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ABSTRACT
Background. Agility and change-of-direction (COD) are essential for success in soccer,
influencing performance and injury risk. Resisted sprint training (RST) has shown
promise in enhancing these skills by improving muscle strength and neuromuscular
coordination. However, the effects of vertical and horizontal RST on agility and COD
performance remain inadequately explored.
Methodology. A systematic literature search was conducted across PubMed, Web of
Science, and Google Scholar without date restrictions, following PRISMA guidelines.
Studies were included if they involved healthy soccer players, RST interventions, and
assessed agility or COD speed. Data extraction and quality assessment were executed
independently by two reviewers; statistical analyses employed RevMan and Stata
software packages.
Results. This meta-analysis included 13 studies, which collectively generated 35
groups based on experiment and control protocols. The demonstrated a statistically
significant improvement of RST on agility and COD performance (SMD = −0.31,
95% CI [−0.44 to −0.17], p< 0.001). Subgroup analyses revealed a trend towards
greater improvements with vertically resisted sprinting (SMD = −0.36, p= 0.009),
compared to horizontally resisted sprinting (SMD = −0.13, p= 0.25) although the
difference was not statistically significant (p = 0.07). Elite athletes demonstrated
significant enhancements in agility and COD (SMD = −0.45, p< 0.001). In contrast,
amateur athletes displayed no significant improvements (SMD=−0.05, p= 0.77). RST
outperformed unresisted sprinting (SMD = −0.29, p< 0.05) and alternative training
(SMD = −0.36, p< 0.001), indicating its effectiveness across various comparators.
Conclusions. RST significantly enhances agility and change-of-direction performance
in soccer players, particularly among elite athletes. Vertical resisted sprinting is more
effective than horizontal resistance, supporting its integration into training programs
for improved athletic performance.
PROSPERO registration number (CRD42024608859).
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INTRODUCTION
Agility and change-of-direction (COD) performance are critical components of athletic
success, particularly in team sports such as soccer. Agility typically involves rapid,
unpredictable movements that require athletes to respond to external stimuli, including
cognitive elements such as decision-making and anticipation (Paul, Gabbett & Nassis,
2016; Sheppard & Young, 2006). Comparatively, COD refers to the ability to decelerate
and change direction quickly, which focuses more on the physical aspect of movement
execution (Chaabene et al., 2018). Match analysis reveals elite players execute 500–700
COD actions (>45◦ directional changes) per match, with 58% occurring at high intensities
(>3 m/s2) (Bloomfield, Polman & O’Donoghue, 2007). These maneuvers account for 72%
of goalscoring opportunities and 64% of defensive interventions in critical match zones
(Falces-Prieto et al., 2022). Enhanced COD performance correlates with superior athletic
outcomes while concurrently mitigating injury risk and optimizing sport-specific task
execution (Baker & Nance, 1999; Paul, Gabbett & Nassis, 2016).

The physiological and biomechanical mechanisms reveal two critical CODdeterminants,
including eccentric strength and neuromuscular control (Spiteri et al., 2015; Suchomel,
Nimphius & Stone, 2016). The cognitive demand of agility, including decision-making and
anticipation, play a crucial role in performance (Brughelli et al., 2008; Ebner, Granacher
& Gehring, 2025; Sheppard & Young, 2006). Central to agility performance is the ability
to rapidly process perceptual-cognitive processing, which allows athletes to assess their
environment and make quick decisions regarding movement execution (Nimphius et
al., 2018; Paul, Gabbett & Nassis, 2016). These cognitive factors are complemented by
neuromuscular coordination, which facilitates effective muscle recruitment and optimizes
timing during directional changes (Paul, Gabbett & Nassis, 2016; Young, Dawson & Henry,
2015). Resisted sprint training (RST) enhances these mechanisms by improving muscle
strength, explosive power, and neuromuscular coordination. Specifically, RST increases
the rate of force development (RFD) and enhances the athlete’s ability to generate force
quickly, which is critical for rapid changes in direction and maintaining speed during these
movements (Alcaraz et al., 2018; Buchheit et al., 2010).

