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ABSTRACT

Background. Diabetes mellitus (DM) and coronary artery disease (CAD) are closely
interrelated clinical conditions. However, the combination analysis based on DM
related CAD diagnostic model remains a gap. The primary objective of this study was
to identify diagnostic models and diagnostic markers for CAD based on the association
of diabetic phenotypes and attempt to explore them further in a mouse model.
Methods. We used data integration as well as multiple datasets for both coronary artery
disease and diabetes to exclude bias as well as to improve reliability. We employed
the least absolute shrinkage and selection operator (LASSO) regression algorithms to
construct the CAD diagnostic model. Furthermore, we established mouse CAD model
(low-density lipoprotein receptor deficient mice with high fat diet) to explore the
crosstalk between the screened biomarkers and severe CAD progress.

Results. The intersecting genes from differential analysis and weighted correlation
network analysis (WGCNA) results yielded 32 diabetes-related biomarkers. We then
identified two diabetes-related phenotypes through the consensus clustering in CAD
patients. Microenvironmental analysis revealed that phenotype 1 exhibited higher
expression of most cytokines, inflammatory factors, interleukins, and related receptors.
Immune cell composition in phenotype 1 showed increased infiltration compared to
phenotype 2. The LASSO regression identified 16 diabetes-related genes and we further
constructed a diagnostic model based on these genes, which the area under the curve
(AUC) reached 0.8. Additionally, single cell immune analysis exhibited the location of
these genes. KCNQ1, ATP6V1B1, MTDH, and ITPK1 were predominantly located in
macrophages, indicating their potential in regulating macrophage during myocardial
injury. Furthermore, We elucidated that KCNQI1 and ITPK1 exhibited high expression
level in mouse CAD model in tissue level. exhibited similar expression trends with
macrophage biomarkers (CD31 and CD68). The result of qPCR also indicated the
elevated level of KCNQ1 and ITPK1, which exhibited crosstalk with CD31 and CD68
in mouse CAD model.

Conclusion. This study delves into the microenvironmental characteristics of diabetes-
related phenotypes in CAD, constructing an optimal diagnostic model and validated
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the significance of diagnostic markers in mouse CAD model, which may offer insights
that could be beneficial for clinical management in the near future.

Subjects Bioinformatics, Biotechnology, Cardiology, Diabetes and Endocrinology
Keywords Diabetes mellitus, Coronary artery disease, Mouse CAD model, Biomarkers

INTRODUCTION

Coronary artery disease (CAD) is predominantly characterized by atherosclerosis, a
complex disorder characterized by damage to the artery intima (Ben Braiek et al., 2021).
It manifests in forms such as stable angina, unstable angina, myocardial infarction
(MI), or sudden cardiac death (lida, Harada & Takebayashi, 2019). Key risk factors

like hypertension, hyperlipemia, diabetes mellitus (DM), and smoking are identified

as significant contributors to the disease at the population level (Malakar et al., 2019).
In 2017, CAD was accountable for roughly 8.93 million deaths, making up about 16.0%
of global death, which is expected to remain the leading cause of death worldwide until
2030 (Xu et al., 2023). Coronary angiography is acknowledged as the definitive method for
diagnosing the presence and extent of CAD (Li & Kronenberg, 2021). Despite considerable
progress in medical treatments, CAD remains a critical public health issue globally (Tseng et
al., 2020). Additionally, individuals diagnosed with coronary atherosclerotic heart disease
(CHD) are at an increased risk of subsequent cardiovascular events, including MI, stroke,
and chronic heart failure (CHF) (Xia et al., 2021), which may reduce the possibility of
long-term survival of patients. Hence, Identification of effective diagnostic markers for
CAD patients remains an urgent problem.

