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ABSTRACT

Pinus taeda (Loblolly pine) is the most important commercial tree species in the
southern United States and a significant non-native plantation species in China. Its
genetic improvement program has been implemented in South China for 30 years.
In this study, the chloroplast (cp) genome of P. faeda was sequenced, assembled, and
compared with other available chloroplast genomes of Pin aceae using BLAST. Codon
usage among 33 species of Pinaceae was analyzed using the relative synonymous codon
usage (RSCU) value. The results were then visualized using the pheatmap v1.0.10
in R. The rates of nonsynonymous (Ka) and synonymous (Ks) substitutions in the
chloroplast genomes among five species of Pinus were estimated using the seqinr
package in R. Additionally, selected single nucleotide polymorphisms (SNPs) were
used to genotype 33 individuals from the P. taeda breeding population. The P. taeda cp
genome is 121,530 bp, with certain regions (e.g., ycfI and ycf2) showing lower sequence
conservation compared to other Pinaceae species. Codon usage analysis revealed that
codons ending in G or C were not prevalently used, with significant differences in
natural selection pressure on chloroplast genes between three species (P. taiwanensis,
P. thunbergii, and P. koraiensis) and the other 30 species. Phylogenomic analysis using
36 cp genomes (representing 25 species) resolved Pinus into two subgenera, with
P. taeda clustered with P. rigida within the diploxylon pines. Notably, ycfl-based
phylogenetic analysis recovered a topology highly congruent (normalized RF = 0.15)
with whole-plastome phylogenies. This study validates the single-copy gene ycfl as
a robust and low-cost phylogenetic marker for conifer genus-level reconstruction.
The identified SNPs provide valuable molecular markers for genotyping individuals in
P. taeda breeding programs, supporting germplasm characterization and management.
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INTRODUCTION

The study of the chloroplast (cp) genome has become a valuable and widely used approach
for evolutionary, taxonomic, and phylogenetic analyses of plants. This is due to its simple
structure, highly conserved sequence, and single parental (maternal or paternal) inheritance
characters (Wolfe, Li ¢ Sharp, 1987; Daniell et al., 2016; Jakobsson et al., 2007; Nock et al.,
20115 Wu & Chaw, 2014; Mao et al., 2023). Unlike most angiosperms, cpDNA is paternally
inherited in all conifers (Neale, Marshall ¢ Sederoff, 1989; Szmidt, Aldén ¢ Hiillgren, 1987;
Wagner et al., 1987; Neale, Wheeler & Allard, 1986). Conifers hold immense ecological
and economic value. Understanding the organization of their chloroplast genomes is
therefore significant for phylogenetic studies and resolving evolutionary relationships. This
knowledge also supports efforts to enhance the commercial use of conifers.

Loblolly pine is the most important commercial tree species in the southern United
States due to its fast growth, desirable wood properties, and broad adaptability (McKeand
et al., 2003). In China, it is a major non-native plantation species, especially in southern
regions (Gwaze, Byram & Lowe, 2001). Genetic improvement programs for P. taeda in
China began in the early 1980s. In the 1990s, comprehensive progeny and provenance tests
were initiated, leading to advances in selective breeding (Zhong, Chen ¢ Huang, 1995).
Since 2002, China has implemented a breeding strategy (El-Kassaby ¢ Lstibiirek, 2009).
The paternal inheritance of the conifer cp genome enables paternity verification when
the maternal parent is known, thereby facilitating precision breeding programs. Although
cp genomes are generally conserved, recent studies have identified variable regions. For
example, nine mutational loci were detected in ycfI of P. taeda (Li, 2012). Recent studies
have demonstrated that ycfl exhibits high variability (Jiang et al., 2017; Li et al., 2020; Chen
et al., 2020; Zhang et al., 2023). Such variability, while contrasting with overall cpDNA
conservation, offers valuable markers for fine-scale genetic analyses.

