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ABSTRACT
Background. Programmed cell death (PCD) is an essential biological process in
maintaining tissue homeostasis and eliminating damaged or unnecessary cells. Sig-
naling molecules profoundly affect cellular metabolism and are crucial in various
diseases; however, their role in osteoarthritis (OA) remains unclear. This study aimed
to systematically evaluate the predictive value, genetic alterations, and therapeutic
implications of PCD-associated genes in OA.
Methods. We performed multiomics analyses, integrating transcriptomic and single-
cell transcriptome data. The biological importance of PCD genes was investigated
using differential expression analysis, functional enrichment analysis, pathway analysis,
weighted gene co-expression network analysis, and many machine learning models.
Additionally, we evaluated diagnostic efficacy, immune infiltration, and competing
endogenous RNA networks associated with these genes. We established an in vitro OA
model using hypoxic treatment of ATDC5 chondrocyte cells and conducted extensive
research on the expression and function of key PCD-related genes.
Results. The key PCD gene was identified as markedly dysregulated in OA. Elevated
expression of S100A9, PMAIP1, and EDA2R was observed in OA samples, indicating
these genes as potential risk factors for OA. However, FASN expression was reduced in
OA samples compared to the normal group, indicating its potential role as a protective
gene in OA. Furthermore, PCD emerged as a reliable diagnostic marker with improved
predictive accuracy. Functional experimental studies demonstrated that S100A9,
PMAIP1, and EDA2R downregulation through small interfering RNA, alongside FASN
gene overexpression through plasmid transfection, significantly ameliorated hypoxia-
induced reductions in cell viability, decreased hyaluronan secretion, and increased
secretion of inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6).
Conclusion. Utilizing a multi-model synergistic artificial intelligence framework, we
demonstrated the remarkable potential of PCD to provide individualized vulnerability
assessments and customized recommendations for metabolic and immunotherapeutic
interventions in OA. We identified abnormal expression of four hub genes associated
with PCD and examined their biological functions, thereby facilitating new avenues for
research into the role of PCD in OA and other immune-mediated diseases.
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INTRODUCTION
Osteoarthritis (OA) is the most common joint disorder globally, affecting approximately
10% of men and 18% of women over the age of 60 (Abramoff & Caldera, 2020). The
resultant pain and functional impairment can be exceedingly debilitating. In developed
countries, the socio-economic impact is significant, accounting for 10%–25% of the gross
domestic product (Glyn-Jones et al., 2015). OA is the leading cause of disability among
the elderly, resulting in pain, functional decline, and diminished quality of life. Current
treatment options include low-impact aerobic exercise, weight reduction, acupuncture,
glucosamine and chondroitin sulfate supplementation, and surgical interventions (Jiang,
2022). The insufficient understanding of the molecular mechanisms underlying OA
pathogenesis hinders the formulation of effective strategies to halt OA progression or avert
irreversible cartilage degradation, apart from total joint replacement (Xia et al., 2014). To
better present the recent existing research on mechanisms of OA, we have compiled a
literature table (Table S1).

The delicate balance of metabolic activities in articular cartilage is disrupted by genetic
aberrations in the TGF-β/Smad, Wnt/β-catenin, and Ihh gene regulatory networks, leading
to irreversible degradation of the extracellular matrix. Recent mouse models of OA have
highlighted the upregulation of catabolic enzymes, including MMP-13 and ADAMTS5,
suggesting their potential as therapeutic targets for modulating OA progression (Marshall
et al., 2018). These factors can be taxonomically classified into mechanical impacts, aging
effects, and genetic factors (Xia et al., 2014). Numerous studies have clarified the molecular
mechanisms underlying OA pathogenesis. Chondrocytes in joints are essential regulators of
articular cartilage homeostasis, preserving its structural and functional integrity (Takahata
et al., 2021). Recent studies have indicated that the equilibrium of articular chondrocytes
can be disrupted by various factors, including abnormal mechanical forces and aging (Fang
et al., 2021). Furthermore, genetic mutations in the TGF-β/Smad, Wnt/β-catenin, and Ihh
gene regulatory networks disrupt the metabolic processes in articular cartilage, leading to
the irreversible degradation of the extracellular matrix. Recent murine models of OA have
demonstrated the upregulation of catabolic enzymes, including MMP-13 and ADAMTS5,
indicating their potential as therapeutic targets for modulating OA progression (Bernabei et
al., 2023). Manipulating these molecular entities within articular chondrocytes may impact
the regeneration of articular cartilage.

Programmed cell death (PCD) is an essential biological process in maintaining tissue
homeostasis and eliminating damaged or superfluous cells (D’Arcy, 2019; Kari et al., 2022;
Kopeina & Zhivotovsky, 2022). PCD is a complex phenomenon that occurs through various
mechanisms, including apoptosis, anoikis, autophagy, alkaliptosis, cuproptosis, entosis,
entotic cell death, immunogenic cell death, ferroptosis, lysosome-dependent cell death,
methuosis, necroptosis, NETosis, oxeiptosis, pyroptosis, parthanatos, and paraptosis
(Tower, 2015). PCD can be conceptualized as an intrinsic maintenance mechanism within
our biological systems. Similar to the meticulous organization of our homes to maintain
cleanliness and harmony, PCD performs a cellular cleansing function that eradicates
damaged or unnecessary cells, thereby enhancing tissue health.
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Apoptosis is a widely recognized PCD mechanism essential in maintaining tissue
homeostasis and eliminating damaged or excess cells. This highly regulated cellular process
is characterized by a series of biochemical and morphological alterations (Jeong & Seol,
2008). Pyroptosis, a distinct form of PCD, is initiated by inflammasome activation and
caspase-1 proteolysis, leading to cellular swelling, membrane permeabilization, and the
release of pro-inflammatory cytokines (Yu et al., 2021). Ferroptosis, a new form of PCD,
is characterized by iron-dependent cell death and lipid peroxidation (Jiang, Stockwell &
Conrad, 2021). Autophagy, a conserved cellular process, maintains cellular homeostasis
by degrading damaged proteins and organelles, thereby facilitating cellular survival or
apoptosis, depending on the context (Glick, Barth & Macleod, 2010). Necroptosis, which
resembles necrosis-like cell death and is mediated by RIPK1 and RIPK3 activation, is
another form of PCD (Zamzami et al., 1997). Cuproptosis is a PCD modality induced
by copper overload, marked by lipid peroxidation and mitochondrial dysfunction (Xie et
al., 2023). Entotic cell death occurs exclusively within viable cells and their surrounding
regions, distinguishing itself from conventional apoptotic mechanisms (Tang et al., 2019).
NETosis, induced by the release of neutrophil extracellular traps, represents another form
of PCD activated by infections or injuries (Tang et al., 2019). Parthanatos is a meticulously
regulated PCD process induced by excessive PARP-1 nuclease activation (Zheng et al.,
2022). Lysosome-mediated cell death entails the translocation of hydrolases into the
cytosol through membrane permeabilization (Mahapatra et al., 2021). The novel PCD
paradigm, alkaliptosis, is induced by intracellular alkalinization (Chen et al., 2023), while
oxeiptosis utilizes KEAP1’s reactive oxygen sensing abilities and interacts with other cell
death mechanisms (Scaturro & Pichlmair, 2019).