DM is identified by a variety of heterogeneous disorders resulting from either insulin
deficiency or insulin resistance, leading to high blood glucose levels (Bao, 2022). Both
type 1 and type 2 diabetes cause organ-specific tissue damage due to multiple metabolic
factors (Fan et al., 2022). Interestingly, DM is also a significant risk factor for CHD.
Chronic hyperglycemia in DM (Eid et al., 2019) not only harms various organs and
tissues but also leads to microvascular complications such as retinopathy (Pignalosa et
al., 2021), nephropathy, and neuropathy, as well as macrovascular complications like
cardiovascular disorders (Darenskaya, Kolesnikova ¢ Kolesnikov, 2021). The mechanisms
behind hyperglycemia-induced vascular damage are complex and not fully understood.
However, it is thought that increased intracellular glucose levels enhance the production
of reactive oxygen species, subsequently disrupting vital downstream pathways (Cole ¢
Florez, 20205 Verges, 2020). Additionally, the hyperglycemic state resulting from diabetes
may activate protein kinase C signaling and the late glycation pathway, leading to
vascular inflammation as well as CAD (Henning, 2018). Enhancement of the hexosamine
biosynthetic pathway and activation of the protein O-GlcNAcylation have also been
shown to play an important role in diabetes-associated vasculopathy (Wang et al., 2023).
Macrophages may be the crosstalk between DM and CAD. Peng ¢ Gao (2022) found
that NLPR3™ macrophages can exacerbate in vivo inflammation in diabetic patients.
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Macrophages also play an important role in cardiac remodeling in patients with CAD
(Yap et al., 2023). Interestingly, plaque in coronary arteries is usually larger in diabetic
patients than in nondiabetic patients, mainly due to inflammation caused by macrophages
and T lymphocytes (Yahagi et al., 2017). These fundamental studies involved cellular and
clinical models reveals the deep mechanisms of the DM and CAD. However, it lacked the
comprehensiveness of integrated large-sample data and combinational analyses to some
extent. Ideal clinical markers may be identified form the perspective of DM related CAD
analysis.

In our study, we first explored diagnostic markers as well as diagnostic models for CAD
patients from crosstalk with diabetes. Based on multiple fused datasets, we try to validate
the identified diagnostic markers in a mouse model to further explore their diagnostic
value in patients with CAD.

MATERIALS AND METHODS

Data sources and preparation

The datasets concerning diabetes (2025) and CAD (Chen et al., 2023) predominantly
derive from the GEO database. The diabetes datasets include GSE20966 (20 samples with
diabetes), GSE25724 (six of 13 total samples have diabetes), and GSE38642 (nine of 63 total
samples have diabetes), and the CAD datasets include GSE12288 (222 samples in total,
with 110 samples in CAD), GSE20680 (195 samples with CAD), GSE20681 (198 samples
in CAD), and GSE42148 (24 samples, with 13 samples in CAD). The single cell dataset
was GSE32678. Additionally, to increase the sample size and confidence level, various
datasets of patients with diabetes mellitus and coronary heart disease were merged, with
batch effects excluded by “combat” packages for optimal analysis. For missing values, we
fill them with the mean value. For data cleansing, we correct formatting errors, remove
duplicate values, and remove unneeded data to ensure data cleanliness. For data with
large variance, we usually use the “normalize” function to normalize the data, making the
data comparable. In addition, for outliers, we usually remove them or fill them with mean
values. Specific dataset inclusions and workflow are detailed in the supplementary material.

WGCNA analysis and differential analysis to identify diabetes related
markers

Weighted correlation network analysis (WGCNA) is a systems biology approach for
characterizing gene association patterns between samples (Langfelder ¢ Horvath, 2008).
This analysis focuses on identifying co-expressed genes based on gene-set introgression and
gene-set-phenotype associations. We utilized WGCNA to pinpoint modules co-expressed
with diabetes and the core genes in the network.

Identification of diabetes phenotypes in CAD patients

The intersecting genes from WGCNA and differential expression analysis were employed
to identify immune-related diabetes phenotypes. We identified these phenotypes using
the unsupervised clustering algorithm (consensus clustering). The main basis for the
classification is the CDF value and delta region in the consensus clustering algorithm, when
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the CDF curve is the most downward and the delta region has the largest change, it means
that this algorithm has the best classification effect.

Identification diabetes related coronary artery disease diagnostic
system

For more efficient results, we applied the LASSO regression algorithms to reduce
dimensionality and identified 16 diabetes-related genes. These genes were used to construct
the diagnostic monitoring model for CAD and to measure the area under the curve (AUC)
to evaluate the diagnostic capacity. The model was constructed by “glmnet” package
(seed(123), alpha = 1, nfold=100).