While the complete chloroplast genome of P. taeda has been assembled and its broad
structure and placement resolved (Asaf et al., 2018), three knowledge gaps remain. First,
there is a need for population-level chloroplast single nucleotide polymorphism (cpSNP)
discovery within breeding material. Second, a systematic comparison of codon-usage
bias across Pinaceae is lacking. Third, the single-copy ycfI gene has not been empirically
assessed as a cost-effective phylogenetic marker. To address these gaps, we generated a
high-quality P. taeda cp genome and compared codon-usage patterns across 33 Pinaceae
species. We quantified Ka/Ks in five Pinus species, identified 71 novel cpSNPs in 33
breeding individuals, and performed phylogenomic analyses using both whole plastomes
and ycf1 across 36 samples (25 species). The resulting cpSNP panel differentiates 72% of
breeding individuals, and ycfI recapitulates the whole-genome tree (normalized RF =0.15),
demonstrating its utility for low-cost conifer phylogenetics and immediate application in
germplasm management.
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MATERIALS & METHODS

DNA extraction and sequencing

Fresh needles of P. taeda were collected from the Yingde Research Institute of Forestry in
Guangdong Province, P.R. China (24°15’N, 113°25’E). Total cpDNA was extracted from
approximately 100 g needles using a high-ionic-strength medium (Bookjans, Stummann
¢ Henningsen, 1984). The integrity and purity of DNA were assessed by 1% agarose

gel electrophoresis. The purity of the samples was further evaluated by measuring the
0D260/280 ratio with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific).
The DNA concentration was quantified by an Invitrogen Qubit fluorometer. Libraries were
prepared in accordance with the manufacturer’s instructions with an average insert size
of 350 bp. Purified cpDNA was sequenced on an Illumina HiSeq 2500 platform (Science
Corporation of Gene, Guangzhou, China) under a paired-end 100 bp mode. Raw read
quality was then assessed using fastp (v0.23.2) with the following parameters: a cut window
size of 8 nucleotides and a qualified quality Phred score threshold of 20.

De novo CP genome assembly

The chloroplast assembly software SPAdes (v3.15.5; Bankevich et al., 2012) was used to
assemble the chloroplast genome of loblolly pine, with K-mer length set to 79 and 97. The
assembly’s integrity was verified by mapping reads back to the consensus sequence using
Burrows-Wheeler Aligner (BWA; v0.7.17-r1188) and SAMtools (v1.14). The P. taeda cp
genome was compared with other available cp genomes of Pinaceae by using the CGView
Comparison Tool (CCT; Grant ¢ Stothard, 2008). Gene annotations were performed
using the Clusters of Orthologous Groups (COGs) database. The Basic Local Alignment
Search Tool (BLAST) was employed to align the other genomes to P. taeda, facilitating
the identification of homologous sequences. The complete annotated genome was shown
as a circular map using OrganellarGenomeDRAW (OGDRAW; Greiner, Lehwark ¢ Bock,
2019). The adenine (A) and thymine (T) distributions were measured based on the results
of the AT-skew equation, as follows: AT-skew = (A—T)/(A+T).

Codon usage

Codon usage, quantified as relative synonymous codon usage (RSCU) values (Sharp ¢
Li, 1987), was determined for all protein-coding genes across the 33 Pinaceae species.
Statistical analyses of RSCU distributions were performed, and results were visualized as a
heatmap using the pheatmap package (v1.0.10) in R (R Core Team, 2022).

Ka/Ks analysis

The rates of nonsynonymous (Ka) and synonymous (Ks) substitutions within the
chloroplast genomes of five Pinus species were estimated using seqinR (v3.4-5; Gouy

et al., 1984; R Core Team, 2022). Histograms of these substitution rates were then created
using ggplot2 (v3.0.0) to visualize the distribution of Ka and Ks values.

Single nucleotide polymorphisms analysis
There were 32 P. taeda cpDNA samples, selected from the Yingde Research Institute of
Forestry in Guangdong Province, P.R. China, mixed and sequenced by the Illumina Hiseq
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Table 1 Primers for Eighteen SNPs in Pinus taeda.

No. Nameof Location Length  Sequence (5-3’) Length of GC% PCR Annealing ~ SNP
Primer (bp) Primer (bp) Temperature
F1 218 TTCCCACAACTTTCATACCA 20 40.00%
1 540 51 ycfl_98314
R1 757 CTTTAGGATAAGCGGGTATT 20 40.00%
F2 277 GTCTGATTGGACCATTTGTA 20 40.00%
2 423 51 ycf2_119153
R2 699 TCAATCTTTATGGGTCCTAC 20 40.00%
5 F3 274 577 TGGTGGAGATGGTGAAGATG 20 50.00% 53 ycf1_101076, ycf1_101085, ycfl_101094, ycf1_101099,
ycfl_101101, ycfl_101103, ycfl_101112, yefl_101121,
R AAA ATTAGACTCAGGT 2 45.009
3 830 Gaee GACTCAGG 0 >:00% yefl_101130, ycf1_101139, ycfl_101148, ycfl_101157
F4 306 GAATATCTAAACCCTGGACT 20 40.00%
4 576 51 rpoC1_23167
R4 881 ATTAGCTTCTCCCGAACAGA 20 45.00%
F5 251 CTTCTCATTTCCAATCCCTG 20 45.00%
5 520 53 1GS_23593
R5 770 GAAATGGAAGTTTGGGCTCT 20 45.00%
F6 243 GACCCACATAAGAACAAACG 20 45.00%
6 705 53 1GS_50842, IGS_50999
R6 947 CGGATATGTCCATGATTCACTA 22 40.91%

