

First submission

Guidance from your Editor

Please submit by **23 Sep 2024** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

8 Figure file(s)

2 Raw data file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Physiochemical screening of road avenue plants in better landscape management of highly polluted urbanized city (Lahore), Pakistan

Bushra Munam¹, **Sohaib Muhammad**^{Corresp., 1}, **Muhammad Tayyab**¹, **Hafiza Komal Hanif**¹, **Mahrukh**¹, **Muhammad Zahid**¹, **Hassan Nawaz**¹, **Summiya Faisal**¹, **Muhammad Hasnain**¹, **Sarah Maryam Malik**¹, **Muhammad Bilal**¹, **Muhammad Jawad Tariq Khan**¹

¹ Department of Botany, Government College University Lahore, Lahore, Punjab, Pakistan

Corresponding Author: Sohaib Muhammad
Email address: dr.sohaibmuhammad@gcu.edu.pk

Lahore has been consistently ranked as the world's most polluted city. Because of combative ideas to construct highways, underpasses and flyovers, Lahore had lost a remarkable percentage of its tree cover over the past 15 years. The present study focuses on the outcomes of rapidly increasing air pollution on roadside vegetation. In current study, species such as *Alstonia scholaris* L., *Bougainvillea spectabilis* Willd., *Dalbergia sissoo* Roxb. *Eucalyptus globulus* Labill., *Ficus virens* Aiton, *Ficus benjamina* L., *Ficus religiosa* Linn., *Morus alba* L., *Murraya paniculata* L., *Putranjiva roxburghii* Wall., *Polyalthia longifolia* Sonn., *Rubia tinctorum* L. found on the seven busiest roads of Lahore were selected for biomonitoring. Variation on biochemical parameters like chlorophyll a, b, total chlorophyll content & carotenoids and physiological parameters like stomatal conductance, transpiration rate and photosynthetic rate were found to be pollution load dependent. By analyzing these parameters air quality can also be assessed. In this study the dust load was maximum on the leaves of *Alstonia scholaris* L., *Ficus religiosa* Linn. and *Morus alba* L. Reduction in chlorophyll was noticed in *Alstonia scholaris* L. and *Polyalthia longifolia* Sonn. while the chlorophyll concentration of *Eucalyptus globulus* Labill. followed by *Ficus benjamina* L., *Ficus religiosa* Linn., *Ficus virens* Aiton., *Morus alba* L. and *Putranjiva roxburghii* Wall. was higher at polluted sites. The reduction in carotenoid content was found in *Murraya paniculata* L. while it was highest in *Eucalyptus globulus* Labill. Due to the pollution stress the changes in photosynthetic rate of *Alstonia scholaris* L., *Bougainvillea spectabilis* Willd., *Dalbergia sissoo* Roxb., *Murraya paniculata* L., *Polyalthia longifolia* Sonn. and *Rubia tinctorum* L. was observed. The current research distinctly signifies *Eucalyptus globulus* Labill., *Ficus benjamina* L., *Ficus religiosa* Linn., *Ficus virens* Aiton., *Morus alba* L. and *Putranjiva roxburghii* Wall. have capability to hold on the stress triggered by roadside pollutants. The findings are useful to urban greenspace landscapers

in harsh climates as they choose appropriate species that can offer a variety of ecosystem services, such as resistance to air pollution and lowering of temperature without compromising plant survival.

1 **Physiochemical screening of road avenue plants in**
2 **better landscape management of highly polluted**
3 **urbanized city (Lahore), Pakistan**
4 **Plants role in pollution mitigation**

5
6

7 Bushra Munam¹, Sohaib Muhammad¹, Muhammad Tayyab¹, Hafiza Komal Hanif¹, Mahrukh¹,
8 Hassan Nawaz¹, Muhammad Jawad Tariq Khan¹, Summiya Faisal¹, Muhammad Hasnain¹, Sarah
9 Maryam Malik¹, Muhammad Bilal¹, Muhammad Zahid¹

10
11

12 ¹ Dendrochronology Lab., Department of Botany, Government College University Lahore,
13 Pakistan

14 Corresponding Author:

15 Sohaib Muhammad¹

16 Street Address, Lahore, Punjab, 54000, Pakistan

17 Email address: dr.sohaibmuhammad@gcu.edu.pk

18
19

20 **Abstract**

21 Lahore has been consistently ranked as the world's most polluted city. Because of combative
22 ideas to construct highways, underpasses and flyovers, Lahore had lost a remarkable percentage
23 of its tree cover over the past 15 years. The present study focuses on the outcomes of rapidly
24 increasing air pollution on roadside vegetation. In current study, species such as *Alstonia*
25 *scholaris* L., *Bougainvillea spectabilis* Willd., *Dalbergia sissoo* Roxb. *Eucalyptus globulus*
26 Labill., *Ficus virens* Aiton, *Ficus benjamina* L., *Ficus religiosa* Linn., *Morus alba* L., *Murraya*
27 *paniculata* L., *Putranjiva roxburghii* Wall., *Polyalthia longifolia* Sonn., *Rubia tinctorum* L.
28 found on the seven busiest roads of Lahore were selected for biomonitoring. Variation on
29 biochemical parameters like chlorophyll a, b, total chlorophyll content & carotenoids and
30 physiological parameters like stomatal conductance, transpiration rate and photosynthetic rate
31 were found to be pollution load dependent. By analyzing these parameters air quality can also be
32 assessed. In this study the dust load was maximum on the leaves of *Alstonia scholaris* L., *Ficus*
33 *religiosa* Linn. and *Morus alba* L. Reduction in chlorophyll was noticed in *Alstonia scholaris* L.
34 and *Polyalthia longifolia* Sonn. while the chlorophyll concentration of *Eucalyptus globulus* Labill.
35 followed by *Ficus benjamina* L., *Ficus religiosa* Linn., *Ficus virens* Aiton., *Morus alba* L. and
36 *Putranjiva roxburghii* Wall. was higher at polluted sites. The reduction in carotenoid content was
37 found in *Murraya paniculata* L. while it was highest in *Eucalyptus globulus* Labill. Due to the
38 pollution stress the changes in photosynthetic rate of *Alstonia scholaris* L., *Bougainvillea*

39 *spectabilis* Willd., *Dalbergia sissoo* Roxb., *Murraya paniculata* L., *Polyalthia longifolia* Sonn.
40 and *Rubia tinctorum* L. was observed. The current research distinctly signifies *Eucalyptus*
41 *globulus* Labill., *Ficus benjamina* L., *Ficus religiosa* Linn., *Ficus virens* Aiton., *Morus alba* L.
42 and *Putranjiva roxburghii* Wall. have capability to hold on the stress triggered by roadside
43 pollutants. The findings are useful to urban greenspace landscapers in harsh climates as they
44 choose appropriate species that can offer a variety of ecosystem services, such as resistance to air
45 pollution and lowering of temperature without compromising plant survival.

46

47 **Introduction**

48 The AQI (Air Quality Index) does not fulfill WHO air quality recommendations in many cities
49 of Pakistan such as Lahore, Peshawar, Karachi and Islamabad, especially throughout the winter
50 and autumn months The AQI (Air quality index) does not fulfill WHO air quality
51 recommendations in many cities of Pakistan such as Lahore, Peshawar, Karachi and Islamabad,
52 especially throughout the winter and autumn months (Farrow, Miller & Myllyvirta, 2020). As
53 the capital of the Punjab province, Lahore has the highest aggregation of transportation in the
54 city, contributing to the growth in air pollution. In the last decade, Lahore has been regarded as
55 one of the most polluted cities in the world. Inevitably, this region of the world has received the
56 least attention and lacks an adequate air quality monitoring network. It is critical to analyze the
57 degraded ambient air quality on a regular basis and to assess the effectiveness of mitigation
58 strategies (Fanaei *et al.*, 2020). The purpose of present initiative is to find metabolically active
59 plants that can survive in harsh environmental condition and reduce the air pollution.

60 Air pollution is one of the most serious environmental complications worldwide, which need
61 immediate attention in order to be addressed by adapting environmental friendly strategies. The
62 majority of urban locations in both developing as well as developed countries have air pollution
63 concerns worldwide (Singh *et al.*, 2020). Toxic contaminants released by various human
64 activities such as vehicle traffic flow, easily target roadside soils (Nazarpour *et al.*, 2019; Kaur
65 *et al.*, 2022). The growing number of vehicles and particulate matter loads contributes
66 significantly to both regional and global environmental pollution. As one of the air contaminants,
67 particulate matter in the atmosphere (PM_{2.5}) is projected to cause 3.3 million premature deaths
68 per year primarily in Asia and has a variety of harmful consequences on the well-being of
69 humans (Nowak *et al.*, 2018). Hence, biomonitoring of air pollution is crucial for urban
70 restoration of ecosystems as pollutants scatter and adversely impact, when discharged into the
71 environment (Sekhar & Sekhar, 2019). Various researchers have recognized and speculated on
72 the significance of plants in air pollution reduction. Air pollution poses an imminent danger to
73 mankind and reduces human life tenure (He *et al.*, 2020).

