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ABSTRACT

Premature ovarian insufficiency (POI) severely impacts women’s reproductive and
overall health, yet effective treatments remain elusive. Research on its pathogenic
mechanisms and therapeutic strategies is therefore critical. Due to the scarcity of
ovarian samples from POI patients, animal models have become indispensable tools
for investigation. Notably, immune-related POI accounts for an increasing proportion
of cases, with over half of idiopathic POI cases hypothesized to involve immune
dysregulation. Consequently, immune-mediated POI animal models are widely used to
study immune-related mechanisms. This article compares the advantages, limitations,
and applications of various immune-related POI animal models, aiming to guide
researchers in selecting the most appropriate model for their specific research goals
and experimental designs.

Subjects Biochemistry, Cell Biology, Zoology, Immunology, Women’s Health
Keywords Immunity, Animal model, Premature ovarian insufficiency, Ovarian function

INTRODUCTION

Currently, global fertility rates are rapidly declining, posing unprecedented challenges and
crises (GBD 2021 Fertility Forecasting Collaborators, 2024). In females, the total number of
ovarian follicles gradually decreases with age after birth, and reproductive capacity—
encompassing both endocrine and reproductive functions—undergoes irreversible
decline after sexual maturity (Harasimov et al., 2024). Premature ovarian insufficiency
(POI), previously termed premature menopause, primary ovarian insufficiency, or
premature ovarian failure (Nash ¢ Davies, 2024; Touraine et al., 2024), is defined as ovarian
dysfunction characterized by menstrual irregularities and elevated follicle-stimulating
hormone (FSH) levels in women under 40 years of age. In 2016, the European Society
of Human Reproduction and Embryology (ESHRE) formally standardized the term
“premature ovarian insufficiency” (POI) to replace previous nomenclature (Webber et al.,
2016). However, despite this standardization, significant controversies and heterogeneity
persist regarding the specific diagnostic criteria and classification of POI, such as divergent
FSH threshold, ambiguous role of Anti-Miillerian hormone and inconsistent definitions
of menstrual dysfunction. The prevalence of POI ranges from 0.5% to 4% (Touraine et al.,
2024).
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As a critical organ for both reproduction and endocrine regulation, ovarian dysfunction
in POI not only severely impacts fertility—Ileading to infertility, menstrual disorders,
and reduced sexual function—but also increases long-term health risks, including
cardiovascular disease, osteoporosis, and cognitive decline (Okoth et al., 2020; Jones et
al., 20205 Sochocka et al., 2023). Etiologies of POI include iatrogenic factors (e.g., ovarian
surgery, pelvic/abdominal radiotherapy/chemotherapy), X chromosomal abnormalities,
genetic mutations, autoimmune disorders, and other unidentified causes (Nash ¢ Davies,
2024; Touraine et al., 2024).

Notably, POI patients exhibit a higher susceptibility to autoimmune diseases, with
10%-30% of cases coexisting with autoimmune conditions, particularly thyroid and
adrenal disorders (Ishizuka, 2021; Domniz ¢» Meirow, 2019). Autoantibodies are detectable
in 40%-50% of POI patients (Domniz ¢» Meirow, 2019; Belvisi et al., 1993), suggesting
immune dysregulation as a key contributor to at least half of idiopathic POI cases. Although
ovarian biopsy remains the theoretical gold standard for autoimmune-POI diagnosis, its
invasive nature and potential to damage ovarian tissue make human ovarian tissue or
oocyte procurement ethically and practically unfeasible, thus rendering it inappropriate for
routine diagnosis. The non-invasive markers (elevated FSH, low anti-Miillerian hormone
(AMH), reduced follicle count on ultrasound) are crucial indicators of diminished ovarian
reserve and functional decline, forming the cornerstone of clinical diagnosis. However,
these markers reflect the functional endpoint of POI rather than its specific underlying
etiology. They cannot reliably distinguish autoimmune-POI from other causes of ovarian
failure. Consequently, rodent models (mice or rats) are widely utilized to investigate
POI pathogenesis, endocrine-metabolic alterations, and therapeutic interventions. In
autoimmune POI research, three primary modeling strategies are predominantly employed:
(1) active immunization induction through zona pellucida glycoprotein 3 immunization,
which simulates antibody-mediated ovarian damage; (2) passive immunization employing
adoptive transfer of autoreactive T-cells to model cell-mediated autoimmune responses;
and (3) gene-edited models such as autoimmune regulator (AIRE)-deficient mice that
develop spontaneous POI. Each approach offers distinct advantages while presenting
specific limitations in replicating the full spectrum of human disease manifestations.

While rodent models cannot fully replicate human autoimmune POI complexity, they
offer valuable translational insights through conserved immunological pathways. These
models are crucial for studying ovarian damage mechanisms and testing initial therapies,
but their artificial induction, absence of human menstrual cyclicity, and inability to model
polygenic/environmental interactions limit their representativeness of spontaneous human
POL. Translational challenges include: (1) physiological disparities in reproductive biology
(e.g., folliculogenesis dynamics, menstrual cycle absence); (2) etiological oversimplification
(single-mechanism induction vs. human polygenic/environmental interactions); (3)
therapeutic translation barriers due to interspecies differences; (4) inability to mirror
clinical heterogeneity. Despite these constraints, rodent models remain indispensable for
mechanistic studies and preclinical screening, enabling controlled experiments impossible
in humans. They illuminate disease components rather than the complete human condition.
This article aims to compare existing autoimmune POI animal models, providing
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researchers with evidence-based guidance for selecting optimal modeling approaches
tailored to specific study objectives.

SURVEY METHODOLOGY

To systematically compare the animal models for immune premature ovarian insufficiency,
this PRISMA-guided review searched PubMed, Medline and Embase without date
restrictions, yielding literature from 1965-2025. The search strategy included combinations
of: (“immune premature ovarian insufficiency” OR “POI/POF [premature ovarian
insufficiency/failure]” OR “immunity and ovarian dysfunction” OR “Experimental
autoimmune oophoritis” OR “experimental ovarian autoimmunity”’) AND (“animal
models” OR “mice” OR “rat”). For specific model evaluation, additional terms were used

3«

(“ZP3”,“ZP”, “ovarian antigens”,

M . »
>

Neonatal thymectomy”, or “inhibin-a”, “rag”, “aire
» (49

or “nude mice”, “passive transfer of autoantibodies”). Editorials, letters to the editor, and
case reports were excluded from this review.

