al. dataset, which also
provided additional four 16S rRNA microbiome samples labeled as sinks—representing
surface contamination from two research laboratories, a hospital, and an office building.
These samples are commonly used to test MST tools. While the true source proportions
are unknown in this real-world setting, the experiment enables comparison of the outputs
generated by different MST methods.
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Scenario 1: evaluation on fully simulated microbiome data
Source proportion estimation with known directionality

Using the simulated data in Scenario 1, we obtained an estimate of the source proportions
@;,1 <i<K, and calculated the mean absolute error (MAE), Jensen—-Shannon divergence
(JSD) and Pearson correlation (PCC) of the estimated source proportions. Repeating the
simulation 1000 times, we report the average MAE for estimating the proportions of the

observed sources and the major sources, as well as the contribution of the unknown source.
We also reported the average JSD and PCC of the observed sources. For comparison, the

average performance of the other four source tracking methods—FEAST, SourceTracker2,
STENSL, and SourceID-NMF—are also included.

As summarized in Table 1 and Supplementary Material S1, FastST consistently
outperformed the other two microbial source tracking methods in estimating proportions
of both major and unobserved sources. FastST achieved the MAE of 0.0164 for major
sources and 0.0468 for unobserved sources in simulations involving two observed sources
(K =2). FEAST showed the second-best performance, with average MAEs of 0.0474 for
major sources and 0.0895 for unobserved sources, followed by SourceTracker2, STENSL,
and SourceID-NMF.

Notably, when simulations were expanded to five sources (K = 5) with two major
sources, FastST further improved performance, exhibiting significantly lower average MAEs
of 0.0047, 0.0033, and 0.0050 for major, observed, and unobserved source proportions,
respectively. Conversely, FEAST’s performance either remained similar or deteriorated
compared to the two-source simulation, showing higher average MAEs of 0.0461, 0.0230,
and 0.0934 for major, observed, and unobserved sources, respectively.

When the number of observed sources increased beyond ten (K > 10), FEAST’s
performance in estimating observed source proportions became more comparable to
FastST’s. However, considerable differences persisted in estimating major and observed
sources. For instance, in a simulation dataset with 50 observed sources, including two major
sources, FastST yielded average MAEs of 0.0017 for observed sources, whereas FEAST had
0.0023. More significantly, for major and unobserved sources, FastST’s average MAEs were
0.0032 and 0.0042, respectively, while FEAST demonstrated substantially higher MAEs of
0.0155 and 0.0298.

Inference of directionality

Next, we evaluated FastST’s ability to infer directionality when source-sink relationships
are unknown (Scenario 1(b)). Treating each of the K 4 1 samples as the sink, we obtained
K +1 candidate models and calculated the joint likelihood of each model according to
Eq. (4). The directionality from the sources to the sink was then inferred by selecting the
model with the maximum likelihood. Repeating this simulation 100 times, we report the
accuracy rate of directionality inference in Table 2. We see that, FastST is able to determine
the true sink with high accuracy rate (nearly 100%) in all settings. In particular, when there
are five major sources in microbiome data, directionality inference becomes more accurate
because the conditional likelihood Pr(x|y1,...,yx) in this case tends to play a dominant
role in the joint likelihood Pr(x,y,...,yx). We note that, the directionality inference is a
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Table 1 Average MAE for estimating the proportion of observed sources, the proportion of major sources, and the contribution of unobserved
sources in fully simulated microbiome data across source-tracking methods.

