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Expansins are a group of proteins that loosen plant cell walls and cellulose materials and
are involved in regulating plant cell growth and diverse developmental processes.
However, a systematic study of the Dioscorea opposita expansin (DoEXP) gene family has
not yet been conducted. In this study, we used publicly available genomic data from yam
to characterize the DoEXP gene family and analyse its physicochemical properties,
phylogeny and expression pattern using bioinformatics software. Thirty EXP genes were
identified from the yam genome and can be classified into four subfamilies, DOEXPA,
DoEXPB, DoEXLA, and DoEXLB, which are distributed across 14 chromosomes, and all EXP
proteins contain two conserved structural domains: DPBB_1 and expansin_C. Structural
analyses of the DoEXP gene family revealed that they have similar motif compositions and
exon—intron structures. A cis-acting progenitor analysis revealed that DoEXP family
members contain response elements for plant growth and development, the light
response, phytohormones, and low-temperature and drought stresses, suggesting that
they may play roles in plant growth and development and abiotic stress responses. The
collinearity analysis revealed multiple pairs of collinear genes within the DoEXPA
subfamily, indicating that the gene evolution of this subfamily occurred through the
replication of chromosomal segments. Moreover, an analysis of the evolutionary pressure
of EXP genes within and between species revealed that the genes in this family were
subject to purifying selection. The functional enrichment analysis of the DoEXP genes
revealed that the yam expansin genes play significant roles in root elongation and cell
differentiation. The reliability of the RNA-seq data was confirmed by qPCR results, which
further validated the expression patterns of DOEXP genes. The results of this study are
helpful for understanding the molecular functions of expansin proteins in yam tuber
expansion and provide a theoretical basis for revealing the molecular regulatory
mechanism of yam tuber growth and development.
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Abstract:

Expansins are a group of proteins that loosen plant cell walls and cellulose materials and are
involved in regulating plant cell growth and diverse developmental processes. However, a
systematic study of the Dioscorea opposita expansin (DoEXP) gene family has not yet been
conducted. In this study, we used publicly available genomic data from yam to characterize the
DoEXP gene family and analyse its physicochemical properties, phylogeny and expression
pattern using bioinformatics software. Thirty EXP genes were identified from the yam genome
and can be classified into four subfamilies, DoEXPA, DoEXPB, DoEXLA, and DoEXLB, which
are distributed across 14 chromosomes, and all EXP proteins contain two conserved structural
domains: DPBB 1 and expansin_C. Structural analyses of the DoEXP gene family revealed that
they have similar motif compositions and exon—intron structures. A cis-acting progenitor
analysis revealed that DoEXP family members contain response elements for plant growth and
development, the light response, phytohormones, and low-temperature and drought stresses,
suggesting that they may play roles in plant growth and development and abiotic stress responses.
The collinearity analysis revealed multiple pairs of collinear genes within the DoEXPA
subfamily, indicating that the gene evolution of this subfamily occurred through the replication

of chromosomal segments. Moreover, an analysis of the evolutionary pressure of EXP genes
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within and between species revealed that the genes in this family were subject to purifying
selection. The functional enrichment analysis of the DoEXP genes revealed that the yam
expansin genes play significant roles in root elongation and cell differentiation. The reliability
of the RNA-seq data was confirmed by qPCR results, which further validated the expression
patterns of DoEXP genes. The results of this study are helpful for understanding the molecular
functions of expansin proteins in yam tuber expansion and provide a theoretical basis for
revealing the molecular regulatory mechanism of yam tuber growth and development.

Keywords: Yam, Expansin family, Evolutionary analysis, Gene function, Expression

patterns, Tuber expansion

Background

Expansins are a group of proteins that loosen plant cell walls and cellulose materials and are
involved in regulating plant cell growth and diverse developmental processes. The EXP gene
families have been extensively studied in many plant species. Although the whole genome
sequence of the yam (Dioscorea opposita) is available, a comprehensive analysis of its EXP

gene family remains lacking.

Methods

Using bioinformatics tools, expansin (EXP) genes were identified from the whole genome
sequence of yam. A comprehensive analysis of the DoEXP gene family was conducted,
including their physicochemical properties, phylogenetic relationships, gene structures,
conserved motifs and domains, cis-acting element analysis, and collinearity analysis. The
expression patterns of DoEXP genes at different growth and developmental stages were analyzed
using RNA-seq data obtained in the laboratory, and the results were validated by real-time

quantitative polymerase chain reaction (QPCR).

Results

In this study, 30 DoEXP genes were identified and classified into four subfamilies, which
were distributed across 14 chromosomes. All these genes contained two conserved domains
(DPBB 1 and expansin_C). Genes within the same subfamily exhibited similar motif
compositions and exon-intron structures. Cis-acting element analysis suggested that these genes

play roles in plant growth and development, abiotic stress responses, and hormonal responses.
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Collinearity analysis revealed the presence of gene duplication events, particularly in the
DoEXPA subfamily, while evolutionary analysis indicated that the expansin gene family was
under purifying selection. Functional enrichment analysis highlighted the important roles of
these genes in root elongation and cell differentiation, providing insights into the molecular
mechanisms underlying the tuber expansion of yam. This study lays a foundation for further

functional research and breeding of high-yield yam varieties.

Introduction

Yam (Dioscorea opposita) is a monocotyledonous plant belonging to the genus Dioscorea
in the family Dioscoreaceae. It is harvested from underground tubers and ranks among the
world's top ten food crops. Additionally, it is an important medicinal and food crop in China and
is valued for its economic importance (Zhou et al., 2021). Its tubers are rich in starch, cellulose,
amino acids, sugars, fats, and other nutrients, as well as medicinal components such as allantoin,
diosgenin, polysaccharides, and polyphenols (Obidiegwu et al., 2020). These components tonify
the spleen, nourish the stomach, strengthen the lungs, and'benefit the kidneys. The tubers can be
used to treat conditions such as prolonged diarrhoea due to deficient spleen function, chronic
intestinal inflammation, gastritis, and diabetes mellitus. The growth and development of tubers
affect the yield and quality of yam, and the function of expansins is closely related to the
expansion of yam tubers.