This study aimed to identify clusters closely associated with PCD by analyzing
genes intricately implicated in this pathway, each exhibiting unique prognostic and
immunological characteristics. Utilizing the distinct features of PCD, we developed a
prognostic model for OA. The developed model identified unique prognostic, mutational,
and immunological signatures, offering new insights into the molecular mechanisms
underlying OA and indicating potential therapeutic targets for further investigation.

METHODS
Data collection
Clinical data and transcriptome profiles of patients with OA were obtained from the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) repositories. The analytical
cohort comprised 88 samples, with 50 samples carefully selected from GSE89408 and 38
samples from GSE114007. We employed the ‘‘combat’’ function from the ‘‘sva’’ package
to mitigate batch effects and improve dataset comparability. Before analysis, all data
underwent log transformation. Furthermore, we employed single-cell transcriptome data
from the GSE152805 dataset in the GEO database, which includes single-cell transcriptomic
profiles for six OA samples, thereby enhancing the scope of our investigation.

Sun et al. (2025), PeerJ, DOI 10.7717/peerj.20104 3/25

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89408
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114007
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152805
http://dx.doi.org/10.7717/peerj.20104


Identification of PCD- related differential genes
Utilizing the comprehensive scholarly resource provided by Zou et al. (2022), we compiled
a collection of 18 distinct modalities of PCD and their responding regulatory genetic
elements. This collection comprises 580 apoptotic genes, 367 genes implicated in autophagy,
seven genes related to alkaliptosis, 338 genes associated with anoikis, 19 genes linked to
cuproptosis, 15 genes connected to enteric cell death, 87 ferroptotic genes, 34 genes
involved in immunogenic cell death, 220 genes related to lysosome-mediated cell death,
101 necroptotic genes, eight genes associated with netotic death, 24 genes related to
NETosis, five genes linked to oxeiptosis, 52 pyroptotic genes, nine genes associated with
parthanatos, and 66 genes relevant to paraptosis (Table S2). Additionally, our genetic
repository was augmented by eight methuotic genes and 23 entotic genes, culminating in
1,964 genes intrinsically associated with PCD. After eliminating 416 redundant entries,
we retained a refined set of 1,548 genes, which are essential for our investigation into
the PCD mechanism. We utilized the analytical capabilities of the ‘‘Limma’’ package to
determine the extent of differential expression between OA and non-pathological samples.
We selected genes exhibiting significant expression alterations by applying criteria of a
log2 fold change (log2FC) > 1 and a false discovery rate (FDR) < 0.05 (Nie et al., 2023).
Subsequently, we utilized the ‘‘VennDiagram’’ tool to visually depict the overlap between
differentially expressed genes (DEGs) and those associated with PCD.

Biological function and pathway enrichment analysis
In our analysis of genes exhibiting significant expression disparities between the highest
and lowest Programmed Cell Death Index (PCDI) classes, we adhered to thresholds of
FDR < 0.05 and log2 fold change >1. Moreover, to investigate the biological functions and
pathways associated with PCDI, we applied gene ontology (GO) and Kyoto encyclopedia of
genes and genomes (KEGG) analyses using the ‘‘clusterProfiler’’ software. The previously
identified differential genes were utilized as our input data, which we transformed into
Entrez identifiers before conducting GO and KEGG enrichment analyses. An adjusted
p-value threshold of <0.05 was utilized as a criterion for significance during this analytical
process.

Single sample gene set enrichment analysis (ssGSEA)
As an advanced variant of gene set enrichment analysis (GSEA), a single sample gene
set enrichment analysis (ssGSEA) enables researchers to provide an enrichment score
to each individual sample within a dataset. This advanced technique allows for a more
comprehensive analysis of gene expression data, facilitating the identification of subtle
patterns and relationships that may not be detected using conventional GSEA. The
enrichment score reflects the degree to which a gene set is enriched in a given sample.
Herein, we utilized the ssGSEA approach to determine the concentration fraction of PCDs
in OA samples.

Single-cell transcriptomic analysis
We employed the ‘‘Seurat’’ R package to examine cellular heterogeneity in OA samples,
utilizing single-cell RNA sequencing (scRNA-seq) data. To enhance the integrity of our
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analysis, we carefully eliminated low-quality cells. These included cells with gene expression
identified in three or fewer cells, those with fewer than 200 detectable genes, cells with
a mitochondrial gene ratio above 15%, a ribosomal gene ratio below 3, and those with
nFeature counts exceeding 7,500 (Pu et al., 2024; Schneider et al., 2021). The raw count
data was normalized using Seurat’s ‘‘LogNormalize’’ method with a scale factor of 10,000.
Cell clusters were delineated using canonical markers, while dimensionality reduction
techniques, including t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP), facilitated clear visualization of these
clusters. Gene expression normalization in the core cells was accomplished through a
linear regression model, after which the top 3,000 highly variable genes were selected using
analysis of variance. Principal component analysis (PCA) was applied to the single-cell
samples, leading to the selection of the first 30 principal components (PCs) for subsequent
study. The UMAP algorithm was utilized to facilitate the dimensionality reduction analysis
of the first 15 PC sample pairs.

The R package ‘‘SingleR,’’ supported by the Human Primary Cell Atlas data, Blueprint
ENCODE data, and Immune Cell Expression data, was employed as reference data.
Marker genes crucial for the manual labeling of distinct clusters were identified using the
CellMarker database and previous academic research. The AUCell software (version
1.14.0) was utilized to calculate gene set scores from the scRNA-seq data, with a
calibrated threshold to assign activity scores to cells exhibiting PCD. The ggplot2 package
(https://CRAN.R-project.org/package=ggplot2) was utilized to generate feature plots.

Immunosuppression and immune evasion analysis
Employing the ssGSEA method from the GSVA package, we performed a ssGSEA on
the identified module genes, focusing on a specific subset of genes associated with
immune suppression. This method facilitates the calculation of an immune suppression
score for each sample. Subsequently, we utilized the differential analysis tool Limma
to evaluate immune suppression scores across various sample groups, thereby identifying
significantly divergent immune suppression states. To illustrate these findings, we employed
graphical tools, including ggplot2 and boxplot, to display the immune suppression scores
across different groups, and we generated heatmaps to depict the immune suppression
characteristics of multiple genes. Additionally, we conducted an immune evasion analysis
on the identified model genes by initially assessing their expression differences across
distinct groups to evaluate their potential for immune evasion. Subsequently, we utilized
the Tumor Immune Dysfunction and Exclusion (TIDE) tool to evaluate the immune
evasion potential of the samples. TIDE calculates an immune evasion score for each sample
by synthesizing gene expression data with established immune evasion mechanisms. R
packages, including ggplot2, were employed to effectively illustrate the outcomes of the
immune evasion investigation, highlighting the characteristics of immune evasion and
their clinical significance.

Weighted gene co-expression network analysis (WGCNA) analysis
The R package weighted gene co-expression network analysis (WGCNA) was utilized to
investigate genes associated with PCD scores. The goodSamplesGenes function inWGCNA
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was initially employed to assess the need for gene filtration and to identify a suitable soft
threshold. A genemodule comprising at least 30 components was constructed following the
framework of the hybrid dynamic tree-cutting algorithm. This facilitated the establishment
of a co-expression network, highlighting the complex architecture of biological systems.
Subsequently, the Pearson correlation coefficient was utilized to analyze the association
between the module eigengene and PCD score. The study resulted in a Venn diagram
that depicted the intersection between the association module and DEGs, clarifying the
convergence of these genomic entities.