Animal models
The pathogenesis of autoimmune-related POI involves the breakdown of immune
tolerance, leading to the loss of the body’s ability to distinguish self-ovarian tissues.
This triggers autoimmune inflammation and immune responses. Both humoral immunity
(e.g., autoantibody production) and cellular immunity (e.g., T-cell dysfunction) are closely
associated with the development of autoimmune POI (Kirshenbaum ¢ Orvieto, 2013).

Current methods for constructing immune-mediated POI animal models include
the following: (1) active immunization with ovarian-specific antigens: zona pellucida 3
peptide (pZP3), crude ovarian antigens, zona pellucida 4 peptide (pZP4); (2) neonatal
thymectomy in animals: surgical removal of the thymus in newborn rodents to disrupt
immune tolerance; (3) inhibin-a-induced autoimmune targeting of the pituitary-ovarian
axis; (4) gene-edited models: Rag gene knockout (e.g., Ragl=/~ or Rag2~/~ mice), AIRE
gene knockout (mimicking autoimmune polyendocrine syndrome type 1), knockout
of other immune-related genes (e.g., FoxP3, BNDEF); (5) adoptive transfer nude mouse
models: transfer of autoreactive T cells into immunodeficient nude mice to study ovarian-
specific immune damage; (6) passive transfer of autoantibodies: injection of autoantibodies
(e.g., anti-ZP3 or anti-FSH receptor antibodies) to induce ovarian dysfunction; (7) other
potential target antigens: candidate antigens for POI induction, including:

3 beta-hydroxysteroid dehydrogenase (33-HSD), Heat-shock protein 90-beta (HSP90p);
HPV4 (exploring cross-reactivity hypotheses between viral proteins and ovarian antigens).

These approaches provide versatile platforms for studying immune mechanisms,
therapeutic interventions, and gene-environment interactions in POI. While these
animal models have provided valuable insights, it should be noted that many were
developed decades ago and lack systematic validation using modern immunological
standards. Contemporary techniques such as CRISPR-based gene editing, single-cell RNA
sequencing, and high-dimensional immune profiling could significantly improve model
characterization. For instance, traditional approaches like neonatal thymectomy and passive
antibody transfer have seen declining use, being largely superseded by more precise genetic
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and cellular manipulation methods that better mimic human disease mechanisms while
reducing off-target effects. Moving forward, incorporating these advanced methodologies
will be crucial for developing more physiologically relevant models with greater translational
potential for POI research.

Active Immunization with Ovarian Autoantigens
pPZP3 immunization

The zona pellucida (ZP), a glycoprotein layer surrounding mammalian oocytes, serves
as an ovarian-specific target antigen and plays a critical role in oogenesis. In mice, ZP
glycoproteins are synthesized exclusively in oocytes (Moros-Nicolds et al., 2021) and consist
of three glycosylated proteins: ZP1, ZP2, and ZP3 (Bleil ¢ Wassarman, 1980). ZP2 and
ZP3 exist as 1:1 monomers, accounting for over 80% of total ZP protein and are essential
for ZP assembly. ZP1 forms dimers and constitutes less than 20% of murine ZP protein
(Litscher & Wassarman, 2020). ZP genes are expressed solely in growing oocytes of female
mice (Wassarman & Litscher, 2018). ZP1 maintains the structural integrity and matrix
of the zona pellucida (Rankin et al., 1999), while ZP2 knockout results in a thinner ZP
that disappears post-ovulation (Rankin et al., 2001). ZP3 knockout completely prevents
ZP formation (Liu et al., 1996; Rankin et al., 1996), and ZP3 mutations can induce oocyte
developmental abnormalities, such as zona-free oocytes (Cao et al., 2020) or empty follicle
syndrome (Chen et al., 2017).

ZP3 is central to murine ZP development, requiring at least two glycoproteins (Zp1-Zp3
or Zp2-Zp3 combinations), with Zp3 being indispensable (Dean, 2004). A single copy of
the Zp3 gene is uniquely transcribed in growing oocytes, and ZP proteins are detectable in
ovaries within three days postpartum (Rhim et al., 1992). Studies reveal that ZP3 mRNA
levels significantly exceed those of other ZP genes across all follicular stages (primordial,
primary, secondary, antral, and preovulatory) (Zhang et al., 2018), directly linking ZP3 to
zona pellucida synthesis and oocyte maturation (Sun, Liu ¢ Kikuchi, 2008).

As early as 1992, researchers demonstrated 67% homology between murine and human
ZP3 proteins. Immunization with pZP3 induces anti-ZP3 antibodies in mice, which bind
ovarian ZP3, triggering autoimmune oophoritis (Rhim et al., 1992), oocyte destruction,
follicular depletion, and amenorrhea (Yin et al., 2024). This homology enables ZP3 to
replicate human POI phenotypes, making it a key antigen for modeling autoimmune POI
in mice.

Modeling method using ZP3 as follows: the amino acid sequence of the synthetic ZP3
330-342 peptide is NSSSSQFQIHGPR. The synthesized peptide powder is dissolved in
ddH,O to prepare a ZP3 peptide solution (one mg/mL), which is then emulsified 1:1
by volume with Freund’s complete adjuvant (containing Mycobacterium tuberculosis
components) until a stable water-in-oil emulsion forms. The emulsion (0.1-0.15 mL) is
administered via subcutaneous multi-point injection (hind paws, abdomen, and back)
or intraperitoneal injection. Two weeks later, a secondary immunization is performed by
emulsifying the ZP3 solution with Freund’s incomplete adjuvant (without M. tuberculosis
components) and injecting it at the same sites (Rhim et al., 1992; Yin et al., 2024; Xie et
al., 2024). Some studies suggest that a third booster immunization after an additional
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Figure 1 The mechanisms and application of pZP3-induced POI. Created with BioRender.com.
Full-size & DOI: 10.7717/peer;j.20091/fig-1