Expansins (EXPs) are cell wall-associated proteins that participate in cell wall loosening
and cell enlargement in a pH-dependent manner (Cosgrove, 2000). Research has confirmed that
expansins are involved in plant growth and abiotic stress responses (Jin et al., 2020; Choi et al.,
2003). The first expansin was discovered in cucumber (Shcherban et al., 1995). Expansins are
ubiquitously found in various plants (Wu et al., 2001; Lin et al., 2005; Shi et al., 2014; Gao et al.,
2020). In plants, expansins are involved in cell wall relaxation. The growing cell wall is
structured as a multilayered arrangement of nearly parallel cellulose microfibrils tethered by
hemicellulose. Expansins mediate the disruption of these microfibrils, leading to cell wall
relaxation and facilitating cell elongation (Marga et al., 2005). The expansin superfamily can be
divided into four families: a-expansins (EXPA), B-expansins (EXPB), expansin-like A (EXLA),
and expansin-like B (EXLB) (Kende et al., 2004). Typically, expansins consist of 250-275
amino acids, including two conserved domains, DPBB 1 and expansin_C, and a signal peptide

(SP) region located at the N-terminus with a length of 20-30 amino acids. Domain 1 is a

Peer] reviewing PDF | (2025:02:114649:0:2:NEW 11 Mar 2025)


yu
Comment on Text
Add references


PeerJ

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

127

128

conserved region featuring a double-psi B-barrel (DPBB) fold located in the catalytic domain in
the middle of the entire protein sequence. It contains 120—135 amino acids, is rich in cysteine
residues, and shares high homology with glycoside hydrolase family 45 (GH45). The
expansin_C domain is a stable domain located at the carboxyl terminus of expansins and
generally contains 90—120 amino acids. This domain has a certain degree of homology with
Group 2 grass pollen allergen proteins (G2A) in Poaceae (Sampedro & Cosgrove, 2005).
Expansins play essential roles in plant growth and development. Studies have shown that
OsEXPA10, an Al-induced expansin gene, is involved in rice root cell elongation (Che et al.,
2016); the overexpression of AcEXPA23 promotes lateral root development in kiwi fruit (Wu et
al., 2022). Overexpression of the winter wheat extensin gene TaEXPA7-B in rice results in salt
tolerance and significantly promotes the growth of lateral root primordia and cortical cells
(Wang et al., 2024). HvEXPB7 enhances drought tolerance by increasing root hair growth in
barley under drought stress (He et al., 2015). Overexpression of the wheat expansin gene
TaEXPA?2 improves seed production and drought tolerance in transgenic tobacco plants (Chen et
al., 2016). The Arabidopsis expansin gene AtEXPA 18 can improve drought tolerance in
transgenic tobacco plants (Abbasi et al., 2021). Auxin-mediated CqEXPAS50 expression promotes
salt tolerance in quinoa (Chenopodium quinoa) through interactions with auxin pathway genes
(Sun et al., 2022). Overexpression of the wild soybean expansin gene GsEXLB14 increases the
tolerance of transgenic soybean hairy roots to salt and drought stress (Wang et al., 2024). The
overexpression of AcEXPAI enhances aluminium tolerance in carpetgrass through the regulation
of root growth (Li et al., 2024). These studies increase our understanding of expansin functions,
revealing their essential roles not only in normal plant growth and development but also in the
response to abiotic stresses (such as salt, drought, and aluminium toxicity) and plant hormones
(such as auxin). However, for Dioscorea opposita (yam), the knowledge of expansins, including
the characteristics of family members, expression patterns, and functional features, remains
limited. This study identified and analysed EXP family members in yam using the yam genome
database, which provides a basic basis for future analyses of whether the EXP gene family

regulate the growth and developmental processes and stress tolerance pathways in yam.

Materials & Methods

Identification of Yam EXP Family Members, Analysis of Physicochemical Properties,
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and Construction of Phylogenetic Trees
The Dalata 550 v2.1 file was downloaded from the Phytozome database

(https://phytozome-next.jgi.doe.gov/) to obtain the yam genome file and protein sequences and

identify the expansin (EXP) genes in yam. We employed two different methods to identify the
members of the EXP gene family in yam. First, by retrieving the EXP genes from the
Arabidopsis database(https://www.arabidopsis.org/), the sequences of 35 EXP genes were

obtained and translated into amino acid sequences to be used as query sequences. A sequence
alignment and screen were conducted on the whole-genome database of yam using TBtools, with
an E value of le” used as the screening threshold. The amino acid sequences of the Arabidopsis

EXP genes were subsequently used to retrieve conserved domains through

PFAM(http://pfam.xfam.org/). The genes of the expansin family all contain two conserved
domains, namely, DPBB 1 (PF03330) and expansin C (PF01357). Next, we used hidden
Markov models (HMMs) with PFAM numbers PF03330 and PF01357 to perform Hmmsearch
on the yam protein dataset, with an E value < 107°. The candidate genes obtained using the two
methods were combined, and the overlapping genes were screened. The protein sequences of the
expansin family genes in yam were subsequently obtained. The molecular weights (MWs),
isoelectric points (pls), and hydrophilicity of each protein sequence were obtained from

ExPaSy(https://web.expasy.org/compute_pi/), and their subcellular localizations were predicted

using the online software Plant-mPLoc(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/).

The protein sequences of the EXP genes from four species, namely, yam, Arabidopsis
thaliana, wheat, and rice, were subjected to multiple sequence alignment using the ClustalW
function of MEGA 11 with the default parameters, and a neighbour-joining (NJ) phylogenetic
tree with 1000 bootstrap replicates was constructed. The phylogenetic tree was subsequently

constructed using the iTOL website(https://itol.embl.de/itol.cgi).

Analysis of Conserved Protein Motifs, Stable Domains, and Gene Structures of Yam
EXP Family Members

MEME online software(https://meme-suite.org/meme/tools/meme) was used to identify the

conserved motifs existing in the 30 EXP genes of yam with the default parameter settings. The
number of motifs was set to 10. After the output file was obtained, TB tools were used to
visualize the conserved protein motifs retrieved from the MEME website. The stable domains
and their positions contained in the yam EXP genes were retrieved from the Interpro

database(https://www.ebi.ac.uk/interpro/). Domains with PFAM numbers recorded in the
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database were used as screening conditions, and the domain data contained in the EXP genes
were manually sorted. TBtools was subsequently used to visualize the data. Diagrams of the
exon—intron structure were drawn based on the annotation information of the yam genome and
the candidate gene IDs.