Single-cell landscape analysis

The “Seurat” package was applied for single-cell sequencing analysis. The criteria for cell
screening were defined as nCount_RNA >100, nFeature_RNA <5,000, percent.mt <25, and
nFeature_RNA >100. Only the top 3,000 variable genes were then chosen for additional
examination. Using principal component analysis (PCA), significant dimensions with

p < 0.05 were found. Dimensionality reduction was made possible via the t-distributed
stochastic neighbor embedding (tSNE) approach, which was combined with an 11-cluster
classification analysis conducted on all cells. The “singleR” package was used to annotate
cell clusters based on trends in the composition of marker genes.

Vertebrate animal study methods

This study was approved by Animal Experimental Medicine Ethics Committee of the
First Affiliated Hospital of Xinjiang Medical University, Approval number: 20210301-215.
Twenty-eight-week-old male C57/B6] wild-type and LDLR—/— mice were obtained from
the Xinjiang Medical University experimental animal center’s specialized pathogen-free
(SPF) barrier system. A high-fat diet consisting of 78.85% chow diet, 21% lard, and 0. 15%
cholesterol was provided to the model group whereas the control group was fed chow diet.
An injection of pentobarbital was used to induce anesthesia. We use carbon dioxide for the
euthanasia of mice.

Mouse euthanasia operation procedures

We placed the mice to be executed in empty boxes and used carbon dioxide asphyxiation to
execute them. Criteria established for euthanizing animals prior to the planned end of the
experiment was the State Standard of the People’s Republic of China, GB/T 39760-2021.

Gene silence of KCNQ1 and ITPK1

We knocked down of KCNQI1 and ITPK1 through siRNA. The sequence was
as follow: KCNQI1(SiRNA): CCGCCUGAACCGAGUAGAATT; ITPK1(SiRNA):
AUCUUGUCCAGCUCCGUCATT.

CAD mouse model construction

Twenty-eight-week-old male C57/B6] wild-type and LDLR—/— mice were grown in the
Xinjiang Medical University experimental animal center’s specialized pathogen-free (SPF)
barrier system. Following randomization, a high-fat diet consisting of 78.85% chow diet,
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Figure 1 Experimental flowchart for transcriptomic and single-cell data to develop a diabetes-related
phenotype and its microenvironment influence in coronary artery disease. (A) Analyze the gene infor-
mation of patients in GEO database, (B) Analyze single-cell data from patients with coronary myocardial
injury, (C) Identify four key genes in diabetes-related CAD, (D) Establish myocardial infarction model,
(E) Euthanasia of mice and removal of heart tissue, (F) Collect and section heart tissue, (G) Immunohis-
tochemistry assay.

Full-size & DOI: 10.7717/peerj.20117/fig-1

21% lard, and 0. 15% cholesterol was provided to the CAD model group (LDLR—/— mice)
continuously for 12 weeks, whereas the control group was fed chow diet. To create a model
of a myocardial infarction, the anterior descending branch of the mice was clamped for
seven days at the conclusion of the twelfth week. Changes in electrocardiogram before
and after modeling were observed, and blood lipids and cardiac enzymes were measured
2 weeks after surgery to determine whether coronary artery disease occurred in mice.
Sections of mouse heart tissue were obtained for immunohistochemistry (IHC) staining.
The IHC staining of tissue slices from the cardiac tissues of the two groups (five mice in

each group) was then examined (Fig. 1).

Flow cytometry analysis

Apoptosis rates were determined using the Annexin V/PE Apoptosis Detection Kit (BD
Biosciences, Franklin Lakes, NJ, USA). Cells were collected with 1x binding buffer.
Subsequently, five pL of Annexin V-PE and five pL of 7-AAD were added, and the
incubation was carried out for 5 min in the absence of light. The analysis of apoptosis was
finally conducted using a FACSCalibur ffow cytometer.

Immunohistochemistry staining

Detailed procedures for immunohistochemistry can be found in the classic literature
on Tavitian et al. (2025). Dimethylbenzene was used to dewax pathological sections, and
gradient alcohols were used to hydrate them. Sections were then subjected to boiling sodium
citrate (pH 6.0) for antigen retrieval and 3% H2O2 to deactivate endogenous peroxidase.