2-week interval improves modeling efficacy (Wang, Chen ¢ Lu, 2017). Elevated anti-zona
pellucida antibodies, detectable in the animals for weeks after the final injection, along
with histopathological evidence of ovarian lymphocyte infiltration, irregular estrous
cycles, hormonal imbalances, and reduced follicular development, confirm successful
establishment of the premature ovarian insufficiency (POI) model (Rhim et al., 1992; Yin
et al., 2024; Xie et al., 2024; Wang, Chen ¢ Lu, 2017). The mechanism of ZP3 action is
illustrated in Fig. 1.

pZP3-induced autoimmune ovarian disease (AOD) is characterized by lymphocyte
infiltration, elevated serum/ovarian anti-ZP antibodies, ovarian atrophy, and non-
infectious oophoritis (Zhang et al., 2019). This model is widely used to study T-cell-
mediated autoimmune mechanisms, including: effects of human amniotic epithelial cells
or placental mesenchymal stem cells on splenic regulatory T cells (Tregs) and ovarian
function (Zhang et al., 2019; Yin et al., 2018); post-transplant changes in CD8+CD28~ T
cells, interleukin-10 levels, Th1/Th2 balance, and uterine natural killer (uNK) cell activity
(Yin et al., 2024; Lu et al., 2019); therapeutic mechanisms of exosomes from bone marrow
mesenchymal stem cells in reducing granulosa cell apoptosis/pyroptosis (Xie ef al., 2024);
molecular mechanisms of traditional Chinese medicine in autoimmune POI (Chen et al.,
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2021; Chen et al., 2022). Figure 1 illustrates the molecular mechanisms of ppZP3-induced
POL

As an essential component of the ovarian follicular zona pellucida and a target antigen,
ZP3 effectively induces zona pellucida-related immune injury. This model is particularly
suitable for studying T cell-mediated autoimmune oophoritis in thymus-intact animals. Its
strengths include high target specificity, controllability, simple methodology, and ovarian
histomorphological similarity to human autoimmune POI. However, the lengthy modeling
period and variability in individual immune responses may compromise stability.

Crude ovarian antigen immunization

The ovary, a female-specific reproductive organ, contains autoantigens such as a-actinin-4,
heat shock protein 70 (HSP70), and B-actin. These antigens localize to various ovarian
components—including oocyte cytoplasm, follicular membranes, granulosa cells, corpus
luteum, and zona pellucida—and are expressed during folliculogenesis (Mande et al.,
2011). As ovarian antigens are tissue-specific (Ownby & Shivers, 1972), they can trigger
autoimmune responses by inducing anti-ovarian antibodies (Damjanovic ¢ Jankovic, 1989;
Sharif et al., 2019; Tuohy & Altuntas, 2007), thereby mimicking ovarian dysfunction caused
by autoantibodies or T-cell-mediated immune attacks in patients.

As early as 1989, researchers homogenized rat ovarian tissue in phosphate buffer saline
(PBS), emulsified it with Freund’s adjuvant (1:1 ratio) to a final antigen concentration of 250
mg/mL, and administered 100 pL via subcutaneous injection. This induced anti-ovarian
antibody production, reduced follicular counts, and suppressed fertility in rats (Damjanovic
& Jankovic, 1989). Similar studies using bovine or rat ovarian homogenates emulsified with
Freund’s adjuvant in rodents demonstrated ovarian inflammation, activated B/T cells
in germinal centers, elevated serum anti-ovarian antibodies appeared after 28 days, and
impaired fertility, histology showed immune cell infiltration (Sharif et al., 2019; Tuohy ¢
Altuntas, 2007), confirming the role of crude ovarian antigens in experimental autoimmune
oophoritis (EAOO).

Wang et al. (2020) established a rat POI model using crude ovarian antigens to evaluate
the therapeutic effects of human umbilical cord mesenchymal stem cells (hUC-MSCs).
The standardized protocol is summarized in Fig. 2 as below: extracting total ovarian
proteins (200 mg/mL) from rats; emulsifying the proteins with Freund’s adjuvant (1:1
ratio); administering 0.35 mL of the emulsion via subcutaneous multi-point injections
every 10 days for three cycles. Incomplete Freund’s adjuvant was used for the second and
third immunizations (Fig. 2).

Compared to antigen-specific models like ZP3 immunization—which primarily drive
B-cell-mediated autoantibody production against zona pellucida proteins—crude ovarian
antigen immunization employs polyclonal antigen mixtures to induce broader autoimmune
pathology, including T-cell dysregulation and multi-component inflammation, making it
suitable for studying autoantibody-mediated pathology or pro-inflammatory mechanisms
involving T cells and their cytokines. While most autoimmune diseases involve
autoantibodies, the specific ovarian antigens responsible for human autoimmune POI
remain unidentified due to the complexity and heterogeneity of crude ovarian antigen
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Figure 2 The method for inducing POI using ovarian crude antigens. Created with BioRender.com.
Full-size & DOTI: 10.7717/peer;j.20091/fig-2

preparations (Pouladvand et al., 2024; Tong & Nelson, 1999). Additionally, the effective
concentration of ovarian antigens required to successfully establish autoimmune POI
models remains unclear, further limiting the widespread application of this method.

pZP4

The recombinant porcine zona pellucida 4 (pZP4) antigen is synthesized and purified, then
dissolved in PBS to prepare a pZP4 solution. Similar to the ZP3 immunization protocol,
the pZP4 solution is emulsified with an equal volume of Freund’s complete or incomplete
adjuvant. Mice are immunized via subcutaneous multi-point injection of 0.1 mL emulsion
containing five pg pZP4. Post-immunization, the mice exhibit immune-mediated POI
features, including prolonged estrous cycles, reduced serum estradiol levels, elevated
anti-pZP4 antibody titers, and decreased ovarian follicles and corpora lutea (Tang et
al., 2013). While both pZP4 and ZP3 models target zona pellucida proteins to induce
autoimmune ovarian damage, key differences exist in their immunological profiles and
research applications, pZP4 offers superior antigen specificity but lacks the comprehensive
T-cell activation observed in whole-tissue antigen models (Tang et al., 2013). Therefore,
this model is less frequently utilized compared to ZP3-based approaches, potentially due
to limited research on pZP4-specific immune mechanisms.