Vertical resisted sprinting (VRS) primarily targets vertical ground reaction forces,
enhancing eccentric strength and stretch-shortening cycle efficiency critical for rapid
deceleration-reacceleration duringCOD tasks. In contrast, horizontal resistance emphasizes
horizontal force production, directly mimicking forward acceleration mechanics but
potentially underloading the braking forces required for multi-directional agility (Brughelli
et al., 2008; Morin et al., 2017). This biomechanical distinction may explain the observed
superiority of vertical resistance in COD enhancement. In this context, resisted sprint
training (RST) has emerged as a promising training modality aimed at improving
agility performance. RST involves the application of external resistance during sprinting,
which can be delivered in both vertical and horizontal directions. The primary physiological
mechanisms through which RST enhances agility and COD include increased muscle
strength, explosive power, and improved neuromuscular coordination. Specifically,
RST induces adaptations in fast-twitch muscle fibers, which are crucial for explosive
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movements required in agility and COD tasks (Chaabene et al., 2020; Chaabene et al.,
2018). Furthermore, RST improves the recruitment and synchronization of muscle fibers,
optimizing an athlete’s ability to generate force rapidly during directional shifts (Alcaraz et
al., 2018; Cahill et al., 2020). Despite the growing body of literature on RST, there remains
a lack of systematic reviews addressing its effects on agility and COD performance in
soccer players. Although there are over a dozen relevant studies, most have focused on
linear sprinting or acceleration, with limited attention given to the COD performance
(Fernandez-Galvan et al., 2022; Hamad, Alcaraz & de Villarreal, 2024; Petrakos, Morin &
Egan, 2016; Ward et al., 2024). Furthermore, while some studies suggest that vertical
resisted sprinting may offer unique advantages over horizontal resistance training, the
comparative effectiveness of these modalities in enhancing agility and COD performance
remains underexplored (Dietze-Hermosa et al., 2024; Gil et al., 2018; McMorrow, Ditroilo
& Egan, 2019;Moya-Ramon et al., 2020).

Therefore, the systematic review and meta-analysis aim to address these gaps by
examining the impact of both vertically and horizontally RST on agility and COD
performance in soccer players.Wehypothesize that RSTwill result in notable improvements
in these performance metrics, particularly among elite athletes, given their advanced
neuromuscular coordination and higher levels of baseline physical fitness. Research has
shown that elite athletes tend to respond more effectively to high-intensity training
modalities, such as RST, due to their enhanced ability to recruit muscle fibers and manage
fatigue (Jones et al., 2017). This investigation, thus, represents an essential contribution to
optimizing training programs and maximizing athletic performance in soccer.

Study objectives
The systematic review andmeta-analysis aimed to determine if RST is effective in improving
on agility and COD performance in soccer players.

MATERIALS AND METHODS
This study was conducted following the guidelines outlined in the ‘Preferred Reporting
Items for Systematic Reviews and Meta-Analyses’ (PRISMA) statements (Moher et al.,
2009), ensuring methodological rigor and transparency. The protocol for this systematic
review andmeta-analysis was prospectively registered (PROSPERO ID: CRD42024608859),
further enhancing the credibility of our research.

