

1 **Sucking lice in bandicoot rats with the first description of**
2 ***Hoplopleura malabarica* nymphs.**

3

4

5

6 Paulina Kozina¹, Joanna N. Izdebska¹, Serge Morand^{2,3,4}, Alexis Ribas ^{5,6}

7

8 ¹ Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of
9 Gdańsk, Wita Stwosza Street 59, 80-308 Gdańsk, Poland

10 ² IRL HealthDEEP, CNRS - Kasetsart University - Mahidol University

11 ³ Faculty of Veterinary Technology, Kasetsart University, 10900 Bangkok, Thailand

12 ⁴ Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol
13 University, 10400 Bangkok, Thailand

14 ⁵ Section of Parasitology, Department of Biology, Healthcare and the Environment, Faculty of
15 Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain

16 ⁶ Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain

17

18 Corresponding Author:

19 Paulina Kozina¹

20 Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk,
21 Wita Stwosza Street 59, 80-308 Gdańsk, Poland

22 Email address: paulina.kozina@ug.edu.pl

23

24 **Abstract**

25 **Background.** Studies of insect biodiversity and parasitism are often based on imaginal stages, as
26 immature stages are poorly known and ~~often~~ cannot be identified to species level. However, sucking
27 lice (Anoplura) are stationary parasites with single-host life cycles, making it possible to track the
28 occurrence of all life stages ~~within~~ on the host, including both imagines and nymphs, which, as
29 hematophagous parasites, impact the host. Only the complete identification of all life stages
30 provides a full picture of parasitism, including infestation levels, parasite topography ~~within~~ on the
31 host, and host specificity.

32 **Methodology.** The description of the nymphal stages of *Hoplopleura malabarica* is based on
33 specimens of sucking lice from the greater bandicoot rat *Bandicota indica* from Southeast Asia,
34 specifically from the Vientiane area of Lao PDR, which were subjected to morphometric analysis
35 and scanning microscopy.

36 **Results.** This study presents the first description of the nymphal stages of *Hoplopleura*
37 *malabarica*, an oligoxenous parasite of rodents of the genus *Bandicota*. In addition, a global
38 checklist of Anoplura parasitizing rodents of the genus *Bandicota* was compiled.

39 **Conclusions.** The detection of different life stages of lice ~~within~~^{on} the host confirms that they
40 reproduce and develop on a given host species, fully utilizing its resources.

41

42 **Introduction**

43 Analyses of insect biodiversity, including parasitic insects, are typically based on imaginal
44 stages. Many species have been described solely from adults, sometimes from only one sex.
45 Immature stages are often poorly known^{and} for this reason cannot be identified to species level. In
46 some cases, they inhabit different environments, requiring distinct methodologies for study.
47 However, Anoplura are stationary parasites with single-host life cycles, making it possible to
48 track the occurrence of all life stages~~on~~ ^{on} the host. This is particularly important because all
49 active stages are hematophagous parasites, meaning they all can impact the health status of the
50 host. Identification based only on imaginal stages is therefore incomplete and does not provide a
51 full picture of parasitism, including aspects~~of~~ ^{of} the classical measures of parasitism to parasite
52 ecology.

53 Many Anoplura species lack descriptions of their nymphal stages, making it extremely difficult
54 or impossible to properly analyze ~~infection~~ ^{infestation} levels, parasite topography ~~within~~ ^{on} the host, and host
55 specificity. The presence of different life stages ~~within~~^{on} a host confirms that lice of a given
56 species reproduce and develop on that host, fully utilizing its resources. In contrast, the mere
57 detection of adult lice—especially occasional ones—may indicate only an attempt to colonize a
58 new host rather than a successful parasitic relationship. To obtain a comprehensive
59 understanding of lice parasitism and properly analyze the parasite–host system, including data on
60 the ~~range of~~ ^{of} host specificity of the parasite, but also the analysis of the groups composition of
61 different lice species ~~within~~^{on} a host, it is necessary to recognize and describe immature stages.

62 An interesting subject for such studies is *Hoplopleura malabarica* (Kim, 1968), an oligoxenous ^{Wernecke, 1954}

63 parasite found exclusively on rodents of the genus *Bandicota*, including *B. bengalensis* (Gray,

64 1835), *B. savilei* (Thomas, 1916), and *B. indica* (Bechstein, 1800) (Durden & Musser, 1994).

65 Knowledge of and the ability to identify immature stages will allow for future studies on the
66 complete parasite–host relationships of *H. malabarica* and its potential hosts, as well as the
67 determination of possible host preferences, distinguishing between primary and auxiliary hosts.