Thymectomy

The thymus, situated in the anterior mediastinum near the sternum, is a critical central
immune organ in humans. Its primary cell types include lymphocytes, epithelial cells, and
dendritic cells, which collectively support immune functions by serving as the site for T-cell
development, differentiation, and maturation, as well as a hub for self-immune tolerance
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(Sauce & Appay, 2011). Additionally, the thymus secretes various hormones involved in
immune regulation and plays significant roles in anti-aging, anti-infection, and anti-tumor
activities (Boehm & Swann, 2013; Dinges et al., 2024). Following thymectomy, thymic
output, total T-cell count, T-cell subsets, and humoral immune function decline, leading
to impaired immune surveillance and homeostasis, which disrupts immune balance and
may trigger systemic immune responses (Zlamy et al., 2016).

Historically, thymic function was overlooked, as animal models (typically using adult
subjects) showed no immune defects after thymectomy, likely because the thymus in
mature animals does not generate plasma cells or germinal centers during normal immune
responses (Miller, 2020). However, studies on neonatal thymectomy (NTx) revealed
severe consequences. Compared to sham-operated (STX) controls, NTx mice exhibited
lymphocyte deficiency, increased susceptibility to viral infections and tumors, and loss of
antigen-specific immune responses (Miller, 2020; Miller, 1961; Miller, Grant ¢ Roe, 1963;
Miller, De Burgh ¢ Grant, 1965). During murine development, lymphocytes first emerge in
the thymus and later populate peripheral tissues (e.g., spleen, lymph nodes, gut-associated
lymphoid tissue), with thymic cortical lymphocyte proliferation surpassing that of other
lymphoid organs (Miller, 2020; Miller, 1961; Miller, Grant ¢ Roe, 1963; Miller, De Burgh
& Grant, 1965; Miller, 1966). Thus, thymectomy at or shortly after birth causes systemic
T-cell depletion, immune tolerance imbalance, and compromised immune responses,
predisposing to infections (Miller & Osoba, 1967).

Neonatal thymectomy in mice or rats leads to systemic T-lymphocyte depletion, resulting
in multi-organ autoimmune diseases such as autoimmune thyroiditis, autoimmune
oophoritis, and ulcerative colitis (Kosiewicz ¢» Michael, 1990). Within 1-5 months post-
surgery, anti-oocyte/anti-zona pellucida antibodies are detectable in serum (7Tung et
al., 1987), followed by complete loss of oocytes and follicles in adulthood (Taguchi et al.,
1980). Approximately 90% of thymectomized animals develop autoimmune oophoritis and
ovarian failure (Kojima & Prehn, 1981; Taguchi et al., 1980). Strain-specific susceptibility
varies: 100% of SWRAF1, 90% of A/], and 35% of BALB/cBy neonatal mice exhibit
autoimmune ovarian inflammation and functional decline after thymectomy (Tung et al.,
1987; Sakaguchi, Takahashi ¢ Nishizuka, 1982).In (C57BL/6 Crx A/])F1 mice, thymectomy
initially manifests as irregular estrous cycles and localized mononuclear cell infiltration
around growing follicles. By adolescence, this progresses to extensive mononuclear
infiltration, ovarian atrophy, complete destruction of primordial and growing follicles, and
circulating autoantibodies (Miyake et al., 1988).

Thymectomy for constructing POI animal models must be performed within 2—4 days
postpartum (typically day 3). This model induces systemic immune deficiencies, leading to
organ-specific autoimmune attacks on the ovaries, thyroid, and other tissues accompanied
by autoantibody production and multi-glandular autoimmune disorders (Nelson, 2001).
The model-induced multi-glandular autoimmune disease shows strong similarity to human
autoimmune POI, and the histological distribution of ovarian lymphocyte infiltration is
also similar to that in humans, both characterized by reduced natural killer cell activity
(Maity et al., 1997) and defective regulatory T cells (Tung et al., 1987).
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Therefore, this model is particularly suitable for simulating the pathogenesis of female
autoimmune POI and developing specific diagnostic and therapeutic methods. However,
since thymectomy should be completed within 2—4 days after birth, the surgical technique
requirements for establishing the model through thymectomy are high, the surgery is
difficult, and the mortality rate of mice is high, making it still challenging to widely
promote and apply at present.

Inhibin-a-targeted disruption of the pituitary-ovarian axis

Inhibin, predominantly synthesized by ovarian granulosa cells (Mayo, 1994), acts as a
critical regulator of the pituitary-ovarian axis by suppressing follicle-stimulating hormone
(FSH) release and counterbalancing activin to modulate ovarian function (Hillier ¢~ Mird,
1993; Halvorson ¢» De Cherney, 1996). Both inhibin and activin belong to the transforming
growth factor-Bsuperfamily. While activin is composed of homo- or heterodimers of
B-subunits (Bloise et al., 2019), inhibin A and B are heterodimeric glycoproteins formed by
an a-subunit covalently linked via disulfide bonds to either BA or B3 subunits (Vale et al.,
1988). Experimental evidence indicates that activin A administration during the proestrus
phase in rats elevates serum FSH levels, whereas inhibin A suppresses FSH secretion
during proestrus and estrus while augmenting estradiol concentrations in metestrus and
diestrus—a mechanism implicating inhibin in follicular maturation regulation (Woodruff
et al., 1993).

Functionally, inhibin exerts selective negative feedback on pituitary FSH synthesis,
promotes follicular development, and serves as a paracrine mediator of FSH production
(Gregory & Kaiser, 2004). By antagonizing activin receptor signaling, inhibin suppresses
activin-driven FSH synthesis, oocyte maturation, and ovulation (Gray, Bilezikjian & Vale,
2002; Li et al., 2018). This dual action reduces FSH-mediated follicular recruitment and
growth, thereby preserving the primordial follicle pool, maintaining follicular homeostasis,
and delaying POI. Autoimmune targeting of inhibin-a disrupts this equilibrium by
inducing neutralizing antibodies that impair FSH regulation, resulting in pathological FSH
elevation, accelerated follicular depletion.