74 The rapidly rising population, random urbanization and extensive automobile use are
75 contributing to a range of environmental challenges. Urban spaces are marked by increased
76 population density and air pollution, which is one of the key factors negatively affecting the
77 quality of the environment, with serious consequences for human well-being and regional
78 biodiversity, particularly plants in urban environments (Skrynetska *et al.*, 2018). Industries emit

79 massive amounts of harmful contaminants and toxins into the natural environment, including
80 CO, PM, and hydrocarbons, causing greenhouse emissions (*Munsif et al., 2021*).
81 The sharp rise in number of vehicles, industrial exhaust and the reduction in plant cover in
82 metropolitan areas, are the primary contributors to air quality issues in cities (*Sass et al., 2017*).
83 The principal contributions to air pollution concentrations in the atmosphere include
84 anthropogenic and certain natural activities (*Vardhan, Kumar & Panda, 2019*). Among the
85 largest and most common sources of these heavy metals are vehicular emissions that can have a
86 negative impact on roadside vegetation (*Sarhan, Elhafeez & Bashanday, 2021*). Air pollution
87 caused by vehicles is an extremely sensitive threat to the environment for human society
88 (*Mukherjee et al., 2019*). In addition to their sedentary nature, plants are the major consumers of
89 pollution from vehicles (*Khalil et al., 2022*). Roadside plants offer an essential role in reducing
90 air pollution since their enzymatic activity, physiological and anatomical characteristics aid in
91 establishing and maintaining mitigation techniques towards vehicular emissions (*Mahrukh et al.,*
92 *2023*).

93 Modification of leaf anatomical features can also be used to control plant physiological activity
94 (*Kumar et al., 2022*). When plants are subjected to lethal air pollution, they change their
95 physiological and morphological parameters including photosynthetic rate, transpiration rate, and
96 chlorophyll concentration (*Khalid et al., 2019*). Vehicle exhaust causes environmental harm in
97 countries like Pakistan due to inadequately maintained automobiles and the usage of low-quality
98 fuel. CO₂, NO_x, CO, SO₂, HCs, PM and VOCs are all emitted by vehicles and account for 60%
99 to 70% of metropolitan air pollution (*Uk, Belford & Hogarh, 2019*).

100 Polluting substances from various sources cause substantial internal as well as external damage
101 to plants and plant cells. Although leaves are more prone to the impacts of pollutants than any
102 other part of plants, particularly the roots and stem, especially plants alongside roads (*Wei et al.,*
103 *2021*). Researchers can acquire insight into the physiological, metabolic, and genetic
104 mechanisms that allow these plants to thrive in polluted environments by examining air pollution
105 tolerant species. Several physicochemical characteristics, such as chlorophyll concentration,
106 influence plant species' pollution tolerance potential. Air pollution resistant plant species can
107 help us learn more about how plants react to and deal with pollution in the environment. This
108 knowledge can subsequently be applied to the development of new strategies for preserving
109 other plant species against pollution. After receiving micronutrients from soil to plant species via
110 roots, the relative water content aids in transpiration, offering a cooling sensation to the plant and
111 regulating dehydration events. For various plant species, ascorbic acid represents oxidative stress
112 and is required for cell wall development and cell division. Chlorophyll also plays a crucial role
113 in photosynthesis and represents ongoing stress (*Roy, Bhattacharya & Kumari 2020; Sahu, Basti*
114 *& Sahu, 2020*). In order to measure the air contamination fungi, lichens, tree rings, leaves, and
115 barks of trees are studied. Vulnerable species, such as lichens, cannot thrive in densely crowded
116 commercial and metropolitan environments. As a result, trees may be used as ecological
117 indicator species in urban settings to assess air quality. Pollution changes the morphological and
118 metabolic properties of plant species, allowing plants to test the durability of their leaves to air

119 pollution (*Ghafari et al., 2021*). Some species of plants that are grown near industrial sites
120 significantly reduce air pollution. With the help of air pollution tolerance index (APTI) it's easy
121 to distinguish plants that could lower air pollution. Researchers, environmentalists, and
122 policymakers strongly urge constructing green belts of specific plant species around urban areas
123 to reduce the impact of dangerous airborne pollutants (*Bharti, Trivedi & Kumar, 2018*).
124 The primary goal of the current research is to provide an in-depth knowledge of the connection
125 within air pollution and its mitigation efforts by roadside plant species. The objectives of this
126 research: (1) to make rapid decisions on the use and preservation of green belt (2) vegetative
127 traffic barrier across the roads for decreasing the levels of air pollutants distribution (3) evaluate
128 the capability of numerous species of plants along roadways to reduce air pollution. It also
129 briefly discusses the capacity of plants to reduce pollution by lowering dust trapping capability.
130 The utilization of plants to reduce and absorb pollutants from the atmosphere has been advocated
131 as the only ecomanagement solution (a method of reducing the adverse impact of human activity
132 on the environment) for air pollution. This is a safe sustainable approach, which can save the
133 environment via energy conservation and cheaper pollutant reduction, has no negative
134 environmental effects and employs a renewable source of energy (*Tundele, 2015*).
135

136 **Materials & Methods**

137 The influences of vehicular pollution upon physicochemical features of plants were investigated
138 by selecting multiple roads of Lahore city.

139 **Study site**

140 Seven main roads of city were chosen based on traffic volume to explore how automobile
141 pollution impacts the landscaping along roads. Selected roads were Main Boulevard Allama
142 Iqbal Town Road 1, Main Boulevard Allama Iqbal Town Road 2, Fazl-e-Haq road, Moulana
143 Hasrat Mohani Road, Wahdat Road1, Wahdat Road 2 and Moulana Shoukat Ali Road. Control
144 site plant samples were collected from less contaminated locations, such as neighboring parks.
145 The samples were collected in triplicates from the selected roadside plants.

146 **Floristic composition**

147 A survey of seven selected roadways was done to acquire a knowledge of plant types on study
148 site. The available literature was then used to identify annual and perennial species (Nasir and
149 Ali, 1970–1989; Ali and Nasir, 1990–1992; Ali and Qaiser, 1992–2007). Subsequently, plants
150 were chosen depending on the percentage and uniformity throughout the route and sampling was
151 carried out around the spring season, when the plants were at their peak of growth.

152 **Selection of plant species**

153 Plant species were chosen according to their frequency of occurrence and commonness after
154 (*Muller-Dombois & Ellenberg, 1974*). From each location, roadside plants were picked, bagged
155 and labeled. Depending on the basis of abundance and distribution of plants, the following
156 species were selected on the study sites for analysis: *Alstonia scholaris* L., *Bougainvillea*
157 *spectabilis* Willd., *Dalbergia sissoo* Roxb. *Eucalyptus globulus* Labill., *Ficus benjamina* L.,

158 *Ficus virens* Aiton., *Ficus religiosa* Linn., *Morus alba* L., *Murraya paniculata* L., *Putranjiva*
159 *roxburghii* Wall., *Polyalthia longifolia* Sonn., *Rubia tinctorum* L. as shown in table 1.

160 Design of experiment

161 Although selected plant species had been collected from seven distinct areas based on their
162 accessibility, the entire experimental study was carried out using an entirely random design.
163 Plant species were gathered in three replicates. Various physio-chemical, bio-chemical
164 assessments were performed in order to find the effect of air pollution on common species. Fresh
165 mature leaves from control (least polluted) and sample plants were taken during the day's peak
166 rush hour. These were instantly transported to the laboratory for examination. For every species,
167 a combined sample of nine leaves was taken for analysis. All plants under examination were
168 subjected to ecological conditions in terms of light, water, soil, and pollution exposure.

169 Physiological parameters

170 By using leaf area meter, leaf length, leaf width and leaf area index was measured.

171 Dust content

172 By using weighing balance, filter paper was weighed. Dust from leaves was removed with help
173 of camel hairbrush and reweighed filter paper. Amount of dust was calculated by subtracting
174 both values (filter paper without dust and filter paper with dust) (Hussain, Illahi & Rashid, 1989).

175 Physiochemical assessments

176 The Infrared Gas Analyzer (IRGA, LCA-4) was used to assess physiological features such as
177 photosynthetic rate, transpiration rate and stomatal conductance (Muhammad et al., 2014).

178 Biochemical assessments

179 In order to determine carotenoids content, chlorophyll a, b and total chlorophyll biochemical
180 parameters were assessed.

181 Total chlorophyll content (mg/g)

182 Chlorophyll content was determined by using the method of acetone extraction (Singh et al.,
183 1991). 2 grams of fresh leaves were taken and crushed in 20ml of 80% acetone by using pestle
184 and mortar. Through filtration, extract of plant leaves was obtained. The absorbance of the
185 filtrate was determined with the help of spectrophotometer at the wavelengths of 663nm and
186 645nm. The whole process was repeated for each plant sample.

187 To determine the total chlorophyll content following equation was used:

$$Chl. a = (A_{663} \times 0.0127 + A_{645} \times 0.00269) \times 10 \times W \quad (1)$$

$$Chl. b = (A_{645} \times 0.0229 + A_{663} \times 0.00468) \times 10 \times W \quad (2)$$

$$Total chlorophyll content = (20.2 \times A_{645} + 8.02 \times A_{663}) \times V/1000 \times W \quad (3)$$

189 Where, A_{663} = Absorbance at 663nm, A_{645} = Absorbance at 645

190 V = Total volume of extract, W = Fresh weight of leaves (g)

191 Carotenoid content

192 1 g leaves were grinded by using 100% acetone. Through filtration extract of plants were
193 obtained and raise the final volume of extraction solution up to 50 ml. The carotenoid content
194 was determined by spectrophotometer at the wavelength of 440.5nm (Zofia, Kmiecik & Korus,
195 2006).