Development of diagnosis model
Our comprehensive analysis incorporated ten independent machine learning techniques,
yielding an extensive evaluation of 101 unique algorithmic permutations. The ensemble
comprised various well-regarded approaches: support vector machines, least absolute
shrinkage and selection operator, gradient boosting machine, random forest, elastic net,
stepwise Cox, k-nearest neighbors, extreme gradient boosting, and ridge regression.
Predictive models were developed utilizing the GSE89408 dataset and subsequently
validated across two independent external datasets (GSE55235 and GSE114007). We
assessed model performance using metrics including the area under the curve (AUC)
and accuracy index, identifying 23 models proficient in gene screening and importance
assessment to identify essential genes. Moreover, we developed calibration and receiver
operating characteristic (ROC) curves to carefully evaluate the prognostic capabilities of
the key genes identified.

Cell culture
The ATDC5 chondrocyte subline was cultured in a medium comprising an equal mixture
of Dulbecco’s modified Eagle’s medium (DMEM) and Ham’s F-12 (Gibco, Invitrogen,
Carlsbad, USA), supplemented with 5% fetal bovine serum (Gibco), 1% antibiotic-
antimycotic solution (Beyotime, Shanghai, China), 10 µg/mL human transferrin, and
30 mM sodium selenite (Beyotime). The cells were purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA). An in vitro OA model was developed by
subjecting ATDC5 chondrocytes to hypoxic conditions (Sun et al., 2018), specifically by
incubating them in an environment with 5% O2 at 37 ◦C for 48 h.

Cell viability
Cell viability was evaluated using the Cell Counting Kit-8 (CCK-8) assay (Beyotime). Cells
were inoculated into 96-well plates at a density of 5,000 cells per well. After treatment with
various conditions, CCK-8 solution was added to each well, and the plates were incubated
for an additional hour in a humidified atmosphere at 37 ◦C with 5% CO2. Optical density
was subsequently measured at a wavelength of 470 nm.

Enzyme-linked Immunosorbent Assay (ELISA)
An enzyme-linked immunosorbent assay (ELISA) was utilized to evaluate the
concentrations of hyaluronan, tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-6
in the culture medium of ATDC5 cells under different treatment conditions. ATDC5 cells
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Table 1 Primer sequences of qRT-PCR.

Gene Forward primer Reverse primer

FASN GGAGGTGGTGATAGCCGGTAT TGGGTAATCCATAGAGCCCAG
S100A9 ATACTCTAGGAAGGAAGGACACC TCCATGATGTCATTTATGAGGGC
PMAIP1 GCAGAGCTACCACCTGAGTTC CTTTTGCGACTTCCCAGGCA
EDA2R CACACTGCATAGTCTGCCCTC GCCTTCTGGACCCGATTGA
β-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT

were initially organized into groups and treated according to the experimental protocol.
Subsequently, culture medium from each group was collected, and ELISA kits (Cusabio
Biotech, Wuhan, China) were utilized to quantitatively measure the concentrations of
hyaluronan, TNF-α, and IL-6, adhering strictly to the manufacturer’s instructions.

Reverse transcription, quantitative real-time PCR (qRT-PCR)
Total RNAwas extracted from the treated ATDC5 cells using Trizol reagent (TaKaRa, Shiga,
Japan) to investigate the expression profiles of target genes in ATDC5 cells under different
treatment conditions. Three samples were obtained from each group. This was followed
by the synthesis of complementary DNA (cDNA) through reverse transcription, enabling
further gene expression analyses. After synthesizing cDNA using reverse transcription,
quantitative real-time polymerase chain reaction (qRT-PCR) was performed using the
SYBR Green qRT-PCR quantitation kit (TaKaRa) procedure to amplify and quantify the
target genes. The residual cDNA was stored at −20 ◦C. The relative quantification method
(2−11CT) was utilized to accurately assess gene expression levels. By utilizing β-actin as
a dependable internal control gene (Lu et al., 2023), we effectively mitigated variability
among samples, facilitating precise evaluation of target gene expression changes across
different treatment conditions. Table 1 presents the primers utilized for qRT-PCR.

Plasmid overexpression
To induce overexpression of the FASN gene, a cDNA clone plasmid of the FASN gene was
introduced into ATDC5 cells using the Lipo3000 transfection reagent. After transfection,
the cells were cultured in either 5% O2 to simulate physiological hypoxia or 21% O2 to
represent normoxia to evaluate the effects of FASN gene overexpression under different
oxygen concentrations. FASN gene expression levels were quantified using qRT-PCR 48 h.

Small interfering RNA interference
Weperformed small interfering RNA (siRNA)-mediated knockdown experiments targeting
the S100A9, PMAIP1, and EDA2R genes in the ATDC5 cell line to examine their roles in
cellular processes. The siRNAs were introduced into ATDC5 cells during their logarithmic
growth phase with the Lipo3000 transfection reagent to achieve effective gene silencing. To
ensure the reliability and reproducibility of the experimental results, we included negative
controls (NC, utilizing nonspecific siRNA) and positive controls (using siRNA with
established efficacy). Post-transfection, the cells were cultured under standard conditions.
Subsequently, qRT-PCR was employed to measure the expression levels of the S100A9,
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PMAIP1, and EDA2R genes 48 h after transfection, thereby verifying the knockdown
efficiency of the siRNAs.

Statistical analyses
Our comprehensive analysis utilized various statistical techniques, which were carefully
implemented to evaluate the importance of identified discrepancies and relationships in the
research study. To illustrate the variability of values around the mean, data are presented as
mean ± standard deviation (SD). We employed Cox regression models and Kaplan–Meier
survival analysis to investigate the impact of risk factors on survival outcomes, leveraging
their respective strengths for this analysis. Additionally, Pearson correlation analysis was
performed to investigate the correlations among variables. All statistical analyses and data
visualization were performed using R Studio (version 4.3.1). A p > 0.05 was considered the
threshold for statistical significance.

RESULTS
Preliminary screening of mtPCDI regulators
We commenced our investigation by compiling a collection of essential regulatory genes,
including 18 carefully curated patterns of PCD from academic sources (Zou et al., 2022).
Our objective was to examine the differential expression of PCD-related genes in OA. To
achieve this, we performed a thorough analysis of two independent, publicly accessible gene
expression datasets: GSE89408 and GSE114007. We effectively eliminated batch effects
and generated volcano plots (Figs. 1A–1B). We employed rigorous criteria, establishing
thresholds at |log2 fold change|> 1 and an adjusted p< 0.05, which identified several genes
with significant upregulation (indicated in red) or downregulation (indicated in blue)
in the OA environment compared to normal samples (Fig. 1C). Several genes associated
with critical PCD processes, including ECT2, MAPK1, and SREBF1, consistently exhibited
upregulation, highlighting their possible role in OA. Hierarchical clustering analysis
further validated the differential expression patterns, demonstrating a clear distinction
between OA and normal samples based on the identified DEGs (Fig. 1D). The heatmaps
depict unique gene expression profiles in OA, marked by clusters of genes exhibiting
significant up-regulation or down-regulation. This clustering pattern highlights substantial
gene expression disparities between the two groups, highlighting the potential biological
significance of these DEGs in OA.

