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ABSTRACT

In organisms, non-coding RNAs (ncRNAs) are key regulatory elements that modulate,
the expression of genes involved in diverse biological traits. Among them, micro
RNAs (miRNAs), small interfering RNAs (siRNAs), and long non-coding RNAs
(IncRNAs) have become major research focuses. Wheat, the world’s most widely
grown crop, occupies 17% of global cultivated land and supplies ~55% of the
world’s carbohydrates. Understanding the roles, identification, and mechanisms of
wheat ncRNAs is essential for both basic research and crop improvement. Through
systematic searches of PubMed, Web of Science, and EndNote databases, this study
identified 182 publications related to wheat ncRNAs. Based on predefined criteria—
research relevance and publication timeframe (2015-2025)—70 high-quality studies
were selected for in-depth analysis. This review comprehensively summarizes recent
advances in ncRNA research (focusing on IncRNAs and small RNAs) in relation to
wheat diseases, pests, and responses to biotic and abiotic stress. By integrating tradi-
tional classification with functional characterization, we developed a comprehensive
analytical framework encompassing “molecular characteristics-biotic stress—abiotic
stress”. Furthermore, this review consolidates multi-omics high-throughput data and
online ncRNA databases. The integration of multi-omics technologies aims to provide
both a theoretical foundation and novel strategies for wheat genetic improvement.

Subjects Agricultural Science, Bioinformatics, Genetics, Genomics, Plant Science
Keywords Wheat, Non-coding RNA, Disease, Stress, High-throughput data

TYPES OF NON-CODING RNA

A large portion of the eukaryotic genome consists of non-coding regions, and the RNAs
transcribed from these regions are termed non-coding RNAs (ncRNAs), which are
transcribed but not translated (Yu et al., 2019). ncRNAs are classified by length into long
non-coding RNAs (IncRNAs) and small non-coding RNAs, the latter including microRNAs
(miRNAs), small interfering RNAs (siRNAs), and others (Zhang et al., 2023b).

miRNAs single-stranded regulatory ncRNAs, typically 20-24 nucleotides (nt) long
(D’Ario, Griffiths-Jones ¢ Kim, 2017), with most plant miRNAs being 21 nt long (Zhan
& Meyers, 2023). They were first discovered during a screen for abnormal development
in Caenorhabditis elegans (Zhao et al., 2021b; Waterhouse ¢ Hellens, 2015). Together with
siRNAs, they are the most widely studied small RNAs in plant RNAs. In multicellular
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organisms, miRNAs regulate the expression of numerous protein-coding genes involved
in growth and development throughout the life cycle (Rabuma, Gupta & Chhokar, 2022).
siRNAs were discovered earlier than miRNAs in plants. They mediate degradation or
translational repression of target genes (Wu et al., 2020) and include several types such
as trans-acting siRNAs (ta-siRNAs), natural antisense transcript siRNAs (nat-siRNAs),
repeat-associated siRNAs (ra-siRNAs), and long siRNAs (IsiRNAs). Their mature sequence
lengths vary. siRNAs produced by Dicer-like protein 1 (DCL1) and Dicer-like protein
4 (DCL4), including ta-siRNAs and nat-siRNAs (as well as miRNAs), are typically 21
nucleotides. Dicer-like protein 3 (DCL3) cleaves dsRNAs to produce 24-nt siRNAs, such
as ra-siRNAs. Dicer-like protein 2 (DCL2) usually generates 22-nt siRNAs (Zhang et al.,
2023b) and some nat-siRNAs also fall into this category. A few siRNAs range from 30—40 nt
in length (Rabuma, Gupta & Chhokar, 2022).

Despite their relatively recent discovery, significant progress has been made in the study
of plant IncRNAs, driven by advances in high-throughput technologies and bioinformatics.
LncRNAs are a highly heterogeneous group of biomolecules, typically >200 nucleotides
long, with little or no coding potential (Madhawan et al., 2020). Although most IncRNAs
are transcribed by RNA polymerase II, some are transcribed by RNA polymerase III, and a
few plant-specific IncRNAs are transcribed by RNA polymerases IV and V. Predominantly
nuclear, IncRNAs often possess 5 and 3’ structures similar to mRNAs. Compared to
mRNAs, IncRNAs are generally shorter, contain fewer exons and introns, lack clear open
reading frames, are expressed at lower levels, and show spatio-temporal and tissue-specific
expression patterns. These features likely contribute to their non-coding nature and
functional roles in organisms. Currently, there is no standardized classification system for
IncRNAs. They are primarily categorized into five types—sense, antisense, bidirectional,
intronic, and intergenic—based on their genomic location. Additional classifications are
based on genomic features (e.g., promoter-, enhancer-, or transposon-associated) and
mode of action, including interaction with proteins, DNA, or other RNAs (Huang et al.,
2023; Yang et al., 2023).