196 To measure the carotenoid content following equation was used:

$$\text{Carotenoids contents: } [V \times 383 \times (As - Ab)] / (100 \times W) \quad (4)$$

197 Where, 'V' = volume
198 '383' = carotenoids extinction coefficient
199 'As' = sample absorbance
200 'Ab' = cuvette error
201 'W' = weight of sample (g)

202 Results

203 From the busiest roadways plant samples were taken and the leaf area, chlorophyll content,
204 carotenoids content along with photosynthetic rate, transpiration rate and stomatal conductance
205 of these samples were checked. Total numbers of 85 plants species were recorded in floristic
206 composition by roadside surveys. For this research work, 12 dominant and common plants
207 species found on all the selected road sites were chosen. On the seven selected study sites the
208 common plants of urban landscape were: *A. scholaris* L., *B. spectabilis* Willd., *D. sissoo* Roxb.,
209 *E. globulus* Labill, *F. virens* Aiton., *F. benjamina* L., *F. religiosa* L., *M. alba* L., *M. paniculata*
210 L., *P. roxburghii* Wall., *P. longifolia* Sonn., *R. tinctorum* L. The selected plant species and their
211 data are presented in table 1. Several parameters regarding air pollution were assessed by
212 keeping an eye on the increasing atmospheric pollution and its harsh impacts on flora of Lahore
213 city.

214 ***A. scholaris***: The amount of dust deposited on the leaf of *A. scholaris* was higher at polluted site
215 (0.02 g) and lower (0.004 g) at control site. Leaf area index shows there was a maximum
216 decrease in size of leaf present at polluted site (543.13 mm²) and the leaf size of control site was
217 (1693 mm²). In *A. scholaris* stomatal conductance (mol m⁻² s⁻¹) was 0.04, transpiration rate (mol
218 m⁻² s⁻¹) was 0.17 and photosynthetic rate (μmol m⁻² s⁻¹) was 25.36 found in polluted sites while,
219 in control sites, the value of stomatal conductance, transpiration rate and photosynthetic rate was
220 0.07, 0.25, 34.07 which was higher than experimental sites. The chlorophyll content (mg/g) and
221 carotenoid content (mg/g) of *A. scholaris* at polluted sites was 0.44, 5.94 while at control site the
222 chlorophyll and carotenoid content were 1.20, 6.88.

223 ***B. spectabilis***: Determination of the dust load shows that *B. spectabilis* present at the polluted
224 sites was 0.015 (g) and control site was 0.004 (g). Leaf area index shows that the leaf size of
225 polluted site (312.9 mm²) was reduced as compared to leaf area of control site (532.33 mm²).
226 Stomatal conductance, transpiration rate and photosynthetic rate in *B. spectabilis* at polluted sites
227 were 0.05, 0.18 and 34.37 respectively. But at the control sites a gradual increase found in these
228 parameters, the value of stomatal conductance, transpiration rate and photosynthetic rate was
229 0.15, 0.48 and 35.88 which shows high pollution rate at the polluted sites. The chlorophyll and

230 carotenoids content in *B. spectabilis* was 1.29 (mg/g), 6.04 (mg/g) at experimental site while at
231 control site the value was 2.21 (mg/g) and 9.07(mg/g).

232 ***D. sissoo*:** Dust deposited on the leaf of *D. sissoo* at polluted site (0.014 g) were greater as
233 compared to the dust load of control site (0.003 g). There was also a decrease in the leaf area
234 index of polluted site (271.04 mm^2) while at control site was (414.7 mm^2). In *D. sissoo* the
235 values of stomatal conductance, transpiration rate and photosynthetic rate at polluted sites was
236 0.03, 0.21 and 28.23 while at control site the values were increased such as 0.08, 0.32 and 51.58
237 respectively. The biochemical parameters such as chlorophyll and carotenoids contents at
238 polluted sites were 0.56 (mg/g) and 7.15(mg/g) while at control sites the values were 0.82 (mg/g)
239 and 11.18 (mg/g).

240 ***E. globulus*:** Dust accumulation on the leaf of *E. globulus* was found to be (0.014 g) at polluted
241 site while there was a reduction (0.003) in dust amount at control site. Same goes with the leaf
242 area index at polluted site was (294.73 mm^2) higher (436.6 mm^2) than control site. In *E. globulus*
243 the values of stomatal conductance, transpiration rate and photosynthetic rate at polluted sites
244 was 0.09, 0.26 and 27.88 while at control site the values were decreased such as 0.08, 0.22 and
245 27.64 respectively. The biochemical parameters such as chlorophyll and carotenoids contents at
246 polluted sites were 0.71 (mg/g) and 9.12(mg/g) while at control sites the values were 0.65 (mg/g)
247 and 6.20 (mg/g). Maximum increases in all parameters were shown at all polluted sites as
248 compared to control site.

249 ***F. benjamina*:** Dust accumulation on the leaf of *F. benjamina* was 0.011 g at polluted sites and
250 control site was 0.003 g. The leaf area index was lower (257.84 mm^2) at polluted site while the
251 leaf area at control site was (341.8 mm^2). Stomatal conductance, transpiration rate and
252 photosynthetic rate in *F. benjamina* at polluted sites were 0.17, 0.86 and 56.60 respectively. But
253 at the control sites the value of stomatal conductance, transpiration rate and photosynthetic rate
254 was 0.16, 0.85 and 53.73 which shows a slight reduction in transpiration rate and photosynthetic
255 rate at control site. The chlorophyll and carotenoids content in *F. benjamina* was 0.80 (mg/g),
256 5.25 (mg/g) at experimental site while at control site the value was 0.75 (mg/g) and 5.22(mg/g).

257 ***F. religiosa*:** At experimental site the average dust found on the leaf of *F. religiosa* was 0.02 (g)
258 and at control site was 0.004 (g) and leaf area index was $201.93 \text{ (mm}^2)$ at experimental site and
259 $341.8 \text{ (mm}^2)$ at control site. In *F. religiosa* the values of stomatal conductance, transpiration rate
260 and photosynthetic rate at polluted sites was 0.62, 0.67 and 60.22 while at control site the values
261 were 0.58, 0.59 and 50 respectively. The biochemical parameters such as chlorophyll and
262 carotenoids contents at polluted sites were 0.81 (mg/g) and 5 (mg/g) while at control sites the
263 values were 0.65 (mg/g) and 5.82 (mg/g).

264 ***F. virens*:** The amount of dust present on the leaf of *F. virens* were 0.016 (g) at polluted site and
265 0.004 at control site. The leaf area index was $1670 \text{ (mm}^2)$ at control site and maximum reduction
266 $958.82(\text{mm}^2)$ found in leaf area index of polluted site. The values of stomatal conductance,
267 transpiration rate and photosynthetic rate at polluted sites was 0.19, 0.42 and 44.41 while at
268 control site the values were decreased such as 0.17, 0.41 and 44.26 respectively. The

269 biochemical parameters such as chlorophyll and carotenoids contents at polluted sites were 0.64
270 (mg/g) and 7.76(mg/g) while at control sites the values were 0.61 (mg/g) and 7.17 (mg/g).
271 ***M. alba*:** Amount of dust determined on the leaves of *M. alba* at polluted site were 0.02 (g) while
272 its control value was 0.006 (g) and the calculations of leaf area index were 997.8 (mm²) at
273 experimental site and 1172.86 (mm²) at control site. In *M. alba* the values of stomatal
274 conductance, transpiration rate and photosynthetic rate at polluted sites was 0.15, 0.54 and 63.01
275 while at control site the values were decreased such as 0.14, 0.48 and 59.73 respectively. The
276 biochemical parameters such as chlorophyll and carotenoids contents at polluted sites were 1.80
277 (mg/g) and 7.91 (mg/g) while at control sites the values were 1.36 (mg/g) and 7.18 (mg/g).
278 ***M. paniculata*:** The leaves of *M. paniculata* captured the amount of dust at polluted site were
279 0.011 (g) while the dust at control site leaves were 0.004 (g) and leaf area index was 88.86
280 (mm²) at polluted site and the control value of leaf area index were 97.96 (mm²). In *M.*
281 *paniculata* the values of stomatal conductance, transpiration rate and photosynthetic rate at
282 polluted sites was 0.04, 0.24 and 26.80 while at control site the values were increased such as
283 0.13, 0.62 and 45.14 respectively. The biochemical parameters such as chlorophyll and
284 carotenoids contents at polluted sites were 0.75 (mg/g) and 4.12 (mg/g) while at control sites the
285 values were 1.14 (mg/g) and 4.45 (mg/g).
286 ***P. longifolia*:** On the leaves of *P. longifolia* the amount of dust accumulated at polluted and
287 control site were 0.016 (g) and 0.005 (g) and the leaf area index at polluted and control site were
288 1071.2 (mm²) and 1182.5 (mm²). In *P. longifolia* the values of stomatal conductance,
289 transpiration rate and photosynthetic rate at polluted sites was 0.08, 0.10 and 42.27 while at
290 control site the values were increased such as 0.09, 0.13 and 43.89 respectively. The biochemical
291 parameters such as chlorophyll and carotenoids contents at polluted sites were 0.41 (mg/g) and
292 6.29 (mg/g) while at control sites the values were 0.44 (mg/g) and 7.43 (mg/g).
293 ***P. roxburghii*:** The average amount of dust accumulated on the foliage leaves of *P. roxburghii* at
294 experimental site were higher (0.012 g) as compared to control site (0.004 g) and the leaf area
295 index of polluted site were also higher 496.66 (mm²) than control site 611.66 (mm²). In *P.*
296 *roxburghii* the values of stomatal conductance, transpiration rate and photosynthetic rate at
297 polluted sites was 0.17, 0.34 and 56.90 while at control site the values were increased such as
298 0.15, 0.32 and 57.91 respectively. The biochemical parameters such as chlorophyll and
299 carotenoids contents at polluted sites were 2.55 (mg/g) and 7.60 (mg/g) while at control sites the
300 values were 2.33 (mg/g) and 7.48 (mg/g).
301 ***R. tinctorum*:** Examination of dust accumulation shows that the leaf of *R. tinctorum* present at
302 the road site loaded with dust more than the control site. The values were 0.013 (g) and 0.007
303 (g). The leaf area index was 306.55 (mm²) at the road sites and 351.11(mm²) at the control site.
304 In *R. tinctorum* the values of stomatal conductance, transpiration rate and photosynthetic rate at
305 polluted sites was 0.08, 0.59 and 30.60 while at control site the values were increased such as
306 0.17, 1.61 and 40.12 respectively. The chlorophyll and carotenoids contents at polluted sites
307 were 0.67 (mg/g) and 7.84(mg/g) while at control sites the values were 0.98 (mg/g) and 9.69
308 (mg/g).