Inhibin A is secreted primarily by dominant follicles and luteal cells, whereas inhibin
B originates from small primary and secondary follicles (Hillier ¢ Miré, 1993). Genetic
ablation of inhibin-a in mice leads to near-complete penetrance of hypergonadotropic
FSH elevation (Matzuk et al., 1992). A clinical correlation between inhibin and POI was
identified in a patient with a chromosomal translocation (46,XX,t[2;15][q32.3;q13.3]),
where the breakpoint on chromosome 2 disrupted the inhibin-a gene locus (2q33-qter)
(Burton et al., 2000). Pathogenic variants in inhibin-a protein domains or promoter regions
may impair FSH suppression, driving FSH hyperactivation and POI (Shelling et al., 2000;
Harris et al., 2005). In premenopausal women, INHA expression inversely correlates with
basal FSH levels and age, serving as a biomarker of declining ovarian reserve (Danforth
et al., 1998). Furthermore, INHA subunit mutations increase activin bioavailability while
reducing functional inhibin, collectively elevating FSH and predisposing to POI (Marozzi
et al., 2002).
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Autoimmune Targeting Mechanism: immunization of SWX]J mice with inhibin-a-
derived p215-234 peptide activates CD4+ Thl cells exhibiting a polarized cytokine
profile (high IFN-y andIL-2, low IL-5 and IL-10), triggering B-cell production of
inhibin-a-neutralizing antibodies. Immunohistochemical analyses revealed progressive
CD3+ T-cell infiltration in perifollicular regions at 8 and 12 weeks post-immunization,
confirming cell-mediated autoimmune involvement. Th1-derived cytokines (IFN-vy, IL-2)
recruit macrophages and cytotoxic T cells, which directly damage granulosa cells. This
dual attack—both cellular (T-cell infiltration) and humoral (neutralizing antibodies)
blocks activin’s suppressive effect on FSH, leading to sustained FSH elevation, prolonged
metestrus/diestrus phases, superovulation, and accelerated primordial follicle depletion—
culminating in Experimental Autoimmune Oophoritis (EAO) (Altuntas, Johnson & Tuohy,
2006). This model exhibits a biphasic phenotype: transient hyperfertility due to excessive
follicular recruitment, followed by irreversible ovarian failure resembling human POI.
Mice with high-titer inhibin-a-neutralizing antibodies recapitulate hallmark features of
human disease, including FSH dysregulation, diminished ovarian reserve, and progressive
fertility loss. The model now explicitly links Th1-driven autoimmunity to ovarian failure,
bridging hormonal and immune dysregulation in POI pathogenesis. The trajectory—a
transient FSH-driven compensatory phase (distinct from human POI) followed by ovarian
collapse—partially highlights the model’s utility for dissecting FSH-driven autoimmune
mechanisms and testing therapeutic interventions targeting this pathway, despite temporal
differences from human POI progression. The mechanism of inhibin-a action is illustrated
in Fig. 3.

Although this model effectively mimics hormonal feedback dysregulation, its
translational utility is constrained by phenotypic disparities in early disease stages,
exceptionally prolonged administration (8—12 weeks, substantially extending standard
POI modeling protocols), and the multifactorial etiology of human POI, which involves
genetic, autoimmune, and environmental factors beyond inhibin-a signaling alone.

Gene-edited models
RAG knockout models

The adaptive immune system achieves antigen recognition through recombination-
activating genes (RAG1 and RAG2), which encode endonucleases that initiate the
combinatorial joining of variable (V), diversity (D), and joining (J) gene segments in T-cell
receptors (TCRs) and immunoglobulins (Notarangelo et al., 2016; Kenter, Priyadarshi ¢
Drake, 2023). This process generates diverse T- and B-cell repertoires capable of recognizing
a broad spectrum of antigens. During V(D)] recombination, RAG1 and RAG2 bind to
recombination signal sequences (RSSs)—conserved heptamer and nonamer motifs flanking
V, D, and ] segments—separated by 12- or 23-nucleotide spacers (Fugmann et al., 2000).
These lymphocyte-specific proteins form a tetrameric complex in developing T and B
cells, introducing double-strand DNA breaks at RSS-coding junctions (Grawunder ¢
Harfst, 20015 Feeney, Goebel ¢» Espinoza, 2004). Subsequent repair via non-homologous
end joining completes the assembly of functional antigen receptor genes (Notarangelo et
al., 2016).
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Human RAG deficiencies are associated with a spectrum of immune dysregulations,
including severe combined immunodeficiency (SCID), Omenn syndrome, autoimmune
cytopenias, and vasculitis (Farmer et al., 2019; Geier et al., 2020). Null mutations in
RAGI or RAG2 abolish V(D)J recombination, leading to arrested T- and B-cell
development, while hypomorphic mutations permit residual activity, manifesting as
atypical immunodeficiencies, granulomatous disease, or delayed-onset autoimmunity
(Delmonte, Schuetz & Notarangelo, 2018; Niehues, Perez-Becker & Schuetz, 2010; Villa et al.,

1998; Villa et al., 2001).

In Ragl™/~ or Rag2™/~ mice, the absence of V(D)] recombination blocks T-cell
maturation at the CD4—CD8— double-negative stage and halts B-cell development at
the pro-B (B220+CD43+) phase, resulting in thymic atrophy, splenic hypoplasia, and
complete loss of mature lymphocytes (Delmonte, Schuetz & Notarangelo, 2018; Mombaerts
et al., 1992; Shinkai et al., 1992; Spanopoulou et al., 1994; Diamond et al., 1997). Notably,
these mice retain natural killer (NK) cell populations and exhibit normal viability, making
them ideal for testing immune reconstitution therapies (e.g., Treg transfer) and targeted
immunomodulators in POI (Bosticardo, Pala ¢ Notarangelo, 2021).

To investigate Treg deficiency-driven TH1 responses in POI, Xue et al. adoptively
transferred CD4+CD25—45RBhi T cells (4x 10° cells/mouse) into Ragl™/~ mice. Within
5 weeks, recipients developed POI features: reduced ovarian size, diminished follicular
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reserves, decreased estradiol/progesterone levels, elevated pro-inflammatory cytokines,
and increased granulosa cell apoptosis. This model uniquely permits the dissection of
TH1-specific effects without confounding adaptive immune responses, with outcomes
replicated in Rag2~/~ mice, confirming that Treg deficiency triggers TH1-mediated
ovarian dysfunction via GC apoptosis and steroidogenic impairment (Jiao et al., 2021).

