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ABSTRACT

Background. Basketball players are a high-risk group for anterior cruciate ligament
(ACL) injuries. This study aimed to identify the critical factors contributing to ACL
injuries in male basketball players and evaluate the performance of machine learning
(ML) algorithms in injury prediction.

Methodology. This study protocol was registered with International Standard Regis-
tered Clinical/soCial sTudy Number (ISRCTN) (Registration number: 18009799). A
total of 104 male collegiate basketball players volunteered to participate in this study.
Data on the athletes’ profile, physical functions, basketball-specific skills, biomechanics,
and electromyography (EMG) of seven lower limb muscles during unanticipated side-
cutting maneuvers were collected. A 12-month follow-up was conducted to compare
these variables between the injured (n =11) and non-injured (n = 93) groups. Only the
variables with significant differences between the groups were included in the predictive
modeling.

Results. The performance of machine learning models in predicting ACL injury risk was
assessed using the area under the curve (AUC) of the receiver operating characteristic
(ROC). The AUC-ROC values ranged from 0.66 to 0.80, with the random forest
algorithm achieving the highest performance (AUC-ROC = 0.80). The most influential
predicting feature observed during the emergency stop phase, included a greater knee
flexion moment, reduced knee flexion angle, increased backward ground reaction force,
and increased activation of the vastus lateralis muscle.

Conclusion. The random forest model demonstrated superior predictive performance,
providing valuable insights into the key risk factors associated with ACL injury among
male basketball players. This study highlighted the importance of biomechanical testing
based on sport-specific movements to accurately predict the ACL injury risk.

Subjects Data Mining and Machine Learning, Sports Injury, Sports Medicine

Keywords Biomechanics, Functional movements screening, Physical functions, Predictive
modeling, Risk factors

INTRODUCTION

Anterior cruciate ligament (ACL) injuries are prevalent among basketball players, with
an annual incidence rate ranging from 0.15% to 3.7% (Moses, Orchard ¢ Orchard, 2012).
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These injuries significantly impact athletic performance, as returning to play following
ACL reconstruction typically requires approximately 10 months (Jones et al., 2023).
Identifying and addressing the risk factors contributing to ACL injury are critical for
effective prevention. Male and female athletes differ notably in anatomical structure,
biomechanics, hormone levels, and neuromuscular control strategies, influencing ACL
injury mechanisms (Renstrom et al., 2008). Females typically exhibit increased knee valgus,
lower hamstring-to-quadriceps ratios (Hewett, Myer ¢» Ford, 2006), and ligament laxity
variations linked to menstrual cycles, elevating ACL injury risk (Dos’Santos et al., 2023). To
eliminate gender as a confounding factor and enhance internal validity, this study focused
solely on male basketball players.

Standardized movement tests, including the Landing Error Scoring System (LESS) (Swmith
et al., 2011) and the Cutting Movement Assessment Score (CMAS) (Dos’Santos et al., 2019),
are widely used to evaluate the ACL injury risk in players. These tests primarily focus on the
athlete’s biomechanical risk factors, such as dynamic knee valgus (Dos’Santos et al., 2021)
or landing technique (Limroongreungrat et al., 2022). However, the ecological validity of
these standardized movement tests is often limited due to their inability in replicating the
real-game scenarios’ dynamic and unpredictable nature. To overcome these limitations, the
unanticipated side-cutting maneuvers can be utilized as it accurately reflects the complex
decision-making and dynamic challenges players encounter during competition (Kin et
al., 2014). Notably, ACL injuries typically occur during high-risk actions—such as rapid
directional changes or single-leg landings—when the knee experiences peak shear and
torsional loads (Krosshaug et al., 2007). These high-risk instances are often masked when
analyzing the movement as a whole, as key biomechanical variables—including ground
reaction force, knee valgus moment, and flexion-extension angle—fluctuate dynamically
throughout the motion (Baumgart, Hoppe ¢ Freiwald, 2017). Conventional time-averaged
approaches may therefore obscure phase-specific patterns, reducing model sensitivity.
Segmenting the unanticipated side-cutting maneuver into distinct phases improves
temporal resolution, enabling precise identification of critical injury-prone events and
facilitating targeted biomechanical characterization.

Other contributing factors, such as lower limb and trunk strength deficits (Raschner
et al., 2012), poor balance, and joint laxity (Oshima et al., 2018), may further complicate
the prediction of ACL injury. To objectively quantify these ACL-related risk factors,
several assessment tools have been widely applied. The Functional Movement Screen
(FMS) identifies deficits in mobility and neuromuscular control associated with knee
instability (Cook et al., 2014; Kiesel, Plisky ¢» Butler, 2011). The Y-Balance Test (YBT)
assesses dynamic balance and limb asymmetry; both linked to lower limb injury risk (Plisky
et al., 2006). Deficits in basketball-specific physical attributes—such as strength, power,
and agility—may impair neuromuscular control around the knee joint, thereby increasing
the risk of ACL injury (Hewett et al., 2005).

Machine learning (ML) is a data-driven approach that employs algorithms and
statistical models to enable automated classification or decision-making processes. Model
performance is typically evaluated using metrics such as cross-validation and accuracy
(Litjens et al., 2017). ML ability to manage complex and multidimensional datasets
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makes it a powerful tool for analyzing biomechanical data and movement patterns,
and subsequently, facilitating early detection and injury prevention. For instance, Kolodziej
et al. (2023) employed a LASSO regression model to predict lower limb injury risk among
56 male elite adolescent soccer players using 3D motion analysis, postural control, and
strength assessments. Their results identified knee extensor peak torque, hip transverse
torque, and center of pressure (COP) sway during single-leg stance as key predictive
indicators. Although the model demonstrated a limited predictive performance, with

an accuracy of 0.58 and an AUC of 0.63, these findings underscored the importance of
neuromuscular and biomechanical factors in injury risk assessment (Kolodziej et al., 2023).
Similarly, another study involving 39 basketball players employed inertial sensors on leg
stability, mobility, and load absorption. Risk levels were assessed using LESS, and a support
vector machine (SVM) algorithm achieved an impressive predictive accuracy of 0.96, in
which the primary risk factors identified were load absorption parameters and leg mobility
(Taborri et al., 2021). Although LESS is commonly used to assess injury risk, its reliance
on subjective judgment introduces bias (Wexler et al., 2019). In addition, LESS is based on
two-dimensional video analysis, which limits its ability to capture the three-dimensional
biomechanics critical to accurate assessment (Hanzlikovd ¢~ Hébert-Losier, 2020). These
methodological constraints may compromise their predictive validity. In contrast, actual
diagnosis offers greater clinical and practical relevance. In this study, ACL injury status was
confirmed using the Lachman test and magnetic resonance imaging (MRI)—the clinical
gold standard—and used as outcome labels for ML modelling. This strategy supports a
shift in sports medicine from risk screening to precise prevention.