Aihemaiti et al. (2025), Peerd, DOI 10.7717/peerj.20117 5/22


https://peerj.com
https://doi.org/10.7717/peerj.20117/fig-1
http://dx.doi.org/10.7717/peerj.20117

Peer

Sections were then treated in turn with primary antibody, HRP-linked secondary antibody,
and 5% goat serum. A DAB substrate was used to further visualize the indicated antibody
staining. Sections were then examined under a bright-field microscope after being restained
with hematoxylin and sealed with neutral glue. The staining intensity (negative, 0; weak,
1; moderate, 2; strong, 3) and the percentage of positive signal (negative, 0; 1-30%, 1;
31-60%, 2; above 60%, 3) were used to assess the protein expression. The THC score was
obtained by multiplying the two scores mentioned above. The main antibodies we used
were KCNQ1 (A2174, 1:400; ABclonal, Waltham, MA, USA), ITPK1 (10568-AP-1, 1:500:
Proteintech, Rosemont, IL, USA), CD31 (11265-1-AP, 1:600: Proteintech, Rosemont, IL,
USA), CD68 (28058-1-AP, 1:300: Proteintech, Rosemont, IL, USA).

Statistical analysis

R version 4.1.0 was the primary tool for all bioinformatics analyses and related statistical
calculations. For biological experiment statistical analysis, GraphPad Prism version 8.1 was
used. Regarding the multiple testing methods for the statistical analysis, we have used FDR
control methods (the BH method). Regarding cross-validation of diagnostic models. We
divided the fused dataset into training and testing datasets according to 1:1, and performed
cross-validation and correction in the two datasets,

RESULTS

WGCNA and differential analysis to identify key diabetes-related gene
markers

To reduce data analysis inaccuracies due to small sample sizes, data from three GEO
platform datasets were merged, carefully excluding batch effects to create a combined
dataset of diabetic patients and control samples. Initial analysis showed significant data
dimension disparities between datasets (Fig. 2A). However, post-fusion, the data exhibited
nearly uniform distribution patterns (Figs. 2B, 2C). Subsequent analysis of variance
identified differential genes between diabetic patients and healthy controls (p < 0.05
and abs (log (FC)) >1), revealing 2,250 differential genes (Fig. 2D). Further, WGCNA
analysis was conducted to isolate modular genes strongly linked to diabetes (Fig. 2E). In
the WGCNA procedure, the soft threshold § was set at 9. For network visualization, 400
of these genes were randomly selected (Fig. S1). The WGCNA network was constructed
using the partitioning method, merging and analyzing modules with high similarity,
ultimately identifying 22 different gene modules (Fig. 2E). Correlation analysis between
gene modules and clinical data of diabetic patients indicated that the yellow module had
the strongest correlation with diabetes (r = 0.53, p = 5e—6) (Fig. 2F). To pinpoint hub
genes within the yellow module, 368 genes with GS >0.2 and MM >0.6 were classified
as central diabetes-related genes. The intersecting genes from differential analysis and
WGCNA results yielded 32 diabetes-related biomarkers (Fig. 2G).

Diabetes related phenotype and characteristics in coronary artery
disease

We employed the same methodology from the analysis of diabetes to boost sample size
and lower error in the bioinformatics analysis of CAD patients. We reduced the batch
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Figure 2 WGCNA and differential analysis to identify key diabetes-related gene markers. (A) The data
difference among datasets. (B, C) The data distribution after fusion. (D) The volcano plot between dia-
betic patients and healthy controls. (E) WGCNA analysis to identify different gene modules. (F) Correla-
tion analysis between gene modules and clinical data of diabetic patients. (G) The intersecting genes from
differential analysis and WGCNA results.
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effect by combining four datasets from the GEO platform. When the batch effect was
excluded, the initial examination of the four datasets showed significant differences
(Fig. 3A) that eventually became negligible (Fig. 3B). We also looked into the capacity
of diabetes-related markers to classify patients with CAD, given the possible influence of
diabetes on the development of CAD. We classified the gene expressions of 32 diabetes
biomarkers in CAD patients using the consensus clustering method, which allowed us
to identify diabetes-related phenotypes in CAD patients. Binary typing proved to be
the most efficient method when comparing the delta areas and cumulative distribution
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function (PDF) curves of various categorization outcomes (Fig. S2). Consequently, CAD
patients were divided into phenotype 1 and phenotype 2. Furthermore, we discovered that
phenotype 1 had marginally higher expression of genes linked to diabetes than phenotype
2 (Fig. 3C). Additional examination of the microenvironmental scores revealed that
phenotype 1 outperformed phenotype 2 in terms of stromal, immune, and estimation scores
(Figs. 3D-3F).