Functional enrichment analysis
KEGG pathway analysis revealed key pathways, including ‘‘rheumatoid arthritis,’’
‘‘osteoclast differentiation,’’ ‘‘cell adhesion molecules,’’ and ‘‘phagosome’’ (Fig. 1E).
These enriched pathways imply that the differential genes are implicated in biological
processes, including extracellular matrix dynamics, bone development, growth, repair,
reconstruction, and immune modulation, presenting prospective therapeutic targets for
OA. The GO enrichment study revealed a compelling narrative, indicating that DEGs
in OA had significant implications for essential biological processes. These specifically
include ‘‘neutrophil activation in immune response,’’ ‘‘neutrophil degranulation,’’ and
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Figure 1 Differential expression and integration analysis in OA. (A) PCA plot shows the sample distri-
bution before the removal of batch effect; (B) PCA plot shows the sample distribution after the removal
of batch effect; (C) Volcano plots showing DEGs between OA and normal samples in integrated datasets.
Upregulated genes are shown in red, downregulated in blue, with key palmitoylation-related genes labeled;
(D) Heatmaps displaying hierarchical clustering of OA and normal samples based on DEGs in integrated
datasets, revealing distinct expression patterns; (E) KEGG pathway analysis showing enrichment in critical
pathways like rheumatoid arthritis, osteoclast differentiation, (continued on next page. . . )

Full-size DOI: 10.7717/peerj.20104/fig-1
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Figure 1 (. . .continued)
phagosome and cell adhesion molecules; (F) The GO enrichment analysis illuminates a constellation of
significantly enriched terms, spanning the triumvirate of biological process, molecular function, and cellu-
lar component categories. Salient processes encompass neutrophil activation in immunological response,
neutrophil degranulation, extracellular structure orchestration, collagen-laden extracellular matrix, and
immunoglobulin tethering. These pivotal elements underscore the intricate tapestry of biological interac-
tions embedded within the data.

‘‘extracellular structure organization.’’ These findings indicate a role in the complex
interaction of immune regulation and the dynamic remodeling of the extracellular matrix
(Fig. 1F).

Construction of PCD scores
Hierarchical cluster analysis confirmed the varying expression patterns of specific PCD
genes, demonstrating a clear distinction between OA and normal samples (Fig. 2A).
Subsequent ssGSEA based on 18 PCD genes revealed significant differences between OA
and normal samples across various scores, including those for apoptosis, autophagy,
and necroptosis. After detecting these distinct gene expression patterns, we systematically
classified them into seven distinct PCD categories: NETosis, lysosome-dependent cell death,
oxeiptosis, NETosis, immunogenic cell death, anoikis, and entosis (Fig. 2B). To clarify the
relationship between DEGs and PCD, we performed an enrichment analysis focusing on
their intersection. The KEGG analysis revealed pathways significantly enriched in lysosome
function, apoptosis, and rheumatoid arthritis (Fig. 2C), while the GO enrichment analysis
highlighted genes abundant in pathways associated with the regulation of apoptotic
signaling, positive modulation of apoptotic signaling, and other aspects of cell death. These
findings offer significant insights into the complex molecular mechanisms underlying
OA pathophysiology, specifically focusing on neutrophil degranulation—processes closely
associated with PCD and immunological regulation (Fig. 2D).

Single-cell transcriptomic analysis
Our preliminary study involved the careful selection of resilient, non-degradable cells,
resulting in a substantial collection of 26,131 core cells for further analysis. Subsequently,
we performed a genetic variance analysis on these core cells, identifying an amazing
3,000 genes exhibiting high variability. PCA was performed on five single-cell specimens,
demonstrating a coherent distribution of the samples. We identified 30 PCs with p > 0.05
for further investigation. The robust t-SNE algorithm effectively categorized the core cells
into 16 distinct clusters (Fig. 3A). We employed the analytical functions of the ‘‘singleR’’
software package and the CellMarker database to discover marker genes. This study enabled
the identification of various cell clusters, dividing them into seven separate groups: HomC,
RepC, FC, preFC, preHTC, HTC, and RegC (Fig. 3B). We constructed scatter plots to
effectively depict the expression patterns of marker genes across different cell types (Fig.
3C) and utilized bubble maps (Fig. 3D) to reveal the expression profiles of key marker
genes within each cell type. These visual tools provided significant insights into the genetic
markers that define the diverse cell populations. Additionally, we examined the expression
of marker genes across various cell types, confirming that each selected marker gene
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Figure 2 Differential expression of PCD related genes in OA. (A) Heatmaps displaying hierarchical
clustering of OA and normal samples based on PCD related genes in integrated datasets, revealing distinct
expression) Boxplot showing PCD scores between OA and normal samples in integrated datasets based ss-
GSEA; (C–D) Dotplots show the KEGG and GO enrichment results of the intersection genes of DEG and
PCD.

Full-size DOI: 10.7717/peerj.20104/fig-2

exhibited high expression in specific cells (Fig. 3E). This finding further supports the
reliability of our cell type analyses.

PCD-related pathway score
We utilized the AUCell R package to evaluate the significance of PCD within each cellular
subtype. This tool enabled us to assess the activity of the PCD pathway within each cell
subpopulation. This study employed the AUC value as an indicator of pathway activity, with

Sun et al. (2025), PeerJ, DOI 10.7717/peerj.20104 11/25

https://peerj.com
https://doi.org/10.7717/peerj.20104/fig-2
http://dx.doi.org/10.7717/peerj.20104


Figure 3 Seven unique cell clusters derived from scRNA-seq data, highlighting substantial cellular het-
erogeneity within OA. Each cluster possesses distinct annotations, enhancing our understanding of OA
pathophysiology. (A) Leveraging the umap algorithm upon the top 30 principal components, we adeptly
surmounted dimensionality constraints, culminating in the proficient classification of 16 cellular agglom-
erations. (B) Harnessing the analytical prowess of singleR and CellMarker, we masterfully ascribed iden-
tities to all 7 cellular clusters within the OA milieu, as dictated by the peculiar amalgam of marker genes.
(C) t-SNE plots showing the expression of specific genes (MMP3, FOSB, JUN, COL10A1, IBSP, COL2A1,
CHI3L1, CHI3L2, CILP, COL3A1, COMP, COL1A1, COL1A2, S100A4, PRG4, TMSB4X, IL11, OGN)
across cells. (D) Dot plot displaying the expression of various genes across different cell clusters (0–15).
(E) Dot plot illustrating gene expression across distinct cell identities (HomC, RepC, FC, preFC, preHTC,
HTC, RegC).

Full-size DOI: 10.7717/peerj.20104/fig-3
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Figure 4 AUCell analysis of OA cell subsets. (A) t-SNE plots illustrating the expression of PCD-related
genes within each OA cell subset. (B) Heatmap shows the correlation among the PCD scores based AU-
Cell.