Building on this foundation, Xu et al. (2024) developed a biomechanical and nonlinear
musculoskeletal modeling approach to assess how ankle kinematics during single-leg
landings affect lower-limb injury risk. By incorporating nonlinear short-term viscoelastic
properties, the ACL model accurately captured ligament mechanics and improved
load prediction fidelity. Similarly, Xu ef al. (2023) developed a novel approach that
integrates deep learning with musculoskeletal modeling to predict ACL loading. By
extracting ankle kinematic features during single-leg landings before and after fatigue, they
constructed and optimized Sparrow Search Algorithm (SSA)-extreme learning machine
(ELM) and SSA-long short-term memory (LSTM) models, achieving high prediction
accuracy (R? =0.9947). In the context of real-time injury prediction, Ren, Wang ¢ Li
(2024) developed a real-time injury monitoring system that integrates deep learning
and SVM, using polynomial fitting and principal component analysis (PCA) to extract
motion features. The system achieved over 90% accuracy across multiple sports and an
average prediction precision of 94.2%, outperforming traditional heuristic methods and
demonstrating the promise of ML in injury surveillance. Ayala et al. (2024) proposed
a logistic regression model identifying kinesiophobia and high-risk sport types as key
predictors. With 90% accuracy and a recall of 99.16%, the model surpassed SVM and
K-nearest neighbors (KNN), offering an effective tool for personalized injury prevention.
While previous studies highlighted the potential of ML in injury prediction, several
limitations persist. The clinical application of ML models was hindered by suboptimal
model performance, restricted interpretability, and variability across different sports.
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Insufficient sample size is a well-recognized limitation in ML studies, often resulting

in overfitting and reduced generalizability. However, even a large-scale predictive study
involving 880 athletes achieved an AUC-ROC of only 0.63. Moreover, attempts to address
sample imbalances in the dataset failed to improve the outcomes (Jauhiainen et al., 2022)
thus revealing a substantial gap in predictive performance relative to clinical applications.
To address these limitations, the study incorporated a wider range of ACL injury-related
factors tailored to basketball athletes. Biomechanical indicators were divided into distinct
movement phases (emergency stop, initial acceleration, side-cutting) to evaluate the
model’s applicability in different scenarios. Synthetic Minority Oversampling Technique
(SMOTE) and Gaussian noise techniques were used together to address class imbalance.
Finally, the Gini Importance method was applied to quantify how each feature contributed
to the model’s predictive performance.

Therefore, the objective of this study was to assess the effectiveness of ML algorithms in
predicting ACL injury among male basketball players and to identify key factors associated
with these injuries. By addressing current limitations, the findings provide actionable
insights to improve injury prevention strategies.

MATERIALS & METHODS

The study protocol was approved by the Human Research Ethics Committee of Universiti
Sains Malaysia (JEPeM-USM), study protocol code: USM/JEPeM/22040199 and adhered
to the principles outlined in the Declaration of Helsinki. Written informed consent was
obtained from all participants before their participation in the study.

Participants

Participants were recruited through purposive sampling from collegiate basketball teams

across various universities in Shanxi, China. Male participants aged 18 or above, engaging in
more than 8 h of basketball-specific training weekly, with at least three years of competitive
basketball experience, and with a negative Lachman’s knee examination were included in
this study. On the other hand, those with exercise-related or neurological disorders, recent
hip or knee surgery, or trauma were excluded.

In ML models, there are no strict rules regarding sample size. The required sample size
depends on the number of features, model complexity, task type, and data distribution.
In the supervised learning model, more than 80 samples are required to achieve the mean
average, and 100-200 samples can be of moderate size (Figueroa et al., 2012; Gillain et al.,
2019). Therefore, following this guideline, the initial sample size was set at 120 individuals.
However, 11 of them voluntarily withdrew during the testing period due to personal
reasons (e.g., scheduling conflicts), and five were excluded due to over 50% missing data.
The final sample consisted of 104 participants, including 11 who sustained an ACL injury
and 93 who remained non-injured. The mean age of the injured group was 21.6 years old;
with their mean height of 186.4 cm, mean weight of 83.8 kg, and mean training duration
of 4.0 years. Meanwhile, the mean age of the non-injured group was 20.5 years; with their
mean height of 185.1 cm, mean weight of 80.0 kg, and mean training duration of 5.4 years.
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Data collection

This cohort study was conducted between September 2022 and March 2024. The baseline
data were collected, and the participants were followed for 12 months to assess their injury
status. The testing protocol was completed in a single day which spanned approximately
5 h, with a designated noon break to ensure adequate rest among the participants. All
experiments were conducted at Taiyuan University of Technology’s High-Level Sports
Center and Biomechanics Laboratory. Data collection was performed independently by
the research team to ensure consistency and reliability of the data.

All participants underwent a comprehensive assessment, which included evaluations of
the basketball players’ profile, physical functions, biomechanics, neuromuscular factors,
and basketball-specific ACL injury risk factors. The participants were instructed to abstain
from consuming functional beverages during the break time to avoid potential interference
with the results. Participants were advised to wear appropriate sportswear and specialized
athletic footwear, and to refrain from strenuous physical activity on the day before testing
to ensure sufficient rest. To reduce the impact of personalized orthotics on biomechanical
measurements (Moyer et al., 2015), participants were asked to discontinue their use 48 h
before testing. For those with habitual knee brace use, standardized elastic braces were
provided to ensure protocol consistency.

Basketball players’ profile and physical functions

Basketball players’ profile, including height, weight, age, level of play, playing position,
and self-reported injury history were documented for all participants. Physical functions
were evaluated using the FMS and YBT (Gil-Martin et al., 2021). These assessments were
conducted under the supervision of a certified FMS instructor, adhering to the standard
movement protocols and safety precautions. The FMS comprised seven movement tasks
designed to assess joint flexibility and detect asymmetries (Triplett et al., 2021). Each
task was scored on a scale from 0 (poor) to 3 (perfect execution), with higher scores
indicating superior movement quality. The dynamic balance was evaluated through YBT
by measuring reach distances in the anterior, posteromedial, and posterolateral directions.
Reach distances were normalized to leg length, where higher scores reflected better dynamic
stability and control (Schwiertz et al., 2020).