Rag™/~ models, characterized by absent adaptive immunity and disrupted immune
homeostasis, are widely used in xenotransplantation, oncology, vaccine development,
autoimmune disorders, and graft-versus-host disease research (Villa ¢» Notarangelo, 2019).
Critically, Rag™/~ models serve as invaluable tools for informing therapeutic strategies
in POI, particularly for patients with regulatory T-cell (Treg) deficiencies. Their utility
extends to: (1) testing Treg therapies for POI patients, (2) studying immune reconstitution’s
impact on ovarian reserve, and (3) screening TH1-targeting biologics. Though limited by
cost/focus on immunodeficiency, emerging gene-editing tools expand their potential for
developing POI treatments, particularly for Treg-deficient cases. However, their application
in autoimmune POI remains limited, primarily due to the high costs of gene-editing
technologies and a predominant focus on immunodeficiency mechanisms.

AIRE knockout models

The autoimmune regulator (AIRE) gene, a master transcriptional regulator of central
immune tolerance, was identified in 1997 as the causative gene for autoimmune
polyendocrine syndrome type 1 (APS-1) through genetic screening (Nagamine et al.,
1997). Located on human chromosome 21@22.3 (mouse chromosome 10), AIRE encodes
a 545-amino acid protein containing four conserved domains: caspase recruitment
domain (CARD), Sp100, AIRE, NucP41/75 and Deafl (SAND) domain, and two plant
homeodomains (PHD1/2) (Nagamine et al., 1997; Blechschmidt et al., 1999; Finnish-
German APECED Consortium, 1997). The CARD facilitates homomultimerization, a
process disrupted by missense mutations clustered in APS-1 patients (Halonen et al.,
2004).

AIRE governs thymic epithelial differentiation by directing medullary thymic epithelial
cells (mTECs) to express tissue-restricted antigens (TRAs). This promotes negative selection
of autoreactive T cells and fosters regulatory T cell (Treg) development (Yang et al., 2015),
thereby maintaining immune tolerance and preventing autoimmunity.

AIRE is also expressed in ovarian tissue. Genetic screening of 48 Hungarian POI patients
(aged 15-39) using next-generation sequencing revealed AIRE as a susceptibility locus (1//és
et al., 2024). Aire-knockout (KO) mice recapitulate human multi-organ autoimmunity,
featuring lymphocytic infiltration, circulating autoantibodies, and infertility (Ramsey et
al., 2002). Ovarian pathology progresses with age: lymphocyte infiltration emerges by 4
weeks, dramatic follicular depletion occurs by 8 weeks, and >50% of mice exhibit complete
follicular loss by 20 weeks, with residual ovarian tissue showing eosinophilic deposits and
lymphocyte absence (Anderson et al., 2002; Warren et al., 2014).

AIRE deficiency disrupts thymic TRA expression, unleashing autoreactive T cells that
attack ovarian tissue. Aire-KO mice exhibit enhanced peripheral T-cell proliferation,
reduced Tregs, accelerated follicular atresia, and ovarian inflammation—mirroring APS-1
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features such as oophoritis, follicular reserve exhaustion, and autoantibody production.
While this model faithfully replicates immune-mediated ovarian decline, its utility is
limited by high construction costs and confounding multi-organ pathologies.

Other gene-edited models
Immune homeostasis relies on a complex network of regulatory genes. Targeted disruptions
of Forkhead box protein P3 (Foxp3) or placental brain-derived neurotrophic factor (BDNF)
may also induce autoimmune POI. Foxp3, a master transcription factor for Treg cells, is
essential for maintaining immune tolerance. Reduced Treg numbers correlate strongly with
POI pathogenesis (Yin et al., 2018; Wang et al., 2018). Foxp3 ablation in mice eliminates
functional Tregs, predisposing to systemic autoimmunity and ovarian dysfunction.
Heterozygous BDNF knockout mice survive to adulthood but develop POI-like phenotypes
by 1 month of age, characterized by ovarian hypofunction and follicular depletion. This
phenotype stems primarily from utero deficits: severely diminished primordial germ cell
proliferation at E11.5 due to reduced placental BDNF, establishing a depleted ovarian
reserve, coupled with evidence of mitochondrial dysfunction and accelerated ovarian aging
postnatally. This suggests BDNF’s role in maintaining ovarian reserve and steroidogenic
capacity (Liu et al., 2024).

These models underscore the interplay between immune dysregulation and ovarian
failure. However, their translational relevance is constrained by pleiotropic effects and
incomplete recapitulation of human POI heterogeneity.

Adoptive transfer nude mouse model

Nude mice, first identified in 1966, are congenital athymic mutants harboring a recessive
“nu” allele. Homozygous (nu/nu) mice exhibit hairlessness, growth retardation, reduced
fertility, and premature death within 5 months (Flanagan, 1966; Pantelouris, 1968). To
sustain breeding, heterozygous (nu/+) females are typically crossed with homozygous
males (Kramer ¢ Gershwin, 1976).

These mice lack functional T cells due to thymic agenesis, resulting in severe
immunodeficiency and an inability to reject xenografts or mount self-antigen-directed
immune responses (Wortis, 1971; Pelleitier ¢» Montplaisir, 1975).

Transferring normal T cells into nude mice serves as a method to induce autoimmune
oophoritis, leveraging their T cell-deficient background to study immune-mediated
ovarian injury. For example: transfer of neonatal splenocytes, thymocytes, or mature
thymocytes from BALB/c mice into syngeneic nu/nu mice reconstitutes partial immunity
and triggers autoimmune oophoritis and gastritis in >50% of recipients, accompanied
by serum autoantibodies (Smith et al., 1992; Taguchi et al., 1986). Transplantation of
15-day embryonic rat thymic rudiments into BALB/c nu/nu mice generates hybrid thymic
structures (donor epithelium + host lymphocytes). By 3 months post-transplant, 92.8% of
recipients develop autoimmune oophoritis with complete follicular loss, mononuclear cell
infiltration, and autoantibodies against oocyte cytoplasm, zona pellucida, and steroidogenic
cells (Smith et al., 1992). Renal capsule implantation of embryonic rat thymus or neonatal
BALB/c thymus similarly induces severe autoimmune oophoritis, characterized by CD4+
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effector T-cell infiltration and circulating autoantibodies (Sakaguchi ¢~ Sakaguchi, 1990).
Even adoptive transfer of anti-lyt-1-complement-treated splenocytes into nude mice
suffices to provoke organ-specific ovarian autoimmunity (Sakaguchi et al., 1985). These
findings demonstrate that pathogenic autoreactive T cells, derived from donor thymus or
spleen, can breach immune tolerance in athymic hosts and mediate systemic or organ-
specific autoimmunity.