Identification of microenvironment characteristics of diabetes related
phenotype in CAD

We delved into the microenvironmental differences between diabetes-related phenotypes
in CAD. We compared the phenotypes with regard to cytokines and inflammatory factors,
which are important determinants of the immunological and inflammatory milieu.
Typically, phenotype 1 had higher amounts of cytokines and inflammatory factors such
CXCL4, CCL5, CXCR8, CXCRY, and other regulatory molecules, while phenotype 2 had
lower levels of these factors (Fig. 4A). Furthermore, phenotype 1 also exhibited significant
expression levels of numerous interleukins and associated receptors, such as 1L2, IL3,
PDGED, etc., which are known to regulate inflammation (Fig. 4A). We also examined
each phenotype’s immune cell composition. The estimation of immune cell infiltration
was made using several algorithms. Phenotype 2 showed less immune cell infiltration than
phenotype 1, which showed greater infiltration of immune cells such as CD8+ T cells, NK
cells, etc. (Fig. 4B). Additionally, we examined the strength of endogenous and exogenous
immunomodulation between the phenotypes. While endogenous immunity strength was
similar between phenotypes, exogenous immunity was significantly stronger in phenotype
1 compared to phenotype 2 (Fig. 4C). Comparative analysis of classical immune features
showed that promotive immune features were significantly more robust in phenotype 1
than in phenotype 2 (Fig. 4D).

Diabetes related phenotypes differ in myocardial lesion signaling and
metabolic characteristics

Recognizing the significant distinctions between the two diabetes-related phenotypes, we
looked at the differential pathways in the 2,180 differential genes that were found. Figure 5A
shows a volcano diagram of these genes. We conducted Gene Set Variation Analysis
(GSVA) for 10 changed pathways common to CAD and compared these between the two
phenotypes, indicating considerable route variations (Fig. 5B). The subgroups’ different
metabolic and myocardial injury-related pathways were revealed using enrichment analysis.
Gene Ontology (GO) analysis identified biological process differences primarily in “fatty

I <<

acid metabolic process,” “response to glucocorticoid,” “heart morphogenesis,” and other
metabolism-related processes. Additionally, immune-related processes like “leukocyte
cell—cell adhesion” and “regulation of innate immune response” were significantly
enriched (Fig. 5C). KEGG analysis further enriched metabolic signals such as “Lipid
and atherosclerosis” and “Carbon metabolism,” along with myocardial lesion signals like
“Diabetic cardiomyopathy” and “Cardiac muscle contraction” (Fig. 5D). We investigated
metabolic differences using the MSigDB database, taking into account the variation in

metabolic signals among different phenotypes. The most important route variations
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Figure 3 Diabetes related phenotype and characteristics in coronary artery disease (CAD). (A) The

data difference among datasets. (B) The data distribution after fusion. (C) The CAD phenotype based on

consensus clustering. (D-F) The microenvironmental score analysis between different phenotypes.
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are represented by a heatmap (Fig. 5E), which mainly shows the metabolic transport
and absorption of proteins, fatty acids, glucose, and heart disease-related pathways. The
significant distinctions between these symptoms, as revealed by the GSEA analysis, include
alterations in metabolism, chemokines, and diabetic cardiomyopathy (Fig. 5F).

CAD diagnostic model constructed with diabetes-related genetic
features shows excellent performance

To develop a more precise CAD diagnostic system, we further selected key genes for con-
structing a diabetes-related CAD typing using Lasso regression. A total of 32 core genes were
included in the screening model (seed= 1, alpha=1, family="gaussian”), and final model
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scores were derived using the predict algorithm. The final model incorporated 16 diabetes-
related genes: “TRIM38,” “SAPG4,” “ODC1,” “NPY,” “MTDH,” “MTI1G,” “LMEF2,”

“KCNQL,” “ITPK1,” “GATAD2A,” “CRAT,

” “CDK5RAP3,” “BAG3,” “ATP6V1B1,”

“ARF4,” “AQP8.” (Figs. 6A, 6B). The modeling algorithm is as follows: model
score= —0.0012369%exp (TRIM38) + 0.0017723*exp(SAPG4)+ 0.0014256*exp(ODC1)+
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0.0014256*exp(NPY)+ 0.0014256*exp(MTDH)+ 0.0016259*exp(MT1G)
—0.0050854*exp(LMF2)+ 0.0015382*exp(KCNQ1)+ 0.0011388*exp(ITPK1)+
0.0087858exp(GATAD2A)+ 0.0020088*exp(CRAT) —0.0065762*exp(CDK5RAP3)
—0.00023941%exp(BAG3)+ 0.00817318exp(ATP6V1B1)+ 0.0065567*exp(ARF4)+
0.0075323*exp(AQPS).