Chromosomal localization of the genes and analysis of cis-acting elements in the
promoters of DoEXPs

The information of the yam genome annotation file was used to analyse the chromosomal
localization of renamed yam EXP genes with TB tools. The bin size was set to 100 kb, and the
gene density information file for each chromosome was output and displayed in the chromosome
frames in the figure.

The gene sequence 2000 bp upstream of the target gene was extracted by TB tools software,
and the genomic data of yam and the response elements present in the sequence were analysed

using the online software Plantcare(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

The analysis was performed to extract cis-acting elements in the promoters that are related to
growth and development, phytohormones, and the stress response using the output of the website,
and the data were subsequently visualized using TB tools. The number of major cis-acting
elements contained in each EXP gene was counted, and a heatmap was drawn.

Covariance analysis of EXP genes

Intraspecific Collinearity Analysis: The McscanX function of TBtools was used to study the
tandem and segmental duplications of the yam EXP family genes. The bin size was set to 100 kb
to obtain the gene densities on chromosomes. With each occurrence of a gene set to a value of 1,
the number of gene occurrences was summed. Heatmaps and line graphs were drawn to represent
the gene density on each chromosome. Finally, the collinear relationships among the yam EXP
genes were visualized using the Advanced Circos function. Nucleotide sequences with an
alignment identity and similarity rate greater than 75% and a distance between genes on the same
chromosome less than 100 kb were selected as tandem duplications. Genes located in the
duplicated regions and in the nucleotide sequences with alignment rates greater than 75% were
selected as the result of segmental duplications (Cannon et al., 2004). The gene pairs derived
from tandem duplication and segmental duplication that were obtained from the analysis were
subjected to an analysis of selection pressure using the TBtools Simple Ka/Ks Calculator (NG).
The ratio of the nonsynonymous substitution rate (Ka) to the synonymous substitution rate (Ks)

was calculated. If Ka >> Ks or Ka/Ks >> 1, the gene was under positive selection; if Ka = Ks or
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Ka/Ks = 1, the gene underwent neutral evolution; if Ka << Ks or Ka/Ks << 1, the gene was
under purifying selection. The Ks value was used to estimate the approximate date of each
duplication event that occurred in yam with the following formula: T = Ks/2A x 107® Mya
(million years ago) (A= 6.5 x 179) (Chang et al., 2023).

Interspecific Collinearity AnaOlysis: The collinearity among three species, namely, the
monocotyledonous plant rice, the dicotyledonous plant Arabidopsis thaliana, and the
monocotyledonous plant yam, was analysed. The genome and gene annotation files of rice were

sourced from the Ensembl Plants online website(https://plants.ensembl.org/index.html). The

source of the download of the genome and annotation files of yam was introduced earlier in the
article and will not be repeated here. The McscanX function of TBtools was used to conduct
interspecific collinearity analyses between rice, 4. thaliana and yam, with the default parameters.
The DoEXP genes that had collinear relationships with those of the other two species were
highlighted for visualization. Moreover, the collinear gene pairs between yam and rice and
between yam and A. thaliana were identified, the evolutionary selection pressure values (Ka/Ks)
were calculated, and scatter plots were drawn using ggplot2.

Heatmap and analysis of the expression of DoEXPs

The transcriptome data of the existing varieties in the laboratory were used as the source
data to analyse the expression levels of DoEXP genes. These data were obtained by measuring
the gene expression levels of the yam variety NH1 (abbreviated as NH) in four growth stages,
and each stage was assessed as three technical replicates to ensure the relative accuracy of the
data. The gene expression levels are presented as the FPKM values. Next, the expression levels
of the target genes in this study, which were measured three times in each of the four periods,
were sorted and summarized. Since the results of the transcriptome data revealed that two genes,
DoEXPAI4 and DoEXPAIS5, were not expressed, they were temporarily not shown in the
subsequent plot. Finally, the HeatMap function of TBtools was used to visualize the data. Using
its built-in row normalization and Euclidean clustering methods, the trends for the changes in the
expression levels of each gene in different periods were displayed, and the genes with similar
expression patterns were clustered.

GO Functional Enrichment Analysis of DoEXPs

The yam genome was annotated at the whole-genome level using the online website

EggNOG-mapper(http://eggnog-mapper.emblde/). A Gene Ontology (GO) enrichment analysis

was conducted using the R package clusterProfiler. Pathways with P < 0.05 were selected as
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significantly enriched pathways, and bubble plots were drawn using ggplot2.

Plant matrials

The experimental material used in this study was the "NHI" variety, cultivated at the
Agricultural Demonstration Base of Guangxi University. Planting was conducted at the end of
April 2024. Samples were collected at the tuber formation stage (NH-F) four months after
planting. Subsequent sampling was performed monthly, covering the following stages: early
tuber swelling (NH-E), middle tuber swelling (NH-M), and late tuber swelling (NH-L). Random
sampling was employed to ensure representativeness. At each growth stage, three tuber samples
were collected. These samples were sliced thinly using a sterile knife, and slices from the three
tubers were pooled to form one experimental sample, Three biological replicates were prepared
for each stage. The samples were wrapped in aluminum foil, labeled clearly, and immediately
flash-frozen in liquid nitrogen. They were then stored at -80°C in an ultra-low temperature
freezer for subsequent analysis.

RNA extraction, cDNA synthesis, qRT-PCR, and Expression analysis

The Vazyme FastPure Universal Plant Total RNA Isolation Kit (Vazyme, Nanjing, China)
was used for RNA extraction. RNA integrity was confirmed by 1.2% agarose gel electrophoresis.
RNA concentration and purity were measured using a NanoDrop ONE spectrophotometer
(Thermo Scientific, USA). First-strand cDNA was synthesized from 1.0 pg of total RNA using
the HiScript III All-in-one RT SuperMix Perfect for qPCR Kit(Vazyme, Nanjing, China). The
resulting cDNA was diluted three-fold and stored at =20 °C for subsequent experiments for
subsequent quantitative PCR (qPCR) experiments. Specific primers for the DoEXP genes were
designed using Primer 5 software(see Table S4), and their specificity was verified using NCBI
Primer-BLAST. Using the actin gene DoActin (GenBank accession no. KU669295) as the
reference gene. Each qPCR reaction was performed in a 10 pL volume containing 1.0 pL of
cDNA, 0.4 uL each of forward and reverse primers (10 uM final concentration), 3.2 puL of
nuclease-free water, and 5.0 uL of AceQ qPCR SYBR Green Master Mix (Vazyme, Nanjing,
China). Reactions were carried out on a BIO-RAD CFX96™ Real-Time System with the
following program: 95°C for 3 minutes , followed by 39 cycles of 95°C for 10 seconds and 55°C
for 30 seconds with plate reading. A melt curve analysis was performed from 65°C to 95°C with
a 0.5°C increment and a 5-second hold at each step. The expression levels were calculated by the
comparative Ct method, as reported by Schmittgen (Livak & Schmittgen, 2001),with the

expression levels of each gene during the NH-F stage serving as the control group, and other
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stages as the experimental group for analysis. At least three technical replicates and three
independent biological replicates were performed for each sample. The data were analysed with
one-way ANOVA using SPSS Statistics (version 22.0, IBM Corporation), with P<0.05

indicating significant differences. The results were plotted using GraphPad Prism 8.0.