This model mirrors human thymic dysplasia-associated ovarian failure, where girls
with thymic hypoplasia exhibit ovarian atrophy and follicular depletion (Miller ¢ Chatten,
1967). By enabling mechanistic studies of thymic dysfunction and autoimmunity, the
nude mouse adoptive transfer system provides insights for diagnosing and treating
immune-mediated POI. This model also circumvents technical challenges and high
infection risks associated with surgical thymectomy models recapitulates adrenal
autoimmunity/Addison’s disease comorbidity—characterized by adrenal cortical
lymphocytic infiltration (predominantly CD8+ T cells) and parenchymal atrophy—
observed in POI patients (Hellesen, Bratland ¢» Husebye, 2018), and avoids confounding
age-related ovarian senescence seen in non-autoimmune models. However, the concurrent
multi-organ autoimmune damage may obscure ovarian-specific mechanisms. High
mortality and fragility of nude mice also complicate long-term studies.

Passive transfer of autoantibodies

Passive transfer involves injecting pathogenetic autoantibodies (e.g., anti-ovarian
antibodies) or serum from humans/animals with immune-mediated ovarian dysfunction
into recipient animals to induce ovarian injury.

In 1989, ovarian antigen-enriched supernatant from rats was used to immunize rabbits.
Subsequent transfer of rabbit anti-ovarian serum to rats completely suppressed fertility and
induced ovarian hypofunction, demonstrating that ovarian antigens can trigger pathogenic
autoantibodies capable of inducing experimental autoimmune oophoritis (Damjanovic ¢
Jankovic, 1989).

Immune serum from Strongyloides stercoralis-infected gerbils with reduced fertility,
when transferred to infected recipients during peak parasite fecundity, significantly
reduced worm L1/adult ratios (Thompson et al., 1997). Immunization with a murine
cytomegalovirus-based contraceptive vaccine expressing zona pellucida 3 (ZP3) generated
ZP3-specific antibodies in mice. Passive transfer of this serum to unvaccinated BALB/c mice
prolonged median time to conception (Lloyd et al., 2010). In myasthenia gravis studies,
transfer of patient-derived immunoglobulins to healthy animals successfully recapitulated
disease symptoms, validating the broader applicability of this approach (Richman et al.,
2012).

While this model is straightforward and rapid-onset, it fails to recapitulate the
multifaceted immunopathology of spontaneous autoimmunity. Variable antibody half-
lives and inter-individual variability in antibody titers may compromise experimental
reproducibility, limiting its widespread use.
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Candidate autoantigens in premature ovarian insufficiency
Tong & Nelson (1999) identified a 125-kDa cytoplasmic oocyte protein targeted by
autoantibodies in D3tx-induced autoimmune POI mice. Screening an ovarian cDNA library
with autoimmune serum revealed Maternal Antigen That Embryos Require (MATER), a
maternal effect protein exclusively expressed in oocytes (Tong ¢ Nelson, 1999; Tong, Nelson
& Dean, 2000). MATER persists from growing oocytes to late blastocysts and is essential for
post-zygotic embryonic development (Tong et al., 2004). MATER™/~ females are sterile,
positioning MATER as a candidate autoantigen in human POL.

Sundblad et al. (2006) detected antibodies against a 50-kD ovarian antigen (identified
as enolase) in 20% of POI patients, suggesting its role in polyglandular autoimmune
syndromes associated with ovarian failure. 3p-Hydroxysteroid Dehydrogenase (3pHSD) is
implicated in both POI (21% of patients) and type 1 diabetes (23% of patients), potentially
serving as a shared autoantigen in multi-organ autoimmune disorders (Arif et al., 1996;
Reimand et al., 2000). Expressed from primordial follicles to mature oocytes, HSP90f
may contribute to ovarian autoimmunity by exposing immunogenic epitopes during
folliculogenesis (Pires ¢ Khole, 2009). Emerging reports suggest a potential link between
quadrivalent HPV vaccination and POI, possibly mediated by vaccine adjuvants or cross-
reactive immunity. However, clinical evidence remains limited and requires validation
(Gong et al., 2020).

A comparative summary of the commonly used modeling methods for immune-
mediated POI animal models discussed in this review is provided in Table 1. Additionally,
potential ovarian antigens such as MATER, enolase, 3pHSD, and HPV4 may induce
immune-mediated POI and serve as novel targets for developing POI animal models.

Evaluation methods for successful POl modeling

Current criteria for assessing the efficacy of premature ovarian insufficiency (POI) animal
models encompass a multi-dimensional evaluation framework (Dai et al., 2023; Francés-
Herrero et al., 2024), including:

(i) Reproductive capacity: fertility indices (e.g., total litter count, average litter size,
median inter-litter intervals).

(ii) Hormonal profiles: serum levels of anti-Miillerian hormone (AMH), estradiol (E2),
follicle-stimulating hormone (FSH), and luteinizing hormone (LH).

(iii) Ovarian morphology: ovarian volume, weight, and fibrosis quantification.

(iv) Follicular dynamics: primordial/antral follicle counts, regularity of estrous cycles,
and post-ovulation metrics (retrieved oocyte numbers, abnormal ovulation rates).

(v) Apoptotic biomarkers: expression levels of Ki67 (proliferation marker), Bcl2 (anti-
apoptotic), Bax (pro-apoptotic), Caspase 3, and Caspase 9, combined with histological
evidence of granulosa cell apoptosis.

These parameters collectively reflect ovarian reserve depletion, endocrine dysfunction,
and cellular turnover mechanisms, providing a robust basis for validating POI model
fidelity to human pathophysiology.
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Table 1 Animal models for constructing immune-related premature ovarian insufficiency.

Model types Induction methods Targeted immune Advantages Disadvantages Applications
components
pZP3 Artificial synthesis of ZP3 polypeptide Attack ovarian zona pellucida; Straightforward procedure, high model Requires multiple immunizations and Preferred choice for evaluating drug

as an antigen, combined with Freund’s
adjuvant to immunize animals, in-
duces autoimmune responses targeting
the ovarian zona pellucida, leading to
oophoritis and follicular depletion.