Literature search
A systematic literature search was conducted across multiple databases, including PubMed,
Web of Science, EMBASE, SPORTDiscus, and Google Scholar, up to September 2024,
with no date restrictions. The search employed medical subject headings (MeSH) for
‘agility’, and utilized a comprehensive Boolean search syntax adapted for each database.
The specific search strategy was as follows: (‘‘sprint’’ [Mesh] OR ‘‘resisted sprint training’’)
AND (resisted OR ‘‘vertical resisted’’ OR ‘‘horizontal resisted’’ OR ‘‘wearable resistance
training’’ OR loaded OR vest OR weighted OR sled OR bands OR uphill OR parachute
OR bungees OR ‘‘1080 sprint’’) AND (‘‘agility’’ [Mesh] OR ‘‘change of direction speed’’
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OR ‘‘change of direction performance’’ OR ‘‘COD’’ OR ‘‘reactive agility’’) NOT (injury
OR disease OR syndrome OR patient OR animals). Limits were applied in the following
manner: searches were restricted to peer-reviewed English-language articles. No date
restrictions were imposed, and the most relevant articles were considered. Literature search
was performed separately by two reviewers (× and×). Discrepancies were resolved through
discussion or consultation with a third reviewer (×). The selection process involved an
initial assessment of titles, followed by a thorough examination of abstracts and full texts
to confirm eligibility based on predefined inclusion criteria. Filters were applied to limit
results to studies involving human participants published in English. Additionally, manual
searches were conducted by the authors to identify any potentially relevant studies that
may have been overlooked during the initial database search. An overview of the study
process is illustrated in Fig. 1.

Inclusion and exclusion criteria
A Participants, Intervention, Comparators, Outcomes, and Study Design (PICOS)
approach was used to determine included studies of the following inclusion criteria: (1)
Population: healthy soccer players of any age, sex, and competitive level. (2) Intervention:
RST programs that specifically involve the musculature contracting against external
resistance, such as resistance bands, weighted vests, sleds, or other forms of resistance
directly related to sprinting training. (3) Comparators: passive (e.g., routine training or no
intervention) or active (alternative training) control groups. (4) Outcomes: at least one
measure related to agility or COD speed assessed at baseline and follow-up using validated
performance tests, with outcomes expressed in seconds. (5) Study design: only randomized
controlled trials (RCTs), including peer-reviewed articles or dissertations & theses. (6)
Quality assessment: Studies must achieve a score≥6 points on the Physiotherapy Evidence
Database (PEDro) scale (Bhogal et al., 2005; Moran et al., 2021; Zouita et al., 2023). This
cut-off was chosen based on previous research indicating that studies scoring≥6 points are
generally associated with highermethodological quality and lower risk of bias, making them
more reliable for inclusion in systematic reviews. Exclusion criteria were pre-defined as
follows: (1) a cohort with unhealthy problems (e.g., individuals with injury or pathology).
(2) acute studies with the duration of <4 weeks. (3) sprinting intervention group performed
other exercises (e.g., strength training). (4) absence of a control group. (5) other designs,
such as observational or non-RCT. (6) lacking baseline and follow-up data.

Data extraction and synthesis
Data extraction was performed by one author (ZWH), with verification by a second author
(TYD). Full texts of eligible articles were subsequently assessed, with a third reviewer
(DYL) available to resolve any disagreements. All extracted data were recorded in a
standardized form to facilitate comparison and synthesis during the meta-analysis. Key
data points extracted from each study included sample characteristics (age, sex, height, body
mass, and competitive level (amateur, semi-professional, professional, national, and elite
etc.)), intervention details (training type (vertical, horizontal, and combined), resistance
instruments (sleds, resistance bands, parachutes, cables, and weighted vests), load, volume
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Figure 1 PRISMA flow diagram representing the search process and study selection. AI, artificial
intelligence; RCT randomized controlled trial.

Full-size DOI: 10.7717/peerj.20084/fig-1

(sessional distance and total distance), frequency, duration (session × weeks)), agility test
(Y-shaped reactive agility test, Stop-and-Go test ect.) and COD test (i.e., time taken to
complete the Illinois agility test, T -test, 162 modified T -test, 20-m agility test, 5−0−5
test, zig-zag 20-m test ect.), and performance metrics (reactive agility, COD time, and
maximum running speed). Baseline and follow-up mean along with standard deviations
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(SD) for the primary outcome measures were utilized to calculate standardized mean
differences (SMDs), with negative values indicating performance improvements. Where
available, the mean change from baseline, the SD of the mean change, and the number of
participants at each assessment for all groups were extracted. If authors reported multiple
measurement points during an intervention, only the longest follow-up period in which
the training intervention was maintained was included. The main characteristics of the
subjects and training programs from the included studies are shown in Tables 1 and 2.