Results and Analysis

Identification and evolutionary analysis of expansin gene family members in yam

In this study, 30 members of the expansin gene family were screened from the whole
genome of yam. All expansin genes were classified into four subfamilies and named sequentially
according to their chromosomal locations. Similar to Arabidopsis, rice, wheat, and other plants,
the EXPA subfamily constituted the largest branch, with 21 members, followed by 4 EXLA
genes, 3 EXLB genes, and 2 EXPB genes (Table 1). The start and end positions of the identified
yam expansin genes and the positive and negative strands of the genes are shown. The relative
molecular weights (MWs) of the proteins encoded by the full-length EXP genes ranged from
22016.99 (DoEXPA12) to 31599.85 (DoEXPA2) Da, and the lengths ranged from 206
(DoEXLAI2) to 289 (DoEXPAZ2) amino acids (aas). Additionally, the predicted isoelectric points
(pls) of the expansins ranged from 4.43 (DoEXLBI) to 9.66 (DoEXPA4). Among them, five
expansins have theoretical pls less than 7, classifying them as acidic proteins, whereas the
remaining 25 expansins are alkaline proteins. The hydrophilicity values were calculated based on
the amino acids of the proteins. Nineteen expansin proteins had negative hydrophilicity values,
indicating that they were hydrophilic proteins, among which DoEXPA3 was the most hydrophilic.
Eleven expansin proteins had positive hydrophilicity values, indicating that they were
hydrophobic proteins, and DoEXPA13 was the most hydrophobic. The analysis of subcellular
localization revealed that all of the expansin proteins were located in the cell wall, a result that
corresponds to the definition of expansin proteins as a group of proteins that loosen the cell wall
and cellulose material of plants. Detailed information on the expansin genes in yam (DoEXPs) is
provided in Table 1.

This study selected expansin family genes from four species to analyse the evolutionary
relationships of the expansin gene families among different species: Dioscorea opposite (yam),
Arabidopsis thaliana, Triticum aestivum L. (wheat), and Oryza sativa L. (rice). Using the TAIR

online website, the expansins in A. thaliana were identified, and data on the reported expansins
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in O. sativa and T. aestivum were collected from previously published articles. We finally
constructed a phylogenetic tree using 119 expansin proteins (including 34 in Arabidopsis, 30 in
yam, 37 in rice, and 18 in wheat) collected from the four species (Fig. 1). The expansin genes of
different species were clearly divided into four subfamilies, EXPA, EXPB, EXLA, and EXLB,

and the members of each of the four subfamilies clustered together.

Conserved protein motifs, stable structural domains and analysis of the DoEXP gene
structures

The online software MEME was used to analyse the amino acid sequences of DoEXPs for
conserved protein motifs, and the number of motifs was set to 10. The visualization of the results
(Fig. 2) revealed that members of the same subfamily were similar in terms of the type, number
and order of conserved motifs, but some divergence was observed between the different
subfamilies, which indicated that the yam expansin genes have diverse biological functions but
also share certain connections that reflect the conservation of this family during evolution. The
EXPA subfamily is the largest subfamily and has a more stable motif composition, except for
DoEXPAIIl, DoEXPAI12, DoEXPAI4, DoEXPA19, and DoEXPA20, which are highly conserved,
and we speculated that these genes may have similar functions. The EXPB subfamily shares the
same motif structure: motifl, motif4, motif5, motif6, motif7, and motif8. The subfamilies EXLA
and EXLB have the unique motif9, suggesting that these two subfamilies might be closer
relatives than the subfamilies EXPA and EXPB are. A unified analysis of the conserved motifs
of the four subfamilies revealed that all EXP genes possessed two conserved motifs, motif 1 and
motif 6, indicating that these two motifs remained highly conserved during the evolution of
expansin genes. The locations of the two stable domains in the yam expansin genes were in the
middle and carboxyl-terminal (C-terminal) regions of the protein sequences.

The structure of introns and exons, regarded as the skeletal framework of genes, plays a
significant role in regulating gene expression. The results (Fig. 2) showed that most members of
the same subfamily presented similar gene structure compositions. The genes in the EXPA
subfamily contained 2-3 exons, with only three genes (10%) containing two exons, and the
majority of the genes (60%) containing three exons. Additionally, the number of introns in the
EXPA subfamily ranged from [I2, whereas the number of introns in the other three subfamilies
ranged from 34] with the number of exons ranging from 45. Specifically, all EXPB subfamily

genes contained four exons, and among the seven genes in EXLA and EXLB, six genes (20%)
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contained five exon structures. These observations suggest that EXLA and EXLB might be
phylogenetically closer. The above results indicate that the members within each subfamily share

a high degree of structural conservation.

Chromosomal localization of DoEXPs and analysis of cis-acting elements

The locations of the DoEXP genes on the chromosomes were analysed and visualized using
TBtools software (Fig. 3). The results indicated that the EXP genes were widely distributed on
chromosomes, with members of EXP genes detected on all 14 chromosomes, among which
chromosome 19 had the greatest number of EXP genes, with five, including three EXPA genes,
one EXPB gene and one EXLB gene. Chromosome 14 followed with 4 EXP genes, while the
number of EXP genes on other chromosomes ranged from 1 to 3. From the gene density heatmap
of chromosomes, we concluded that the genes were mostly distributed at both ends of
chromosomes, and the gene distribution was the lowest in the middle position of each
chromosome. DoEXLAI-DoEXLA2 on chromosome 2 and DoEXPAI4-DoEXPAI5 on
chromosome 15 are tandemly duplicated gene pairs.