The predictive performance for each gene and the total LASSO diagnostic model was
calculated. The areas under the receiver operating characteristic (ROC) curves were in
Figs. 6C, 6D, 6E, respectively. Notably, when all 16 genes were included in a single
diagnostic model, the AUC in the training dataset reached 0.823, and 0.758 in testing
dataset (Fig. 6F, Fig. 6G).

Single-cell analysis explored CAD patient landscapes as well as
expression patterns of modeled key genes

Further analysis was conducted on the expression landscape of diabetes-related genes
using single-cell data from patients with coronary myocardial injury. After calculating and
filtering the mitochondrial gene and ribosome ratios, as well as applying downscaling and
tSNE clustering analyses (Fig. 53), we classified the patient cells into 11 subpopulations.
These subpopulations were annotated using the “SingleR” package (Fig. 7A), identifying
six cell types: macrophages, endothelial cells, monocytes, NK cells, muscle cells, and

T cells (Fig. 7B). Macrophages and endothelial cells showed closer associations with
other cells, indicating their potential roles in pathogenesis (Fig. 7C, Fig. 54). Dot plots
were used to illustrate the top five genes differing among individual cells (Fig. 7D). The
distribution of key markers in individual cells of the diabetes diagnostic model revealed
that LMF2 and CDK5RAP3 were predominantly found in macrophages, while ARF4 was
widely distributed among various immune and endothelial cells, as well as in muscle cells.
KCNQI1, ATP6V1B1, MTDH, and ITPK1 were mainly distributed in macrophages (Fig. 7E,
Fig. S5). Additionally, the heatmap exhibited the differential genes of various immune cells
(Fig. S6).

KCNQ1 and ITPK1 were found to influence immune microenvironment
of coronary artery disease

Building on the diagnostic model analysis, we further investigated the clinical relevance
of these diagnostic markers. A mouse coronary artery disease model and a normal mouse
control were established, with myocardial tissues removed, fixed, embedded, and subjected
to THC staining (Fig. 8A). We assessed the differential expression of the 16 gene diagnostic
markers and some common immunological indicators. The results indicated upregulated
expression of KCNQ1 and ITPK1 in mice with coronary artery disease, along with increased
expression of CD31 and CD68. This suggests that KCNQ1 and ITPK1 are significant in the
pathogenesis of CAD, potentially influencing disease progression by affecting the immune
microenvironment in patients with CAD (Fig. 8B). We further compared mRNA levels
in different subgroups and found the results to be consistent with those of histochemical
staining (Fig. 8C). We further treated cells with CHD inducing conditions such as high
glucose and fat, and then knocked down ITPK1 or KCNQI. We found that high-glucose
and high-fat conditions promoted the apoptosis rate of HUVEC, which was reversed by
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Figure 6 (...continued)

on the model constructing genes (MTDH (AUC = 0.56), MT1G (AUC = 0.56), LMF2 (AUC = 0.54),
KCNQ1 (AUC = 0.62), ITPK1 (AUC = 0.58), TRIM38 (AUC = 0.58), SPAG4 (AUC = 0.55), ODC1
(AUC = 0.62), NPY (AUC = 0.54), CRAT (AUC = 0.55), GATAD2A (AUC = 0.51), CDK5RAP3 (AUC
= 0.56), BAG3 (AUC = 0.64), ATP6V1B1 (AUC = 0.56), ARF4 (AUC = 0.62), AQP8 (AUC = 0.54)).
(F, G) The ROC curve on the diagnostic model (Training dataset). (G) The ROC curve on the diagnostic
model (Testing dataset).

knockdown of KCNQI or ITPK1, suggesting the important role of ITPK1 or KCNQ1 in
the development of CAD (Figs. 8D-8F).