NCRNAS IN RESPONSE TO PESTS AND DISEASES IN
WHEAT CROPS

IncRNAs play key roles in plant defense against pests. Cagirici, Biyiklioglu ¢ Budak (2017)
conducted target analysis using wheat miRNA expression data in varieties resistant to
Wheat Stem Sawfly (WSS), available in the Plant Database Collection. They identified
larval-specific miR-87 as targeting a locus on chromosome 5BL in larvae, and miR-281 as
targeting a transcript on chromosome 2AL in both male adults and larvae. These findings
suggest that larval miRNA targets may contribute to pest resistance in wheat.

ncRNAs also play vital roles in plant-pathogen interactions. IncRNAs participate
in various biological processes, and RNA interference (RNAi)-mediated silencing of
pathogenic genes has been shown to inhibit filamentous fungal fungus, offering a promising
strategy for disease control. Table 1 summarizes ncRNAs and their regulatory mechanisms
in wheat under different disease conditions.

Yang et al. (2025), PeerdJ, DOI 10.7717/peerj.20142 219


https://peerj.com
http://dx.doi.org/10.7717/peerj.20142

Table 1

ncRNAs in wheat diseases and stress responses.

Function ncRNAs Reference(s)

Regulation of resistance IncRspl Wang et al. (2021),

to Fusarium Head Blight miR398 Wang et al. (2022),
miR1432 Wu et al. (2025)

Regulation of rust
resistance

Regulation of powdery mildew resistance

Modulation of blight resistance

Pest defense

Modulating co-infection by both viruses
(TriMV and WSMV)

Regulation of drought stress in wheat

Regulation of cold stress in wheat

Regulation of heat stress in wheat

Regulation of salt stress in wheat

XLOC_302848
XLOC_321638
XLOC_113815
XLOC_123624

TCONS_00155902
TCONS_00103472
TCONS_00147277
TCONS_00147276
TCONS_00029083
TCONS_00013986
novel-Ta-miR02

Ta-miR397
IncRNA MSTRG.20701

IncRNA MSTRG.4380.1
miR-87

miR-281

miR397-5p

miR398

miR9670-3p

miR159
Ta-miR408
miR166 h
miR9662a-3p
Ta-miR5062-5A
novel-miR-340
novel-miR-417
miRN4330
miR5071a
miRN4321b
#PS_199

Traes_2BS_7A04BF5D5
miR394

miR1117

miR1125

miR1130

miR113

miR156

miR166

miR393

IncRNA MSTRG.20144
IncRNA MSTRG.31273
IncRNA MSTRG.51285

miR159a
miR160
miR167
miR1118

Chen et al. (2015),
Das et al. (2023)

Nair et al. (2022),
Guan et al. (2023)

Cao et al. (2023)
Yang et al. (2023)

Yietal (2023)

Chen ¢ Yu (2023),
Akdogan et al. (2016),

Zhou et al. (2024),
Gomez-Martin et al. (2023),
Sharma et al. (2025)

Hou et al. (2025),
Diaz et al. (2019)

Songet al. (2017),
Babaei, Bhalla & Singh (2024),
Kumar et al. (2015)

Song et al. (2017),
Sharma et al. (2021),
Qiao et al. (2023)

(continued on next page)
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Table 1 (continued)

Function ncRNAs Reference(s)

Involved in cadmium transport and IncRNA37228 Zhang et al. (2023a),

detoxification, photosynthesis and Ta-miR9670 Zhu et al. (2023),

antioxidant defense Ta-IncRNA18313 Ma et al. (2024
Notes.

ncRNAs in disease/stress responses and reference(s).

high temperature  humid Fusarium Head Blight
o ‘ y C
\ / l51 miR3
~ St (o)
\) o s
& (\Pg
©°
> ) A
S o ©
o
w N
% £
[N