Unanticipated side-cutting maneuvers

In the unanticipated side-cutting maneuvers, the participants were required to run at a
minimum speed of 3.5 & 0.2 m/s and then to step on a force plate (Kim et al., 2014).
Simultaneously, a light was randomly illuminated to indicate direction of either left or
right, prompting the participants to respond immediately upon the light indication. Using
a cross-step cutting maneuver, they then quickly stepped at a 45° angle in the indicated
direction and stepped onto a second force plate before continuing to run forward to exit
the test area. Participants must maintain movement continuity from the run-up through
task completion, without significant pauses or unnecessary deceleration, to ensure valid
test results. Prior to testing, participants completed standardized warm-up and practice
sessions. Six valid trials per participant (i.e., three valid trials for each direction) were
included in the analysis, with a mandatory 2-minute rest between trials to prevent fatigue.
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Kinematic and kinetic data during the unanticipated side-cutting movement
were captured using the Vicon motion capture infrared cameras (Vantage5, Oxford
Metrics Limited, Oxford, UK; 100 Hz) and Kistler 3D force plates (model 9287C,
Measurement Technology, Winterthur, Zurich, Switzerland, 1,000 Hz). Wireless surface
electromyography (EMG) electrodes (DTS, Noraxon, Scottsdale, AZ, USA) were affixed
to the lower limb to record muscle activity from the rectus femoris, vastus medialis,
vastus lateralis, long head of biceps femoris, short head of biceps femoris, medial head of
gastrocnemius, and lateral head of gastrocnemius. These muscles were selected due to their
significant activation during sudden cutting movements, which were closely associated
with the ACL loading (Li et al., 2014).

A previous study identified muscle activation in the dominant leg as a primary
contributor to lower limb injuries (Svernsson et al., 2018). Thus, this study exclusively
measured the muscle activation of the dominant leg, which was determined based on the
participant’s preferred kicking leg (Liu et al., 2014). Baseline muscle activity levels were
established using the manual maximum voluntary contraction (MVC) test. Each muscle
group performed two MVC trials that lasted approximately 5 s, with a minimum 30-second
rest interval between trials. The electrode placement and movement tests were adhered to
the surface electromyography (EMG) for non-invasive assessment of muscles (SENIAM)
standard protocol (Hermens et al., 2000), as detailed in Supplemental Information 1. In
order to minimize errors, only one researcher was responsible for placing the reflective
markers and EMG electrodes for all participants.

Basketball-specific skills test

After completing the biomechanical tests, participants were required to rest for over 2 h
to ensure they had sufficient energy for the basketball-specific tests. The participants were
instructed to refrain from eating or drinking for 30 min before the tests to minimize the
potential influence of food and drinks on their performance.

The warm-up and stretching protocol was designed to match the testing sequence, aiming
to activate the neuromuscular system without inducing fatigue. Based on prior studies
(Carmo et al., 2023; Guo, Li ¢ Wu, 2018), participants performed 5 min of cycling at 50 W,
followed by 5 min of static stretching. Then, they completed 30-second passive stretches
targeting key lower-limb (quadriceps, hamstrings, gastrocnemius, gluteus maximus),
lumbar, and upper-body muscles, all under researchers’ supervision. In order to ensure
adequate recovery and maintain optimal performance of the participants, a 30-minute
rest interval was provided between each skill test. Subsequently, the participants then
performed a series of tests in the following sequence: dominant leg hop (DLH) (Guo, Li
¢ W, 2018), countermovement jump (CM]), squat jump (SJ), drop jump (DJ), one-
repetition maximum (1-RM) weighted squat, deadlift (Dias et al., 2005), and the lane
agility test (Milan et al., 2019).

ACL injury diagnosis

Following the baseline assessments, ACL injury incidence among participants were
meticulously monitored through monthly communications with the team physicians
and self-reports from the players. A detailed diagnosis and description of the injury was
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provided to the researcher by an orthopedic specialist upon the occurrence of the injury.
All participants diagnosed with an ACL injury exhibited positive Lachman test results, and
the severity of the injuries was further confirmed through MRI. As of March 31, 2024, a
total of 11 ACL injury cases had been confirmed among the participants.

Data analysis
Biomechanical data analysis

Based on a previous study (Li et al., 2014), biomechanical data were collected and analyzed
during three key phases of the unanticipated side-cutting maneuvers, namely the emergency
stop (ES), initial acceleration (TA), and side-cutting (SC) phases, as illustrated in Fig. 1.

Firstly, the ES phase began when the participants initiated the test and progressed until
both feet contacted the force platform during their braking motion where they adjusted
their center of gravity (COG) based on the left or right directional cues. Next, in the TA
phase, the participants adjusted their COG in response to the indicator lights. Then, the
participants initiated a push-off motion toward the indicated direction while keeping both
feet grounded. In both phases (ES and IA), kinetic and kinematic variables were extracted
at the timepoint whereby the peak ground reaction force (GRF) was observed during
double-leg stance. The extracted data included GRF peaks, center of pressure (COP), joint
forces and moments at the hip, knee, and ankle, as well as surface EMG signals from seven
lower-limb muscles. The moments were calculated as external moments using inverse
dynamics, based on kinematic data and ground reaction forces.

Lastly, in the SC phase, following the push-off, the participants executed a side-cutting
maneuvers. As the COG shifted forward, they landed on the force platform with one leg.
In order to ensure consistency in movement, all participants performed the side-cutting
maneuvers using a crossover step at this phase. Also, as this phase involved a single-leg
landing, only biomechanical and EMG data from the supporting leg were included in the
analysis for this phase. Specifically, these included GRF peaks, joint forces and moments
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at the hip, knee, and ankle, as well as surface EMG signals from seven muscles of the
supporting leg.

Meanwhile, the biomechanical assessment was analyzed in three-dimensional (3D)
plane with three axes: X-axis for flexion-extension, Y -axis for adduction-abduction, and
Z -axis for internal-external rotation. The kinematic and kinetic data of the ankle, hip, and
knee joints were adhered to the right-hand rule to ensure a standardized representation of
data (Jandacka et al., 2018). In addition, the GRF positive values were defined as upward,
rightward, and forward directions.

Among the 104 participants, 87 were right-leg dominant and 17 were left-leg dominant.
Notably, all 11 injured participants were right-leg dominant. Hence, data from the 17 left-leg
dominant participants were converted to align with the dominant leg and non-dominant
leg categories to standardize the analysis for consistency in comparing the muscle activation
and biomechanical data.