Full-size DOI: 10.7717/peerj.20104/fig-4

higher values signifying greater robustness. We utilized a t-distributed Stochastic Neighbor
Embedding (t-SNE) map to depict our findings, which effectively illustrated the dynamic
nature of the PCD pathways among different cell subgroups. In this visualization, yellow
dots represented regions of increased activity, while gray dots indicated relatively lower
activity levels. Notably, pathways including anoikis, apoptosis, autophagy, ferroptosis,
necroptosis, NETosis, paratosis, and pyroptosis exhibited high expression levels across
different cell clusters (Fig. 4A). Conversely, the expression levels of alternative PCD
pathways were low within each cell cluster (Fig. 4A). Consequently, subsequent analyses
concentrated on the pathways mentioned above. Besides, a significant correlation was
observed among the PCD scores, indicating complex regulatory interactions between these
pathways (Fig. 4B).

Identification of PCD- related key modules
We utilized the WGCNA to identify genes implicated in OA onset and progression. Outlier
samples were removed using cluster analysis (Fig. 5A), and the PCD index for each sample is
presented in Fig. 5B. During the construction of the co-expression network, we established
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the soft threshold power β at 6, corresponding with a scale-free topology fit index of 0.85
(Fig. 5C). The dynamic tree cut algorithm was utilized to merge similar modules by setting
the MEDissThres to 0.15, resulting in the identification of 17 modules (Fig. 5D). The
modules MEbrown and MEmagenta were identified as key modules based on correlation
coefficients and p values. MEbrown comprises 2,556 genes, while MEmagenta includes 385
genes (Fig. 5E).

Unraveling PCD-related genes in OA
We employed variousmachine learningmodels focusing on genes related to PCD to achieve
a more precise identification of key genes involved in the progression of OA. Initially, we
identified the intersection of DEGs, PCD-related genes, and WGCNA modules, resulting
in 22 genes selected for further analysis (Fig. 6A). The models derived from these genes
demonstrated effective predictive capabilities, with the ridge regression cross-validation
10-fold model (cutoff: 0.75) displaying the highest accuracy and AUC values, averaging
0.713 and 0.725, respectively, across three datasets (Figs. 6B–6C). This diagnostic model,
based on PCD-related genes, exhibits strong predictive efficacy. The comprehensive
machine learning approach included 23 models for variable selection, and the final key
genes were determined by assessing the gene ranking across these models (Figs. 6D–6E).
We identified the four principal genes—PMAIP1, EDA2R, S100A9, and FASN—as key
contributors.

Discovery of hub genes for OA
Four genes emerged as central hub genes: S100A9, PMAIP1, EDA2R, and FASN. Their
expression levels were significantly elevated in OA compared to controls, except for
FASN (p< 0.05, Fig. 7A). The ROC curve exhibited high AUC values for these hub
genes, indicating their potential as important independent biomarkers for OA (Fig. 7B).
These findings collectively highlight the critical roles these hub genes may have in the
inflammatory response associated with OA. In the column chart, each feature variable was
depicted as a separate score, with their cumulative sum reflecting the probability of OA
(Fig. 7C). Focusing on the hub genes, we utilized the miRTarBase version 9.0 database to
establish an mRNA-miRNA interaction network (Fig. 7D). Simultaneously, we utilized the
TRRUST database to develop an interaction network diagram depicting the interaction
between hub genes and transcription factors (Fig. 7E).

Expression and function of hub genes within an in vitro OA model
To establish the OA cell model, ATDC5 chondrocyte cells were cultured in hypoxic
conditions for 48 h. The findings indicate that hypoxia exposure significantly inhibited cell
proliferation (Fig. 8A), suppressed hyaluronan synthesis (Fig. 8B), and elevated TNF-α
and IL-6 levels (Fig. 8C). These findings confirm the successful establishment of an in
vitro OA cellular model. The analysis of hub gene expression demonstrated consistency
with bioinformatics predictions. FASN expression was markedly downregulated in the
OA group, while S100A9, PMAIP1, and EDA2R levels were significantly increased, with
p< 0.05 (Fig. 8D). To further clarify the functions of these hub genes, plasmids were utilized
to overexpress the FASN gene, while siRNA was applied to inhibit S100A9, PMAIP1, and
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Figure 5 PCD-related genes are screened byWGCNA. (A) OA samples cluster tree and remove sam-
ples above the red line; (B) PCD pathway scores expression in each sample; (C) Our analytical odyssey
commenced with a meticulous dissection of the scale-free index, examining its oscillations across an array
of soft-threshold powers (β); (D) The dendrogram (1-TOM) elucidates co-expression network modules,
with an ensuing analysis (E) revealing noteworthy associations between these modules and PCD. P-values
are furnished to corroborate these connections, offering a statistical foundation for the observed relation-
ships and reinforcing the validity of the findings.

Full-size DOI: 10.7717/peerj.20104/fig-5

EDA2R expression in vitro (Fig. 8E). The findings revealed that FASN overexpression and
the knockdown of S100A9, PMAIP1, and EDA2R significantly alleviated the hypoxia-
induced reduction in cell proliferation (Fig. 8F) and hyaluronan synthesis (Fig. 8G), while
an increase in the inflammatory cytokines TNF-α and IL-6 was observed (Figs. 8H–8I) in
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Figure 6 Evaluating the ability of genes by combining multiple machine learning models. (A–B) Accu-
racy of all machine learning models; (C) AUC of all machine learning models; (D-E) Evaluation of the im-
portance of 23 machine learning models with screening capability to PCD-related genes.

Full-size DOI: 10.7717/peerj.20104/fig-6

ATDC5 cells. These findings highlight the essential functions of these four hub genes in
OA onset and progression.

Immunosuppression and immune evasion analysis
Upon delving into the immunosuppressive-related cells or pathways, a discernible
distinction surfaced in Myeloid-Derived Suppressor Cell (MDSC) Wang et al. (2022)
and fibroblasts Microenvironment Cell Population Counter (MCPcounter) between
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Figure 7 Diagnostic performance andmolecular function of hub genes. (A) The hub genes’ expression
took center stage, illuminating the complex interplay between OA and normal samples. (B) Harnessing
the power of Receiver Operating Characteristic (ROC) curves, we meticulously appraised the diagnostic
potential of the four distinguished hub genes. The Area Under the Curve (AUC) scores emerged as testa-
ment to their performance in discerning OA from normal samples. (C) A column plot wove a tapestry of
comprehensive data, unveiling the rich narrative ensconced within its graphical confines. (D) The mRNA-
miRNA network took form, a constellation of orange hub mitochondria-related genes and their verdant
miRNA counterparts, casting a constellation of complex relationships. (E) The mRNA-TF network un-
furled, its orange hub mitochondria-related genes orbiting a galaxy of blue transcription factors, together
forging a panorama of interwoven connections.