309 **Discussion**

310 Planting trees is one of the key elements in the planning of a sustainable city; choosing the right
311 species and allotting enough room for them to grow is crucial to the design of ecologically sound
312 cities (Ong, 2003). The percentage of green space in an urban area especially the presence of
313 trees determines its ecological performance (Whitford, Ennos & Handley, 2001), because the
314 majority of solutions for improving the quality of the air in large metropolitan centers involve
315 reducing emissions from main sources. The primary originators of air pollution in metropolis are
316 soil dust, cement manufacturing, vehicle exhaust and combustion of fuel, each with varying
317 contributions (Arditsoglou & Samara, 2005). Urban vegetation has the potential to influence
318 pollutant deposition and dispersion, making it a valuable tool for improving air quality (Janhall,
319 2015). One trait that is thought to indicate a plant capacity for stress tolerance is the length of its
320 leaves (Seyyednejad, Niknejad & Yusefi, 2009). In our experiment maximum reduction (1149.87
321 mm²) in leaf area was found in *Alstonia scholaris* at polluted site. In woody plants, the long-term
322 effects of various pollutants, such as SO₂ and heavy metals, result in a decrease in leaf size and
323 the growth of aerial plants (Kozlov, Zvereva & Niemela, 1999).

324 The average amount of dust deposited on all plant species across a site was higher in the polluted
325 zone than in the control zone. The unit of measurement for dust accumulating ability was mg of
326 dust deposited per mm² of leaf area. Different tree species have notably differing amounts of dust
327 deposited on their leaves. The dust capturing capacity of plant species in the present experiment
328 fall in the range of 0.02–0.003 mg mm⁻². Although, in the present study dust load was highest on
329 leaves of *Alstonia scholaris*, *Ficus religiosa* and *Morus alba* at all polluted sites. While *Ficus*
330 *benjamina* and *Murraya paniculata* revealed the least amount of dust accumulation across all
331 polluted sites. This is due to leaf area, the canopy structure, and morphological characteristics of
332 leaves.

333 According to (Tallis *et al.*, 2011) the uptake of particles by vegetation can be affected by several
334 key features including particle size distribution, number of particles in airstream, wind speed and
335 canopy area and structure (i.e. tree species). Furthermore, hairy structure on the surface of leaf,
336 area of leaf and petiole length are considered as an important factor for deposition of dust on the
337 surface of leaf. In current work the tree species like *Alstonia scholaris*, *Ficus religiosa* and
338 *Morus alba* had high dust load. Examination of twelve tree species in capturing pollutant
339 particles were examined in terms of leaf attributes like surface area of leaf, shape of leaf, size of
340 petiole (Beckett, Freer-Smith & Taylor, 2000). Several researchers showed that lower surface
341 area of leaf and length of petiole generates limited exposure of pollution particles. In this
342 research, we also discovered that dust deposition is higher in plants that have larger leaf area,
343 alternate arrangement, compound phyllotaxy, short petiole and rough surface. Dust load on the
344 leaf of trees causes reduction in photosynthesis, lessen stomatal densities and stomatal pore
345 width, resulting into drought sensitivity, because of thin cuticles (Pourkhabbaz, Rastin &
346 Olbrich, 2010). In current experiment, we found that reduction in photosynthetic rate at polluted
347 site induced decrement of carbon consumption and reduction in chlorophyll and carotenoids also
348 seen in several species. Oxidative stress in plants cells is caused by reactive oxygen species due

349 to air pollution (Singh & Rathore, 2018). Wind speed is also the reason for dust deposition on
350 leaves. Dust particles from surrounding soil settled on the leaves of plants nearby roads because
351 of wind (Buccolieri *et al.*, 2018).
352 Over the next 20 years urban plantation can remove air pollution if appropriate forest
353 management is planned (Parsa *et al.*, 2019). The chlorophyll of sample plants was inversely
354 correlated with the amount of dust present on the leaf. The amount of chlorophyll drops as the
355 dust load rises. In every experimental tree, it was prominent. *Polyalthia longifolia* and *Alstonia*
356 *scholaris* showed maximum reduction in chlorophyll concentration as a result of the dust load.
357 As chlorophyll is essential to plant metabolism and any decrease in chlorophyll content
358 immediately impacts plant growth, measuring chlorophyll content is a useful method for
359 assessing air pollution impacts on plants (Verma & Chandra, 2015). In this way, leaf chlorophyll
360 and carotenoids may deliver substantial details on the physiological state of plants. Plant
361 productivity drops as soon as chlorophyll levels drop, and as a result, the plants lose stability.
362 Thus, plants that maintain their chlorophyll despite being in an atmosphere that is polluted are
363 considered tolerant (Singh & Verma, 2007). Decrease in the amount of carotenoid, total
364 chlorophyll content, chlorophyll a, and chlorophyll b in the specimens from polluted locations
365 containing vehicle exhaust noticed by (Kapoor, 2014). In present research the chlorophyll
366 concentration of *Eucalyptus globulus*, *Ficus benjamina*, *Ficus religiosa*, *Ficus virens*, *Morus*
367 *alba* and *Putranjiva roxburghii* was higher at polluted sites and lower in control site.
368 In the current work surprisingly the *E. globulus*, *Ficus benjamina*, *Ficus religiosa*, *Ficus virens*,
369 *Morus alba* and *Putranjiva roxburghii* leaves collected from busy road areas showed a
370 noteworthy increase in total chlorophyll content as compared to control. It suggested that the *E.*
371 *globulus*, *Ficus benjamina*, *Ficus religiosa*, *Ficus virens*, *Morus alba* and *Putranjiva roxburghii*
372 was more metabolically active and tolerant to polluted air. Species with higher levels of
373 chlorophyll are more tolerant to environment with contaminants and are favorable to plant in that
374 area (Roy, Battacharya & Kumari 2020). The amounts of chlorophyll a, chlorophyll b, total
375 chlorophyll, and carotenoids in *E. globulus* *Ficus benjamina*, *Ficus religiosa*, *Ficus virens*,
376 *Morus alba* and *Putranjiva roxburghii* leaves increased in polluted region. The primary
377 components of energy synthesis in green plants are chlorophyll and carotenoids and
378 environmental influences on plant metabolism greatly alter their concentrations (Shweta, &
379 Agrawal, 2006). Despite being an essential component of the plant's antioxidant defense
380 mechanism, carotenes are highly vulnerable to oxidative damage. The highest reduction of
381 carotenoids content was found in *Murraya paniculata* at all roads sites. While surprisingly the
382 carotenoids content of *Eucalyptus globulus* was highest at polluted site which explains its
383 adaptability in air pollution. Along with the chlorophyll and carotenoids, the change in shape and
384 direction of thylakoids is also noticed in photoreactive stress (Sagar & Briggs, 1990). Low
385 stomatal conductance in leaves of *Dalbergia sissoo*, *Alstonia scholaris* and *Murraya paniculata*
386 was recorded at polluted site which reduced the photosynthetic rate.
387 In heavily polluted places plants limit transpiration to preserve the equilibrium of their
388 physiological processes. The transpiration rate was low in *Alstonia scholaris*, *Bougainvillea*

389 *spectabilis* while *Polyalthia longifolia* had lowest rate of transpiration in both control and
390 polluted sites as compared to other species. Pollutants impact the mechanism of plant
391 transpiration and lower the relative water content of plants (Gholami, Mojiri & Amini 2016;
392 Abhijit et al., 2017). Plant samples from contaminated areas had lower levels of chlorophyll due
393 to vehicle exhausts (Kamble et al., 2021). Reduced photosynthetic rates result from various
394 automotive pollution negatively affecting chlorophyll concentrations of plants. When
395 photooxidative damage occurs inside chloroplasts, carotenoids shield the machinery from it. The
396 carotenoid content reduced by a variety of contaminants, which leads to pigment degradation and
397 the breakdown of the chloroplast cellular structure (Sharma & Tripathi, 2009).
398 The pollution stress commonly altered the photosynthetic rate of *Alstonia scholaris*,
399 *Bougainvillea glabra*, *Dalbergia sissoo*, *Murraya paniculata*, *Polyalthia longifolia* and *Rubia*
400 *tinctorum*. In harsh environmental situations photosynthesis is the fundamental element in
401 analyzing the metabolism of plants and survival. Accumulation of air pollutants in leaves causes
402 amendments in physiological and biochemical attributes of plants. The absorption of light
403 radiation is blocked by the particulate matter accumulated on the surface of leaves cause
404 reduction in photosynthesis. Restriction in photosynthetic activity is also due to closing of
405 stomata and reduction in leaf area. The gaseous pollutants like SO_2 , NO_x and O_3 causes closure
406 of stomata and break CO_2 availability for photosynthesis (Dhir, 2016) Reduction in the rate of
407 stomatal conductance and transpiration in some species at the polluted site was recorded in this
408 study. The reason for the reduction in both features was particulate matter which blocked the
409 stomatal pores that resulted in increase of sub-stomatal CO_2 (Flowers et al., 2007).