Force plates and surface EMG devices were integrated into the Vicon Nexus system
(Version 2.8.1, Oxford Metrics Limited, Oxford, UK). Data synchronization acquisition
was achieved using the Nexus plugins to ensure temporal consistency across the collected
data. Following that, the integrated system exported data from the force plate, motion
capture, and EMG into a C3D file format. Subsequent analysis of the C3D files was
performed using Visual 3D (Version 6.1.2, C-Motion, Inc., Germantown, MD, USA).
Specifically, Hanavan’s 15-link multi-rigid body model, recognized as one of the most
complex and accurate representations of the human body, was constructed in Visual
3D (Robertson, 2013). The data underwent filtering with a 4th-order Butterworth filter,
where the cutoff frequency for kinematic and kinetic data was 8 Hz and 30 Hz (Weeks,
2023), respectively. The EMG data were then processed with high-pass filter with a cutoff
frequency of 50 Hz, full-wave rectification, and low-pass filter with a cutoff frequency of
6 Hz (Merletti ¢ Di Torino, 1999). Finally, all the processed data were exported in CSV
format for further analysis.

Descriptive statistics

The risk factors associated with ACL injury among participants were categorized into three
distinct themes, namely the athlete’s profile and physical functions, biomechanical factors
during unanticipated side-cutting maneuvers, and basketball-specific skills. The data were
further grouped into two primary groups based on the participants’ injury status, which
were injured and non-injured groups. The distribution of numerical variables was assessed
using the Shapiro-Wilk test for normality. Variables conforming to normal distribution
were summarized as mean =+ standard deviation (SD) and analyzed using independent
t-tests, with Cohen’s d utilized to quantify effect size (0.20, 0.50, and 0.80 denoting small,
medium, and large effects, respectively) (Cohen, 1988). Variables deviating from normality
were presented as median (interquartile range, IQR) and analyzed using Mann—Whitney U
tests, with effect sizes represented by rank biserial correlation (range: —1 to +1) (Cureton,
1956). Categorical variables were compared using Chi-squared tests, with Cramér’s V
coefficient (range: 0 to 1) indicating effect size (McHugh, 2013). The numerical values
of these effect sizes reflect the magnitude of differences or associations between groups,
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enhancing interpretation of statistical significance. Only factors with statistical significance
of p < 0.05 were included in the subsequent ML model construction, as summarized in
Table 1. All statistical analyses were conducted using SPSS version 27.0 (IBM, Armonk,
NY, USA).

Machine learning
Data pre-processing

Using the interquartile range (IQR) method, 399 outliers (2.12% of the original dataset)
were removed (Vinutha, Poornima ¢ Sagar, 2018). These outliers primarily resulted from
marker-tracking errors (e.g., trajectory deviations during high-speed movements) and
biomechanically implausible data (e.g., joint angles exceeding physiological ranges).
During the crossover step of side- cutting, ankle joint kinematic data loss occurred due to
marker occlusion, a common issue in dynamic movements. Missing data (1.21% of the total
data in this phase) were imputed using Lagrange interpolation (Xiong, Guo & Wu, 2021).
Trials with over 50% missing data were excluded to prevent excessive interpolation from
compromising biomechanical validity. The min-max scaling was applied to standardize
the dataset and mitigate the impact of differing units and dimensions among features.
The variance inflation factor (VIF) was employed to identify multicollinearity to enhance
model stability. The data was bootstrapped randomly 100 times to determine the highest
VIF value for each feature. Features with VIF values exceeding 5, indicating significant
multicollinearity, were excluded from the dataset (O’brien, 2007).

Data imbalance handling

The original dataset exhibited an imbalance in data collection and labeling. For instance,
categories such as basketball-specific qualities and physical characteristics contained only
a single entry per category, while the biomechanical data included multiple entries per
category. Thus, minority samples were oversampled and combined with the majority
class to address this imbalance. Consequently, the dataset used for modeling comprised
injured samples (n = 65) and non-injured samples (1 =529). In order to enhance the
dataset robustness, Gaussian noise with a mean of 1 and an SD of 0.1 was added.
Each perturbation employed unique random values to simulate the real-world noise.
By introducing the perturbation, realistic variations were simulated, which improved the
dataset’s generalizability and reliability (Ye et al., 2023).

The augmented dataset was divided into a training set (90%) and a test set (10%) to
ensure the model had sufficient samples for learning complex patterns within the data
(Miawarni et al., 2022). A stratified 10-fold cross-validation was then used to further
enhance the model performance by maintaining the consistency of class proportions with
the entire dataset. This approach was particularly crucial for dataset with small samples
and could be an effective parameter tuning (Wang, 2011). Additionally, the SMOTE was
applied to oversample the injured group to 1,285 samples within each training subset
during the cross-validation. As a result, the data balance was achieved. The overall data
handling process is illustrated in Fig. 2.

After augmenting the dataset, Vapnik—Chervonenkis (VC) dimension analysis was
conducted to evaluate the sample requirements and to ensure model compatibility. With
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Table 1 Descriptive statistics for all athletes on the significantly different indicators according to injury status (injured/uninjured).

Factors Injured players (n = 11) Non-injured players(n = 93) S-Wilk (P)/RR P Effect size
Basketball players’ profile and physical function (4)

YBT - right leg combined score 0.807 & 0.082 0.947 £ 0.124 0.498/0.082 T-test: 0.000 1.333
@YBT - left leg combined score 0.8297 (0.7309, 0.9143) 0.9241 (0.8453, 1.0454) 0.083/0.007 U-test: 0.005 0.888
Injury history Injury History: 7 Injury History: 27 RR =3.603 X2-test: 0.048 0.186

No Injury History: 4 No Injury History: 66
@Weekly basketball hours >15h: 9; >15h: 41; RR = 4.860 X2-test: 0.018 0.212

<15h:2 <15h: 52

Basketball-Specific Quality (2)
Relative deadlift 1.380 £ 0.247 1.56 +0.278 0.865/0.074 T-test: 0.042 1.042
@Squat jump 46.363 £ 8.237 53.032 £9.798 0.198/0.050 T-test: 0.033 0.752
Biomechanical Factors (emergency stop phase) (17)