Full-size DOI: 10.7717/peerj.20104/fig-7

OA and normal groups (p< 0.05), while other features remained statistically static
(Fig. 9A). A heatmap offers a comprehensive visual depiction of the significant variations
in immunosuppressive-related features, highlighting the contrast between groups with
high and low immune infiltration (Fig. 9B). Significant differences were observed
in Cancer-Associated Fibroblast (CAF) Peng et al. (2024), fibroblasts MCPcounter,
CAFs_EPIC (Zheng et al., 2021), macrophages M2 CIBERSORT (Bao et al., 2021), and
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Figure 8 Expression and function of hub genes within an in vitro osteoarthritis model. (A) Cell sur-
vival rates after being subjected to hypoxia. (B) Secretion levels of Hyaluronan after hypoxia treatment.
(C) Secretion levels of TNF-α and IL-6 after hypoxia treatment. (continued on next page. . . )

Full-size DOI: 10.7717/peerj.20104/fig-8
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Figure 8 (. . .continued)
(D) To gauge the expression levels of the four central genes under hypoxic conditions, quantitative real-
time PCR (qRT-PCR) was employed, offering valuable insights into their responsiveness to this environ-
mental stressor. (E) Additionally, we harnessed qRT-PCR to investigate the expression profiles of these
genes in response to plasmid overexpression or siRNA-mediated silencing, thereby illuminating the ef-
fects of genetic manipulation on their transcriptional regulation. (F) Detection of cell survival rates after
plasmid overexpression or siRNA interference. (G) Detection the occurrence of cell apoptosis after plas-
mid overexpression or siRNA interference. (H) Secretion levels of TNF-α after plasmid overexpression
or siRNA interference. (I) Secretion levels of IL-6 after plasmid overexpression or siRNA interference.
∗∗∗p< 0.001, two-tailed Student’s t -test was implemented for the examination of (A–D), while a one-way
ANOVA formed the basis of our analysis for (E–I).

TAM_Peng_et_al (Wang et al., 2022) (p< 0.05) when examining immune exclusion-
related feature scores (Fig. 9C). A comprehensive heatmap illustrates the variation in
immune exclusion-related features between the high and low clusters (Fig. 9D). The
Mantel correlation heatmap illustrates a complex network of correlations between
immune infiltration and its association with PCD. Multiple immune infiltrations are
significantly correlated, indicating a sophisticated regulatory interaction. Furthermore,
PCD significantly correlates with various immune infiltrates, including M2 macrophages.
The dynamic interaction between PCD and immune mechanisms is highlighted by the
significantly different distribution of resting and activated mast cells in response to PCD
variations (p< 0.05) (Fig. 9E).

DISCUSSION
The clinical symptoms ofOA exhibit several phenotypes despite the underlying degenerative
process being both progressive and relentless (Skalny et al., 2024). Despite significant
advancements in managing these manifestations, the underlying molecular mechanisms of
the disease remain inadequately understood, thereby limiting the potential for identifying
effective pharmacological therapies to restore tissue homeostasis (Umoh, Dos Reis & De
Oliveira, 2024). Such a targeted approach would be particularly beneficial if implemented
promptly tomitigate the damage caused by the disease’s degenerative andprogressive nature
(Huang & Wu, 2018; Jansen & Mastbergen, 2022; Saito & Tanaka, 2017). Our research aims
to contribute to this initiative by isolating PCD-associated genes from multiple OA-related
datasets.

The utilization of machine learning in predicting patient illness is increasingly common
(Swanson et al., 2023; Xiong et al., 2023). However, maintaining accuracy while integrating
these methods into clinical practice remains challenging. Critical questions encompass
the rationale for selecting specific algorithms and determining the optimal solution.
Researcher bias can affect algorithm selection, underscoring the importance of balancing
expertise with objective evaluation tominimize bias andmaximize insights. By conducting a
comprehensive analysis involving GEO and literature screening of genes associated withOA
and cell death, AUCell assessment of PCD expression in single-cell transcriptome datasets,
and WGCNA to identify intersecting genes, followed by multiple machine learning model
analyses, we identified four hub genes (S100A9, PMAIP1, EDA2R, and FASN) associated
with PCD. The GO analysis revealed processes including ossification, amplification of cell
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Figure 9 Analysis of the immunemicroenvironment from an immunological perspective. (A) box plot
of signature scores for immunosuppression-related features demonstrates the disparity in immunosup-
pressive cells or pathways between the OA and normal groups. (B) The heatmaps of immunosuppression-
related cells and pathways in the OA and normal groups demonstrate specific immunosuppressive charac-
teristics. (C) The box plot of signature scores for immune rejection-related features illustrates the discrep-
ancy in immune rejection characteristics between OA and normal groups, encompassing T cell infiltra-
tion, immune escape mechanisms, and other aspects. (D) The heatmap of immune rejection-related fea-
tures depicts the differential expression of diverse immune rejection features in the OA and normal group.
(E) A Mantel correlation heat map was constructed to visualize the intricate web of relationships connect-
ing immune infiltration and PCD, revealing their potential interdependence.

Full-size DOI: 10.7717/peerj.20104/fig-9
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death mechanisms, greater immune cell engagement, intensified regulation of apoptotic
signaling, increased neutrophil activation, and enhanced modulation of immunological
responses. The KEGG analysis revealed enrichment in pathways, including apoptosis,
lysosomes and IL-17 signaling, which are classical pathways of PCD (D’Arcy, 2019; Kopeina
& Zhivotovsky, 2022; Liu et al., 2022). Additionally, PCD exhibited a substantial correlation
with various immune infiltrations, including M2 macrophages, resting mast cells, and
potentially active mast cells, which may be involved in the PCD process.

S100A9, PMAIP1, and EDA2R expression levels were elevated in OA samples, indicating
these genes as risk factors for OA. Conversely, FASN expression was decreased in OA
samples compared to normal groups, suggesting its function as a protective gene in
OA. Single-cell analysis identified anoikis, apoptosis, autophagy, ferroptosis, necroptosis,
NETosis, paratosis, and pyroptosis as the predominant active pathways of PCD in OA.
Additionally, the development of an in vitro cellular OA model through hypoxic treatment
of ATDC5 chondrocyte cells revealed abnormal expression patterns that were consistent
with bioinformatics analysis. Functional experiments demonstrated that S100A9, PMAIP1,
and EDA2R downregulation through siRNA, along with the overexpression of the FASN
gene through plasmid transfection, significantly mitigated hypoxia-induced reductions
in cell viability, decreased hyaluronan secretion, and increased secretion of inflammatory
cytokines (TNF-α and IL-6). These findings indicate that these PCD-related hub genes are
essential in OA onset and progression, offering new biological targets for future diagnostic
and therapeutic strategies for OA.

Our enrichment analysis revealed a complex interaction, with PCD-related genes
predominantly engaged in diverse cellular processes, environmental information
processing, and biological systems. This study identified significant associations between
OA and immune regulation and a range of metabolic biological processes. These findings
may partially clarify the poorer prognosis observed in this group. A key limitation of
this study is the lack of in vitro or in vivo experiments to conclusively validate our
findings. Despite utilizing stringent bioinformatics analyses and computational techniques,
experimental validation remains essential in scientific research. Such investigation can
clarify the functional implications of the observed patterns, hence improving the reliability
and robustness of our results. Accordingly, future research should prioritize conducting
precise experiments to validate our PCD findings with empirical evidence.

This study has some limitations. First, although gene expression data were obtained
from the GEO database, enhancing the accuracy of our findings requires the acquisition
of additional samples from clinical patients with OA. Furthermore, the exact relationships
within mRNA-miRNA and mRNA-TF networks warrant further investigation.
Additionally, the mechanisms of action of the four key genes in OA require more
comprehensive investigation through animal experiments and clinical sample analysis.
Consequently, these limitations should be considered in future research studies. If feasible,
we will undertake experimental validation simultaneously with the collection of clinical
samples.
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CONCLUSIONS
Four hub genes associated with PCD, PMAIP1, EDA2R, S100A9, and FASN, were found
alongside immune-related cells usingmachine learning and single-cell analysis. The analysis
of competing endogenous RNA networks associated with these hub genes can identify
corresponding miRNAs and transcription factors, thereby facilitating the investigation of
the underlying mechanisms of OA. Moreover, these key genes provide potential targets for
OA immunotherapy. This study provides a new perspective on the complex interactions
between PCD-related genes and OA, therefore paving the way for research and therapeutic
advancements.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Qinchao Sun performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.