68 The previously undescribed nymphal stages of *H. malabarica* can be characterized in detail on
69 the basis of morphological features visible on examination using light and scanning microscopy.

70 In addition, the developmental stages of this louse differ morphologically in such a way that they
71 can be uniquely identified. ^{present}

72 The aim of the current study was to ~~make~~ ^{present} for a first time a detailed description of all nymphal
73 stages of *Hoplopleura malabarica* which is ~~typical~~ ^{present} and probably specific parasite of *Bandicota*
74 *indica*. Identification of all stages of lice is necessary to determine the total level of infestation
75 (the host's parasite load), as well as to know the life cycle of lice. In addition, data on the global
76 checklist of Anoplura parasitizing rodents from the genus *Bandicota* was prepared.

77

78

79 **Materials & Methods**80 **Global checklist of Anoplura parasiting rodents from the genus *Bandicota***

81 The world checklist of *Hoplopleura* species observed in rodents of the genus *Bandicota* is based
82 on publications from 1923 to 2014 (Ferris, 1923; Werneck, 1954; Johnson, 1959; Durden &
83 Musser, 1994; Cardozo-de-Almeida et al., 1999; Dong et al., 2014), no posterior literature to
84 2014 was found. The scientific names, common names, geographical range and systematics were
85 based following the Mammal Diversity Database (2023).

86

87 **Material of sucking lice and host**

88 The study material comprised 12 specimens of the greater bandicoot rat (*Bandicota indica*,
89 Rodentia) from the collections of the Laboratory of Parasitology, Faculty of Pharmacy,
90 University of Barcelona (Spain). The specimens originated from Southeast Asia, specifically
91 from the Vientiane province of Lao PDR.

92 *Bandicota indica* is not a protected species and is not listed under CITES. The IUCN Red List
93 (International Union for Conservation of Nature) classifies the greater bandicoot rat as *Least
94 Concern* (LC). Rodents were handled in accordance with the guidelines of the American Society
95 of Mammalogists and the European Union legislation (Directive 86/609/EEC). The trapping
96 campaign was validated by national health authorities as part of a rodent-borne disease survey.
97 Ethical approval for investing ^{host} rodents for ectoparasitism was granted by the National Ethics
98 Committee for Health Research (NECHR), Ministry of Health of Lao PDR, number
99 039/2016/NECHR.

100 The skin of the entire rodents preserved in ethanol ~~were~~ ^{was} surveyed for the presence of sucking lice
101 under ~~the~~ binocular ^{microscope}, all detected individuals were collected with the aid of ~~a~~ tweezers and stored
102 in 70% ethyl alcohol. For the morphometrical analyses, individuals were placed in polyvinyl-
103 lactophenol solution (Kadulski & Izdebska, 2006) and ~~posteriorly~~ examined under a light
104 microscope (Olympus CX 40). All measurements in this work are given in millimeters (mm).

105 Sucking lice ~~louse~~ individuals intended for analysis with scanning electron microscopy were subjected
106 to a series of alcohols (80–100%) and then dried (mix of ethyl alcohol and hexamethyldisilazane
107 - HMDS) in proportions: 1:3, 1:1, and 3:1. Finally, the specimens were transferred to pure
108 HMDS and placed in an incubator for 24 h (37°C) (Murtey et. al., 2016). Next, specimens were
109 stuck to double-sided copper tape (by Mierzejewski Materiały Samoprzylepne) and positioned
110 on the table of Field Emission Scanning Electron Microscope JSM—7800F (manufacturer
111 JEOL; stocked in Department of Materials Engineering and Bonding—Faculty of Mechanical
112 Engineering, Gdańsk University of Technology, Gdańsk, Poland).

113 *Hoplopleura malabarica* was the only louse species observed in *Bandicota indica*, eliminating
114 any possibility of misidentification of nymphs.

115 Only the skins of rodents were submitted for study, and the Anoplura extracted from them,
116 ~~successively deposited~~. ?

156 Three species of *Anoplura* ~~were~~ ^{have been} recorded in all known species of *Bandicota* (one species from
157 the genus *Hoplopleura* and two from *Polyplax*). The distribution of sucking lice is restricted to
158 Asian territories and is closely associated with their hosts. The exception is *Polyplax spinulosa*, a
159 cosmopolitan parasite (Table 1).

160

161 Description of nymphal stages

162 The lice material included 29 specimens of *Hoplopleura malabarica*, consisting of five males, 15
163 females, two first-instar nymphs, two second-instar nymphs, and five third-instar nymphs. These
164 lice were collected from five of the 12 examined specimens of *B. indica* (Table 1).