410 **Conclusions**

411 Air quality of Lahore is at worst in terms of particulate matter generated by high traffic volume.
412 Such drastic change in the environment causes a serious threat to plants. Roadside plants
413 assimilate maximum pollution as compared to the trees located away from avenue. The present
414 study highlights the detrimental impacts of gaseous pollutants on the physiochemical and
415 biochemical parameters of some selected species planted at roadsides of Lahore city. The
416 selected plant species were categorized as pollution tolerant and sensitive by analyzing the
417 results of these parameters. *E. globulus* followed by *Ficus benjamina*, *Ficus religiosa*, *Ficus*
418 *virens*, *Morus alba* and *Putranjiva roxburghii* was more metabolically active and tolerant to air
419 pollutants because the chlorophyll concentration of these plants was higher at polluted sites and
420 lower in control site. There must be proper management of greenbelt to control and maintain the
421 air quality index and these species are highly recommended for controlling air born pollution in
422 urban climate.

423

424

425 **Acknowledgements**

426 Authors are grateful to department for providing necessary facilities in execution of lab. and field
427 work.

428

429 **References**

430 Abhijit KV, Kumar P, Gallagher J, Mcnabola A, Baldauf R, Pilla F, Broderick B, Di-sabatino S,
431 Pulvirenti B. 2017. Air pollution abatement performances of green infrastructure in open
432 road and built-up street canyon environments-a review. *Atmospheric Environment*
433 162:71-86 <https://doi.org/10.1016/j.atmosenv.2017.05.014>.

434 Ali S I, Nasir Y J, Flora of Pakistan. Nos. 191-193. Department of Botany, University of Karachi
435 and National Herbarium, PARC, Islamabad, **1990-92**.

436 Ali S I, Qaiser M Flora of Pakistan. Nos. 194-208. Department of Botany, University of Karachi
437 and National Herbarium, PARC, Islamabad, **1992-2007**.

438 Arditsgolou A, Samara C. 2005. Levels of total suspended particulate matter and major trace
439 elements in Kosovo: a source identification and apportionment study. *Chemosphere* 59:
440 669–678 <https://doi.org/10.1016/j.chemosphere.2004.10.056>.

441 Beckett KP, Freer-Smith PH, Taylor G. 2000. Particulate pollution capture by urban trees: effect
442 of species and wind speed. *Global Change Biology* 6:995–1003
443 <https://doi.org/10.1046/j.1365-2486.2000.00376.x>.

444 Bharti SK, Trivedi A, Kumar N. 2018. Air pollution index of plants growing near an industrial
445 site. *Urban Climate* 24:820-829 <https://doi.org/10.1016/j.uclim.2017.10.007>.

446 Buccolieri R, Jeanjean APR, Gatto E, Leigh RJ. 2018. The impact of trees on street ventilation,
447 NO_x and PM2.5 concentrations across heights in Marylebone Rd street canyon, central
448 London. *Sustainable Cities and Societies* 41:227-241
449 <https://doi.org/10.1016/j.scs.2018.05.030>.

450 Dhir B. 2016. Air pollutants and photosynthetic efficiency of plants. In: *Plant responses to air
451 pollution*. Springer: Singapore, 71–84.

452 Fanaei F, Ghorbanian A, Shahsavani A, Jafari AJ, Abdolahnejad A, Kermani M, Fanaei F. 2020.
453 Quantification of Mortality and Morbidity in General Population of Heavily-
454 Industrialized City of Abadan: Effect of Long-Term Exposure. *Journal of Air Pollution
455 and Health* 5:171–180 <https://doi.org/10.18502/japh.v5i3.5390>.

456 Farrow A, Miller KA, Myllyvirta L. 2020. *Toxic Air: The Price of Fossil Fuels*. Greenpeace
457 Southeast Asia: Netherlands, 1–44

458 Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois JJB. 2007. Photosynthesis, chlorophyll
459 fluorescence, and yield of snap bean (*Phaseolus vulgaris* L.) genotypes differing in
460 sensitivity to ozone. *Environmental and Experimental Botany* 61:190–198
461 <https://doi.org/10.1016/j.envexpbot.2007.05.009>.

462 Ghafari S, Kaviani B, Sedaghathoor S, Allahyari MS. 2021. Assessment of air pollution
463 tolerance index (APTI) for some ornamental woody species in green space of humid
464 temperate region (Rasht, Iran). *Environment, Development and Sustainability* 23:1579–
465 1600 <https://doi.org/10.1007/s10668-020-01098-x>.

466 Gholami A, Mojiri A, Amini H. 2016. Investigation of the air pollution tolerance index (APTI)
467 using some plants species in Ahvaz region. *Journal of Animal and Plant Sciences*
468 26:475-480 <https://api.semanticscholar.org/CorpusID:89087591>.

469 He C, Qiu K, Alahmad A, Pott R. 2020. Particulate matter capturing capacity of roadside
470 evergreen vegetation during the winter season. *Urban Forestry & Urban Greening* 48:1-
471 41 <https://doi.org/10.1016/j.ufug.2019.126510>.

472 Hussain FS, Ilahi I, Rashid A. 1989. Effect of cement dust on the chlorophyll contents, stomatal
473 clogging and biomass of some selected plants. *Pakistan Journal of Scientific and*
474 *Industrial Research* 32:542-545.

475 Janhall S. 2015. Review on urban vegetation and particle air pollution - deposition and
476 Dispersion. *Atmospheric Environment* 105:130-137
477 <https://doi.org/10.1016/j.atmosenv.2015.01.052>.

478 Kamble P, Bodhane PS, Beig G, Awale M, Mukkannawar U, Mane AV, Mujumdar M,
479 Kuchekar SR, Patil VN. 2021. Impact of transport sector emissions on biochemical
480 characteristics of plants and mitigation strategy in Pune, India. *Environmental*
481 *Challenges* 4:1-8 <https://doi.org/10.1016/j.envc.2021.100081>.

482 Kapoor CS. 2014. *Ficus Benghalensis* L. Tree as an efficient option for controlling air pollution.
483 *Research in health and nutrition* 2:1-11

484 Kaur J, Bhat SA, Singh N, Bhatti SS, Kaur V, Katnoria JK. 2022. Assessment of the heavy metal
485 contamination of roadside soils alongside Buddha Nullah, Ludhiana, (Punjab) India.
486 *International Journal of Environmental Research and Public Health* 19: 1-24
487 <https://doi.org/10.3390/ijerph19031596>.

488 Khalid N, Masood A, Noman A, Aqeel M, Qasim M. 2019. Study of the responses of two
489 biomonitor plant species (*Datura alba* & *Ricinus communis*) to roadside air pollution.
490 *Chemosphere* 235:832-841 <https://doi.org/10.1016/j.chemosphere.2019.06.143>.

491 Khalil M, Iqbal M, Turan V, Tauqeer HM, Farhad M, Ahmed A, Yasin S. 2022. Household
492 chemicals and their impact. In: *Environmental Micropollutants*. 201-232.
493 <https://doi.org/10.1016/B978-0-323-90555-8.00022-2>

494 Kozlov MV, Zvereva EL, Niemela P. 1999. Effects of soil quality and air pollution on the
495 rooting and survival of *Salix borealis* cuttings. *Boreal Environment Research* 4:67-76
496 <https://www.researchgate.net/publication/242247694>.

497 Kumar A, Singh H, Kumari G, Bisht S, Malik A, Kumar N, Singh M, Raturi A, Barthwal S,
498 Thakur A, Kaushal R. 2022. Adaptive resilience of roadside trees to vehicular emissions
499 via leaf enzymatic, physiological, and anatomical trait modulations. *Environmental*
500 *Pollution* 313:120191 <https://doi.org/10.1016/j.envpol.2022.120191>.

501 Mahrukh, Awan MUF, Luqman M, Sardar AA, Nawaz H, Rasool A, Faisal S, Younas H, Malik
502 SM, Waheed M, Muhammad S. 2023. Air pollution mitigation potential of dominant
503 landscape plants of an urban ecosystem (Lahore city) of Pakistan: An air pollution
504 Tolerance Index (APTI) assessment. *Polish Journal of Environmental Studies* 32:3233-
505 3245 DOI: <https://doi.org/10.15244/pjoes/161980>.

506 Muhammad S, Khan Z, Zaheer A, Siddiqi MF, Masood MF, Sargana AM. 2014. *Alstonia*
507 *scholaris* (L.) R. Br. planted bioindicator along different roadsides of Lahore city.
508 *Pakistan Journal of Botany* 46:869-873

509 Mukherjee S, Chakraborty A, Mondal S, Saha S, Haque A, Paul S. 2019. Assessment of common
510 plant parameters as biomarkers of air pollution. *Environmental Monitoring Assessment*
511 191:1-8. <https://doi.org/10.1007/s10661-019-7540-y>.

512 Muller-Dombois, D.; Ellenberg, H. *Aims and Methods of Vegetation Ecology*. John Wiley &
513 Sons: Canada, **1974**, pp. 55.

514 Munsif R, Zubair M, Aziz A, Zafar MN. 2021. Industrial air emission pollution: potential
515 sources and sustainable mitigation. In: *Environmental emissions*, Richard viskup,
516 Austria. DOI:[10.5772/INTECHOPEN.93104](https://doi.org/10.5772/INTECHOPEN.93104)

517 Nasir E, Ali S I Flora of Pakistan Nos 1-190 National Herbarium, PARC, Islamabad and
518 Department of Botany, University of Karachi, Pakistan, **1970-89**.