• Ye Zhong analyzed the data, prepared figures and/or tables, and approved the final draft.
• Gaoxiang Huang performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

• Yongpei Lin conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available at GenBank: GSE89408, GSE114007, and GSE152805.
Data is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.20104#supplemental-information.

REFERENCES
Abramoff B, Caldera FE. 2020. Osteoarthritis: pathology, diagnosis, and treatment

options.Medical Clinics of North America 104:293–311
DOI 10.1016/j.mcna.2019.10.007.

Bao X, Shi R, Zhao T,Wang Y, Anastasov N, RosemannM, FangW. 2021. Integrated
analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity
plus M2-like tumour-associated macrophage infiltration and aggressiveness in

Sun et al. (2025), PeerJ, DOI 10.7717/peerj.20104 22/25

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89408
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114007
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152805
http://dx.doi.org/10.7717/peerj.20104#supplemental-information
http://dx.doi.org/10.7717/peerj.20104#supplemental-information
http://dx.doi.org/10.7717/peerj.20104#supplemental-information
http://dx.doi.org/10.1016/j.mcna.2019.10.007
http://dx.doi.org/10.7717/peerj.20104


TNBC. Cancer Immunology, Immunotherapy 70:189–202
DOI 10.1007/s00262-020-02669-7.

Bernabei I, So A, Busso N, Nasi S. 2023. Cartilage calcification in osteoarthritis:
mechanisms and clinical relevance. Nature Reviews Rheumatology 19:10–27
DOI 10.1038/s41584-022-00875-4.

Chen F, Kang R, Liu J, Tang D. 2023.Mechanisms of alkaliptosis. Frontiers in Cell and
Developmental Biology 11:1213995 DOI 10.3389/fcell.2023.1213995.

D’ArcyMS. 2019. Cell death: a review of the major forms of apoptosis, necrosis and
autophagy. Cell Biology International 43:582–592 DOI 10.1002/cbin.11137.

Fang T, Zhou X, Jin M, Nie J, Li X. 2021.Molecular mechanisms of mechanical
load-induced osteoarthritis. International Orthopaedics 45:1125–1136
DOI 10.1007/s00264-021-04938-1.

Glick D, Barth S, Macleod KF. 2010. Autophagy: cellular and molecular mechanisms.
The Journal of Pathology 221:3–12 DOI 10.1002/path.2697.

Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL,Weinans H, Carr AJ. 2015.
Osteoarthritis. Lancet 386:376–387 DOI 10.1016/s0140-6736(14)60802-3.

Huang K,Wu LD. 2018. Dehydroepiandrosterone: molecular mechanisms and therapeu-
tic implications in osteoarthritis. The Journal of Steroid Biochemistry and Molecular
Biology 183:27–38 DOI 10.1016/j.jsbmb.2018.05.004.

JansenMP, Mastbergen SC. 2022. Joint distraction for osteoarthritis: clinical evidence
and molecular mechanisms. Nature Reviews Rheumatology 18:35–46
DOI 10.1038/s41584-021-00695-y.

Jeong SY, Seol DW. 2008. The role of mitochondria in apoptosis. BMB Reports 41:11–22
DOI 10.5483/bmbrep.2008.41.1.011.

Jiang Y. 2022. Osteoarthritis year in review 2021: biology. Osteoarthritis Cartilage
30:207–215 DOI 10.1016/j.joca.2021.11.009.

Jiang X, Stockwell BR, ConradM. 2021. Ferroptosis: mechanisms, biology and role in
disease. Nature Reviews Molecular Cell Biology 22:266–282
DOI 10.1038/s41580-020-00324-8.

Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu
M. 2022. Programmed cell death detection methods: a systematic review and a
categorical comparison. Apoptosis 27:482–508 DOI 10.1007/s10495-022-01735-y.

Kopeina GS, Zhivotovsky B. 2022. Programmed cell death: past, present and
future. Biochemical and Biophysical Research Communications 633:55–58
DOI 10.1016/j.bbrc.2022.09.022.

Liu J, HongM, Li Y, Chen D,Wu Y, Hu Y. 2022. Programmed cell death tunes tumor
immunity. Frontiers in Immunology 13:847345 DOI 10.3389/fimmu.2022.847345.

Lu K,Wang Q, Hao L,Wei G,Wang T, LuWW, Xiao G, Tong L, Zhao X, Chen D.
2023.miR-204 ameliorates osteoarthritis pain by inhibiting SP1-LRP1 signaling
and blocking neuro-cartilage interaction. Bioactive Materials 26:425–436
DOI 10.1016/j.bioactmat.2023.03.010.

Sun et al. (2025), PeerJ, DOI 10.7717/peerj.20104 23/25

https://peerj.com
http://dx.doi.org/10.1007/s00262-020-02669-7
http://dx.doi.org/10.1038/s41584-022-00875-4
http://dx.doi.org/10.3389/fcell.2023.1213995
http://dx.doi.org/10.1002/cbin.11137
http://dx.doi.org/10.1007/s00264-021-04938-1
http://dx.doi.org/10.1002/path.2697
http://dx.doi.org/10.1016/s0140-6736(14)60802-3
http://dx.doi.org/10.1016/j.jsbmb.2018.05.004
http://dx.doi.org/10.1038/s41584-021-00695-y
http://dx.doi.org/10.5483/bmbrep.2008.41.1.011
http://dx.doi.org/10.1016/j.joca.2021.11.009
http://dx.doi.org/10.1038/s41580-020-00324-8
http://dx.doi.org/10.1007/s10495-022-01735-y
http://dx.doi.org/10.1016/j.bbrc.2022.09.022
http://dx.doi.org/10.3389/fimmu.2022.847345
http://dx.doi.org/10.1016/j.bioactmat.2023.03.010
http://dx.doi.org/10.7717/peerj.20104


Mahapatra KK, Mishra SR, Behera BP, Patil S, Gewirtz DA, Bhutia SK. 2021. The
lysosome as an imperative regulator of autophagy and cell death. Cellular and
Molecular Life Sciences 78:7435–7449 DOI 10.1007/s00018-021-03988-3.

Marshall M,Watt FE, Vincent TL, Dziedzic K. 2018.Hand osteoarthritis: clinical
phenotypes, molecular mechanisms and disease management. Nature Reviews
Rheumatology 14:641–656 DOI 10.1038/s41584-018-0095-4.

NieM, Liu Q, Jia R, Li Z, Li X, Meng X. 2023. Comparative transcriptome analysis of
unfractionated peripheral blood leukocytes after exercise in human. Scientific Reports
13:11140 DOI 10.1038/s41598-023-38064-2.

Peng Q, Zhang P, Liu G, Lu L. 2024. Integrated single-cell and bulk RNA sequencing
analyses identify an immunotherapy nonresponse-related fibroblast signature in
gastric cancer. Anticancer Drugs 35:952–968 DOI 10.1097/cad.0000000000001651.