DISCUSSION

In our current study, 32 diabetes-related biomarkers were identified based on differential
expression analysis and WGCNA results. We further identified a diabetes related CAD
phenotype based on the consensus clustering and exhibited its variation on cytokines,
inflammatory factors, and immune cells infiltration. Utilizing a prediction algorithm, we
identified 16 core diabetes related genes and construct a diabetes related CAD diagnostic
model. Additionally, we found that KCNQ1 and ITPK1 may influence the immune
microenvironment of CAD. CAD is a hazardous cardiovascular disease with complex
pathology, the underage of which has made macro-control of the disease increasingly
difficult (Verges, 2020). Interestingly, patients with coronary artery disease often also
have concomitant diabetes, which simultaneously exacerbates the progression of coronary
artery disease. Previous literature indicated that CAD patients with type 2 diabetes mellitus
(T2DM) often have increased epicardial adipose tissue (EAT) volume, correlating with
higher cardiovascular mortality risk (Liu et al., 2023). Currently, combined diabetes and
coronary heart disease analyses based on multiple datasets remain a vacuum; therefore,
diagnostic models and biomarkers identified by combined analyses may lead to new
directions and clinical practices for CAD treatment.

Several studies have underscored the importance of various genes in crosstalk between
diabetes and CAD (Deda et al., 2022). A review highlighted CHI3L1, CD36, LEPR, RETN,
IL-18, RBP-4, and RARRES2 as potential genetic markers for insulin resistance (IR) and
atherosclerosis in T2DM patients, which ultimately promote the progression of CAD (Liu
et al., 2023). Additionally, genes like LDLR, CETP, APOAS5, Apo E, Apo B, and Apo A-T are
linked to CAD onset in T2DM patients, suggesting the potential for personalized diet—gene
intervention therapies (Raj et al., 2015). In our current research, differential analysis and
WGCNA analysis were used to extract diabetes-related pathogenic genes, and the immune
and inflammatory microenvironment differences of diabetic comorbidity phenotypes were
verified in the CAD cohort, which further verified the potential regulation of diabetes-
related genes on CAD. Additionally, we found similarities in endogenous immunity between
the two subtypes as well as differences between exogenous immunity. The endogenous
immune system consists of mast cells, eosinophils and basophils, and natural killer cells,
while the exogenous immunity consists mainly of T cells and B cells (Sun et al., 2020). This
suggests that T cells and B cells play a potential role in the differentiation of CAD subtypes.
Interestingly, this is the first time to identify a coronary heart disease classification based on
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Figure 7 Single-cell analysis explored CAD patient landscapes as well as expression patterns of mod-
eled key genes. (A-B) The subgroup annotation based on single cell analysis. (C) The association between
different immune cells. (D) Dot plots to illustrate the top five genes differing among individual cells. (E)

The distribution of key markers in individual cells.
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Figure 8 KCNQI and ITPK1 were found to influence immune microenvironment of coronary artery
disease. (A) Workflow of mouse coronary artery disease model. (B) The co expression of KCNQI and
ITPK1 with macrophage biomarkers in immunohistochemical staining. (C) The mRNA level of ITPK1
and KCNQI in various models. (D) Knockdown of KCNQI and ITPK1 in HUEVC cells. (E-F) Apoptosis
rate of various groups.