519 Nazarpour A, Watts MJ, Madhani A, Elahi S. 2019. Source, spatial distribution and pollution
520 assessment of Pb, Zn, Cu, and Pb, isotopes in urban soils of Ahvaz city, a semi-air
521 metropolis in southwest Iran. *Scientific Reports* 9:1-11 <https://doi.org/10.1038/s41598-019-41787-w>.

522 Nowak DJ, Hirabayashi S, Doyle M, McGovern M, Pasher J. 2018. Air pollution removal by
523 urban forests in Canada and its effect on air quality and human health. *Urban Forestry &*
524 *Urban Greening* 29:40–48 <https://doi.org/10.1016/j.ufug.2017.10.019>.

525 Ong BL. 2003. Green plot ratio: an ecological measure for architecture and urban Planning.
526 *Landscape and Urban Planning* 63:197–211 [https://doi.org/10.1016/S0169-2046\(02\)00191-3](https://doi.org/10.1016/S0169-2046(02)00191-3).

527 Parsa VA, Salehi E, Yavari AR, Bodegom PMV. 2019. Analyzing temporal changes in urban
528 forest structure and the effect on air quality improvement. *Sustainable Cities and*
529 *Societies* 48:1-13 <https://doi.org/10.1016/j.scs.2019.101548>.

530 Pourkhabbaz A, Rastin N, Olbrich A. 2010. Influence of environmental pollution on leaf
531 properties of urban plane trees, *Platanus orientalis* L. *Bulletin Environmental*
532 *Contamination and Toxicology* 85:251-255 DOI 10.1007/s00128-010-0047-4.

533 Roy A, Battacharya T, Kumari M. 2020. Air pollution tolerance, metal accumulation and dust
534 capturing capacity of common tropical trees in commercial and industrial sites. *Science*
535 *of the total environment* 722:1-15 <https://doi.org/10.1016/j.scitotenv.2020.137622>.

536 Sagar AD, Briggs WR. 1990. Effects of high light stress on carotenoid-deficient chloroplasts in
537 *Pisum sativum*. *Plant Physiology* 94:1663-1670 <https://doi.org/10.1104/pp.94.4.1663>.

538 Sahu C, Basti S, Sahu SK. 2020. Air pollution tolerance index (APTI) and expected performance
539 index (EPI) of trees in sambalpur town of India. *SN Applied Science* 2:1-14
540 <https://doi.org/10.1007/s42452-020-3120-6>.

541 Sarhan MGR, Elhafeez AA, Bashanday S. 2021. Evaluation of heavy metal concentration as
542 affected by vehicular emission in alluvial soil at middle Egypt conditions. *Egyptian*
543 *Journal of Soil Science* 61:337- 354 DOI: 10.21608/ejss.2021.89288.1460.

544 Sass V, Wirtz NK, Karceski SM, Hajat A, Crowder K, Takeuchi D. 2017. The effects of air
545 pollution on individual psychological distress. *Health & Place* 48:72-79
546 <https://doi.org/10.1016/j.healthplace.2017.09.006>.

549 Sekhar P, Sekhar P. 2019. Evaluation of selected plant species as bio-indicators of particulate
550 automobile pollution using Air Pollution Tolerance Index (APTI) approach.
551 *International Journal for Research in Applied Science & Engineering Technology* 7:57–
552 67 DOI: [10.22214/ijraset.2019.7011](https://doi.org/10.22214/ijraset.2019.7011).

553 Seyyednejad SM, Niknejad M, Yusefi M. 2009. Study of air pollution effects on some
554 physiology and morphology factors of *Albizia lebbeck* in high temperature condition in
555 Khuzestan. *Journal of Plant Sciences* 4:122-126 DOI: [10.3923/jps.2009.122.126](https://doi.org/10.3923/jps.2009.122.126).

556 Sharma AP, Tripathi BD. 2009. Biochemical responses in tree foliage exposed to coal-fired
557 power plant emission in seasonally dry tropical environment. *Environmental Monitoring
558 and Assessment* 158:197-212 <https://doi.org/10.1007/s10661-008-0573-2>.

559 Shweta M, Agrawal SB. 2006. Interactive effects between supplemental ultraviolet-B radiation
560 and heavy metals on the growth and biochemical characteristics of *Spinacia oleracea* L.
561 *Brazil. Journal of Plant Physiology* 18:98-102 <https://doi.org/10.1590/S1677-04202006000200007>.

562 563 Singh H, Yadav M, Kumar N, Kumar A, Kumar M. 2020. Assessing adaptation and mitigation
564 potential of roadside trees under the influence of vehicular emissions: a case study of
565 *Grevillea robusta* and *Mangifera indica* planted in an urban city of India. *Plos One* 15:1-
566 20 <https://doi.org/10.1371/journal.pone.0227380>.

567 Singh R, Rathore D. 2018. Oxidative stress defence responses of wheat (*Triticum aestivum* L.)
568 and chilli (*Capsicum annum* L.) cultivars grown under textile effluent fertilization. *Plant
569 Physiology and Biochemistry* 123:342–358
570 <https://doi.org/10.1016/j.plaphy.2017.12.027>.

571 Singh S, Verma A. 2007. Phytoremediation of Air pollutants: A review. In: *Environmental
572 bioremediation technology*. Singh, SN, Tripathi RD, Springer: Berlin Heidelberg, 293-
573 314.

574 Singh SK, Rao DN, Agrawal M, Pandey J, Naryan D. 1991. Air pollution index of plants.
575 *Journal of Environmental Management* 32:45-55 [https://doi.org/10.1016/S0301-4797\(05\)80080-5](https://doi.org/10.1016/S0301-4797(05)80080-5).

576 577 Skrynetska I, Ciepal R, Kandziora-Ciupa M, Barczyk G, Nadgorska-Socha A. 2018.
578 Ecophysiological responses to environmental pollution of selected plant species in an
579 industrial urban area. *International Journal of Environmental Research* 12:255-267
580 <https://doi.org/10.1007/s41742-018-0088-9>.

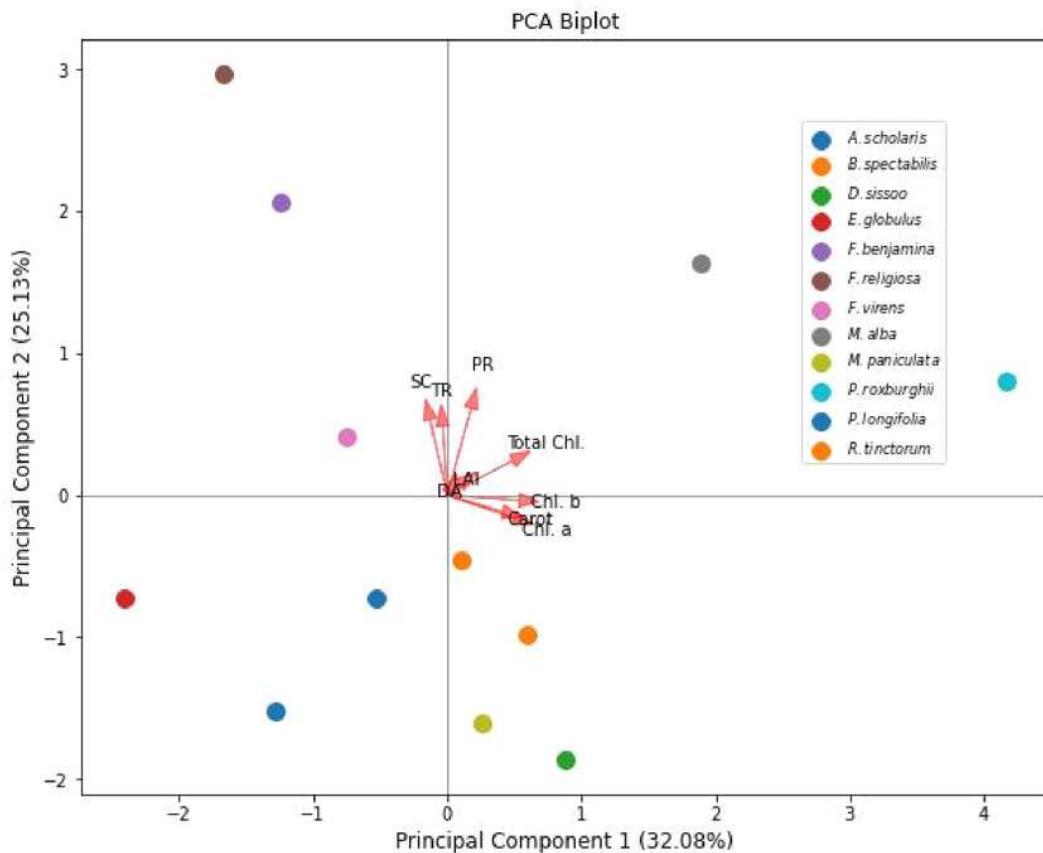
581 Tallis M, Taylor G, Sinnett D, Freer-Smith P. 2011. Estimating the removal of atmospheric
582 particulate pollution by the urban tree canopy of London, under current and future
583 environments. *Landscape and Urban Planning* 103:129–138
584 <https://doi.org/10.1016/j.landurbplan.2011.07.003>.

585 Tundele S. 2015. Eco-Friendly Technology-Key for Sustainable Development. *International
586 Journal of Research-GRANTHAALAYAH* 3:1-3
587 DOI: [10.29121/granthaalayah.v3.i9SE.2015.3171](https://doi.org/10.29121/granthaalayah.v3.i9SE.2015.3171).

588 Uka UN, Belford EJ, Hogarh JN. 2019. Roadside air pollution in a tropical city: physiological
589 and biochemical response from trees. *Bulletin of the National Research Center* 43:1-12
590 <https://doi.org/10.1186/s42269-019-0117-7>.