165 Nymph body measurements are provided in Table 3 (in mm).

166

167 Nymph I (Fig. 1)

168 Head

169 ~~Ventral side~~—No gular plate. Four AHS (two on each side). Two OS. Four VMHS (two on each
170 side). Two additional bristles near the site of the future VPHS.

171 ~~Dorsal side~~—No CS. Four DAHS, evenly spaced in a row. Two PAS on each side. AS and
172 PCHS very faint. OSHS and ISHS present, spaced apart by the length of the bristles. ACHS is
173 present, positioned close together. MMHS is closer to AMHS than PMHS. PDHS is thicker than
174 DPTS, reaching the first thoracic segment. ADHS present.

175 Thorax

176 ~~Ventral side~~—Evenly covered with V-shaped scales; no additional bristles.

177 ~~Dorsal side~~—DPTS extends to the beginning of the abdomen. DPtS, DMsS, and DMtS present.

178 Abdomen

179 Shaped like an inverted water droplet. Visible undulation where pleural plates will develop.

180 Segmentation is not visible. MAS, AnS, and AcS absent.

181

182 Nymph II (Fig. 2)

183 Head

184 ~~Ventral side~~—Four AHS (two on each side). Two OS. Two VMHS on each side. VPHS present.

185 ~~Dorsal side~~—Four DAHS (two on each side). PAS, PCHS, ACHS, and AS are visible. ISHS and
186 OSHS are present. All MHS evenly spaced. PDHS extends to the end of the first thoracic
187 segment. ADHS short, positioned above PDHS, extending to its beginning.

188 Thorax

189 ~~Ventral side~~—Evenly covered with V-shaped scales.

190 ~~Dorsal side~~—DPTS extends to the first abdominal segment. DMsS present next to the
191 mesothoracic spiracle. DPtS and DMtS are present. The surface is mostly smooth, with sparse,
192 wide U-shaped scales, particularly in the anterior part of the first segment.

193 Abdomen

194 Inverted water droplet shape, as in Nymph I, but more tapered at the end (sometimes flat-
195 topped). Segmentation is not visible. The entire abdomen is evenly covered with U-shaped

Delete section?

196 scales, with rare V-shaped scales at the beginning and end of the abdomen. MAS, AnS, and AcS
197 absent.

198

199 Nymph III (Fig. 3)

200 Head

201 ~~Ventral side~~—Very convex scales present around the antennae, mouth opening, and middle of
202 the head, though sparsely distributed. Four AHS. Four VMHS on each side. Two OS bristles.
203 VPHS measuring $\frac{1}{4}$ to 1/5 of head length. Numerous smaller (central and lower) and larger
204 (lateral) nodular formations at the site of the future gular plate (GP), some with fine bristles,
205 forming a rhomboid shape with a rounded lower part or an arrow-like pattern.

206 Dorsal side—Haustellum raised higher than the angles of the labrum. Four AHS (two on each
207 side). Two CS. Four evenly spaced DAHS. Two PAS on each side. PCHS, ACHS, and AS
208 present. ISHS and OSHS are spaced 1–1.5 bristle lengths apart. AMHS, MMHS, and PMHS
209 evenly spaced apart. Postanntenal angles are sharp and angular. PDHS extends almost to the
210 femur of the second pair of legs. ADHS present, positioned above PDHS.

211 Thorax

212 ~~Ventral side~~—Evenly covered with V-shaped scales, with some U-shaped scales interspersed.
213 No additional bristles.

214 ~~Dorsal side~~—DPTS extends to the beginning of the abdomen. DPtS, DMsS (twice as long as the
215 others), and DMtS present.

216 Abdomen

217 Barrel-shaped, rectangular from a dorsal view, tapering only at the very bottom. Segmentation is
218 not visible. The entire abdomen is evenly covered with U-shaped scales, transitioning to V-
219 shaped scales in the middle. MAS, AnS, and AcS absent.

220

221 **Discussion**

222 According our findings and the literature review, *Hoplopleura malabarica* appears to be a highly
223 specific parasite, observed exclusively in rodents of the genus *Bandicota*. It is likely
224 monoxenous to this genus, which is represented worldwide by only three rodent species
225 (Mammal Diversity Database, 2023).

226 Among species of *Hoplopleura* parasitizing *Bandicota indica*, *H. malabarica* is the only reported
227 species, minimizing the possibility of misidentification. In contrast, two species of the genus
228 *Polyplax*—*P. asiatica* and *P. spinulosa*—have been observed in the greater bandicoot rat. The
229 morphology of immature stages of *Hoplopleura* and *Polyplax* differ significantly, facilitating
230 accurate identification.