®FP4(y) —304.61 (—474.569, —134.775) —202.87 (—405.608, —65.067) 0.000/0.000 U-test: 0.016 0.159
R- cop-distance (X) 0.045 (0.037, 0.061) 0.059 (0.044, 0.076) 0.070/0.000 U-test: 0.001 0.267
R Shank angle(Y) 3.228 (—4.326, 10.796) 5.477 (—1.236, 12.739) 0.592/0.000 U-test: 0.033 0.169
L-ankle dorsiflexion angle 7.123 (5.801, 28.769) 14.222 (3.756, 25.419) 0.080/0.000 U-test: 0.036 0.156
L- hip Adduction angle 22.377 (13.505, 26.612) 15.765 (9.49, 22.671) 0.541/0.008 U-test: 0.000 0.282
L-hip Extension Moment —3.823 (—8.026, —0.26) —0.654 (—5.165, —0.044) 0.000/0.000 U-test: 0.005 0.218
®L-knee Flexion angle —58.865 (—69.649, —47.17) —65.049 (—74.327, —55.249) 0.102/0.00 U-test: 0.001 0.331
L- knee Internal rotation angle —21.417 (—38.827, —9.281) —15.821 (—31.318, —3.91) 0.001/0.000 U-test: 0.038 0.192
® L-knee Flexion Moment —1.393 (—2.663, —0.175) —0.239 (—1.609, —0.099) 0.000/0.000 U-test: 0.000 0.267
L-knee Internal rotation Moment —0.117 (—1.415, —0.014) —0.022 (—0.167, 0.069) 0.000/0.000 U-test: 0.000 0.163
R-ankle dorsiflexion angle 20.627 (9.511, 33.735) 16.119 (6.08, 25.098) 0.000/0.000 U-test: 0.028 0.148
R- ankle Eversion angle —1.503 (—25.907, —7.297) —0.698 (—19.1, —14.759) 0.001/0.001 U-test: 0.048 0.135
R- hip Internal rotation angle 9.873 (4.225, 14.988) 6.507 (0.601, 13.846) 0.000/0.000 U-test: 0.028 0.220
® R- knee Flexion angle —60.538 (—70.299, —52.883) —63 (—75.27, —56.387) 0.159/0.001 U-test: 0.014 0.160
Activation level of the rectus femoris 0.25(0.139, 0.497) 0.155 (0.043, 0.442) 0.002/0.000 U-test: 0.008 0.205
@Activation level of vastus lateralis 0.242 (0.119, 0.489) 0.168 (0.064, 0.386) 0.000/0.000 U-test: 0.006 0.193
Activation level of biceps femoris short head 0.279 (0.08, 0.554) 0.175 (0.057, 0.459) 0.002/0.000 U-test: 0.050 0.195

Biomechanical factors (Initial acceleration- left direction) (12)
FP3(x) —370.82 (—544.271, —208.661) —258.273 (—419.043, —82.33) 0.007/0.000 U-test: 0.049 0.205
R- cop-distance(X) 0.048 (0.035, 0.055) 0.054 (0.045, 0.07) 0.225/0.000 U-test: 0.003 0.540
R-Tibia -angle(Y) 9.317 (4.867, 14.637) 12.286 (7.013, 17.032) 0.070/0.000 U-test: 0.047 0.148
L-ankle plantarflexion Moment —0.528 (—2.111, —0.012) —0.009 (—0.66, —0.002) 0.009/0.000 U-test: 0.007 0.489
L- hip Abduction angle 23.609 (12.369, 27.406) 15.759 (9.727, 23.076) 0.153/0.007 U-test: 0.012 0.279
L-hip Flexion Moment —3.081 (—7.048, —0.144) —0.465 (—3.283, —0.033) 0.013/0.000 U-test: 0.005 0.235
L- hip Abduction Moment 0.324 (0.132, 1.03) 0.08 (0.025, 0.354) 0.006/0.000 U-test: 0.011 0.188
L- knee Flexion Moment —1.52 (—2.922, —0.113) —0.208 (—0.919, —0.083) 0.004/0.000 U-test: 0.002 0.185
@L- knee Internal rotation Moment —0.258 (—1.102, —0.023) —0.049 (—0.242, —0.029) 0.004/0.000 U-test: 0.002 0.236
R- ankle Inversion angle 11.65 £ 26.00 0.44 £28.92 0.057/0.066 T-test: 0.025 0.204
R- ankle Eversion Moment —0.288 (—0.479, —0.105) —0.402 (—0.619, —0.177) 0.064/0.004 U-test: 0.023 0.238
R- hip External rotation Moment —0.318 (—0.605, —0.115) —0.467 (—0.679, —0.264) 0.012/0.000 U-test: 0.041 0.307

(continued on next page)
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Table 1 (continued)

Factors Injured players (n = 11) Non-injured players(n = 93) S-Wilk (P)/RR P Effect size

Biomechanical Factors (Initial acceleration- right direction) (3)

L- hip Flexion angle 80.332 (72.192, 93.226) 73.924 (63.132, 84.599) 0.050/0.000 U-test: 0.018 0.333
L- knee Internal rotation Moment —0.091 (—0.566, —0.043) —0.035 (—0.132, —0.032) 0.013/0.000 U-test: 0.004 0.083
R- ankle Eversion Moment —0.818 (—1.275, —0.365) —0.489 (—0.852, —0.265) 0.734/0.000 U-test: 0.026 0.035

Biomechanical Factors (Side-cutting phase- left direction) (8)

©Tibia- angle (X) 32.37(23.98, 42.10) 39.44 (29.29, 46.85) 0.382/0.000 U-test: 0.019 0.259
Ankle External rotation angle —1.16 (—13.19, —2.04) —0.83 (—4.38, —8.63) 0.011/0.000 U-test: 0.013 0.235
Ankle dorsiflexion Moment 0.02 (0.01, 0.03) 0.02 (0.01, 0.02) 0.000/0.000 U-test: 0.043 0.307
®Hip Flexion angle 54.94 (40.44, 66.30) 63.15 (51.74, 78.12) 0.000/0.000 U-test:0.014 0.483
Knee External rotation angle —21.70 (—26.15, —13.87) —13.64 (—26.54, —0.58) 0.747/0.000 U-test: 0.032 0.340
Knee Flexion Moment —0.08 (—0.13, —0.05) —0.12 (—0.17, —0.06) 0.000/0.747 U-test: 0.031 0.529
Knee Adduction Moment 0.02 (0.02, 0.05) 0.04 (0.01, 0.07) 0.000/0.000 U-test: 0.044 0.328
Knee External rotation Moment —0.01 (—0.03, —0.01) —0.04 (—0.06, —0.00) 0.000/0.000 U-test: 0.044 0.610

Biomechanical Factors (Side-cutting phase- right direction) (4)

Ankle Eversion angle 23.54 £ 23.13 9.69 & 23.01 0.000/0.000 T-test: 0.002 0.602

Ankle Eversion Moment 0.01 (0.01, 0.02) 0.01 (0.01, 0.01) 0.000/0.000 U-test: 0.005 0.320

Knee Flexion angle —47.33 (—54.83, —36.36) —52.11 (—56.74, —47.62) 0.000/0.000 U-test: 0.023 0.256

Knee Flexion Moment —0.06 (—0.10, —0.02) —0.09 (—0.13, —0.05) 0.000/0.000 U-test: 0.022 0.262
Notes.