Spikes with Fusarium head blight P2x gehis

Healthy wheat spikes b

ncRNAs regulatifig Fusarium head blight in wheat

Figure 1 Mechanism of non-coding RNA regulation in fusarium head blight of wheat.
Full-size Gal DOI: 10.7717/peer;j.20142/fig-1

The incidence of downy mildew reduces both yield and grain quality in crops such
as wheat, barley, and maize, with serious implications for human and animal health.
Recently, Baldwin et al. (2018) demonstrated that DON production and small RNA (sRNA)
populations respond to RNAi silencing of TRI6, a transcription factor that positively
regulates DON synthesis by controlling TRI5 expression. This was achieved through
RNAi-based host-induced gene silencing (HIGS) in Aspergillus oryzae, a wheat germplasm
bacterium engineered to express RNAi vectors encoding dsRNAs (Baldwin et al., 2018).
LncRNAs play important roles in many biological processes, but their functions and
mechanisms in filamentous fungi remain poorly understood. A novel antisense IncRNA,
GzmetE-as, was identified in Fusarium graminearum and shown to regulate its target gene
GzmetE, which controls asexual and sexual reproduction in Aspergillus erythropolis via the
RNAI pathway, thereby influencing its pathogenicity (Wang et al., 2021).

IncRsp1, located 99 bp upstream of the sugar transporter gene Fgspl in Fusarium
graminearum, works in concert with Fgsp1 to negatively regulate the deoxynivalenol (DON)
biosynthesis genes TRI4, TRI5, TRI6, and TRI13, thereby reducing DON production and
fungal virulence (Wang et al., 2022). During the early stage of F. graminearum infection
(within 12 h), 96.6% of differentially expressed IncRNAs were specifically activated. At
24 h post-inoculation (hpi) in wheat, only a few remained active, while protease-related
genes showed specific enrichment. Among these, XLOC_302848 and XLOC_321638 are
wheat IncRNAs linked to erythrina resistance. Joint analysis of RNA-seq data and fine QTL
mapping for wheat erythrina resistance identified XLOC_113815 and XLOC_123624 as
candidate IncRNAs involved in wheat’serythrina resistance response (Duan et al., 2020).
The regulation of gene expression plays a crucial role in plant defense against pathogenic
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bacteria. Figure 1 illustrates the regulatory mechanisms of Fusarium head blight (FHB)
resistance in wheat.

Most up-regulated genes after pathogen infestation were annotated as disease resistance
genes, suggesting that plants actively enhance the expression of these genes in response
to infection. However, this response is not a simple gene switch but involves complex
regulatory networks. For example, miRNAs play a key role in wheat’s response to Fusarium
graminearum. Upon infection, most miRNAs show negative correlations with their target
genes, implying that miRNAs may suppress target expression to modulate disease resistance.
The core difference between WY and CS lies in their miRNA-mediated regulatory
networks. WY exhibits strong resistance to FHB through precise regulation—such as
downregulation of tae-miR1122a—which activates key defense pathways. In contrast, CS
shows upregulation of novel miR228, which may suppress defense responses and shift its
overall response toward basic metabolism, resulting in weaker disease resistance (Wu et al.,
2025). miR398 showed significant expression upon FHB infection, influencing resistance
by regulating reactive oxygen species (ROS) balance. Its dynamic, tissue-specific expression
in susceptible cultivars (with temporal differences between roots and leaves) suggest that
spatio-temporal ROS regulation plays a crucial role in FHB defense. Similarly, the wheat
miR1432 family contributes to disease resistance through dual targeting: EF-hand calcium-
binding proteins and 4D hexose transporter genes. Its high expression in both yellow rust
and FHB infections highlights its conserved regulatory role across pathogen interactions
(Muslu et al., 2025). Besides miRNAs, siRNAs are also involved in wheat’s resistance to
wheat blast. Rhizoctonia solani suppresses siRNA pathways, leading to the upregulation
of resistance genes. Downregulation of siRNAs may relieve RADM (RNA-directed DNA
methylation)-mediated repression of resistance genes, enhancing resistance to R. solani.
For example, sir4748, sir2582, and sir423 show significant downregulation of TaDCL3
(Dicer-like 3) expression after infection with B. equisetum, likely due to suppression of
TaDCL3, which in turn improves resistance (Jin et al., 2020; Chen et al., 2015). These
findings offer new insights into plant disease resistance mechanisms and suggest novel
approaches for disease control.