We analysed the cis-acting elements present in the 2000 bp upstream promoter regions of
30 putative EXP genes to further understand the potential functions and regulatory mechanisms
of the DoEXP family genes . A total of 13 major cis-acting elements were detected in this study,
including light-responsive elements; response elements related to plant hormones such as
gibberellin, salicylic acid, and auxin; and response elements related to abiotic stress responses.
As shown in Figure 4, among the 30 yam EXP genes, 20 genes contained light-responsive
elements, and the number of light-responsive elements was the greatest. Second, the EXP genes
also contained many plant hormone-responsive elements, including 38 methyl jasmonate (MeJA)
response elements. The responsiveness to MeJA is reflected mainly in the ability of plants to
stimulate defence mechanisms and help plants resist abiotic stress environments. Three genes,
DoEXPA3, DoEXPA6, and DoEXPAIS, each have four MeJA response elements. Thirty-seven
abscisic acid (ABA) response elements were identified, among which DoEXPA18 contains as
many as four ABA response elements, and DoEXPA12 and DoEXPAI3 have three abscisic acid
response elements. We speculated that DoEXPAIS is strongly induced by ABA and MeJA
signals. Thirty-one gibberellin (GA) response elements were identified and play important roles
in plant cell division, root growth, and abiotic stress. Sixteen salicylic acid (SA) response

elements were identified. As one of the nine major plant hormones, salicylic acid plays an
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important role in the responses of plants to biological and abiotic stresses, such as disease
resistance and stress resistance, and in the growth and development of roots. Twelve auxin (IAA)
response elements were also identified.

In €fms of abiotic stress, 12 defence and stress response elements and 20 drought-inducible
(MBS) and 14 low-temperature-responsive (LTR) MYB binding sites were identified. Seven
genes, DoEXPA7, DoEXPA9, DoEXPAI3, DoEXPAI17, DoEXPBI, DoEXLA2, and DoEXLBI,
simultaneously contain these two abiotic stress response elements. These genes may play
important roles in the abiotic stress response of yam. In addition to the above cis-acting elements,
8 circadian rhythm control elements, 16 meristem expression elements, 7 endosperm expression
elements, and 2 cell cycle regulation elements were also detected, indicating that DoEXPAI and
DoEXPAS have specificity in the response to cell cycle regulation. The functional elements

identified above are functionally concentrated and affect plant morphology.

Intraspecific and Interspecific Collinearity of DoEXPs

Segmental duplication and tandem duplication are the main reasons for the expansion of
plant gene families. We detected the collinearity among the yam EXP genes, between yam and
rice, and between yam and Arabidopsis to investigate the evolutionary relationships of the EXP
gene family. The results of the intraspecific collinear relationships are shown in Fig. 6, where the
grey lines represent all covarying gene pairs occurring in the yam genome. For the four
subfamilies of yam EXP genes, covarying gene pairs were observed only within the EXPA
subfamily, and no covariance relationships were detected between genes in the other three
subfamilies. On chromosome 7, the number of collinearities of the DoEXPA genes was the
largest, with 8 collinear relationships. Both chromosomes 18 and 19 had six colinear gene pairs;
five colinear relationships existed on chromosome 9, followed by three, three, and two colinear
gene pairs on chromosomes 5, 12, and 14, respectively. A total of 2 pairs of tandemly duplicated
gene pairs and 16 pairs of segmentally duplicated gene pairs were detected for DOEXPs, and the
gene duplication information is listed in Table S1. These results indicate that the evolution of the
DoEXPA genes occurred through large-scale chromosomal segmental duplications.

A total of 18 pairs of tandem duplications and segmental duplications were detected in yam.
The ratio of the nonsynonymous substitution rate (Ka) to the synonymous substitution rate (Ks)
was calculated. As shown in Table 2, except for the Ka/Ks values of the segmental duplication

gene pairs DOEXPA1-DoEXPAA4 that could not be calculated, the Ka/Ks values of the remaining
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17 pairs of duplication gene pairs were all less than 1, indicating that the DoEXP gene family
underwent purifying selection during the evolutionary process. Moreover, the divergence time of
the duplication events was calculated using a formula to be approximately 3.9-17.8 million years
ago (Mya).

The results of the interspecific evolutionary relationships are shown in Figure 7. A
comparison of collinearity was conducted among species with the dicotyledonous plant
Arabidopsis and the monocotyledonous plant rice. The results revealed that both Arabidopsis and
rice have genes homologous to DoEXPs. Twenty-six pairs of orthologous gene pairs were
identified between rice and yam. Although these 26 homologous gene pairs are collinear, the
positions of the genes on the chromosomes differ slightly between yam and rice. Thirty-nine
pairs of homologous genes were identified between yam and Arabidopsis, which was more than
the number of homologous gene pairs between yam and rice. The Ka, Ks, and Ka/Ks values of
the homologous gene pairs between yam and rice and between yam and Arabidopsis were
subsequently calculated (Tables S2 and S3). In Arabidopsis and yam, the Ka/Ks values of 11
pairs of homologous genes could not be calculated, and the Ka/Ks values of the remaining 28
pairs of homologous genes were all less than 1.0. An analysis of the homologous gene pairs
between yam and rice revealed that the Ka/Ks values of 16 pairs could not be calculated, and the
Ka/Ks values of the remaining homologous gene pairs were all less than 1.0. The above results
indicate that expansin gene family has undergone strong purifying selection during the
evolutionary process. The Ka/Ks values of all collinear gene pairs within and between species

were plotted (Fig. 8).