231 Considering all *Hoplopleura* species observed in neighboring countries of Lao PDR within the
232 Indomalayan realm, the following species have been recorded (Johnson, 1959, 1964; Durden &
233 Musser, 1994; Kazim et al., 2022):

- *H. captiosa* Johnson, 1960 *in* *Mus caroli* Bonhote, 1902;
- *H. diaphora* Johnson, 1964 *in* *Berylmys bowersi* (Anderson, 1879);

236 • *H. dissicula* Johnson, 1964 *in* *Leopoldamys sabanus* (Thomas, 1887), *Maxomys*
237 *whiteheadi* (Thomas, 1894), *Niviventer cremoriventer* (Miller, 1900), *Rattus*
238 *argentiventer* (Robinson and Kloss, 1916), *R. baluensis* (Thomas, 1894), *R. rattus*
239 (Linnaeus, 1758), *Sundamys muelleri* (Jentink, 1879) and *S. infraluteus* (Thomas, 1888);
240 • *H. kitti* Kim, 1968 *in* *Berylmys bowersi*;
241 • *H. malaysiana* Ferris, 1921 *in* *Leopoldamys sabanus* and *Sundamys muelleri*;
242 • *H. pacifica* Ewing, 1924 *in* *Rattus argentiventer*, *R. exulans* (Peale, 1848), *R. norvegicus*
243 (Berkenhout, 1769), *R. rattus* and *R. tiomanicus* (Miller, 1900);
244 • *H. pectinata* (Cummings, 1913) *in* *Maxomys alticola* (Thomas, 1888), *M. rajah* (Thomas,
245 1894), *M. surifer* (Miller, 1900), *M. whiteheadi*, *Niviventer cremoriventer*, *N. niviventer*
246 (Hodgson, 1836), *N. rapit* (Bonhote, 1903);
247 • *H. rajah* Johnson, 1972 *in* *Maxomys surifer*;
248 • *H. sicata* Johnson, 1964 *in* *Niviventer cremoriventer*.

249 The described first-instar nymphs of *Hoplopleura malabarica* can be morphologically
250 differentiated from previous species reported in the Indomalayan realm. The presence of MAS in
251 *H. captiosa*, *H. diaphora*, *H. dissicula*, *H. kitti*, *H. pacifica*, *H. pectinata*, and *H. sicata* differs of
252 *H. malabarica* that lacks of this structure. Third-instar nymphs of *H. malabarica* do not have
253 tergal plaques, which are present in *H. pacifica*, *H. pectinata*, *H. sicata*, and *H. rajah* nymphs.
254 The same applies to second-instar nymphs of *H. dissicula* and *H. sicata*. Additionally, MAS are
255 present in all nymphal instars of *H. diaphora* but are absent in *H. malabarica*. Second-instar and
256 third-instar nymphs of *H. kitti* have AnS and some dorso-central abdominal setae (DCAS), which
257 are not found in *H. malabarica*. Second-instar *H. pacifica* also have AnS. No descriptions of *H.*
258 *malaysiana* nymphs are available (Kim, 1966, 1968; Johnson, 1972).

259 In their work, Adhikary and Ghosh (1994) describe the nymphs of *H. malabarica*, but the
260 taxonomical identity have to be taken with caution, as is based on mass material, as many as 56
261 species of lice from a large area (India) are described. However, the description of *H. malabarica*
262 and provided diagrams, indicate that the nymphs they examined do not belong to the above
263 species. The description is quite laconic, while the diagrams lack elements important in
264 identification (no scale, lack of most bristles, MAS bristles in questionable quantity).
265 As a conclusion, our study contributes to a better understanding of the genus *Hoplopleura*,
266 providing morphological data that can be used to differentiate between the known species of this
267 group of sucking lice.

268

269 **Conclusions**

270 Using scanning microscopy methods, the world's first descriptions of the nymphal stages of the
271 *Hoplopleura malabarica* lice have been created. The analysis of occurrence shows that it is a
272 very rare parasite, whose range of occurrence is limited to southern Asia (India, Sri Lanka,
273 Thailand). *H. malabarica* is also a specific species of sucking lice that parasitizes only bandicoot
274 rats (*Bandicota indica* - greater Bandicoot Rat, *Bandicota bengalensis* - lesser Bandicoot Rat,