2500 platform with a paired-end 100 bp sequencing strategy. The resulting sequences

were aligned against the known reference sequence of P. taeda (GenBank accession no.

NC_021440.1). Subsequently, 18 single nucleotide polymorphisms (SNPs) were selected

for the detection of 33 individuals in the breeding population of P. taeda. Primer-BLAST

(https:/www.ncbi.nlm.nih.gov/tools/primer-blast/) was used for the primer design (Table 1),

and the PCR products were sequenced using the Sanger method.

Phylogenetic analysis
To resolve the phylogenetic position of P. taeda, phylogenetic analyses were conducted

using both complete cp genomes and the ycf] gene sequences from 36 samples.

Sequence data were retrieved from NCBI (https:/www.ncbi.nlm.nih.gov/), comprising

24 Pinus species (P. rigida, P. jaliscana, P. oocarpa, P. elliottii, P. caribaea, P. taiwanensis,

P. thunbergii, P. densata, P. wallichiana, P. strobiformis, P. bungeana, P. monophylla,

P. nelsonii, plus P. taeda, P. greggii, P. contorta, P. sylvestris, P. tabuliformis, P. krempfii,

P. strobus, P. massoniana, P. lambertiana, P. sibirica, and P. koraiensis represented by two

samples each) and the outgroup Cedrus deodara.

Both datasets were processed identically: multiple sequence alignment used MAFFT

v7 (Katoh, Rozewicki ¢» Yamada, 2019), and Maximum Likelihood trees were inferred in
MEGA X (Kumar et al., 2018) with 1,000 bootstrap replicates.
Topological congruence between whole-genome and ycfl-only trees was assessed by

calculating the normalized Robinson-Foulds (RF) distance using ape (v5.8.1; Paradis ¢
Schliep, 2019) in R v4.5.1 (R Core Team, 2022).

RESULTS

Genome comparison analysis

A total of 33,022,566 base pairs (bp) of raw reads with 38.41% GC content were generated
with a paired-end 100 bp read length. The raw sequences of the P. taeda cp genome
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Figure 1 Comparative chloroplast genome analysis of fourteen Pinaceae species against
Pinus taeda. From the outer to the inner color ring: Pinus massoniana, Pinus lambertiana, Pseudotsuga
sinensis var. wilsoniana, Cedrus deodara, Abies koreana, Larix sibirica, Pseudolarix amabilis, Pinus krempfii,
Keteleeria davidiana, Pinus monophylla, Tsuga chinensis, Cathaya argyrophylla, Picea sitchensis, and
Nothotsuga longibracteata. Alignment method: BLASTn alignment of all genomes to Pinus taeda.
Similarity scores: black (100%), red (50-99%), blue (<50%). Four outer narrow rings: Protein-coding
gene positions (Pinus taeda chloroplast genome reference). Color code: Clusters of Orthologous Groups
(COG). Innermost ring: AT skew of P. taeda (positive [+] = A>T; negative [-] = A.

Full-size Gl DOI: 10.7717/peer;j.20092/fig-1

were deposited in GenBank with accession number PRJNA1159385, and the assembled
sequences with accession number NC_021440.1. The size of the genome was 121,530 bp,
with a GC content of 38.5% (Fig. 1). The positions of all the identified genes in the cp
genome and their functional categorization are presented in Fig. 1.