Quality and risk-of-bias assessment
To ensure a comprehensive quality assessment, the methodological quality of the included
studies was rigorously evaluated by two independent reviewers (ZWH and TYD) utilizing
a multi-tool approach. The PEDro scale (Bhogal et al., 2005), was employed to assess ten
specific criteria, yielding a total score from 0 to 11, with scores of ≥6 indicating high
quality (Maher et al., 2003). In addition, the Cochrane Risk of Bias (RoB) assessment tool
was used to systematically evaluate potential biases across several domains, including
selection, performance, detection, attrition, reporting, and other biases (Higgins et al.,
2011). Each domain was categorized as low risk, high risk, or unclear based on established
Cochrane guidelines (Higgins & Green, 2011). Any discrepancies in the evaluations were
resolved through discussion between the two reviewers, and if consensus could not be
reached, a third reviewer (DYL) was consulted to provide an independent assessment. This
multi-tool approach ensured that all evaluations were thorough and unbiased, providing
a more complete picture of the methodological quality and risk of bias in the included
studies. Comprehensive visualizations, including traffic light plots and summary statistics,
were generated using the Risk-of-Bias visualization tool (robvis, see Fig. 2) (McGuinness &
Higgins, 2021).

Statistical analyses
Statistical analyses for this meta-analysis were conducted using RevMan version 5.4
(Cochrane Collaboration, Oxford, UK) and Stata version 18 (Stata Corp, College Station,
TX, USA). The net training effect sizes were computed by comparing mean differences
(MD, calculated as: post-intervention –baseline) between experimental and control groups,
divided by pooled SDbaseline (Lachenbruch, 1989). Standardized mean differences (SMDs)
were calculated using Hedges’ g, adjusting for small sample bias, with values interpreted
as trivial (<0.2), small (0.2–0.59), moderate (0.60–1.19), large (1.2–1.99), and very large
(≥2.0) (Higgins & Green, 2011). Only final post-intervention values were included in
analyses for studies with multiple time points to maintain consistency.

An inverse-variance fixed-effects model was chosen to address the anticipated
heterogeneity in study designs and populations. However, due to the observed variability
in effect sizes across studies, a random-effects model may also be warranted for further
analysis to more effectively accommodate this heterogeneity. Heterogeneity was assessed
using the magnitude of I2 and τ 2 in light of the direction and clinical meaningfulness of
effects, the width of the 95% prediction interval, and the plausibility of observed between-
study differences (Borenstein et al., 2017; Deeks et al., 2019; GRADE Working Group, 2004).
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Table 1 Summary of study characteristics, including sample sizes, participant demographics, intervention protocols, and outcomemeasures
for each included study.

Study Group Design Sample
size

Gender Age
(years)

Height
(cm)

Body
mass
(kg)