Analysis of DoEXP expression

Using transcriptome data, the expression levels of EXP genes at different time points were
visualized in a heatmap. Most notably, the expression pattern of the DoEXPA19 gene at the four
different periods completely differed from that of the other genes, and the expression of this gene
at the late stage of expansion was the highest among the four periods; thus, this gene was
clustered into a separate category (Fig. 9). The remaining two categories included 9 genes with
the highest expression in the expansion-formation period, and the expression of these genes
tended to be downregulated overall; 18 genes had the highest expression in the early expansion
period, and the changes in the expression patterns of these genes could be subdivided into four

subclasses. Among these genes, DoEXLA2 is particularly noteworthy. Its expression level
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initially increased but then decreased, but the decrease began only in the late stage of swelling.
Little difference in its expression level was observed between the early and middle stages of
swelling. The expression levels of ten genes, namely, DoEXPAI, DoEXPA3, DoEXPA4,
DoEXPAS5, DoEXPAS, DoEXPAIO, DoEXPAI2, DoEXPA16, DoEXPAIS, and DoEXPB2,
decreased during the middle stage of tuber enlargement and reached their lowest levels in the late
stage. The expression levels of three genes, DoEXPA7, DoEXPAI3, and DoEXPAZ20, tended to
first increase, then decrease, and then increase again, and the differences in their expression
levels among the four stages were quite significant. The expression levels of four genes,
DoEXPA2, DoEXPA6, DoEXPA9, and DoEXPAI7, first tended to increase but then tended to
decrease. The expression levels were similar and relatively high during the swelling formation
stage and the early stage, and the expression levels were similar and relatively low during the
middle and late stages of swelling. Moreover, among the 18 genes with high expression levels at
the early stage of tuber swelling, 15 (83.3%) belong to the EXPA subfamily. The expression
levels of the 3 genes in the DoEXLB subfamily tended to be relatively high during the tuber
formation stage but then gradually decreased. Thus, the trends for the changes in the expression

levels of genes within a subfamily are basically consistent.

GO functional enrichment analysis of DoEXPs

The functions of yam expansin genes were predicted by a GO functional enrichment
analysis and consisted of three modules, namely, CC (cellular component), BP (biological
process), and MF (molecular function). The DoEXPs included a total of 16 GO terms, including
1 cellular component and 15 biological processes, and were not enriched for molecular functions

(Fig:'S2). The information of the entries enriched in the cellular component term was plant-type
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cell wall, which was consistent with the prediction that the yam EXP genes are localized in the
cell wall in the early stage of this study; the biological processes were involved mainly in the

growth and development of the plant root system and morphogenesis.

RNA-Seq data validation

To confirm the reliability of RNA-Seq data, a validation experiment on randomly selected
DoEXPs were determined using qPCR (Fig.10). EXpression patterns of the nine transcripts
during tuber development were consistent with RNA Seq data despite the differential expression

folds; which confirmed that our RNA=seq data and subsequent interpretations were reliable.

Discussion

Overview of the Cell Wall Composition and Expansins

The cell wall is a unique plant structure that plays key roles in plant growth, cell
differentiation, intercellular communication, water movement, and defence (Cosgrove, 2005). It
is primarily composed of three polysaccharides—cellulose, hemicellulose, and pectin—along
with lignin and a small amount of cell wall proteins. Cellulose acts as the framework of the cell
wall, consisting of layers of cellulose microfibrils (Zhong & Ye, 2015; Cosgrove, 2024a).
Growing plant cells are formed by an extensible wall, which is a complex amalgam of cellulose
microfilaments bonded noncovalently to a matrix of hemicellulose, pectin and structural proteins.
The cell wall determines the shape of the plant cell. As the cell grows, the wall stretches to
accommodate the expanding cell, a process critical for the overall development of the plant
(Cosgrove, 1997). Expansins are a group of nonenzymatic cell wall proteins that can relieve cell
wall stress and induce cell wall extension. These compounds are believed to disrupt the
noncovalent bonds between cellulose microfibrils and play various biological roles. The main
expansin families in plants include a-expansin (EXPA), which acts on cellulose—cellulose
linkages; B-expansin (EXPB), which acts on xylan and is a major component of hemicellulose;
and expansin-like A/B. EXPA mediates acidic growth, which contributes to the expansion of the
cell wall by growth hormone and other growth factors (Cosgrove, 2024b). The auxin signal
activates the plasma membrane H+-ATPase, thereby reducing the cell wall pH and further
promoting cell wall growth (Du et al., 2020). EXPB is known as a Group 1 grass pollen allergen

and is abundantly expressed in the pollen of gramineous plants. It may loosen the maternal cell
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wall during the growth of the pollen tube towards the ovary (Sampedro and Cosgrove,2005).
Expansin-like A/B has also been confirmed to be involved in seed and root development, as well

as stress resistance processes, in various plants (Marowa et al., 2016; Muthusamy et al., 2020).

Identification and Functional Analysis of DoEXPs

In this study, through a whole-genome analysis, 30 expansin genes with two conserved
domains were identified in yam. Similar to other plants, all the identified yam EXP genes
(DoEXPs) were divided into four subfamilies: EXPA, EXPB, EXLA, and EXLB (Table 1). A
total of 21, 2, 4, and 3 members were identified in each subfamily, respectively. Moreover, we
analysed the chromosomal locations of the above genes and concluded that the EXP genes were
located on 14 chromosomes and renamed the genes DoEXPAI-21, DoEXPBI-2, DoEXLAI-4,
and DoEXLBI-3. An analysis of the conserved motifs and gene structures of DoEXPs revealed
that members within the same subfamily presented a high degree of structural conservation. All
DoEXPs contained two conserved motifs, 1 and 6, indicating that they played important roles in
the evolution of the EXP gene family. An analysis of the structural motif results revealed that the
numbers of introns and eXons within each subfamily were consistent. The positions of the two
conserved structural domains in the genes are consistent with the results of previous studies. By
analysing the cis-acting elements in the 2000 bp promoter region upstream of DoEXPs, 20 of
these genes were found to have light-responsive elements, suggesting that EXP genes are
involved in the regulation of photomorphogenesis in plants. These findings are consistent with
the results reported in wheat, where EXP genes respond to light signals to influence the
developmental process of the plant (Yang et al., 2023). In addition, EXP genes are involved in
multiple hormone response pathways, among which the number of response elements to abscisic
acid (ABA) is as high as 37. When plants are challenged by pathogen attacks and abiotic stresses
(e.g., drought, low temperature, and salt stress), abscisic acid serves as a key endogenous
messenger to transmit stress signals to downstream pathways, prompting the plant to respond to
the adverse external environment (Lee & Luan, 2012; Raghavendra et al., 2010). Based on these
results, we hypothesized that EXP genes are involved in a variety of stress tolerance processes in
plants, and'when plants overexpress EXP genes, plant stress tolerance is increased, consistent
with investigations in species such as cotton and wheat (Zhang et al.; 2021; Chen et al.; 2017).
The EXP genes also have phytohormone response elements such as Auxin (IAA), gibberellin