FP3(x): Ground reaction forces in the lateral direction on Force Platform 3.

FP4(Y): Ground reaction forces in the anterior-posterior direction on Force Platform 4.

Tibia -angle (X): Angle of the tibia of the leg relative to the ground in the sagittal plane; + values indicate Forward.
Tibia -angle (Y): Angle of the leg tibia in the frontal plane relative to the ground; + values indicate to the left.

R- cop-distance (X): Lateral distance from the center of ground reaction pressure to the ankle joint.

a: For non-normally distributed variables [Md (Q1, Q3)], the Mann—Whitney U test was applied.

b: For normally distributed variables (X4 S), the t-test was used.

C: For categorical variables Perform chi-square test.

@,®,0,®,6,®,®,®,®,®,®: Machine learning model output feature sorting.
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[P n— 195 injred s |7 njveddaa D | 157 injured data
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10% 1-fold
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Figure 2 Schematic diagram of processing imbalanced data.
Full-size Gal DOI: 10.7717/peer;j.20141/fig-2

that, the risk of overfitting was mitigated (Chen et al., 2019). The sample demand equation
used for this purpose is listed below:
1 1
N> VC-log (3)+1log (%)
€
where, N = the minimum required sample size; V C = the complexity of the model; § =

the complement of the confidence level (§ =0.1); € = the generalization error (¢ =0.1).
The VC dimension of various algorithms was influenced by several factors, such as the

number of features, the radial basis function (RBF) kernel, the number of decision trees

(n_estimators), and the maximum depth (max_depth). The final optimized parameters are
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shown in Supplemental Information 2. In this study, a total of 45 features were included
in the model. Based on the number of features in the model and the total sample size after
the SMOTE augmentation, the model complexity was managed by adjusting the number
of decision trees and maximum depth. Cross-validation was subsequently employed to
identify the optimal parameter configuration to ensure stable performance on the validation
set.

Choice of classifiers

Four widely used algorithms, namely the support vector machines (SVM) (Surasak, Praking
¢~ Kitchat, 2023), random forest (RF) (Briand et al., 2022), XGBoost (Priscilla ¢» Prabha D.
Technology, 2020), and logistic regression (Stylianou et al., 2015) were selected as classifiers
for the injury prediction model in this study. Each algorithm offered unique classification
and prediction strengths, enabling a comprehensive evaluation of their performance in
predicting ACL injury among the participants. The models were compared using metrics
such as the area under the receiver operating characteristic curve (AUC-ROC), accuracy,
precision, recall, F1-score, sensitivity, and specificity. Among these, AUC-ROC provides a
comprehensive measure of a classification model’s discriminative ability across different
thresholds (Li, 2024). Therefore, it was selected as the primary evaluation metric. The
AUC-ROC values were classified into different categories, such as excellent (0.90-1.00),
good (0.80-0.89), fair (0.70-0.79), poor (0.60-0.69), and fail (0.50-0.59) (Krosshaug et al.,
2016). Higher values across all metrics generally indicate better model performance. All
analyses were conducted using PyCharm Professional (Version 2024.1.4, JetBrains, Prague,
Czech Republic).

RESULTS

A total of 50 significantly different features were identified across three groups of risk factors
associated with ACL injury among the participants, namely the basketball players’ profile
and physical functions (four indicators), basketball-specific qualities (two indicators), and
biomechanical factors (44 indicators). Following VIF screening, five features with moderate
multicollinearity were excluded namely left hip adduction angle (5.70) and right ankle
eversion angle (5.54) during the ES phase, and right ankle inversion angle (6.95), left hip
flexion moment (5.29), and left hip flexion abduction moment (5.67) during the IA phase.
A total of 45 features were retained for ML modeling.

SVM, RF, logistic regression, and XGBoost algorithms were utilized to develop predictive
models, trained on the training set and validated on an independent test set. To ensure
robustness, each algorithm was executed 10 times in a loop. The performance metrics
were calculated for each algorithm, including the AUC-ROC, accuracy, precision, recall,
Fl-score, sensitivity, and specificity. These results are summarized in Table 2, with RF
demonstrating the most superior performance. For instance, RF achieved the highest values
for accuracy (0.9619 = 0.0376), precision (0.6667 £ 0.4714), Fl-score (0.61330 &£ 0.4431),
and specificity (0.9947 £ 0.0166).

DeLong’s test was employed to statistically compare the AUC-ROC values of the four
models, ensuring that observed differences were not due to random variation (De Long,
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Table 2 Performance of each prediction model X £ 0.

XGboost Random forest Logistic regression SVM
Accuracy 0.9421 £ 0.0307 0.9619 £ 0.0376 0.8129 £ 0.0934 0.6736 £ 0.0903
Precision 0.5167 £ 0.4191 0.6667 + 0.4714 0.2769 £+ 0.1518 0.1432 £ 0.1113
F1 Score 0.5113 £+ 0.3745 0.6133 £ 0.4431 0.3761 £ 0.1774 0.2316 £ 0.1747
Sensitivity 0.5967 £ 0.4595 0.6021 £ 0.4595 0.7017 £ 0.3496 0.6542 4 0.4743
Specificity 0.9737 £ 0.0372 0.9947 £ 0.0166 0.8216 £0.1119 0.6758 £ 0.0966
AUC 0.7868 £ 0.2174 0.7974 £+ 0.2273 0.7608 = 0.1613 0.6629 £ 0.2392
Smoothed ROC Curves
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Figure 3 AUC-ROC curves for each model.
Full-size & DOI: 10.7717/peer;j.20141/fig-3

De Long & Clarke-Pearson, 1988). The results indicated no significant differences between
any model pairs (RF vs. SVM: p = 0.214; RF vs. XGBoost: p = 0.916; RF vs. Logistic
Regression: p = 0.683; SVM vs. XGBoost: p = 0.241; SVM vs. Logistic Regression: p =
0.298; XGBoost vs. Logistic Regression: p = 0.764). Nevertheless, RF achieved the highest
AUC-ROC (0.7974), as shown in Fig. 3, and consistently outperformed the other models
across most evaluation metrics.