Number of Number of Sources FastST FEAST SourceTracker2 STENSL SourceID-NMF
observed major
sources sources
Observed 0.0164 0.0474 0.1458 0.0658 0.0919
2 2 Major 0.0164 0.0474 0.1458 0.0658 0.0919
Unobserved 0.0468 0.0895 0.2890 0.1305 0.1085
Observed 0.0033 0.0230 0.0932 0.0318 0.0870
5 2 Major 0.0047 0.0461 0.1728 0.0618 0.1694
Unobserved 0.0050 0.0934 0.2262 0.1565 0.2402
Observed 0.0060 0.0125 0.0398 0.0333 0.0219
5 5 Major 0.0060 0.0125 0.0398 0.0333 0.0219
Unobserved 0.0121 0.0374 0.1710 0.1653 0.0267
Observed 0.0023 0.0110 0.0696 0.0110 0.0536
10 2 Major 0.0035 0.0363 0.2013 0.0389 0.2048
Unobserved 0.0070 0.0765 0.1092 0.0890 0.2849
Observed 0.0027 0.0118 0.0525 0.0160 0.0315
10 5 Major 0.0030 0.0163 0.0639 0.0268 0.0447
Unobserved 0.0022 0.0644 0.1135 0.1500 0.1314
Observed 0.0017 0.0023 0.0292 0.0032 0.0074
50 2 Major 0.0032 0.0155 0.3688 0.0279 0.0892
Unobserved 0.0042 0.0298 0.0168 0.0481 0.0598
Observed 0.0020 0.0026 0.0294 0.0032 0.0063
50 5 Major 0.0029 0.0085 0.1490 0.0121 0.0297
Unobserved 0.0025 0.0289 0.0180 0.0489 0.0285
Observed 0.0016 0.0013 0.0169 0.0195 0.0034
100 2 Major 0.0031 0.0115 0.4239 0.4446 0.0583
Unobserved 0.0020 0.0126 0.0089 0.0011 0.0052
Observed 0.0018 0.0015 0.0165 0.0116 0.0031
100 5 Major 0.0030 0.0071 0.1661 0.1080 0.0216
Unobserved 0.0019 0.0126 0.0091 0.0960 0.0040

general method, not tool specific. To assess generalizability, the same simulation procedure

was applied to other MST-based approaches, and we found that it similarly enabled accurate

directionality inference across methods.

Computation time comparison

We compared the computational efficiency of FastST with four other microbial source

tracking methods by measuring the run-time required to complete 1,000 simulation

experiments in Scenario 1(a). Tests were conducted on a single-node server equipped
with an Intel Core 15 CPU (two GHz, two cores) and 16 GB of RAM. Table 3 illustrates
that FastST exhibited the shortest run-time, completing simulations in 439.21 s for 10

known sources and 464.17 s for 50 known sources, each scenario containing two major

sources. FEAST demonstrated the second-best performance for for smaller numbers of
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Table 2 Accuracy rate for inferring the sink correctly in 100 simulations using FastST, FEAST and

SourceTracker2.

Number of Number of FastST FEAST SourceTracker2
observed sources major sources

2 2 100% 100% 100%
5 2 100% 100% 100%
5 5 100% 100% 100%
10 2 100% 100% 100%
10 5 100% 100% 100%
50 2 100% 100% 100%
50 5 100% 100% 100%
100 2 99% 100% 100%
100 5 100% 100% 100%

Table 3 Computation times (sec) for completing 1,000 simulations using different source tracking

methods.
Number of Number FastST  FEAST SourceTracker2 ~ STENSL SourceID-NMF
observed of major
sources sources
2 2 414.28 2,117.23 26,320.47 1,618,385.96 429,917.70
5 2 436.36 3,353.01 25,984.78 2,490,530.77 474,461.68
5 5 447.26 3,107.59 25,965.82 2,702,331.68 409,722.50
10 2 439.21 6,543.67 25,845.14 103,425.12 516,393.17
10 5 450.41 8,015.65 25,772.28 107,073.26 435,312.15
50 2 464.17 61,463.39 26,046.73 42,998.03 995,828.46
50 5 479.18 79,108.87 25,977.48 62,145.34 844,902.18
100 2 494.76 66,407.89 26,757.72 3,014,520.28 1,392,889.40
100 5 513.71 91,033.33 26,590.93 3,532,209.32 1,403,480.23