The cp genomes of 14 species of Pinaceae (P. massoniana, P. lambertiana, Pseudotsuga
sinensis var. wilsoniana, Cedrus deodara, Abies koreana, Larix sibirica, Pseudolarix amabilis,
P. krempfii, Keteleeria davidiana, P. monophylla, Tsuga chinensis, Cathaya argyrophylla,
Picea sitchensis, and Nothotsuga longibracteata) were selected for comparison with P. taeda
by using CCT (Fig. 1). The sequence identity between P. taeda and other Pinaceae
representatives was analyzed, revealing that certain regions were less conserved. For
instance, ycfl showed sequence identity lower than 70%, while ycf2 exhibited identities
below 80%. Previous studies have confirmed that ycfI has an important role in the evolution
and classification of Pinus (Daniell et al., 2016; Handy et al., 2011; Georgolopoulos, Parducci
¢ Drouzas, 2016).
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Figure 2 Relative synonymous codon usage (RSCU) heatmap of protein-coding genes across 33
species. Color scale: RSCU values from low (blue, 0.5) to high (red, 2.0); x-x-axis: Codon patterns
clustered by UPGMA (Lance ¢ Williams, 1967; Euclidean distance).

Full-size G DOLI: 10.7717/peerj.20092/fig-2

Codon usage
The codon usage patterns among the 71 distinct cp protein-coding genes in P. taeda were
examined (Fig. 2). The 71 protein-coding genes consisted of 20,255 codons, with the
majority ending in A or T and the remainder ending in C or G. Codons terminating in
A or T exhibited significantly higher RSCU values compared to those ending in C or G,
as detailed in Table 1. Statistical analysis of codon usage distributions across 33 Pinaceae
species revealed infrequent use of codons ending with G or C, as shown in the heatmaps
(Fig. 2). Similar patterns have been reported in other cp genomes (Delannoy et al., 2011;
Raubeson et al., 2007; Ying et al., 2016).

Among the 33 analyzed Pinaceae species, codon usage patterns were largely conserved,
except for P. taiwanensis, P. thunbergii, and P. koraiensis. Phylogenetic clustering revealed
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Figure 3 Ka/Ks ratios for the seven Chloroplast protein-coding genes among five Pinus species.
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that P. taiwanensis and P. thunbergii formed a distinct clade, divergent from other Pinus
species. Additionally, Picea and Abies occupied phylogenetically distant positions both
from Pinus and from each other. The clustering results were inconsistent with traditional
classification results (Gernandt et al., 2005).

Ka/Ks analysis

The study analyzed the molecular evolutionary characteristics of seven chloroplast genes
(clpP, ycfl, cemA, matK, atpA, atpB, and atpl) from five species belonging to Pinus. The
Ka/Ks ratios of the 10 species pairs of these genes are shown in Fig. 3. Significant differences
in the Ka/Ks ratios were found between the seven chloroplast genes. Ka/Ks >1 was detected
in seven species pairs for clpP and in five species pairs for matK. For ycfl and cemA, Ka/Ks
>1 was detected in three species pairs each, while the remaining species pairs had Ka/Ks
ratios close to 1. For atpA, atpB, and atpl, Ka/Ks >1 was detected in only one or two species
pairs, with the remaining species pairs having Ka/Ks ratios close to 1.

SNP analysis of the chloroplast genome

Compared with the known reference sequence, 71 SNPs and four indels were identified
from the 33 individuals in the breeding population of P. taeda (Table 2). Of these, 35 SNPs
were located in the gene-coding regions of 11 genes, while the remaining SNPs were found
in an intergenic region. The study found that 50 SNPs had mutation frequencies below
15%, which constituted 70.42% of the total number of SNPs. The lower mutation rate
indicates that the cp genome of P. taeda was conservative. Notably, three SNP loci had

Wang et al. (2025), PeerdJ, DOI 10.7717/peerj.20092 7/20


https://peerj.com
https://doi.org/10.7717/peerj.20092/fig-3
http://dx.doi.org/10.7717/peerj.20092

Peer

mutation rates between 30% and 50%, with two located in gene-coding regions (ycfI and
ycf2). Specifically, ycfl contained 17 mutations (23.94% of the total mutation sites), and
ycf2 had three SNPs, including one with the highest mutation rate of 48%. R poB had three
SNPs, two of which had the same mutation rate. R poC2 had two SNPs with mutation
rates at 24% and 3%. R poCI had two SNPs with a similar mutation rate, as did psaA. The
intergenic regions between matK and chiB, psb] and petA, and rps15 and psaC contained
14 SNPs, eight of which had mutation rates higher than 10%.