1 Table 1 *Hoplopleura* species parasitizing rodents of the genus *Bandicota* with their geographic distributions.

Host	Host distribution	Anoplura species	Parasite distribution	Author
<i>Bandicota indica</i> (Bechstein, 1800)	Bangladesh, Cambodia, China, India, Lao PDR, Myanmar, Nepal, Sri Lanka, Thailand, Vietnam and introduced in Malaysia	<i>Hoplopleura malabarica</i>	India, Sri Lanka, Thailand	Werneck, 1954; Johnson, 1959; Durden & Musser, 1994; Cardozo-de-Almeida, et al. 1999
greater Bandicoot Rat		<i>Polyplax asiatica</i>	China, Egypt, India, Iran, Myanmar, Pakistan, Taiwan, Tajikistan, Thailand	Ferris, 1923; Durden & Musser, 1994; Dong et al., 2014
<i>Bandicota bengalensis</i> (Gray, 1835)	Bangladesh, India, Myanmar, Pakistan, Sri Lanka and introduced in Indonesia and Malaysia	<i>Hoplopleura malabarica</i>	India, Sri Lanka, Thailand	Durden & Musser, 1994
lesser Bandicoot Rat		<i>Polyplax spinulosa</i>	cosmopolitan	Durden & Musser, 1994
<i>Bandicota savilei</i> Thomas, 1916	restricted to Cambodia, Lao PDR, Myanmar, Thailand, Vietnam	<i>Polyplax asiatica</i>	China, Egypt, India, Iran, Myanmar, Pakistan, Taiwan, Tajikistan, Thailand	Durden & Musser, 1994
Savile's Bandicoot Rat				

1 Table 1 Details of examined rodent *Bandicota indica* and collection numbers of *Hoplopleura malabarica* from Vientiane province
 2 in Lao PDR.

<i>Bandicota indica</i> collection numbers and sex	Date of collection	Location District	GPS data	<i>Hoplopleura malabarica</i> collection numbers
L0499 ♂	12.05.201 5	Phonehong	18°17'01.0"N 102°30'45.6"E	
L0507 ♀	13.05.201 5	Phonehong	18°18'30.7"N 102°30'52.2"E	4 Females (UGDIZPMBindAHHma1f; UGDIZPMBindAHHma12f; UGDIZPMBindAHHma3f; UGDIZPMBindAHHma14f).
L0516 ♂	13.05.15	Thulakom	18°18'30.7"N 102°30'52.2"E	1 Male (UGDIZPMBindAHHma1m)
L0517 ♀	13.05.15	Thulakom	18°18'30.7"N 102°30'52.2"E	
L0518 ♀	13.05.15	Thulakom	18°18'30.7"N 102°30'52.2"E	
L0519 ♂	13.05.15	Thulakom	18°18'30.7"N 102°30'52.2"E	
L0522 ♂	14.05.201 5	Phonehong	18°21'21.0"N 102°27'21.2"E	1 Female (UGDIZPMBindAHHma5f); 2 Nymphs third instar (UGDIZPMBindAHHma12N3; UGDIZPMBindAHHma3N3)
L0527 ♂	14.05.201 5	Thulakom	18°18'30.7"N 102°30'52.2"E	
L0528 ♀	14.05.201 5	Thulakom	18°18'30.7"N 102°30'52.2"E	2 Females (UGDIZPMBindAHHma14f; UGDIZPMBindAHHma15f).
L0529 ♂	15.05.201 5	Phonehong	18°21'21.0"N 102°27'21.2"E	
L0553 ♀	17.05.201 5	Thulakom	18°17'31.2"N 102°33'35.5"E	
L0556 ♂	18.05.201	Thulakom	18°17'31.2"N 102°33'35.5"E	2 Nymphs first instar (UGDIZPMBindAHHma1N1);

1 **Table 1. Measurements of *Hoplopleura malabarica* nymphs**

		nymphs	first	instar	nymphs	second	instar	nymphs	third	instar
		average	max	min	average	max	min	average	max	min
length	head	0,20	0,21	0,18	0,16	0,16	0,15	0,16	0,18	0,15
	thorax	0,13	0,14	0,11	0,17	0,17	0,16	0,15	0,16	0,12
	abdomen	0,56	0,60	0,51	0,49	0,55	0,42	0,71	0,74	0,69
	total	0,88	0,95	0,80	0,81	0,86	0,75	1,02	1,06	0,98
width	head	0,17	0,18	0,15	0,16	0,17	0,14	0,16	0,17	0,15
	thorax	0,31	0,31	0,30	0,28	0,29	0,26	0,32	0,36	0,27
	abdomen	0,50	0,52	0,48	0,42	0,48	0,36	0,66	0,76	0,56

2

3