known sources (K < 10), completing simulations in 6,543.67 s with 10 known sources,
but experienced a significant increase in computational time to 61,463.39 s with 50
known sources. STENSL exhibited the longest run-times in most scenarios, recording
103,425.12 s and 42,998.03 s for 10 and 50 known sources, respectively. The results also
highlight a substantial increase in computation time for FEAST and SourceID-NMEF as the
number of known sources increased from 10 to 50, whereas FastST maintained relatively
stable performance with minimal increase. Interestingly, as the number of known sources
exceeded 10, the run-time gap between FEAST and SourceTracker2 decreased. Specifically,
SourceTracker2 showed consistently stable performance across all tested values of K, and
significantly outperformed FEAST in scenarios with a large number of known sources
(K = 50), demonstrating considerably lower computation times under these conditions.

Scenario 2: evaluation on semi-synthetic microbiome data

To further test generalizability, we evaluated FastST using semi-synthetic datasets generated
from real microbial taxonomic profiles. These datasets preserve realistic abundance patterns
while allowing controlled variation in source compositions. We used the taxonomic
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Table 4 Average MAE for estimating the proportion of observed sources, the proportion of major sources, and the contribution of unobserved
sources in semi-synthetic microbiome data across source-tracking methods.

Number of Number Sources FastST FEAST SourceTracker2 STENSL SourceID-NMF
observed of major
sources sources
Observed 0.0767 0.0634 0.0397 0.3275 0.2184
2 2 Major 0.0767 0.0634 0.0397 0.3275 0.2184
Unobserved 0.0001 0.0795 0.0794 0.6550 0.4368
Observed 0.0449 0.0600 0.0099 0.1665 0.1074
5 2 Major 0.0852 0.1283 0.0161 0.3791 0.2314
Unobserved 1.0x107° 0.2161 0.0176 0.8327 0.5371
Observed 0.0507 0.0343 0.0181 0.1726 0.0981
5 5 Major 0.0507 0.0343 0.0181 0.1726 0.0981
Unobserved 4.1x107° 0.1383 0.0733 0.8629 0.4907
Observed 0.0301 0.0394 0.0098 0.0855 0.0560
10 2 Major 0.0904 0.1390 0.0235 0.3837 0.2360
Unobserved 3.9%x107° 0.1749 0.0064 0.8551 0.5596
Observed 0.0342 0.0450 0.0214 0.0955 0.0559
10 5 Major 0.0539 0.0697 0.0295 0.1740 0.0952
Unobserved 4.7x107° 0.1505 0.0783 0.9550 0.5592
Observed 0.0202 0.0122 0.0070 0.0186 0.0043
50 2 Major 0.1149 0.1517 0.0829 0.4164 0.0444
Unobserved 3.7x 1077 0.0643 0.0024 0.9310 0.0511
Observed 0.0189 0.0110 0.0100 0.0197 0.0081
50 5 Major 0.0703 0.0538 0.0493 0.1776 0.0351
Unobserved 43x1077 0.0537 0.0047 0.9859 0.0208

distributions from the Knights et al. dataset to generate source and sink samples. As in
Scenario 1, mixtures were simulated using Dirichlet-multinomial models with K sources
and predefined proportions.

Over 100 simulations, we evaluated FastST’s source proportion estimation performance
using the same metrics as in Scenario 1. The results (Table 4, Supplementary Material 52)
confirmed that FastST remains similar performance to other MST tools, even when trained
on real-world microbial community structures. In terms of estimating the proportion of
unknown sources, FastST shows much improvement compared to the other comparison
tools.