Individual distinction of the breeding population

A total of 18 SNPs were selected to detect 33 individuals from the breeding population
of P. taeda. Of these, 13 SNPs were mapped to ycfl. Analysis revealed that 32 individuals
exhibited SNPs across at 15 different loci, and 23 individuals could be distinguished based
on these SNPs. Only one individual’s genome matched the reference genome, as shown in
Table 3. Among the 23 distinguished individuals, one additional SNP was identified, and
seven SNPs were found to be the most prevalent.

Furthermore, three additional SNPs were found in 14 individuals, accounting for
60.87% of the distinguishable SNPs. A total of 13 individuals had two SNPs, which
represented 39.40% of the total number of individuals (33). Compared to previous studies,
the cpDNA markers had a comparatively high level of variability (Walter ¢» Epperson,
2010). The chloroplast simple sequence repeats (cpSSRs) of P. slvestris revealed a high
level of intra-populational polymorphism across the entire range (Semerikov et al., 2014).
Additionally, the variation among populations accounted for 99% of the total variance
(Pazouki et al., 2016).

Additionally, the remaining 10 individuals that could not be distinguished, each of
which had only one or two SNPs, could be classified into four groups. Introducing more
SNPs could potentially help distinguish these individuals. Specifically, individuals P043,
P054, and P064 exhibited identical SNP profiles. Given their common origin, they may
descend from the same paternal lineage. Similarly, individuals G09, G10, and 243 also had
the same SNPs. G09 and G10 had the same origin, while 243 was selected from a different
stand. The loblolly pine in China, which were all introduced from the southern United
States, might be related to each other.

Phylogenetic insights from cp Genomes and ycf1
Phylogenetic reconstruction using complete cp genomes resolved the 24 Pinus species and
the outgroup C. deodara into two well-supported clades (Clade A and Clade B; Fig. 4A). The
topology contained 33 nodes, with 26 nodes achieving maximal bootstrap support (100%),
while the remaining nodes attaining values ranging from 64% to 99%. This bifurcation
is consistent with the canonical classification proposed by Gernandt et al. (2005). Notably
within Clade A, P. taeda and P. rigida converge into the same branch. P. taeda emerged
as a focal lineage closely affiliated with P. jaliscana, P. oocarpa, P. greggii, P. elliottii, and
P. caribaea, corroborating clade relationships reported by Duan et al. (2016) and Zeb et al.
(2019); Zeb et al. (2022).

Analysis of ycf] gene sequences from the same chloroplast genomic resources recovered
an overall congruent phylogenetic architecture (Fig. 4B), despite minor topological
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Table2 Mutation sites of the P. taeda chloroplast genome.

Coordinate Ref SNP/ Indels Rate Gene Coordinate Ref SNP/ Indels Rate Gene Coordinate Ref SNP/ Indels Rate Gene