Stripe rust is a global fungal disease that poses a serious threat to wheat by destroying
most of the photosynthetic tissues in leaves, leading to reduced yields and poor seed quality.
By identifying susceptible and resistant IncRNAs and their expression in wheat infected
with stripe rust. Through bioinformatics analysis, Das et al. (2023) found that IncRNAs
can also serve as targets of wheat miRNAs that regulate multiple genes involved in key
defense processes against stripe rust. Six IncRNAs—TCONS_00155902, TCONS_00103472,
TCONS_00147277, TCONS_00147276, TCONS_00029083, and TCONS_00013986—act
as endogenous targets of Ta-miR1127a, which regulates proteins encoding disease resistance
or NBS-LRR proteins, among others, and are involved in stripe rust resistance, revealing a
novel mechanism of IncRNAs as miRNA ‘sponges’ in wheat stripe rust resistance (Das ef
al., 2023). Novel-Ta-miR02 may also be a key regulator of the defense response to common
wheat stem and leaf rust, and the differential expression patterns of miRNAs reveal stem-
and leaf-rust-responsive miRNAs and their potential roles in balancing resistance and
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susceptibility (Nair ef al., 2022). In conclusion, research into wheat—rust interactions
continues to highlight the crucial role of ncRNAs in wheat disease resistance mechanisms.

Under powdery mildew infection, wheat Ta-miR397 negatively regulates resistance by
targeting the wound-induced protein (Ta-WIP). Overexpression of Ta-miR397 significantly
increases susceptibility to powdery mildew, accelerates fungal spore germination and hyphal
growth, and promotes tillering. Silencing the target gene Ta-WIP also enhances disease
susceptibility (Guan et al., 2023). Predicting and functionally annotating IncRNA target
genes can identify IncRNAs that promote or inhibit wheat powdery mildew development.
The co-expression patterns of IncRNAs with neighboring mRNAs suggest significant
correlations with the expression patterns of their potential targets. TraesCS5D03G0595900
and TraesCS5B03G1159600 are involved in wheat—pathogen interactions, and sugar
signaling contributes to wheat’s immune response by potentially acting as a signal to
trigger defense mechanisms. Among them, IncRNA MSTRG.20701 regulates fructose and
mannose metabolism and participates in plant defense, providing a foundation for further
understanding the pathogenesis of wheat powdery mildew (Cao et al., 2023).

The investigation of wheat blight revealed that Rickettsia species IncRNAs and miRNAs
are involved in the infection process, and IncRNA MSTRG.4380.1 can reduce the virulence
of wheat blight pathogens, offering a new strategy for disease control (Vi et al., 2023). These
studies underscore the important roles of noncoding RNAs in wheat’s response to various
stresses, laying the groundwork for future research into their molecular mechanisms and
applications.

With the advancements in research on wheat under dual-virus infection (TriMV
and WSMYV), 28 differentially expressed miRNAs (e.g., miR168a, miR397-5p, efc.) were
identified as virus-responsive. Functional validation confirmed the regulatory roles of
miR397-5p, miR398, and miR9670-3p during viral infection, with miR9670-3p acting as
a negative regulator for both TriMV and WSMYV infections. Target prediction showed
these miRNAs primarily regulate genes involved in defense responses, catalytic activity,
and nucleic acid binding (Soylu et al., 2024).

NCRNAS ASSOCIATED WITH GROWTH AND
DEVELOPMENT AND ABIOTIC STRESS RESPONSE IN
WHEAT CROPS

NcRNAs play regulatory roles in wheat growth and development, influencing agronomic
traits as illustrated in Fig. 2. Li et al. (2019) conducted transcriptome analysis across four
developmental stages (three-leaf, winter dormancy, spring green-up, and jointing) to
identify and characterize miRNAs in wheat. They found that miR168 was highly expressed
at all stages and identified eight miRNA target genes, two of which were conserved targets
of miR171 and miR172, respectively. miR1172a targeted the disease resistance protein
RGA1 (heterotrimeric GTP-binding protein « subunit), and miR9674b-5p targeted

the Rfl gene, among others, showing stage-specific differential expression. In addition,
ncRNAs regulate the cell cycle and anther development. For instance, IncRNA_047461,
IncRNA_074658, and IncRNA_061738 may be involved in cell cycle regulation (Ma et al.,
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Figure 2 Non-coding RNA regulation of wheat growth, development, and stress conditions.
Full-size & DOI: 10.7717/peerj.20142/fig-2