Competitive
level

Carlos-Vivas et al. (2020) HRS vs. VRS vs. CRS
vs. URS

RCT n= 13
n= 11
n= 12
n= 12

Male 18.3± 2.1 1.78± 0.05 72.7± 9.5 Professional

De Hoyo et al. (2016) HRS vs.
RT vs.
URP / PT

RCT n= 12
n= 11
n= 9

Male 17± 1
18± 1
18± 1

1.78± 0.01
1.78± 0.03
1.77± 0.02

73.12± 2.56
70.87± 3.87
72.34± 2.55

Elite

McMorrow, Ditroilo & Egan (2019) HRS vs. URS RCT n= 6
n= 7

Male 24.7± 3.4
24.0± 3.6

1.80± 0.06
1.81± 0.04

80.6± 8.8
82.7± 5.2

Professional

Sal-de-Rellan et al. (2024) CRS vs. FT RCT n= 18
n= 12

Male 18.1± 0.7 1.79± 0.06 76.2± 4.8 Elite

Grazioli et al. (2023) HRS-M vs.HRS-H RCT n= 11
n= 10

Male 25.5± 6.0
26.3± 5.1

1.82± 0.09
1.77± 0.07

82.2± 9.6
76.0± 9.2

Elite

Shalfawi et al. (2013) HRAS vs. RT RCT n= 10
n= 10

Female 19.4± 4.4 1.68± 0.05 59.1± 5.6 Elite

Gil et al. (2018) HRS vs. URS RCT n= 9
n= 9

Male 22.0± 2.2
22.8± 4.3

1.80± 0.06
1.79± 0.07

76.0± 5.4
78.2± 7.3

Professional

Otero-Esquina et al. (2017) HRS×1 vs.
HRS×2 vs.
CG

RCT n= 12
n= 12
n= 12

Male 17.0± 1.0 1.77± 0.02 69.4± 4.2 Professional

Pareja-Blanco, Asian-Clemente
& Saez de Villarreal (2021)

HRS-H vs.HRS-L vs.
RT vs.
RT + HRS-H vs.
RT + HRS-L vs.
CG

RCT n= 14
n= 15
n= 15
n= 18
n= 18
n= 11

Male 21.8–23.0 1.76–1.79 69.7–75.9 Amateur

Rodriguez-Osorio, Gonzalo-Skok
& Pareja-Blanco (2019)

VRCOD-M vs.
VRCOD-L vs.
URCOD

RCT n= 16
n= 19
n= 19

Male 17.8± 4.2
18.8± 5.3
17.7± 3.4

1.65± 0.04
1.74± 0.08
1.74± 0.06

64.7± 9.2
63.9± 11.5
63.2± 8.1

Professional

Loturco et al. (2017) HRS vs. URP / PT RCT n= 7
n= 11

Male 21.7± 2.4
22.2± 2.4

1.77± 0.09
1.79± 0.05

73.5± 6.2
75.5± 11.5

Professional

Raya-González et al. (2017) VRS vs. RT RCT n= 8
n= 8

Male 16.7± 0.3
16.5± 0.3

1.77± 0.07
1.76± 0.07

65.9± 5.4
66.4± 4.8

Elite

Simpson et al. (2020) VRS vs. CG RCT n= 9
n= 10

Female 21± 2
22± 3

1.7± 0.03
1.6± 0.04

67.0± 4.0
63.0± 7.8

Amateur

Notes.
NR, not reported; CG, control group; RCT, randomized controlled trial; HRS, horizontally resisted sprint; VRS, vertically resisted sprint; CRS, combined horizontally and
vertically resisted sprint; HRAS, horizontally resisted agility and sprint; URS, unresisted sprint training; RT, resistance training; CRT, combined resistance training; FT,
functional training; URP / PT, unresisted plyometric training; L, Light-load; M, Moderate-load; H, Heavy-load; URCOD, unresisted change of direction and sprint train-
ing; VRCOD, vertically resisted change of direction and sprint training.

Sources of heterogeneity were explored a priori via subgroup analyses (IntHout et al., 2016).
Subgroup analyses were conducted to examine the moderator impact of variables such as
competitive level, training type (vertically or horizontally), resistive load (above or below
20% body mass), loading method (percentage of body mass vs. percentage velocity loss),
comparators (unresisted sprint or routine train), and outcomes. Potential publication bias
was evaluated using funnel plots and Egger’s regression test, with trim-and-fill adjustments
applied when asymmetry was detected (Egger et al., 1997; Sterne et al., 2011). To visually

He et al. (2025), PeerJ, DOI 10.7717/peerj.20084 7/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.20084


Table 2 Characteristics of the resistive sprint training programs.