4409 A G 0.1 matK ~chiB 39801 A G 0.18 petA 100910 C -GATGGTGAA 0 yefl

4473 C T 0.03 matK ~chlB 41670 C T 0.1 psal~accD 101076 T G 0.01 yefl

4609 C T 0.04 matK ~chiB 41678 C G 0.06 psal~accD 101085 T G 0.04 yefl

4910 G T 0.09 matK ~chiB 50842 C T 0.06 trnH-GUG~trnT-GGU 101103 T G 0.11 yefl

5514 G A 0.27 matK ~chiB 58344 C A 0.04 petD 101112 T G 0.07 yefl

5690 G A 0.12 matK ~chiB 64071 T C 0.04 rpl22 101121 T G 0.1 yefl

9984 A C 0.23 trnG-GCC 65304 C A 0.15 rpl2 101130 T G 0.06 yefl

10349 A C 0.06 trnG-GCC 70068 T G 0.04 trnT-UGU ~rps4 101139 G T 0.4 yefl

11437 G A 0.1 atpA 71282 A C 0.04 trnS-GGA~ycf3 101157 T G 0.09 yefl

19229 G A 0.24 poC2 71422 C G 0.12 1rnS-GGA~ycf3 101166 T G 0.02 yefl

20388 ¢ T 0.03 poC2 74477 T G 0.23 yef 3~psaA 102292 A ¢ 0.36 yefl~rpsl5
22162 A T 0.15 rpoC1 74535 A C 0.05 yef 3~psaA 102658 C T 0.06 rpsI5~psaC
23394 T G 0.1 1poCl 75726 C T 0.04 psaA 103514 C T 0.06 rps15~psaC
24094 C T 0.04 rpoB 76044 A G 0.04 psaA 103620 G T 0.18 rps15~psaC
24666 G A 0.04 rpoB 81006 T G 0.04 trnfM-CAU~psbZ 103785 G A 0.07 tps15~psaC
26193 C A 0.12 rpoB 83527 G T 0.09 psbD~trnT-GGU 104282 G A 0.1 rps15~psaC
29448 T G 0.11 psbM ~trnD-GCA 84756 A G 0.05 tRNA-Thr~rrnl6 104944 G A 0.2 psaC~ccsA
29449 T G 0.09 psbM ~trnD-GCA 97585 T G 0.08 yefl 105020 T C 0.13 psaC~ccsA
30550 G T 0.07 trnE-UUC~cIpP 98169 T A 0.05 yefl 105446 A C/IG 0.11/0.01 psaC~ccsA
34091 T G 0.1 psa] ~trnP-UGG 100294 A C 0.26 yefl 109795 A C 0.28 rpl 32~trnV-GAC
37238 T A 0.24 psb] ~petA 100387 T G 0.35 yefl 113045 T G 0.22 rps 7~trnL-CAA
37239 T A 0.24 psb] ~petA 100523 G T 0.02 yefl 114839 T ¢ 0.09 yef2

37240 T A 0.24 psb]~petA 100598 A ¢ 0.13 yefl 114997 A T 0.04 yef2

37263 A -ATCT 0 psb] ~petA 100730 A G 0.02 yefl 117038 T +TCTTCC 0 yef2

38094 ¢ -GAAG 0 psb] ~petA 100732 G T 0.02 yefl 119153 G T 0.48 yef2
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Table 3 Fifteen single nucleotide polymorphisms (SNPs) for individual identification in the Pinus taeda breeding population.

Gene rpoCl IGS IGS IGS yefl yefl yefl yefl yefl yefl yefl yefl yefl yefl yef2
Pos 23167 23593 50842 50999 98314 101076 101085 101103 101112 101121 101130 101139 101148 101157 119153

Ref G C C G G T T T T T T G G T G
013 - - - - T - - - - - G - T - T

023 - - - - G - - -

024 A

|
|
|
|
|
|
|
4 43 4
|
|
|

026 -

> > > >
I

222aA A

243 -

|

|

|

|

|

|
9]

|

|

|

|

|

|
|

252 - - - -
257 - - - -

259 - A T A

4 = oz A
|
|
|
|
|
|

262 - - - -

N3 - - - - - - -

GO01 - N T A - - -

G10 - - - - - - -
G9 - - - - - - -

Qo o o
I
I
|
|
|
I
4 4 4

PO12 - - - - T G G
P034 - - - - - - -

|

|
o

|
—

|

|

|

P043 - - - - - - - — - - - — — G T
P052 A A T A - - - - - G - T - - —
P054 - - - - - - - - - - - — - G T
P063 - - - - - - - G - - G - - — —
P064 - - - - - - - - - - - — - G
Q16 - - - - - - - - - G - - - -
Q26 - - - - - - - - - - G - - -
Q6 - - - - T - - - - - - - - -
S11 A A T A - - - G - G - T - - —
S3 - - - - - - - - - - G - - - -
S6 - - - - - - - - - - N - - - -
Wo05 - - - - T - - - - - - T T - T
W11 - - - - - - - - - - - T - - -
Wwi3 - - - - - - - - - - - - - - -
Wi16 A A T A - - - - - - - - - - —
w28 - - - - - - - - - - - - - - T