(GA), and methyl jasmonate (MeJA) response elements, among which, the most noteworthy are
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elements that respond to growth hormone signalling. A total of 12 growth hormone response
elements have been identified in the yam EXP genes, of which 8 are located in the EXPA
subfamily of genes. As EXPA is regarded as a catalyst for ‘acid growth’, when the pH<5, growth
hormone rapidly stimulates the plant cell wall through the acid growth mechanism to facilitate
elongation (Durachko & Cosgrove, 2009). The results of the functional enrichment analysis of
DoEXPs revealed that the DoEXPA subfamily is involved mainly in root growth and
morphogenesis. By analysing the types and quantities of cis-acting elements contained in each
gene, we found that four genes, DoEXPAY, DoEXPAI16, DoEXPAIS, and DoEXPA2(, have ten
or more acting elements. Moreover, DoEXPA16 and DoEXPAZ2(0 contain the most types of acting
elements, with many important response elements, such as light-responsive, hormone-responsive,
and abiotic stress-responsive elements, indicating that these two genes are involved in a wide
range of biological processes. DoEXPA1S8 has 13 response elements, with the greatest numbers
of light-responsive, abscisic acid-responsive, and MeJA-responsive elements, indicating that this
gene strongly responds to light, ABA, and MeJA signals. DoEXPA9 has two drought-responsive
elements and one low-temperature-responsive element, suggesting that this gene has a relatively
strong ability to resist external abiotic stresses. The fact that the EXP genes are responsive to
drought and low-temperature stress signals suggests that they can function under abiotic stress, a
conclusion that has been confirmed in plants such as poplar, willow, and tobacco (Yin et al:
2023; Zhang et al., 2025; Marowa et al., 2020).

Evolution and Trends in the Expression of DoEXPs

The generation and evolution of gene families may be caused by tandem and segmental
duplications (Kent et al., 2003). We studied the evolutionary relationships of the DoEXP gene
family by analysing the duplication events of the DoEXP gene family. In this study, 2 pairs of
tandem duplications and 16 pairs of segmental duplications were identified, indicating that the
evolution of the DoOEXP gene family occurred mainly through segmental duplication. This result
is consistent with the evolutionary findings of the expansin gene family in multiple species
reported by other researchers (Li'et'al:; 20215 Han et al:; 20195 Zhu et al:; 2014). Through an
analysis of the selection pressure of the duplicated gene pairs in DoEXPs and comparisons
between DoEXPs and rice and Arabidopsis, we concluded that the DoEXP gene family
underwent purifying selection during the evolutionary process. The trends of DoEXP expression

in yam during four periods were analysed and divided into three major categories. Among them,
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DoEXPAI9 was the most unique, as its expression level was the highest in the late swelling stage.
The genes in the second group presented the highest expression level during the tuber formation
stage, and their expression levels gradually decreased, reaching the lowest expression level in the
late swelling stage. The genes in the other groups presented the highest expression level in the
early swelling stage and then gradually decreased. Given that the highest swelling rate of yam
tubers occurs from the early to the middle swelling stage, the expression levels of yam expansin
genes, which regulate tuber swelling, should peak during these stages. Based on the
transcriptome gene expression data, we speculated that the 18 genes with the highest expression
levels in the early swelling stage play important roles in regulating the swelling of yam tubers.
Moreover, DoEXPA9, DoEXPA16, DoEXPA18, and DoEXPA20 contained relatively large
numbers and varieties of cis-acting elements, and their expression levels were highest in the
early stage of yam tuber swelling. This characteristic was also verified by qRT-PCR, which
suggested that these four genes could be used as the main entry points to verify the impact of
DoEXPs on yam tuber swelling, as well as whether they affect the hormone response and

tolerance of transgenic plants to abiotic stress.

Conclusions

Overall, this study identified and analysed the genes of the expansin family in yam at the
whole-genome level for the first time, identifying 30 expansin genes and analysing them from
the perspectives of their physicochemical properties, evolutionary relationships, and biological
functions. The results revealed that expansin genes play important roles in the response to abiotic
stress and in the growth and development of plant roots. These findings advance understanding
of expansin functions in yam, providing a foundation for future research on tuber development
and stress adaptation, with potential applications in breeding high-yield, stress-resistant varieties.

Further experimental validation of gene functions is needed to confirm these insights.
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Figure 1

Phylogenetic evolutionary tree analysis

The phylogenetic tree is constructed using expansin proteins from several species, including
O . sativa, A. thaliana , D . opposite , and T . aestivum , in the figure, Os represents rice, At
represents Arabidopsis , Do represents yam, Ta represents wheat. EXPA , EXPB, EXLA, and

EXLB are the names of the four subfamilies of the EXP family.
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Figure 2

Phylogenetic Relationships, Motif Composition, stable structural domains, and Gene
Structures of DoEXPs

(A) The phylogenetic relationships of DoEXPs , categorized into four groups: a-expansin
(EXPA), B-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB), represented
by pink, green, yellow, and blue, respectively; (C) Interpro database to unlock the conserved
structural domains and positional information of DoEXPs ; (D) Structural analysis of mountain

DoEXPs , with intron and exon structures shown.
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Figure 3

Chromosome mapping diagram of DoEXPs .

Gene density is displayed on chromosomes in the form of a heat map, with high gene density

indicated in red and low gene density indicated in blue. Two pairs of tandem duplication gene

pairs are represented by blue lines.
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Figure 4

Cis-acting element analysis of DOEXPs

The Plantcare online website was used to predict the cis-acting elements in the promoters
2000bp upstream of the Do EXP genes. Different colored circles were used to represent

different cis-acting elements .
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Figure 5

Heat map of the number of cis-acting elements in the promoter regions of DoEXPs.

Seven important cis-acting elements of DOEXPs are represented by different colored boxes

with numbers
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Figure 6

Intraspecific collinearity analysis of DoEXPs .

From the outside to the inside in the figure, there are gene names, chromosome names, a
line graph of gene density, a heat map of gene density, and the collinearity situation among
genes in sequence. The gray lines in the figure refer to the gene collinearity information

within the whole genome of yam.
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Synteny analyses of DOEXP s to Arabidopsis and rice .

The grey lines in the background indicate all the covariance information in the genomes of

yam with Arabidopsis and rice, a nd different color blocks represent the chromosomes of

different species.