Study Group Training programme Agility or
COD test (s)

Training
modality

Load Session
volume

Total
volume

Length
(weeks)

frequency
(per week)

Total
sessions
(n)

Session
duration
(min)

Carlos-Vivas et al. (2020) HRS vs.
VRS vs.
CRS vs.
URS

1080 Sprint™,
weighted vest

10–20% BM 400 m 6,400 m 8 2 16 30 Zig-zag 20-m test

De Hoyo et al. (2016) HRS vs.
RT vs.
URP / PT

Sled towing 12.6% BM
40–60% 1RM
0%

HRS: 20 m× 6–10
reps, 120–200 m
RT: 4–8 reps
×2-3 sets
PT: 2–3 reps× 1–3
sets

2,680 m 8 1–2 16 60
30
30

Zig-zag 20-m test

McMorrow, Ditroilo & Egan (2019) HRS vs. URS Sled towing 30% BM
0%

100–180 m 800 m 6 1 8 45 S180◦ test

Sal-de-Rellan et al. (2024) CRS vs. FT Sled + weighted
vest

13% BM 120–300 m 2,520 m 6 2 12 15 Arrowhead COD test, 15m-
AG-B, Zig-zag-B, T -test,
Illinois agility test, NMAT

Grazioli et al. (2023) HRS-M vs.HRS-
H

Sled 15% VL
40% VL

4–6 reps× 1-4 sets 4,765.2± 514.1 m,
4,924.9± 204.7 m

8 1–2 8–16 15 Zig-zag 20-m test

Shalfawi et al. (2013) HRAS vs. SQ Resistance band Variable 160–200 m 1,840 m 10 2 20 60 S180◦ agility test

Gil et al. (2018) HRS vs. URS Elastic cords and
sheaves

10% VL
0%

NR 800 m 6 2 12 60 Zig-zag 20-m test

Otero-Esquina et al. (2017) HRS vs. CG Sled towing 20% BM 20 m× 3–5 reps, 60–
100 m

560 m 7 1–2 7–14 60–90 V-cut test

Pareja-Blanco, Asian-Clemente
& Saez de Villarreal (2021)

HRS-H vs.
HRS-L vs.
SQ vs. SQ +
HRS-H vs. SQ +
HRS-L vs. CG

Sled towing 12.5% BM
80% BM
40–55% 1RM

HRS: 20 m× 4–
7 reps, 120–200 m
SQ: 4–8 reps×3 sets

880 m 8 1 8 30–45 20-m sprint with a 180◦
COD test

(continued on next page)
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Table 2 (continued)
Study Group Training programme Agility or

COD test (s)

Training
modality

Load Session
volume

Total
volume

Length
(weeks)

frequency
(per week)

Total
sessions
(n)

Session
duration
(min)

Rodriguez-Osorio, Gonzalo-Skok & Pareja-Blanco (2019) VRCOD-M vs.
VRCOD-L vs.
URCOD

Weighted vest 12.5% BM
50% BM

V-cut training× 3–5
reps

NR 6 2 12 20 V-cut test,
L-run test

Loturco et al. (2017) HRS vs.
URP / PT

Sled towing 5%, 12.5%,
20% BM
OPL

20–30 m× 6–8
reps, 150–180 m
6 reps× 6–8 sets,
36–48 reps (50%
HJ+50% CMJ)

1,920 m
504 reps

5 2–3 12 60 Zig-zag 20-m
test

Raya-González et al. (2017) VRS vs. RT Weighted vest 15–50% BM LS: 3 reps× 2–4 sets
CODS: 15 reps× 3
sets RT: 6-8 reps× 4
sets

NR 6 2 12 Various 90◦ COD

Simpson et al. (2020) VRS vs. CG Weighted vest ∼8% BM 8 h NR 6 3 18 NR T -test

Notes.
NR, not reported; CG, control group; RCT, randomized controlled trial; HRS, horizontally resisted sprint; VRS, vertically resisted sprint; CRS, combined horizontally and vertically resisted sprint;
HRAS, horizontally resisted agility and sprint; URS, unresisted sprint training; RT, resistance training; CRT, combined resistance training; FT, functional training; URP/PT, unresisted plyometric
training; Load: L, Light-load; M, Moderate-load; H, Heavy-load; 1080 Sprint, 1080 Sprint™ device; WV, weighted vest; BM, body mass; 1RM, one repetition maximum; BW, body weight; VL,
velocity loss; reps, repetitions; S180◦ test, sprint 9-3-6-39 m with 180◦ turns test; 15m-AG-B, Agility test 15-m ball dribbling; Zig-zag-B, Zig-zag agility tests with ball; NMAT, New multi-change of
direction agility; URCOD, unresisted change of direction and sprint training; VRCOD, vertically resisted change of direction and sprint training.
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Figure 2 Cochrane risk of bias assessment, summarizing the risk of bias for each included study across
various domains.