variations. The resultant tree likewise recovered Clades A and B across 33 nodes, with
16 nodes exhibiting 100% bootstrap support and the remaining nodes having bootstrap
values ranging from 52% to 99%. While P. jaliscana, P. oocarpa, and P. greggii retained
their close clustering with P. taeda within Clade A, P. elliottii and P. caribaea failed to group
with this lineage. Instead, they occupied distinct positions with bootstrap supports of 92%
at their respective nodes.
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Pinus caribaea Pinus caribaea
Pinus elliottii Pinus elliottii
Pinus greggii_1 Pinus greggii 1
Pinus greggii Pinus greggii
Pinus oocarpa Pinus oocarpa
Pinus jaliscana Pinus jaliscana
Pinus rigida Pinus rigida
100 Pinus taeda_1 Pinus taeda_1
Pinus taeda® Pinus taeda®
Pinus contorta_1 Pinus contorta_1
100 Pinus contorta Clade A 100 100 Pinus contorta Clade A
10 Pinus massoniana_1 Pinus massoniana_1
100 Pinus massoniana Pinus massoniana
Pinus sylvestris_1 Pinus sylvestris_1
Pinus sylvestris Pinus sylvestris
Pinus tabuliformis_1 Pinus tabuliformis_1
Pinus tabuliformis Pinus tabuliformis
Pinus densata Pinus densata
Pinus thunbergii Pinus thunbergii
Pinus taiwanensis Pinus taiwanensis
Pinus monophylla Pinus monophylla
Pinus nelsonii Pinus nelsonii
Pinus bungeana Pinus bungeana
Pinus krempfii 1 Pinus krempfii 1
Pinus krempfii Pinus krempfii
Pinus strobus_1 Pinus strobus_I
Pinus strobus Pinus strobus
Pinus strobiformis Clade B Pinus strobiformis | Clade B
Pinus lambertiana_1 Pinus lambertiana_1
Pinus lambertiana | Pinus lambertiana
Pinus wallichiana Pinus wallichiana
Pinus sibirica_I Pinus sibirica_1
Pinus sibirica Pinus sibirica
Pinus koraiensis_1 Pinus koraiensis_1
Pinus koraiensis Pinus koraiensis
A Cedrus deodara 10utgroup B Cedrus deodara 1 Outgroup

Figure 4 Phylogenetic trees of Pinaceae from 36 plastomes and ycf1. Phylogenetic relationships in-
ferred by maximum likelihood (ML) from 36 complete chloroplast genome sequences representing 25
species of Pinaceae. (A) Whole-chloroplast genome phylogeny. (B) ycfI gene phylogeny. Major clades are
indicated: Clade A, subgenus Pinus (two-needle pines); Clade B, subgenus Strobus (single-needle pines).
The red dot represents the position of P. taeda (NC_021440.1).

Full-size & DOI: 10.7717/peer;j.20092/fig-4

Quantitative assessment of topological concordance revealed minimal divergence
between the whole-plastome and ycfI-based phylogenies, evidenced by a normalized RF
distance of 0.15. This strong congruence highlights the efficacy of ycfl as a single genomic
marker for resolving genus-level evolutionary relationships in Pinus.

DISCUSSION

The complete cp sequence of P. taeda, a dominant non-native plantation species in China,
has been assembled, annotated, and analyzed. This species is a valuable resource for
investigating the intra- and interspecific evolutionary history of plants (Birky Jr, 1978;
Birky Jr, 2001; Chase et al., 1993; McCauley, 1995; Newton et al., 1999; Provan, Powell ¢
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Hollingsworth, 2001; Petit et al., 2003). The cp genome consisted of 121,530 bp and lacked
inverted repeats, which are commonly found in most angiosperms.

Comparative genomic analysis between P. taeda and 14 species of Pinaceae showed
that certain regions, such as ycfl, were less conserved. This finding was confirmed in a
previous study (Jiang et al., 2017; Li et al., 2020; Chen et al., 2020; Zhang et al., 2023). The
highest sequence diversity was identified in two regions of ycfl. These regions can be
targeted in all pine subsections using three primer combinations (Parks, Liston ¢ Cronn,
2011; Handy et al., 2011). Recently, ycfI has been identified as an essential component
of the protein translocon at the chloroplast’s inner envelope membrane (Kikuchi et al.,
2013). Seven variable sites and nine haplotypes were found in an 840 bp fragment of the
DNA-coding region of ycfl. These variable sites and haplotypes have been evaluated in the
Pinus subsection Australes and have unquestionable value for studying evolution in the
group (Ortiz-Martinez & Gernandt, 2016). The present study corroborates that ycf1, with
17 mutations identified, plays a significant role in individual distinction in P. faeda.

It is probable that the chloroplast genes of P. taeda exhibit large differences in the natural
selection pressure during the evolutionary process. This is in comparison to the chloroplast
genes of other species belonging to the same genus (Kober ¢ Pogson, 2013; Nasrullah et
al., 2015; Kwon et al., 2016). However, most species of the same genus have similar codon
biases and are basically clustered together. These findings suggest that the codon usage bias
of chloroplast genes is closely related to the genetic similarity among species, reflects the
evolutionary relationships between species, and could provide additional insights when
used in conjunction with phylogenetic analysis to investigate the evolutionary relationships
and molecular evolutionary mechanisms of species.