A. thaliana i
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Figure 8

The Ka/Ks values of all collinear gene pairs within and between species

Distribution of Ka/Ks of all homologous gene pairs within yam (Do-Do), between yam and rice
(Os-Do), and between yam and Arabidopsis thaliana (AT-Do). They are represented by green
triangles, blue squares and pink circles respectively, and the red dotted line indicates the

slope where Ka/Ks = 1.
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Figure 9

Heat map analysis of the expression of DoEXPs

The abscissa NH_F/E/M/L represents the four periods of variety NH1 (abbreviated as NH),

namely F: tuber formation stage, E:early tuber expansion, M: mid-tuber expansion, and L:

late tuber expansion .
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Figure 10

gPCR expression analysis of 9 selected DoEXPs in different period s.

The x-axis shows the different periods of tuber development, the y-axis shows the relative

expression of the genes, and the data are expressed as SD = mean.
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Table 1l(on next page)

Details of the identified expansin genes in yam
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gene ID gene name start end strand length (aa) PI MW (Da) hydrophilicity Subcel'lular

location
Dioal.01G060200.1.p DoEXPA1 24298694 24300058 — 258 8.54 28087.72 -0.06 cell wall
Dioal.05G195500.1.p DoEXPA2 23425696 23427143 — 249 8.12 26906.08 -0.077 cell wall
Dioal.06G001700.1.p DoEXPA3 128847 129817 — 259 9.37 28480.21 -0.244 cell wall
Dioal.07G093100.1.p DoEXPA4 21043371 21045031 — 250 7.52 26492.72 -0.026 cell wall
Dioal.07G106800.1.p DoEXPAS 22165321 22167293 — 256 6.86 27441.79 0.034 cell wall
Dioal.07G127900.1.p DoEXPAG6 23506033 23508052 — 259 9.45 27882.7 -0.046 cell wall
Dioal.09G059800.1.p DoEXPA7 18651741 18653159 — 252 8.12 26823.91 -0.087 cell wall
Dioal.09G077500.1.p DoEXPAS 19835585 19841937 — 275 8.06 30361.68 0.056 cell wall
Dioal.11G043900.1.p DoEXPA9 12662460 12663794 + 289 8.78 31599.85 -0.017 cell wall
Dioal.12G089000.1.p DoEXPA10 19701720 19703208 — 259 9.32 27804.85 0.055 cell wall
Dioal.14G031400.1.p DoEXPA11 2723362 2726278 — 267 9.66 28910.06 0.024 cell wall
Dioal.14G121100.1.p DoEXPA12 19925968 19926962 + 272 9.17 29188.13 -0.107 cell wall
Dioal.14G128000.1.p DoEXPA13 20458705 20460966 — 261 8.59 28028.25 0.129 cell wall
Dioal.15G009800.1.p DoEXPA14 662455 663986 + 230 6.8 24822.82 -0.243 cell wall
Dioal.15G009900.1.p DoEXPA15 665820 667145 + 254 9.44 27870.21 -0.104 cell wall
Dioal.16G093500.1.p DoEXPA16 23322610 23324229 + 271 8.05 29706.79 0.093 cell wall
Dioal.18G071400.1.p DoEXPA17 24445322 24446987 — 251 9.11 26627 0.024 cell wall
Dioal.18G109200.1.p DoEXPA18 26752627 26754932 — 260 9.34 27853.68 -0.007 cell wall
Dioal.19G023600.1.p DoEXPA19 1540636 1541727 + 206 8.61 22016.99 0.011 cell wall
Dioal.19G082500.1.p DoEXPA20 16501589 16503014 + 248 9.3 26617.22 0.002 cell wall
Dioal.19G119800.1.p DoEXPA21 20283831 20285183 — 252 8.4 27128.46 -0.098 cell wall
Dioal.04G180000.1.p DoEXPB1 23997238 23998430 + 277 6.41 29230.91 -0.049 cell wall
Dioal.19G078100.1.p DoEXPB2 15631278 15634965 — 286 8.05 31344.75 -0.1 cell wall
Dioal.02G029200.1.p DoEXLA1 4063537 4064899 — 269 7.99 29150.32 -0.025 cell wall
Dioal.02G029300.1.p DoEXLA2 4067080 4068322 — 264 9.07 28691.12 -0.046 cell wall
Dioal.02G029800.1.p DoEXLA3 4128602 4130133 + 264 9 28604.88 0.046 cell wall
Dioal.14G049100.1.p DoEXLA4 7116372 7118655 — 263 8.47 28761.91 -0.011 cell wall
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Dioal.04G166400.1.p DoEXLB1 23181553 23182937 - 257 4.82 27356.81 0.004 cell wall

Dioal.04G171000.1.p DoEXLB?2 23445733 23447854 + 248 7.43 27458.34 -0.17 cell wall

Dioal.19G021600.1.p DoEXLB3 1411885 1414271 + 254 4.43 27227.49 -0.07 cell wall
1
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Table 2(on next page)

Details of the identified expansin genes in yam
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Seq 1 Seq 2 Ka Ks ka/ks Date(Mya)
DoEXPA14 DoEXPALS 0.348976301  1.465376447  0.238147885 11.2721
DoEXLA1 DoEXLA2 0.180427892  0.512222507  0.352245148 3.9402
DoEXPA17 DoEXPA2  0.117321185  0.991671406  0.118306512 7.6282
DoEXPA19 DoEXPA2  0.147238695  0.857937152  0.171619441 6.5995
DoEXPA2 DoEXPA4  0.174745763  1.526510634  0.11447399 11.7424
DoEXPA17 DoEXPA4  0.199822805  1.474019019  0.135563247 11.3386
DoEXPA21 DoEXPA5  0.124372587  2.309011017  0.053864008 17.7616
DoEXPAS5 DoEXPA7  0.095810531  1.277029241  0.075026106 9.8233
DoEXPA10 DoEXPA6  0.088856737  0.803862941  0.110537172 6.1836
DoEXPA18 DoEXPA6  0.077569824  0.88546908  0.087603086 6.8113
DoEXPA6  DoEXPAS8  0.134544473  1.020308806  0.131866424 7.8485
DoEXPA21 DoEXPA7 0.116288398  1.559924484  0.074547453 11.9994
DoEXPA10 DoEXPA8  0.135464572  0.929768165  0.14569715 7.1521
DoEXPA18 DoEXPA8  0.120814847  0.991560743  0.121843112 7.6274
DoEXPA10 DoEXPAI18 0.079365162  1.004022715  0.079047178 7.7233
DoEXPA12 DoEXPA20 0.176894509  1.146131211  0.154340539 8.8164
DoEXPA17 DoEXPA19 0.159389593  0.969968684  0.164324473 7.4613
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