2018). Ta-miR2275-3p is implicated in meiotic processes and early anther development in
wheat (Sun et al., 2018). The IncRNA MSTRG.59353 targets AGO1d-7A and AGO1d-7B,
contributing to spike shape and development (Cao et al., 2021). The interaction between
miR172 and the Q allele reduces single nucleotide polymorphisms (SNPs) at the miRNA
binding site. Inhibiting miR172 through target mimics results in a compact spike and
transformation of glumes into florets in the apical spikelet (Debernardi et al., 2017). In
studies of ncRNA-mediated regulation of wheat spike development, the cultivar Guomai
301 (wild type, WT) and its three spike mutants (drs, ass, and ptsdl) were compared.
Ta-miR396b expression was significantly higher in WT than in drs and ass mutants.
Dysregulation of TaGRFs by Ta-miR396b led to distinct phenotypes: drs had a dwarfed,
rounded spike; ass showed impaired apical spikelet development causing sterility; and
ptsd1 likely disrupted spike differentiation (Yao et al., 2024). Additional studies showed
that Ta-miR397-6A and Ta-miR397-6B encode functional Ta-miR397a, whose expression
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increases during grain filling. Suppression of Ta-miR397a reduced grain size and weight,
while its overexpression promoted grain filling and enhanced grain size and weight,
indicating its role as a positive regulator of grain development (Wang et al., 2024).

Plant small RNAs are also involved in epigenetic processes and serve as key
components of gene regulatory networks controlling development and homeostasis.
They respond to abiotic stresses such as heat, cold, salinity, and dehydration. sSRNA
expression changed substantially depending on stress treatments. For example, miRNAs
help fine-tune wheat growth and development. miR166a-b and miR167a-b show low
nucleotide polymorphism across wheat species, suggesting conserved and vital regulatory
roles in wheat growth and development (Singh et al., 2020). Chen ¢ Yu (2023) identified
three endoplasmic reticulum (ER) stress-responsive miRNAs (Ta-miR164, Ta-miR2916,
and Ta-miR3.6e—5p) using integrated miRNA sequencing and degradome analysis. These
miRNAs and their targets responded to stressors like DTT, PEG, NaCl, and temperature
extremes. Using a BSMV-based silencing system, suppression of these miRNAs significantly
improved wheat tolerance to drought, salt, and heat.

ncRNAs participate in diverse biological processes across species, including plant
growth, development, and biotic and abiotic stress responses. To cope with environmental
challenges, such as drought, heat, cold, and salinity, plants develop complex regulatory
mechanisms involving ncRNAs. Known and newly identified ncRNAs are summarized in
Table 1 according to their functions.

Drought is the most common environmental stress that inhibits crop growth and
development, severely limiting global wheat production. ncRNAs can influence plant
drought tolerance by regulating the expression of target genes (Li et al., 2022). Drought-
responsive miRNAs have been reported in Arabidopsis thaliana, Oryza sativa, and Glycine
max (Wang et al., 2016), but relatively few have been identified in wheat. Research shows
that the drought-tolerant wheat cultivar Sivas 111/33 exhibits distinct miRNA regulatory
patterns under drought stress: several miRNAs (e.g., miR156, miR159, and miR398)
are upregulated to enhance stress response, while others (e.g., miR164 and miR482) are
downregulated, accompanied by upregulation of their target genes, suggesting involvement
in stress resistance via inverse regulation. In contrast, the drought-sensitive cultivar Atay 85
displays weaker miRNA expression changes and abnormal regulation of target genes (e.g.,
downregulation of miR5048 targets), potentially contributing to its lower drought tolerance.
Notably, under drought stress in leaves, the significant upregulation of miR159 targets
ABA-positive regulators MYB33 and MYB101 transcription factors, enhancing drought
tolerance by modulating ABA accumulation. These findings highlight key differences in
miRNA regulatory networks between wheat cultivars with varying drought resistance
(Akdogan et al., 2016). Li et al. (2022) identified roles for differentially expressed IncRNAs,
miRNAs, and their target genes in wheat drought tolerance, discovering a drought stress-
responsive IncRNA-miRNA-mRNA regulatory module. They hypothesized that regulatory
modules centered on novel-miR-340 and novel-miR-417 regulate different drought-
tolerance genes, thereby conferring distinct drought resistance traits to wheat. During the
grain-filling stage under drought stress, Ta-miR408 enhances photosynthetic efficiency
and antioxidant capacity by targeting and suppressing allene oxide synthase (AOS) genes,
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thereby inhibiting jasmonic acid (JA) and abscisic acid (ABA) biosynthesis (Zhou et