T-cell-mediated autoimmune
mechanisms

stability, ovarian pathology closely
resembles human autoimmune POI;
ovary-specific targeting avoids multi-
organ interference.

has a lengthy modeling period.

or stem cell therapies targeting au-
toimmune mechanisms, suitable for
studying T-cell-mediated autoimmune
mechanisms and immunomodulatory
treatments.

Crude ovarian antigen

Utilizes whole ovarian homogenate or
extracted ovarian proteins as antigens
to induce anti-ovarian antibodies for
targeted destruction of the ovaries.

Inducing the production of anti-
ovarian antibodies

Simple procedure and low cost

Complex antigen composition with
poor specificity; risk of triggering sys-
temic immune responses, requiring
caution.

Commonly applied to investigate
mechanisms of polyglandular autoim-
mune syndrome.

Thymectomy

Thymectomy is performed in neonatal
mice (2—4 days after birth) to disrupt
T-cell development, resulting in im-
mune tolerance disruption and multi-
organ immune attacks.

The removal of the thymus results in
the inability of T cells to develop

Opvarian pathology features complete
follicular destruction and mononuclear
cell infiltration, closely resembling hu-
man autoimmune POI.

High surgical complexity requiring
microsurgical techniques ; elevated
mortality rates necessitate strict proto-
cols and specific mouse strain require-
ments.

Suitable for studying thymic defects
and T cell-mediated autoimmune dys-
regulation mechanisms.

Inhibin-a

inhibin-a-derived p215-234 peptide
induces neutralizing antibodies, inter-
fering with its FSH regulatory role and
accelerating follicle pool depletion.

Induce the production of neutralizing
antibodies against inhibin a, prevent-
ing activin-induced downregulation of
pituitary FSH release, thereby leading
to increased FSH levels and excessive
depletion of the ovarian follicle pool.

A key regulatory molecule in the
pituitary-ovarian axis; its immunologi-
cally targeted disruption strongly mim-
ics hormonal dysregulation in human
POL

Lengthy modeling period, technically
challenging, costly; may trigger im-
mune dysregulation in other endocrine
glands.

Suitable for studying pituitary-specific
immunotargeting therapeutic strate-
gies and mechanisms of autoimmune
antibody-related diseases.

AIRE Knockout

Knockout of AIRE Aire leads to en-
hanced proliferation of self-reactive T
cells that attack ovarian tissues, along-
side a reduction in Treg cells.

AIRE drives thymic epithelial cell dif-
ferentiation to promote negative se-
lection of autoreactive T cells and Treg
development, maintaining central tol-
erance. AIRE deficiency accelerated
follicular atresia, and ovarian inflam-
mation.

The AIRE knockout model exhibits
features similar to diseases like APSI
and APECED, providing a highly rele-
vant pathological model to study ovar-
ian decline mechanisms in these condi-
tions.

High construction costs; ovarian dam-
age may coexist with pathologies in
other organs, complicating isolated
analysis.

Suitable for investigating POI mecha-
nisms involving multi-organ immune
dysfunction.

Rag gene knockout com-
bined with T-cell trans-
fer

Knockout of Ragl or Rag2 genes re-
sults in T/B lymphocyte deficiency and
severe immune dysfunction.

Knockout of Rag genes disrupts V(D)J
recombination, resulting in blocked
development and complete absence
of T and B cells, consequently causing
severe combined immunodeficiency.

Mimics pathological features of prema-
ture ovarian insufficiency (POI). The
absence of endogenous T cells elimi-
nates host immune interference, while
enabling targeted study of specific T-
cell subsets.

Complex model construction requir-
ing integration of gene-editing and cell
transplantation technologies.

Ideal for dissecting immune subset
imbalances and investigating pro-
inflammatory signaling pathways or
antibody-mediated follicular atresia
in multi-organ autoimmune damage
contexts.

Adoptive Transfer Nude
Mouse Model

Adoptive transfer of T cells or T cell-
producing immune organs (e.g., thy-
mus, spleen) from normal donors into
nude mice induces organ-specific au-
toantibodies to attack target organs,
leading to multi-organ damage.

Nude mutant mice lack thymus and
thymus-derived T cells. Adoptive T-
cell transfer into nude mice triggers
organ-specific autoantibodies attacking
target tissues, resulting in multi-organ
damage.

Overcomes challenges of thymectomy-
based models (e.g., technical difficulty,
high infection risk); serves as a robust
model for POI with adrenal autoim-
munity/Addison’s disease.

High husbandry requirements for nude
mice; technically demanding and costly
T-cell isolation/purification; mouse
strain variability may compromise
model stability.

Suitable for exploring mechanisms and
therapies for thymic hypoplasia or se-
vere thymic defects And for investigat-
ing immune cell subset regulation.

Passive Transfer of Au-
toantibodies

Direct transplantation of anti-ovarian
antibodies or immune serum contain-
ing anti-ovarian antibodies into an-
imals leads to ovarian damage as the
antibodies bind to ovarian antigens.

Anti-ovarian antibodies directly bind
to ovarian antigens, inducing ovarian
tissue damage and inflammation.

Simple procedure for the immune
model and rapid onset of effects.

Lacks active immunization processes;
fluctuations in antibody titers and indi-
vidual variability may lead to inconsis-
tent experimental results.

Rarely used in practical research.
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CONCLUSIONS

Research on autoimmune POI is extensive, and ideal disease animal models are critical for
mechanistic studies, therapeutic discovery, and drug development. These models should
exhibit the following characteristics: (1) practicality: simple methodology, short timeframes,
low cost, and high reproducibility. (2) Pathophysiological fidelity: high resemblance to the
pathogenic mechanisms and progression observed in human POI patients. (3) Stability and
specificity: consistent and targeted induction of ovarian dysfunction without confounding
systemic effects. (4) Reversibility: pathological changes that can be ameliorated through
therapeutic interventions. When selecting a model, the primary criteria should align with
your research objectives and mechanistic focus, followed by secondary considerations such
as model stability, specificity, time requirements, cost, and the technical feasibility of the
modeling protocol. Ultimately, we hope this review can guide researchers in choosing
appropriate and reliable POI animal models, thereby advancing future investigations into
POI and its therapeutic strategies.
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