The Gini Importance method evaluates feature’s significance by calculating the total
reduction in Gini impurity during node splits (with higher values indicating greater
discriminative power) (Zhang et al., 2023). In this study, we applied this method to identify
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B Gini Importance

ES- Increased Left Knee Flexion Moment [ o.0928
IA-Increased left Knee Internal Rotation Moment [ 0.0
YBT - Lower Left Leg Combined Score [N 0.0688

Weekly Baskethall Hours Exceeding 15 Hours [ 0.0613
ES-Decreased right knee Flexion angle [N 0.0597
SC-Decreased supporting leg hip Flexion angle [N 0053
Lower Squat Jump [ 0.0526
ES-Increased posterior GRF [N 0.0436
SC-Decreased supporting leg tibial angle [N 0.0338 ES=Emergency stop phase
[A=Initial acceleration phase

ES-Decreased left knee Flexion angle [N 0.0336 | SC=Side-Cutting phase

ES-Increased activation level of Vastus Lateralis [N 0.0317
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Figure 4 Ranks of important features in random forest model.
Full-size & DOI: 10.7717/peer;j.20141/fig-4

key predictive features (importance > 0.3) for injury classification. The top 11 features are
highlighted in Fig. 4.

During the ES phase, the key predictive features for ACL injury include increased knee
flexion moment, reduced knee flexion angle, elevated posterior GRF, and heightened
activation of the vastus lateralis. During the IA phase, a greater knee internal rotation
moment emerged as a significant risk factor. In the following SC phase, decreased hip
flexion angle and tibial inclination angle contributed to the ACL injury risk. Additionally,
training duration exceeding 15 h per week, a lower composite score in the Y-Balance Test
(YBT), and poor SJ performance are associated with an increased risk of ACL injury.
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DISCUSSION

The present study aimed to predict ACL injury in male basketball players by analyzing the
multidimensional risk factors using ML models. Physical, biomechanical, and basketball-
specific data were collected and monitored over 12 months for ACL injury occurrence.
These datasets were analyzed using ML algorithms to determine the most effective model
for ACL injury prediction among basketball players.

The findings from this study indicated that RF emerged as the most reliable algorithm
for predicting ACL injury in basketball players. By examining the factors with significant
weights in the RF model, valuable insights into potential risk factors for ACL injury were
identified, providing a foundation for targeted prevention strategies for this population.

Basketball players’ profile and physical functions

Based on the model results within the physical function, total weekly basketball training
time and the composite score of left leg in the YBT test were significant predictors for
ACL injury. Data from relative risk (RR) analysis found that those who attended training
for more than 15 h per week had a 4.86-fold increase in ACL injury risk, compared to
those who trained less. Similar findings were reported by Stojmenovic et al. (2017), in
which those who trained for more than 10 h weekly had 7.54 times higher odds of ACL
injury than those with shorter training durations. The association between training volume
and ACL injury risk likely arises from the combined effects of cumulative mechanical
loading and neuromuscular fatigue, which together amplify tissue stress and disrupt
movement patterns over time (Taylor ¢ Burkhart, 2025). Therefore, defining the threshold
for weekly training-load is essential. Prospective studies should pair workload monitoring
with systematic injury surveillance to identify athlete-specific limits and refine targeted
prevention strategies. Meanwhile, the lower dynamic balance composite scores in the YBT
non-dominant leg were associated with an increased risk of ACL injury. A study found
that a forward reach difference greater than four cm between limbs in the YBT increased
the risk of lower limb injury by 2.5 times (Plisky et al., 2006). Poor dynamic balance of
the non-dominant leg compared to the dominant leg (Promsri et al., 2020) may increase
its susceptibility to ACL injury. Thus, this finding highlights the importance of assessing
dynamic balance deficiencies as an injury prevention strategy.

Biomechanical factors
In the ES phase of basketball games and training, sudden stop motions during rapid running
or breakthroughs are common (Krosshaug et al., 2007). These sudden stop motions may
cause the tibia and femur to move closer to each other and the subsequent shear force
posed a significant damage risk to the ACL (Emerson, 1993). The predictive model in this
study found that larger knee flexion moment, smaller knee flexion angles, greater posterior
GREF, and higher activation levels in the vastus lateralis muscles were significant predictors
of ACL injury risk during the ES phase.

A larger knee flexion moment was the most significant predictive factor for ACL
injury. It was demonstrated that players with ACL injury exhibit higher peaks in knee
flexion moment during landing compared to uninjured players (Leppdnen et al., 2017).
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Xie et al. (2013) indicated that greater knee valgus angles and subsequent quadriceps
activation lead to increase knee flexion moment, which further increase the ACL injury
risk. In this study, the injured group exhibited a smaller knee flexion angle, compared
to the non-injured group. This was in line with the findings from Mpyers et al. (2011),
who reported that hard landings had an increased risk of ACL injury with a greater GRF
peak. A hard landing resulted in a significantly smaller knee flexion angle than a soft
landing, which was even more vulnerable in unanticipated competitive scenarios. Another
intervention study on the landing techniques found that increasing the knee flexion angle
during landing significantly reduced the vertical GRF and knee flexion moment, hence,
reducing the ACL injury risk (Favre et al., 2016). These biomechanical advantages may be
particularly pronounced in experienced athletes. Our findings support this training-related
effect whereby the non-injured group had a longer history of training (5.4 years) than the
injured group (4.0 years). It is plausible that experienced players are able to lower their
center of mass by adopting greater joint flexion angles during abrupt stopping tasks—a
mechanical strategy that is likely to mitigate the risk of ACL injury.

In addition, this study also found that increased posterior GRF was an important
predictor for ACL injury. During the ES phase, the posterior GRF increased rapidly,
especially on the weaker leg which potentially led to an increase in ACL loading and injury
risk (Yu, Lin ¢ Garrett, 2006). A study was conducted by Kim et al. (2016) to assess the
lower limb biomechanics of players during side-cutting maneuvers. It was reported that
a peak posterior GRF during the unanticipated emergency stops increase the risk of ACL
injury, due to an increase in the anterior shear force on the tibia. During the stop-landing,
GRF transmits to the soft tissues through the tibia, while the femur moves posterior relative
to the tibia. As a result, this motion stretches the ACL beyond its capacity to prevent such
displacement, thus increasing the risk of ACL injury (Boden ¢ Sheehan, 2022).

During the ES phase, the activation level of vastus lateralis muscle was significantly
higher in the injured group. The vastus lateralis muscle plays a synergistic role in
maintaining dynamic stability of the knee joint during movements (Mellor ¢ Hodges,
2006). However, an imbalance between the quadriceps and hamstrings caused by the
predominant contraction significantly increased the risk of ACL injury (Myer et al., 2005).
Furthermore, excessive activation of the quadriceps during abrupt stopping and landing
movements compromised the dynamic stability of the knee joint due to the diminished
protective role of surrounding muscles and ligaments which heightened the likelihood of
ACL injury (Hewett, Myer & Ford, 2006).