al., 2024). Deep sequencing revealed downregulation of miR166 h and upregulation of
miRN4330 in roots, along with downregulation of miRN4321b and upregulation of
miR5071 in leaves under drought stress. These miRNAs mediate stress adaptation by
targeting key genes, including HD-ZIP III transcription factors (developmental regulators)
and Mlal (a disease resistance gene). Notably, miRN4330 may regulate endoplasmic
reticulum metabolism, miR5071a targets NB-LRR domain-containing disease resistance
proteins, and miRN4321brepresents a novel function reported for the first time in wheat
(Gomez-Martin et al., 2023). Other studies identified 306 known and 58 novel miRNAs in
two wheat genotypes, with miR9662a-3p showing the highest expression. Quantitative
reverse transcription polymerase chain reaction (QRT-PCR) confirmed differential
expression of 10 novel miRNAs under drought stress; among them, #PS_199 showed
significantly higher expression in the roots of the N15439 genotype, suggesting a role in
root-specific drought response mechanisms (Sharma et al., 2025). Under drought and salt
stress, Ta-miR5062-5A expression was downregulated, while its target gene TaCML31

(a calmodulin-like gene) was upregulated. Studies revealed that TaCML31 interacts with
the MYB transcription factor TaMYB77, and together they regulate osmotic protectant
accumulation, stomatal closure, root development, and ROS homeostasis. TaMYB77
activates expression of stress defense genes TaP5CS2, TaNCED1, and TaDREB3 by binding
to their promoters. These findings indicate that the Ta-miR5062-5A-Hap1 haplotype
enhances wheat drought resistance (Hou et al., 2025).

Cold stress alters the expression of IncRNAs and miRNAs in wheat. LncRNAs can
function as miRNA targets. For example, IncRNA Traes_2BS_7A04BF5D5 responds to
cold stress (Diaz et al., 2019). The target genes of differentially expressed miRNAs are
mainly associated with stimulus response, transcriptional regulation, and ion transport.
For instance, under cold stress, differential expression of miR5169 may affect iron transport
proteins. In wheat, 39 miRNAs from 28 families show differential expression under cold
treatment, including miR394, which also responds to cold stress (Song et al., 2017).

IncRNAs regulate wheat pollen development under heat stress by acting in cis, trans,
or as miRNA repressors. Babaei, Bhalla ¢ Singh (2024) found interactions between
IncRNAs and miRNAs under heat stress. Heat-responsive miRNAs—such as miR1117,
miR1125, miR1130, and miR113—along with IncRNAs MSTRG.20144, MSTRG.31273,
and MSTRG.51285, appear to influence pollen development via a ceRNA mechanism
(Kumar et al., 2015). Ravichandran et al. (2019) showed that conserved members of
the miR156, miR166, and miR393 families target SPL (SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE) transcription factors, HD-Zip-like transcription factors,
and TIR1 (TRANSPORT INHIBITOR RESPONSE 1)/AFB (AUXIN SIGNALING F-BOX).
Responsive gene-based SSR (cg-SSR) and miRNA gene-based SSR (miRNA-SSR) molecular
markers (Sharma et al., 2021) may aid in marker-assisted breeding for heat-tolerant wheat
varieties and the genetic diversity analysis of germplasm.

Salt stress significantly affects wheat growth. Eight miRNAs, including miR159a,
miR160, and miR167, are significantly upregulated under salt stress and are suggested
to mediate salt signaling through post-transcriptional or translational regulation, thereby
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modulating hormonal signaling pathways (Babaei, Bhalla & Singh, 2024). miR1118 exhibits
salt stress sensitivity in wheat roots, with its expression significantly reduced under

salt stress conditions, suggesting a role in seedling salt stress adaptation (Qiao ef al.,
2023). It post-transcriptionally cleaves and represses TaCaM2, which interacts with the
transcription factor TaMYB44 to form a functional complex. TaMYB44 directly activates
stress-responsive genes (TaGS2.2, TaNRT2.1, and TaPIN4), enhancing wheat tolerance to
low nitrogen (Zhang et al., 2025).