591 Vardhan KH, Kumar PS, Panda RC. 2019. A review on heavy metal pollution, toxicity and
592 remedial measures: current trends and future perspectives. *Journal of Molecular Liquids*
593 290:1-22 <https://doi.org/10.1016/j.molliq.2019.111197>.

594 Verma V, Chandra N. 2015. Biochemical and Ultrastructural Changes in *Sida ordifolia* L. and
595 *Catharanthus roseus* L. to Auto Pollution. *International Scholarly Research Notices*.
596 2014:1-11 <https://doi.org/10.1155/2014/263092>.


597 Wei Z, Le QV, Peng W, Ynag Y, Yang H, Gu H, Lam SS, Sonne C. 20221. A review on
598 phytoremediation of contaminants in air, water and soil. *Journal of Hazardous Material*
599 403:1-8 <https://doi.org/10.1016/j.jhazmat.2020.123658>.

600 Whitford V, Ennos AR, Handley JF. 2001. City form and natural process indicators for the
601 ecological performance of urban areas and their application to Merseyside, UK.
602 *Landscape and Urban Planning* 57:91–103 [https://doi.org/10.1016/S0169-2046\(01\)00192-X](https://doi.org/10.1016/S0169-2046(01)00192-X).

603 Zofia L, Kmiecik W, Korus A. 2006. Content of vitamin C, carotenoids, chlorophylls and
604 polyphenols in green parts of dill (*Anethum graveolens* L.) depending on plant height.
605 *Journal of Food Composition and Analysis* 19:134-140
606 <https://doi.org/10.1016/j.jfca.2005.04.009>.

Figure 1

PCA biplot analysis showing variation in plant physicochemical parameters (PR, photosynthetic rate; SC, stomatal conductance; TR, transpiration rate; Chl. a, chlorophyll a; Chl. b, chlorophyll b; Total chl., total chlorophyll content; Carot, carotenoids;

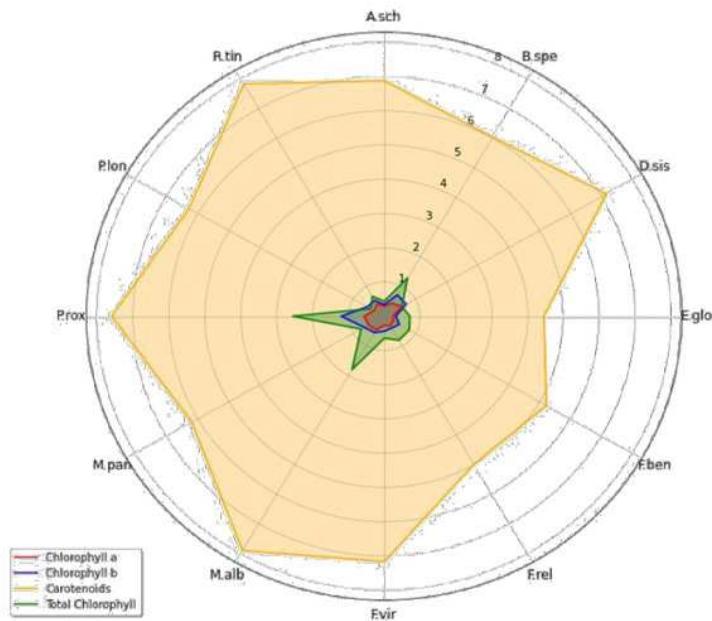


Figure 1: PCA biplot analysis showing variation in plant physicochemical parameters (PR, photosynthetic rate; SC, stomatal conductance; TR, transpiration rate; Chl. a, chlorophyll a; Chl. b, chlorophyll b; Total chl., total chlorophyll content; Carot, carotenoids; DA, dust amount; LAI, leaf area index) across various species.

Different species groups were identified by the PCA biplot according to their physicochemical traits. Similar physicochemical profiles of the species were revealed by their clustering in the biplot, implying that the measured variables showed recurrent variation patterns. Longer arrows on variables increased the observed variation in the dataset, highlighting crucial physiological traits that promote species divergence. The PCA biplot analysis provides a comprehensive framework for studying the complex link between species variability and plant physiology.

Figure 2

Radar map visualization for comparing carotenoid and chlorophyll level in different plant species (A.sch, *A. scolaris*; B.spe, *B. spectabilis*; D.sis, *D. sissoo*; E.glo, *E. globulus*; F.ben, [i]F. *benjamina*; F.rel, *F. religiosa*; F.vir,

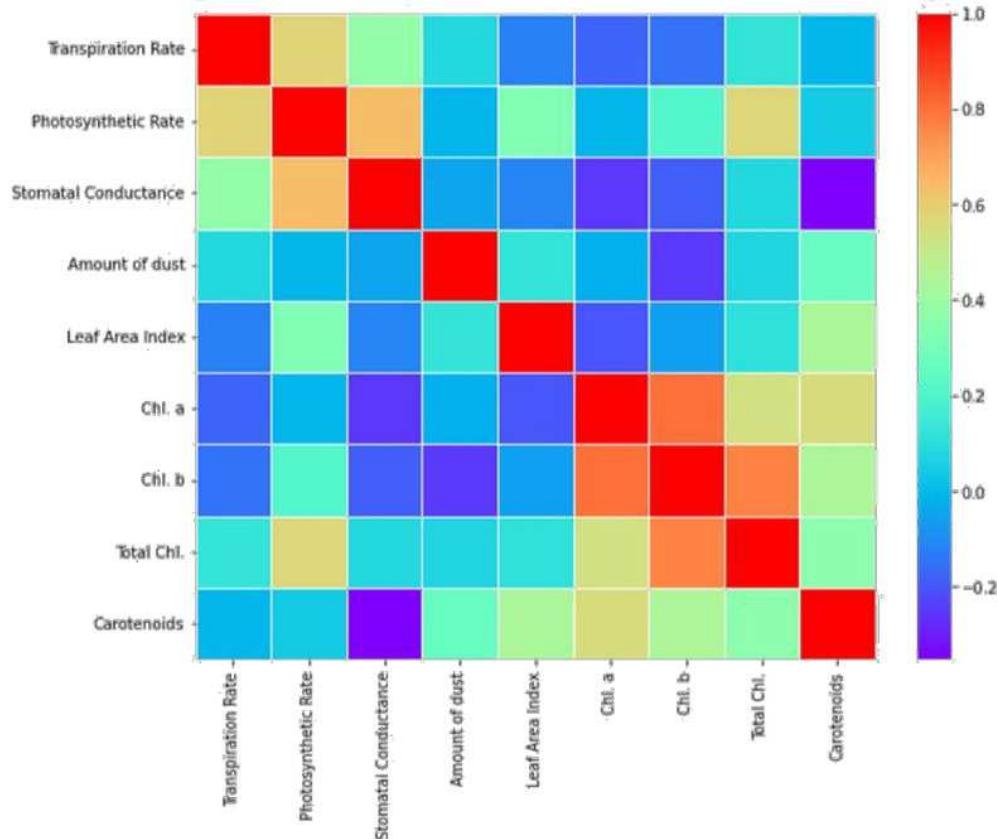


Figure 2: Radar map visualization for comparing carotenoid and chlorophyll level in different plant species (A.sch, A. scolaris; B.spe, B. spectabilis; D.sis, D. sissoo; E.glo, E. globulus; F.ben, F. benjamina; F.rel, F. religiosa; F.vir, F. virens; M.alb, M. alba; M.pan, M. paniculata; P.rox, P. roxburghii; P.lon, P. longifolia; R.tin, R. tinctorum).

Carotenoids and chlorophyll are essential pigments in photosynthesis, play important roles in energy transfer and light absorption. Determining the concentration and distribution of these pigments among various tree species is essential to understanding the physiological adaptations unique to each species and the dynamics of ecosystems. In this study, we utilized radar chart visualization to compare chlorophyll and carotenoid levels among various tree species, aiming to uncover underlying patterns and ecological implications.

Figure 3

Correlation coefficients heatmap of studied physicochemical parameters

Figure 3: Correlation coefficients heatmap of studied physicochemical parameters.

Significant correlations were found between the variables under investigation in the correlation analysis: transpiration rate showed weak negative correlation with dust deposition amount ($r = -0.04$, $p > 0.05$), indicating a potential mitigating effect of dust on water loss through transpiration; photosynthetic rate showed significant positive correlation with leaf area index ($r = 0.55$, $p < 0.01$), emphasizing the importance of foliage density in carbon assimilation processes; and stomatal conductance and photosynthetic rate showed moderate positive correlations ($r = 0.41$, $p < 0.05$) and photosynthetic rate ($r = 0.37$, $p < 0.05$), indicating coordinated physiological responses to environmental conditions. Indicating their crucial role in photosynthesis and general tree health, the chlorophyll content (Chl. a, Chl. b, and total chlorophyll) also demonstrated strong associations with photosynthetic rate and other physiological indicators.