Full-size & DOTI: 10.7717/peer;j.20117/fig-8

diabetes-related characteristics, filling the gap in the clinical practice. Our classification is
based on the consensus algorithm and is based on gene expression levels. By evaluating the
expression levels of different genes, it accurately locates the internal microenvironment of
different patients, which is conducive to precisely identifying the immune infiltration status
of the patients. Similarly, our subtypes also have some limitations, including confounding
factors such as sample heterogeneity when identifying diabetes-related genes and coronary
heart disease-related genes, which may interfere with our results to a certain extent. In
future research, it might be possible to assess the expression levels of the corresponding
genes through expression probe, thereby further promoting and applying our classification.
We also found that KCNQ1 and ITPK1 may influence the immune microenvironment
of CAD through the crosstalk with macrophages. Previous studies have identified the
involvement of macrophages in the pathogenesis of diabetes and related CAD (Henning,
2018; Peng & Gao, 2022; Yap et al., 2023). Dysregulation of macrophage polarization
between M1 and M2 phenotypes alters the immune-inflammatory response in CAD,
leading to plaque progression. Therefore, metabolic dysregulation of macrophages may
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be one of the key features of CAD progression (Wang et al., 2024). CD31 and CD68 are
key regulators of macrophages (Andreata et al., 2018; Garaicoa-Pazmino et al., 2019), and
our study identified a co-expression profile between KCNQ1 and ITPK1 and these two
regulators, thus speculating that they may regulate the pathogenesis and progression of
CAD by regulating macrophage metabolism. In previous study, Zhu, Deng ¢ Zhou (2018)
identified KCNQ1 as a potential immunomodulatory gene in gout, and identified the
pharmacological value of KCNQI in type 2 diabetes. Abnormalities in KCNQ1 have
also been found to be significantly associated with arrhythmia (Kekenes-Huskey et al.,
2022; Khatami, Mohajeri-Tehrani ¢ Tavangar, 2019). Interestingly, KCNQ1 also plays a
significant role in heart-related diseases. KCNQ1 exerts a crucial function in regulating
potassium ions within the heart. Herbert et al. (2002) reported that mutations in KCNQ1
are closely associated with the occurrence of long QT syndrome, and they may cause cardiac
dysfunction through a dominant negative mechanism. Similarly, KCNQ1 has been found
to be closely associated with the occurrence of gestational diabetes. This might be caused by
the imbalance in the release of insulin related to KCNQ1 (Herbert et al., 2002; Majcher et al.,
2022). In our research, we also discovered that KCNQ1 plays a certain role in the apoptosis
of vascular smooth muscle cells, which opens up a new research direction. To conclude,
KCNQL1 has a certain impact on the occurrence of diabetes and heart-related diseases. This
might be a new and significant biomarker for coronary heart disease. Research on ITPK1
remains scarce, with only one study labeling ITPKI as being associated with migraine and
thyroid dysfunction (Tasnim ¢ Nyholt, 2023). In future studies, we may be able to obtain
different macrophage phenotypic characteristics by reprogramming KCNQI as well as
ITPK1 expression in adult macrophages, which may provide new ideas for the treatment
of CAD.

In order to uncover potential molecular mechanisms and targets for diabetes-related
CAD modifications, we have attached various concerns regarding the enrichment and
analysis of pathways and molecular variances between different CAD phenotypes. Our data
imply that phenotype -associated genes lead to changes in different pathways, including
the Hippo system and NRF2 pathway. Interestingly, of the 32 biomarkers, both YAP and
BAG3 were found to be associated with the Hippo and NRF2 pathways, which could
be a potential cause of their changes (Moya ¢ Halder, 2019; Wackerhage et al., 2019).
Additionally, NRF2 was also found to be correlated with MT1G, the potential biomarker
in CAD (Tang & Kang, 2024). we discovered that changed genes are primarily associated
with pathway enrichment in pathways related to immunological, metabolic, and cardiac
damage. Additional differentiation analysis of metabolic pathway enrichment revealed that
protein, carbohydrate, and lipid metabolism are the primary metabolic reprogramming
changes. Patients with CAD tend to experience changes in metabolic patterns, including
alterations in glucose and fatty acid oxidative phosphorylation (Jiang et al., 2021). Previous
studies also found that MAP4K1 may be involved in mitochondrial injury to alter energy
metabolism. The upregulated MAP4K1 may be involved in the metabolic reprogramming
process of CAD. These findings imply that metabolic reprogramming frequently occurs in
tandem with changes in the diabetes-related phenotype. In general, synergistic investigation

Aihemaiti et al. (2025), Peerd, DOI 10.7717/peerj.20117 17/22


https://peerj.com
http://dx.doi.org/10.7717/peerj.20117

Peer

of the immune microenvironment and metabolism may lead to new discoveries regarding
CAD treatment targets.

This study has limitations that must be acknowledged. The sample size was restricted,
and some critical indices for CAD and DM were not consistent, such as probe cleaning,
correction, annotation details, and sample clinical information. Although we have provided
some additional information regarding functional assays for KCNQ1 and ITPKI, the
experimental validation remains quite limited in scope. our conclusions need validation
through more mechanism experiments.

Our study has some potential future applications in clinical flow. Our identified genetic
markers are significantly upregulated in patients with coronary artery disease and have a
high co-diagnostic value, they may be used for early CAD diagnosis in diabetic patients.
We can integrate the diagnostic value of these genes into the clinical flow by constructing
relevant gene probes, fitting them in patient blood samples, and detecting the relative
expression of these biomarkers.

CONCLUSION

To conclude, we constructed a diabetes related CAD phenotype and an optimal diagnostic
model. We found that different CAD phenotypes have large differences in inflammatory and
immune microenvironment, and found that KCNQ1 and ITK1 are potential pathogenic
genes and immune regulators of CAD.
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