Scenario 3: evaluation on real microbiome data

Finally, we evaluated FastST in a fully real-world setting using the Knights et al. dataset,
which comprises four 16S rRNA microbiome samples from environmental surfaces—one
from a hospital, two from research laboratories, and one from an office building—
designated as sinks, along with 180 source samples collected from diverse environments,
including human skin, oral cavities, feces, and temperate soils. In this case, the ground-truth
source proportions were unknown; therefore, we focused on comparing the patterns of
estimated contributions across different tools.
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Figure 2 Estimated source contributions to sink samples using different MST methods on the Knights
et al. dataset. Estimated contributions of the unobserved source were not reported.
Full-size Gl DOI: 10.7717/peer;j.20161/fig-2

From the result (Fig. 2) for most sink samples, FastST produced source contribution
estimates largely consistent with those from FEAST, with only minor discrepancies. Both
methods indicated substantial contributions from skin and soil sources for the laboratory
and office sinks, while the NICU sample exhibited a broader diversity of contributors.
In contrast, FEAST and SourceTracker2 often assigned a dominant proportion of the
composition to a single environment type, most frequently skin. STENSL generated
patterns similar to FEAST, reflecting its algorithmic derivation from FEAST. Meanwhile,
SourceID-NMF showed limited diversity in inferred sources and failed to generate results
for two sink samples (Lab 1 and Lab 2), leading to the entire proportion being attributed
to unknown sources.

DISCUSSION AND CONCLUSIONS

In this study, we introduced FastST, a novel microbial source tracking method designed to
address the limitations associated with existing approaches such as FEAST, SourceTracker2,
STENSL, and SourceID-NMF. FastST predicts the contributions of the sources to the sink,
and infers the directionality if the source and sink relationships are not pre-defined.
One unique feature of FastST is that it transforms the mixed-proportional sink-source
relationships into a multiple linear regression model, which greatly simplifies the inference
procedure. The source contributions were predicted by the standard GLS method and the
directionality was inferred by selecting the maximized joint likelihood of a Bayes network
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model. Through simulations with different number of known and major sources, we
demonstrated that FastST was able to achieve significant improvements in computational
efficiency and accuracy, particularly evident in scenarios involving a large number of known
sources. Unlike other methods, FastST exhibited good scalability, meaning that it effectively
maintained consistent run-time and accuracy regardless of increasing complexity in terms
of data size and dimensionality.

One of the long-standing obstacles to the practical use of microbial source tracking lies
in computational efficiency. As shown in the simulation study, when the complexity
of microbial communities increases, MST methods usually encounter significant
computational difficulties. Due to its Bayesian setup and non-negative matrix factorization,
SourceTracker2 and SourceID-NMF are computationally expensive. FEAST and STENSL,
while significantly faster than SourceTracker2 at a lower number of known sources, suffered
a drastic increase in computation time with a larger dataset. FastST, on the other hand,
maintained stable performance with minimal runtime increase, demonstrating suitability
for practical applications involving a large number of sources. Additionally, FastST’s
capability to accurately infer directionality without predefined source—sink relationships
enhances its applicability in real-world scenarios, where distinguishing sources from sinks
can be challenging. The high accuracy rates achieved in identifying the correct source—sink
relationship underscore its potential for various ecological and public health applications.

It is noteworthy that, our simulation study sets the number of taxa N to be greater than
the number of source samples K, which is intuitively reasonable for real applications. When
this assumption is not satisfied, for example, there exists a large number of source samples,
a potential solution is to conduct a dimension reduction (e.g., PCA) before building a
mixed-proportion model for the sink-source relationships. After all, when K is large, both
the parameter of the taxa relative abundances y;; and the parameter of proportions «;
become difficult to estimate. As a rule of thumb, when K is greater than 100, most of the
minor sources have very tiny, negligible contributions to the source, making the inference
on «; worthless.

In conclusion, FastST has a potential to offer a substantial advancement in microbial
source tracking by providing rapid and precise estimations and reliably inferring
directionality. However, different scenario cases in simulation testing reveals that FastST
has robust performance in both accuracy and computational efficiency, and also provide
a directionality inference method which hasn’t been firstly presented to the best of our
knowledge. Future research should explore extending FastST to incorporate more complex
environmental scenarios with real datasets.
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