Notably, high external knee flexion moments can occur despite relatively modest knee
flexion angles. Although this inverse relationship may appear counterintuitive, mechanical
analyses of unanticipated side-cutting have shown that elevated posterior ground reaction
forces during early stance substantially increase external knee loading, even in the presence
of limited joint excursion (Cortes, Onate & Van Lunen, 2011). Additionally, insufficient
preparatory muscle activation and altered neuromuscular control under unanticipated
conditions may limit knee flexion while still producing high external loads (Besier, Lloyd
& Ackland, 2003).
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When the random indicator light directed movement to the left, the COG shifted
leftward. This creates a greater internal rotation moment at the knee of the supporting
leg. This internal rotation emerged as a significant predictive factor for ACL injury during
the IA phase. For instance, the motion drove the proximal tibia to rotate internally,
accompanied by dynamic knee valgus. The combination of knee valgus and internal
rotation moments significantly increased the shear stress. Subsequently, the ACL injury
risk was heightened when the coordinated action of the knee joint and surrounding
muscles were not effectively controlled. A study by Nedergaard et al. (2020) supported these
findings, highlighting that certain lateral cutting movements induced greater knee flexion
during the push-off phase, accompanied by greater internal rotation moment and muscle
pre-activation levels, contributing to ACL injury risk. Furthermore, during unanticipated
lateral cutting movements, the limited time for postural adjustment resulted in insufficient
muscle activation to counteract external joint loads. As a result, this inadequacy increased
the internal and external rotation torques at the knee, further exacerbating the risk of ACL
injury (Besier et al., 2001).

A reduced hip flexion angle and a reduced tibial inclination angle during the SC
phase were identified as significant predictors of ACL injury. A smaller hip flexion angle
predisposed the knee to hyperextension or a straight posture, which subjected the ACL
to greater tensile force. Meanwhile, a hyperextended knee is particularly vulnerable to
injury when exposed to shear forces (Devita ¢ Skelly, 1992). Additionally, a reduced tibial
inclination angle often correlated with a higher COG and a reduced knee flexion angle. This
combination resulted in a hard landing, thereby increasing the risk of ACL injury (Taylor
et al., 2017). Importantly, greater body weight exacerbated these detrimental effects. Our
statistical analysis revealed that injured players demonstrated significantly higher mean
body weight (83.8 kg) compared to non-injured players (80.0 kg). These findings are
supported by the study of Kaplan et al. (2020), which demonstrated that increased body
mass during landing generates higher knee shear forces, thereby substantially elevating
ACL loading.

Basketball-specific skills factors

The squat jump (S]) emerged as the most significant predictor of ACL injury among
basketball-specific qualities, where the injured group typically scored lower on the SJ
test compared to their non-injured counterparts. SJ performance was reported as a key
indicator of an athlete’s explosive strength and neuromuscular efficiency (Slater ¢» Hart,
2017). Basketball is a sport that heavily relies on explosive power for actions such as
grabbing rebounds or making defensive steals. The ability to create sufficient force in a
split second determined the success in executing these high intensity actions (Pomohaci &
Sopa, 2021).

As a component of structured plyometric training, the squat jump (SJ) may serve as an
effective exercise to enhance lower limb explosive strength by increasing muscle contraction
speed during take-off and landing phases, thereby contributing to neuromuscular
adaptations that may protect the ACL (Malisoux et al., 2006). Furthermore, a high SJ score
reflected the superior muscle co-activation efficiency of the players. This exercise involved
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eccentric contraction during the squatting phase and concentric contraction during the
jumping phase, primarily targeting the quadriceps, gluteus maximus, and hamstring,
including the biceps femoris and semitendinosus. This underscored the importance of
enhancing the synchronous activation ratio between the hamstrings and quadriceps to
maintain dynamic knee stability, which is crucial in mitigating the risk of ACL injury
(Dedinsky et al., 2017).

Strengths and limitations of the study
This study has several limitations stemming from the dataset and methodology. First, the
small sample size (11 ACL injuries among 104 players) created significant class imbalance,
limiting effective model training and external validation. Although VC dimension theory
and cross-validation were used, lenient thresholds (¢ = 0.1, § = 0.1) may compromise
robustness. Additionally, the number of injury cases was limited. This made it difficult to
quantitatively assess the impact of Gaussian noise and SMOTE augmentation on feature
distributions. Nevertheless, the modeling process was guided by iterative optimization,
with model configurations were selected based on comprehensive performance metrics to
ensure reliability within the constraints of the dataset. These findings underscored the need
for larger and more diverse datasets to enhance the model’s reliability and external validity.
Furthermore, feature selection relied on VIF filtering to control multicollinearity. While
this ensured stable model coefficients, it might have discarded informative predictors that
were correlated, underscoring the need for more integrative feature selection approaches.
The participants in this study cohort was relatively homogeneous, consisting exclusively
of experienced adult male basketball players, which limits the generalizability of the findings
to broader populations. The experimental task employed an unanticipated side-cutting
maneuver to enhance safety and reproducibility; however, it may not fully replicate the
high-speed, sport-specific cutting actions typically associated with ACL injuries, thereby
limiting the translational value of the findings. Furthermore, the scope of assessment
was confined to biomechanical and neuromuscular variables, without incorporating
physiological markers such as VO, max or blood lactate levels, which may influence
the risk of ACL injury under fatigue (Zago et al., 2021). EMG data were collected only
from the dominant leg, precluding the evaluation of bilateral neuromuscular asymmetries
or compensatory mechanisms. Additionally, excluding the semitendinosus from EMG
assessment may limit the evaluation of its role in knee stabilization. To improve predictive
accuracy and applicability, future research should include diverse participant populations,
bilateral EMG assessments, and relevant physiological indicators.

CONCLUSIONS

The study identified key risk factors for ACL injury in basketball players using a machine
learning—based predictive model. The most influential factors include biomechanical
patterns during unanticipated side-cutting maneuvers, excessive activation of the vastus
lateralis (with higher activation amplitudes correlating with increased injury susceptibility),
lack of dynamic balance, and excessive training volume. The RF algorithm exhibited strong
predictive accuracy, with feature importance analyses offering actionable insights for
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targeted prevention strategies. These results reinforce the established role of biomechanical
and neuromuscular mechanisms in ACL injury risk while advancing the field through
data-driven approaches that improve predictive precision.

Based on these findings, preventive training should prioritize improved neuromuscular
control of the knee and hip joints, increased knee flexion angles during landing, and
optimized lower-limb kinematics to reduce internal tibial rotation torque. Moreover,
enhanced activation of the vastus medialis and hamstring muscles is recommended to
mitigate imbalances caused by overactivation of the vastus lateralis. Finally, we recommend
that the training load should be less than 15 h per week with regular assessment of dynamic
balance and squat jump performance are necessary to reduce the risk of ACL injury.
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