Figure 4

Taxonomic illustration of selected plants in urban ecosystem of Lahore (Pakistan)

Table 1: Taxonomic illustration of selected plants in urban ecosystem of Lahore (Pakistan)

Sr.no	Scientific name	Family	Common name	Habit
1.	<i>Alstonia scholaris</i> L.	Apocynaceae	Blackboard or devil tree	Perennial, Evergreen Large Trees
2.	<i>Bougainvillea spectabilis</i> Willd.	Nyctaginaceae	Paper flower	Woody climber, perennial shrub
3.	<i>Dalbergia sissoo</i> Roxb.	Fabaceae	North Indian rosewood or shisham	Deciduous tree
4.	<i>Eucalyptus globulus</i> Labill.	Myrtaceae	Tasmanian blue gum	Annual or sometimes perennial Evergreen tree
5.	<i>Ficus virens</i> Aiton.	Moraceae	White fig	Medium sized tree, perennial evergreen tree
6.	<i>Ficus benjamina</i> L.	Moraceae	Weeping fig	Perennial evergreen shrub or tree
7.	<i>Ficus religiosa</i> L.	Moraceae	Peepal	Perennial and deciduous tree
8.	<i>Morus alba</i> L.	Moraceae	White mulberry	Deciduous tree or shrub
9.	<i>Murraya paniculata</i> L.	Rutaceae	Orange Jasmine, Mock Lime, China Box	Perennial shrub or small tree
10.	<i>Putranjiva roxburghii</i> Wall.	Putranjivaceae	Child life tree, Lucky Bean Tree	Moderate sized, evergreen tree
11.	<i>Polyalthia longifolia</i> Sonn.	Annonaceae	False Ashoka	Evergreen tree
12.	<i>Rubia tinctorum</i> L.	Rubiaceae	Rose madder or common madder	Evergreen herbaceous Perennial

Figure 5

Amount of dust (g) captured and leaf area index (mm^2) of the selected tree -species

Table 2: Amount of dust (g) captured and leaf area index (mm²) of the selected tree -species.

Sr. no.	Plant species	Amount of dust (g)		Leaf area index (mm ²)	
		Pol. s	Cont. s	Pol. s	Cont. s
1.	<i>A. scholaris</i>	0.02±0.005	0.004±0.0005	543.13±306.6	1693±63
2.	<i>B. spectabilis</i>	0.015±0.003	0.004±0.0003	312.9±11.59	532.33±4.70
3.	<i>D. sissoo</i>	0.014±0.002	0.003±0.0006	271.04±66.50	414.7±43.006
4.	<i>E. globulus</i>	0.014±0.004	0.007±0.001	294.73±8213	436.6±22.48
5.	<i>F. benjamina</i>	0.011±0.0008	0.003±0.0003	257.84±12.10	341.8±3.19
6.	<i>F. religiosa</i>	0.02±0.003	0.004±0.0005	201.93±450.4	312.53±31.73
7.	<i>F. virens</i>	0.016±0.003	0.004±0	958.82±380.92	1670±23
8.	<i>M. alba</i>	0.02 ±0.003	0.006±0.0005	997.8±25.175	1172.86±58.69
9.	<i>M. paniculata</i>	0.011±0.0003	0.004±0.0003	88.86±19.7	97.96±4.88
10.	<i>P. roxburghii</i>	0.012±0.0003	0.004±0.0003	496.66±50.33	611.66±35.86
11.	<i>P. longifolia</i>	0.016±0.004	0.005±0	1071.2±139.6	1182.5±113.5
12.	<i>R. tinctorum</i>	0.013±0.006	0.007±0.0013	306.55±16.93	351.11±13.55

*Polluted site, **Control site

Figure 6

Physicochemical evaluation of plant species (polluted and control sites)

Table 3: Physicochemical evaluation of plant species (polluted and control sites)

Sr. no.	Plant species	Stomatal conductance (mol m ⁻² s ⁻¹)		Transpiration rate (mol m ⁻² s ⁻¹)		Photosynthetic rate (μmol m ⁻² s ⁻¹)	
		*Pol. s	**Cont. s	Pol. s	Cont. s	Pol. s	Cont. s
1.	<i>A. scholaris</i>	0.04±0.02	0.07±0.03	0.17±0.09	0.25±0.14	25.36±13.10	34.07±17.68
2.	<i>B. spectabilis</i>	0.05±0.01	0.15±0.006	0.18±0.04	0.48±0.13	34.37±19.92	35.88±8.12
3.	<i>D. sissoo</i>	0.03±0.003	0.08±0.03	0.21±0.04	0.32±0.01	28.23±11.25	51.58±20.53
4.	<i>E. globulus</i>	0.09±0.02	0.08±0.05	0.26±0.08	0.22±0.11	27.88±9.83	27.64±14.52
5.	<i>F. benjamina</i>	0.17±0.04	0.16±0.09	0.86±0.30	0.85±0.51	56.60±13.34	53.73±26.89
6.	<i>F. religiosa</i>	0.62±0.08	0.58±0.08	0.67±0.11	0.59±0.25	60.22±15.72	50.00±25.00
7.	<i>F. virens</i>	0.19±0.03	0.17±0.08	0.42±0.11	0.41±0.21	44.41±12.22	44.26±21.83
8.	<i>M. alba</i>	0.15±0.01	0.14±0.008	0.54±0.01	0.48±0.012	63.01±9.23	59.73±1.01
9.	<i>M. paniculata</i>	0.04±0.005	0.13±0.01	0.24±0.09	0.62±0.04	26.80±7.75	45.14±2.89
10.	<i>P. roxburghii</i>	0.17±0.005	0.15±0.01	0.34±0.03	0.32±0.01	56.90±12.19	57.91±6.13
11.	<i>P. longifolia</i>	0.08±0.01	0.09±0.04	0.10±0.04	0.13±0.06	42.27±22.87	43.89±24.00
12.	<i>R. tinctorum</i>	0.08±0.05	0.17±0.09	0.59±0.24	1.61±0.22	30.60±4.07	40.12±0.22

Figure 7

Biochemical assessment of species from polluted and control sites

Table 4: Biochemical assessment of species from polluted and control sites

Sr. no.	Plant species	Chl. a		Chl. b		Total chlorophyll (mg/g)		Carotenoids (mg/g)	
		Pol. s	Cont. s	Pol. s	Cont. s	Pol. s	Cont. s	Pol. s	Cont. s
1.	<i>A. scholaris</i>	0.30± 0.15	0.38± 0.19	0.34± 0.17	0.55± 0.27	0.44± 0.22	1.20± 0.62	5.94± 0.07	6.88± 2.97
2.	<i>B. spectabilis</i>	0.43± 0.14	0.52± 0.16	0.72± 0.28	1.14± 0.31	1.29± 0.59	2.21± 0.73	6.04± 0.88	9.07± 2.23
3.	<i>D. sissoo</i>	0.56± 0.08	0.64± 0.01	0.70± 0.10	0.75± 0.10	0.56± 0.13	0.82± 0.01	7.15± 3.03	11.18± 3.31
4.	<i>E. globulus</i>	0.24± 0.09	0.23± 0.12	0.32± 0.10	0.30± 0.15	0.71± 0.16	0.65± 0.29	9.12± 0.71	6.20± 2.36
5.	<i>F. benjamina</i>	0.36± 0.14	0.44± 0.22	0.58± 0.24	0.64± 0.32	0.80± 0.25	0.75± 0.38	5.25± 1.64	5.22± 2.77
6.	<i>F. religiosa</i>	0.32± 0.16	0.40± 0.20	0.40± 0.21	0.55± 0.27	0.81± 0.30	0.65± 0.42	5.00± 2.01	5.82± 2.91
7.	<i>F. virens</i>	0.26± 0.14	0.30± 0.19	0.44± 0.22	0.38± 0.16	0.64± 0.22	0.61± 0.31	7.76± 2.91	7.17± 3.88
8.	<i>M. alba</i>	0.76± 0.09	0.67± 0.03	0.88± 0.13	0.83± 0.04	1.80± 0.27	1.36± 0.07	7.91± 1.61	7.18± 1.07
9.	<i>M. paniculata</i>	0.51± 0.01	0.73± 0.03	0.65± 0.11	0.87± 0.07	0.75± 0.12	1.14± 0.11	4.12± 2.18	4.45± 1.84
10.	<i>P. roxburghii</i>	0.56± 0.10	0.71± 0.06	1.20± 0.12	1.35± 0.10	2.55± 0.43	2.33± 0.07	7.60± 2.02	7.48± 0.83
11.	<i>P. longifolia</i>	0.33± 0.18	0.41± 0.21	0.55± 0.27	0.59± 0.27	0.41± 0.22	0.44± 0.25	6.29± 1.86	7.43± 3.72
12	<i>R. tinctorum</i>	0.41± 0.03	0.51± 0.008	0.53± 0.09	0.63± 0.06	0.67± 0.15	0.98± 0.16	7.84± 0.39	9.69± 0.21

Figure 8

Correlations of physicochemical parameters of selected plants

Table 5: Correlations of physicochemical parameters of selected plants

Variable	Transpiration Rate	Photosynthetic Rate	Stomatal Conductance	Amount of Dust	Leaf Area Index	Chl. a	Chl. b	Total Chl.	Carotenoids
Transpiration Rate	1.00	0.72	0.64	-0.53	0.81	0.45	0.62	0.57	0.68
Photosynthetic Rate	0.72	1.00	0.83	-0.61	0.92	0.76	0.85	0.89	0.94
Stomatal Conductance	0.64	0.83	1.00	-0.48	0.77	0.68	0.75	0.82	0.87
Amount of Dust	-0.53	-0.61	-0.48	1.00	-0.69	-0.57	-0.63	-0.58	-0.52
Leaf Area Index	0.81	0.92	0.77	-0.69	1.00	0.84	0.91	0.93	0.89
Chl. a	0.45	0.76	0.68	-0.57	0.84	1.00	0.93	0.80	0.69
Chl. b	0.62	0.85	0.75	-0.63	0.91	0.93	1.00	0.89	0.77
Total Chl.	0.57	0.89	0.82	-0.58	0.93	0.80	0.89	1.00	0.83
Carotenoids	0.68	0.94	0.87	-0.52	0.89	0.69	0.77	0.83	1.00