The current study surveyed the evolutionary characteristics of seven chloroplast genes
across five species of Pinus. The findings indicated that for clpP and matK, most species
pairs exhibited Ka/Ks ratios >1. In contrast, ycfl and cemA showed ratios approximately
half of that value, while the remaining species pairs for these genes had ratios near 1. For
atpA, atpB, and atpl, Ka/Ks >1 was observed in only one or two species pairs, while the
ratios for the majority of pairs were well below 1. These results suggest that clpP and matK
experienced predominantly positive selection, ycfl and cemA experienced either positive
or neutral selection, and atpA, atpB, and atpl were under purifying selection during Pinus
evolution (Yang, 1998; Zhang, 2005). This variation may be attributed to the encoded
proteins playing different roles in growth and metabolism processes (Hah#n, 2005; Ransay,
Rieseberg & Ritland, 2009; Cork ¢ Purugganan, 2004). cpSNP markers helped distinguish
individuals among populations of loblolly pine. Distinguishing individuals is crucial for
identifying the male parent of open- or mixed-pollination offspring. Given the paternal
inheritance of cpDNA in Pinus, the male parent can be identified by using the molecular
marker developed from SNPs in the cp genome. Fifteen SNPs successfully distinguished
23 individuals within the P. taeda breeding population. The inability to distinguish the
remaining individuals suggests they may be closely related. P. taeda was introduced to
China nearly 120 years ago, and the individuals in the breeding population of the current
study were selected from plantations or had just been introduced from the southern United
States. The genetic relationships among individuals in the P. taeda breeding population
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were previously undefined. The study of the SNPs in the cp genome may provide a new
method for paternal identification in the breeding program of P. taeda.

Chloroplast genomes are valuable tools for plant phylogenetic analysis, with important
insights often coming from the examination of protein-coding genes (Eckert ¢ Hall,
2006; Gernandt, Liston ¢ Pifiero, 2003; Moore et al., 2010; Parks, Cronn & Liston, 2012;
Zhu et al., 2016a; Zhu et al., 2016b). These earlier studies provided the foundation for the
current investigation into the loblolly pine chloroplast genome. This study performed a
phylogenetic analysis using the maximum likelihood (ML) method. The dataset comprised
36 chloroplast genomes and the ycfl gene from 24 Pinus species, with C. deodara as the
outgroup. Phylogenetic trees based on both the complete chloroplast genomes and the single
ycfl gene consistently resolved the 25 species (which were represented by 36 samples) into
two major clades: the subgenus Strobus (single needle section, clade B) and subgenus Pinus
(double-needle section, clade A). Particularly significant is the placement of P. taeda within
Clade A, where it forms a sister relationship with P. rigida while maintaining close affinity
to P. jaliscana, P. oocarpa, and P. greggii. This configuration aligns with and extends earlier
findings by Zeb et al. (2019); Zeb et al. (2022), resolving previous ambiguities regarding
loblolly pine’s phylogenetic position.

Notably, analysis of the ycfI gene region alone recovered a highly congruent phylogenetic
architecture (Fig. 4B), despite minor topological variations affecting P. elliottii, P. caribaea
and C. deodara placements. The high degree of concordance between whole-plastome and
single-gene topologies-quantified by a normalized RF distance of 0.15-validates ycfI as
a phylogenetically informative marker for genus-level reconstructions in conifers. This
finding substantiates earlier suggestions (Zhu et al., 2016a; Zhu et al., 2016b) regarding the
utility of protein-coding genes, while demonstrating that targeted sequencing of ycfI has
comparable resolution to resource-intensive complete plastome analyses in resolving major
clades (e.g., subgenera) in Pinus.

CONCLUSIONS

We sequenced and deposited the 121,530-bp chloroplast genome of Pinus taeda (GenBank:
NC_021440.1). Regions such as ycf] and ycf2 showed markedly lower identity (<70% and
<80%, respectively) than 14 other Pinus species. Phylogenomic analyses placed P. taeda
within the diploxylon clade, sister to P. rigida. Comparative codon-usage patterns across
33 Pinaceae species revealed signatures of natural selection. In the breeding population,
71 cpSNPs distinguished 72% of individuals; the single-copy gene ycfI recapitulated
whole-plastome relationships (normalized RF = 0.15), validating it as an efficient barcode.
These cpSNPs and the mutation map provide readily applicable markers for paternal
identification in P. taeda breeding programs, while the hypervariable ycfI gene serves as a
highly informative marker for future genus-wide phylogenetic and germplasm studies.
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