Pu Z,Wang TB, Lu Y,Wu Z, Chen Y, Luo Z,Wang X, Mou L. 2024. Deciphering
the role of metal ion transport-related genes in T2D pathogenesis and immune
cell infiltration via scRNA-seq and machine learning. Frontiers in Immunology
15:1479166 DOI 10.3389/fimmu.2024.1479166.

Saito T, Tanaka S. 2017.Molecular mechanisms underlying osteoarthritis development:
Notch and NF-κB. Arthritis Research and Therapy 19:94
DOI 10.1186/s13075-017-1296-y.

Scaturro P, Pichlmair A. 2019. Oxeiptosis: a discreet way to respond to radicals. Current
Opinion in Immunology 56:37–43 DOI 10.1016/j.coi.2018.10.006.

Schneider I, Cepela J, Shetty M,Wang J, Starr TK. 2021. Use of default parameter
settings when analyzing single cell RNA sequencing data using Seurat: a bi-
ologist’s perspective. Journal of Translational Genetics and Genomics 5:37–49
DOI 10.20517/jtgg.2020.48.

Skalny AV, Aschner M, Zhang F, Guo X, Buha Djordevic A, Sotnikova TI,
Korobeinikova TV, Domingo JL, Farsky SHP, Tinkov AA. 2024.Molecular
mechanisms of environmental pollutant-induced cartilage damage: from de-
velopmental disorders to osteoarthritis. Archives of Toxicology 98:2763–2796
DOI 10.1007/s00204-024-03772-9.

Sun J, Song X, Su L, Cao S. 2018. Long non-coding RNA LncHIFCAR promotes
osteoarthritis development via positively regulating HIF-1α and activating the
PI3K/AKT/mTOR pathway. International Journal of Clinical and Experimental
Pathology 11:3000–3009.

Swanson K,Wu E, Zhang A, Alizadeh AA, Zou J. 2023. From patterns to patients:
advances in clinical machine learning for cancer diagnosis, prognosis, and treatment.
Cell 186:1772–1791 DOI 10.1016/j.cell.2023.01.035.

Takahata Y, Murakami T, Hata K, Nishimura R. 2021.Molecular mechanisms involved
in the progression and protection of osteoarthritis. Current Molecular Pharmacology
14:165–169 DOI 10.2174/1874467213666200417122933.

Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. 2019. The molecular machin-
ery of regulated cell death. Cell Research 29:347–364 DOI 10.1038/s41422-019-0164-5.

Sun et al. (2025), PeerJ, DOI 10.7717/peerj.20104 24/25

https://peerj.com
http://dx.doi.org/10.1007/s00018-021-03988-3
http://dx.doi.org/10.1038/s41584-018-0095-4
http://dx.doi.org/10.1038/s41598-023-38064-2
http://dx.doi.org/10.1097/cad.0000000000001651
http://dx.doi.org/10.3389/fimmu.2024.1479166
http://dx.doi.org/10.1186/s13075-017-1296-y
http://dx.doi.org/10.1016/j.coi.2018.10.006
http://dx.doi.org/10.20517/jtgg.2020.48
http://dx.doi.org/10.1007/s00204-024-03772-9
http://dx.doi.org/10.1016/j.cell.2023.01.035
http://dx.doi.org/10.2174/1874467213666200417122933
http://dx.doi.org/10.1038/s41422-019-0164-5
http://dx.doi.org/10.7717/peerj.20104


Tower J. 2015. Programmed cell death in aging. Ageing Research Reviews 23:90–100
DOI 10.1016/j.arr.2015.04.002.

Umoh IO, Dos Reis HJ, De Oliveira ACP. 2024.Molecular mechanisms linking
osteoarthritis and alzheimer’s disease: shared pathways, mechanisms and
breakthrough prospects. International Journal of Molecular Sciences 25:3044
DOI 10.3390/ijms25053044.

Wang T, Dang N, Tang G, Li Z, Li X, Shi B, Xu Z, Li L, Yang X, Xu C, Ye K. 2022.
Integrating bulk and single-cell RNA sequencing reveals cellular heterogeneity and
immune infiltration in hepatocellular carcinoma.Molecular Oncology 16:2195–2213
DOI 10.1002/1878-0261.13190.

Xia B, Di C, Zhang J, Hu S, Jin H, Tong P. 2014. Osteoarthritis pathogenesis: a
review of molecular mechanisms. Calcified Tissue International 95:495–505
DOI 10.1007/s00223-014-9917-9.

Xie J, Yang Y, Gao Y, He J. 2023. Cuproptosis: mechanisms and links with cancers.
Molecular Cancer 22:46 DOI 10.1186/s12943-023-01732-y.

Xiong Q, Feng R, Fischer S, KarowM, StumpfM,Meßling S, Nitz L, Müller S, Clemen
CS, Song N, Li P, Wu C, Eichinger L. 2023. Proteasomes of autophagy-deficient cells
exhibit alterations in regulatory proteins and a marked reduction in activity. Cells
12:1514 DOI 10.3390/cells12111514.

Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. 2021. Pyroptosis: mechanisms and
diseases. Signal Transduction and Targeted Therapy 6:128
DOI 10.1038/s41392-021-00507-5.

Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G. 1997.Mitochondrial
implication in accidental and programmed cell death: apoptosis and necrosis. Journal
of Bioenergetics and Biomembranes 29:185–193 DOI 10.1023/a:1022694131572.

Zheng H, Liu H, Ge Y,Wang X. 2021. Integrated single-cell and bulk RNA sequencing
analysis identifies a cancer associated fibroblast-related signature for predicting
prognosis and therapeutic responses in colorectal cancer. Cancer Cell International
21:552 DOI 10.1186/s12935-021-02252-9.

Zheng D, Liu J, Piao H, Zhu Z,Wei R, Liu K. 2022. ROS-triggered endothelial cell
death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis. Frontiers in
Immunology 13:1039241 DOI 10.3389/fimmu.2022.1039241.

Zou Y, Xie J, Zheng S, LiuW, Tang Y, TianW, Deng X,Wu L, Zhang Y,Wong CW,
Tan D, Liu Q, Xie X. 2022. Leveraging diverse cell-death patterns to predict the
prognosis and drug sensitivity of triple-negative breast cancer patients after surgery.
International Journal of Surgery 107:106936 DOI 10.1016/j.ijsu.2022.106936.

Sun et al. (2025), PeerJ, DOI 10.7717/peerj.20104 25/25

https://peerj.com
http://dx.doi.org/10.1016/j.arr.2015.04.002
http://dx.doi.org/10.3390/ijms25053044
http://dx.doi.org/10.1002/1878-0261.13190
http://dx.doi.org/10.1007/s00223-014-9917-9
http://dx.doi.org/10.1186/s12943-023-01732-y
http://dx.doi.org/10.3390/cells12111514
http://dx.doi.org/10.1038/s41392-021-00507-5
http://dx.doi.org/10.1023/a:1022694131572
http://dx.doi.org/10.1186/s12935-021-02252-9
http://dx.doi.org/10.3389/fimmu.2022.1039241
http://dx.doi.org/10.1016/j.ijsu.2022.106936
http://dx.doi.org/10.7717/peerj.20104