Cadmium, a toxic and widespread metallic pollutant, disrupts plant growth, reducing
yield and quality, and poses a threat to food safety and human health (Zhang et al.,
2023a). Zhu et al. (2023) integrated physiological, biochemical, and RNA sequencing
analyses to reveal a cadmium response mechanism mediated by IncRNAs in wheat. These
IncRNA targets act via cis-regulation, influencing neighboring genes involved in cadmium
transport, detoxification, photosynthesis, and antioxidant defense. IncRNA37228 and
its target gene TraesCS4B02G159100 play key roles in cadmium resistance. The wheat-
specific Ta-miR9670 enhances cadmium tolerance by targeting mitochondrial transcription
termination factor (mTERF) genes. Overexpression of Ta-miR9670significantly increases
seedling biomass while reducing malondialdehyde, hydrogen peroxide, and cadmium levels
(Ma et al., 2024). Ta-IncRNA18313 is broadly expressed in leaves and strongly induced by
cadmium stress. RNA-seq analysis identified 370 differentially expressed genes enriched in
transcriptional regulation and antioxidant defense pathways. These findings suggest that
Ta-IncRNA18313 improves cadmium tolerance by modulating oxidative stress and related
gene expression (Zhao et al., 2025).

THE DEVELOPMENT OF MULTI-OMICS TECHNOLOGIES
HAS ENHANCED THE STUDY OF NCRNAS IN WHEAT

With the rapid advancement of science and technology, biological research has shifted from
classical morphology and physiology to molecular biology. In this process, multi-omics
approaches—including genomics, transcriptomics, metabolomics, and proteomics—
have provided diverse data sources to support studies on wheat ncRNAs and offer new
perspectives on the internal mechanisms of organisms.

A search of wheat data in the NCBI database reveals 44 Genome RefSeq assemblies,
including reference genomes for varieties such as Chinese Spring, Kariega, Fielder, and
Attraktion. There are 1,260 DNA and RNA BioProjects and 57,812 BioSamples, including
506 DNA and 754 RNA BioProjects. Among 1,219 second-generation sequencing datasets,
most were generated using Illumina, while 35 were obtained using third-generation
technologies such as PacBio. Collectively, these data form a strong foundation for research
on wheat non-coding regions. Table 2 presents the number of entries in each category of
high-throughput sequencing data from the NCBI public database.

The number of platforms and databases related to ncRNA is growing. The EVLncRNAs
database (https:/www.sdklab-biophysics-dzu.net/EVLncRNAs1/) integrates information
from four small IncRNA databases (IncRNAdb, LncRAN-Disease, Lnc2Cancer, and
PLNIncRBase), and contains 1,543 IncRNAs from 77 species, including 428 from 44
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Table 2 Classification and quantity statistics of wheat data in NCBI public databases.

Data classification Bioproject BioSample
RNAseq 710 15,327
snRNAseq 1 1
ncRNAseq 6 284
IncRNAseq 3 25
miRNAseq 42 656
mRMAseq 1 24
sRNAseq 1 36
Genome 136 69,357
Epigenetic group 64 4,972
Metabonomics 1 148
Ribo-seq 3 18
The Genome of related to stress 87 8,943
Notes.

The first column lists the types of high-throughput sequencing data; the second column shows the number of BioProjects for
each type; the third column shows the number of BioSamples.

plant species (Zhou et al., 2019). Other plant ncRNA databases develpoed in the past
three years include PLncDB V2.0 (Jin et al., 2021), NONCODES6 (Zhao et al., 2021a),
CANTATAdD 3.0 (Szczesniak ¢» Wanowska, 2024), PlantIntronDB (Wang et al., 2023),
JustRNA (Tseng et al., 2023). ncPlantDB (https:/bis.zju.edu.cn/ncPlantDB)/), launched in
2025, is a newly established plant ncRNA database (Liu et al., 2025). The PlantCircRNA
database integrates data from AtCircDB and CropCircDB, including tissue-specific and
stress-responsive data, and features a novel nomenclature system (He et al., 2025). It
is expected to offer valuable insights into plant circRNA research. The Rfam database
(https:/rfam.org/), which provides ncRNA families for genome annotation, has been
updated to version 15.0 and now includes 26,106 genomes, including viral genomes, to
enhance annotation quality (Ontiveros-Palacios et al., 2025).In 2023, Zhang et al. developed
Triticeae-BGC, a web-based platform for the detection, annotation, and evolutionary
analysis of wheat biosynthetic gene clusters. The platform, which is freely available online
(http:/119.78.67.240:3838/I'riticeae- BGC)), allows inter-gene covariance analysis using gene
or chromosome positions to identify additional candidate genes for further study (Li et al.,
2023). WheatOmics (http:/wheatomics.sdau.edu.cn/) is a multi-omics platform designed to
accelerate functional genomics research in wheat. It supports gene identification (forward
and reverse genetics), gene expression analysis, molecular network construction, regulatory
element analysis, and the identification of superior haplotypes. The integrated GeneHub
tool allows users to retrieve multi-omics data for individual wheat genes with a single click
(Ma et al., 2021). Currently, there is no dedicated database specifically for wheat ncRNAs.
While WheatOmics includes some IncRNAs and miRNAs, its functional annotations of
ncRNAs remain limited.

Researchers have developed several ncRNA analysis tools to mine data from high-
throughput sequencing, including miRnovo (Vitsios et al., 2017), miRkwood (Guigon et
al., 2019), and miRDeep-P2 (Kuang et al., 2019). Additionally, sSRNAminer enables rapid
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and accurate annotation of small RNAs (Li et al., 2024). For IncRNA prediction, LncCat
identifies IncRNAs based on features such as ORF length (Feng et al., 2023). A novel
computational tool, PlantLncBoost, has also been developed, significantly improving
IncRNA prediction accuracy and cross-species generalization (Tian et al., 2025).

SUMMARIZING AND LOOKING FORWARD

While studies on non-coding RNAs have advanced in animal research, they remain
underexplored in plant sciences, and their regulatory mechanisms are still poorly
understood.

Current research on wheat non-coding RNAs in disease resistance faces three major
challenges. First, functional validation lags behind, with most ncRNAs limited to
bioinformatic predictions and lacking genetic validation through methods like CRISPR
knockouts or overexpression. Second, existing data are constrained by cultivar and
pathogen strain specificity, often based on single strains or wheat varieties, highlighting
the need for broader analyses across different races and resistance backgrounds. Third,
translational application faces bottlenecks, with limited progress in converting ncRNA
findings into practical field-based disease-resistant breeding strategies. To overcome these
challenges, future efforts should focus on: establishing a wheat ncRNA functional database
incorporating data on Fusarium head blight, stripe rust, and powdery mildew; developing
novel ncRNA delivery technologies; and exploring the co-evolutionary relationships
between ncRNAs and QTLs. These directions will facilitate the practical application of
ncRNAs in wheat disease-resistance breeding.

Current research on wheat non-coding RNAs in abiotic stress responses also faces
several critical scientific questions that need urgent resolution. First, spatiotemporal
expression patterns of ncRNAs remain unclear; for example, while drought-induced
expression differences have been observed, underlying regulatory mechanisms such as
tissue-specific splicing are not well understood. Second, the crosstalk between ncRNAs
and plant hormone signaling networks is insufficiently studied, with many interaction
mechanisms yet to be clarified. Third, translational challenges persist, as most findings
remain at the laboratory stage without field validation. To address these gaps, future work
should focus on elucidating ncRNA-hormone interactions, constructing spatiotemporal
expression networks, and building a comprehensive wheat ncRNA functional database
integrating multiple abiotic stress datasets. These advances will help bridge the gap between
basic ncRNA research and its agricultural application.

Bioinformatics faces significant challenges in ncRNA research, particularly the limited
accuracy of functional prediction. Current tools show poor adaptability to polyploid
crops like wheat and lack specific algorithms for different ncRNA types, limiting the
precision of functional annotation. Moreover, integrative multi-omics analyses remain
underdeveloped, as most studies focus on single-omics levels and fail to systematically
incorporate ncRNA data with transcriptomic, epigenomic, and proteomic datasets. This
hampers a comprehensive understanding of ncRNA regulatory networks. To address these
challenges, future research should pursue two key directions: first, improving database
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construction by developing a comprehensive wheat ncRNA functional database that
integrates multi-stress and multi-cultivar data, along with species-specific prediction tools.
Second, deepen mechanistic insights by using single-cell sequencing technologies to clarify
the spatiotemporal expression patterns of ncRNAs and unravel their synergistic regulation
with epigenetic modifications. These systematic efforts will significantly enhance the depth
and practical value of wheat ncRNA research, offering new theoretical foundations and
technical support for molecular design breeding.
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