Full-size DOI: 10.7717/peerj.20084/fig-2

inspect for publication bias, funnel plots were generated by plotting SMDs against the
standard error of the SMD (seSMD) (Sterne et al., 2011). In the Galbraith plot, included
studies are represented by a data point where the x-axis denotes the precision (1/se) and the
y-axis represents the standardized effect sizes, calculated as Hedges’s g. Sensitivity analyses
were conducted to assess the robustness of findings by excluding individual studies to
identify outliers.

RESULTS
Characteristics of included studies
This systematic review and meta-analysis included 13 studies (Carlos-Vivas et al., 2020;
De Hoyo et al., 2016; Gil et al., 2018; Grazioli et al., 2023; Loturco et al., 2017; McMorrow,
Ditroilo & Egan, 2019; Otero-Esquina et al., 2017; Pareja-Blanco, Asian-Clemente & Saez
de Villarreal, 2021; Raya-González et al., 2017; Rodriguez-Osorio, Gonzalo-Skok & Pareja-
Blanco, 2019; Sal-de-Rellan et al., 2024; Shalfawi et al., 2013; Simpson et al., 2020) that met
the predefined inclusion criteria, comprising 35 training groups. Among these, only three
studies (Otero-Esquina et al., 2017; Pareja-Blanco, Asian-Clemente & Saez de Villarreal,
2021; Simpson et al., 2020) featured a non-exposed control group (routine training),
while the remaining studies included comparison groups with active control condition
(alternative training: unresisted sprinting, resistance training, plyometric training, and
functional training). The limited number of studies utilizing a non-exposed control group
highlights a significant gap in the literature, as the absence of such controls may affect the
ability to isolate the specific effects of RST on agility and COD performance. Only two
studies (Shalfawi et al., 2013; Simpson et al., 2020) included female players. Participants’
ages ranged from 16.5 to 26.3 years, with athletic levels varying from amateur to elite
athletes. The interventions primarily focused on vertically and horizontally RSTmodalities,
utilizing devices such as the sleds, weighted vests, 1080 Sprint™ (portable robotic resistance
device), Vertimax (platform with elastic cords and sheaves), and resistance band. Relative
loads were individualized based on participants’ body mass (BM), with loads prescribed
as a percentage of BM ranging from 5% to 80%, while two studies utilized velocity-based
training (percentage of velocity loss, %VL) for loading, with ranges from 10% to 40% VL.
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Intervention durations varied from 5 to 10 weeks, with an average of 6.9 ± 1.4 weeks. The
total number of training sessions completed ranged from 8 to 20, averaging 12.8 ± 3.7
sessions. The small body of included studies reported that the resisted sprinting distances
are 20 to 30 m, with total session volumes ranging from 60 to 400 m and overall training
volumes spanning from 560 to 6,400 m.

The methodological quality and risk of bias assessment
Table 1 presents that the mean methodological quality score was 6.9, with scores ranging
from 6 to 8, indicating acceptable quality and low risk of bias (Table 3). Eleven studies
(85%) were randomized, and all ensured that intervention groups were matched at
baseline, which is crucial for minimizing confounding variables. The studies with higher
scores (Gil et al., 2018; Grazioli et al., 2023; Otero-Esquina et al., 2017; Sal-de-Rellan et
al., 2024) demonstrated strong performance in terms of baseline similarity, between-
group comparisons, and intention-to-treat analysis, suggesting that these studies were
methodologically rigorous in both design and execution. However, the majority of studies
did not fully implement blinding for participants, coaches, and researchers, which may
introduce performance and detection biases. The Cochrane risk of bias assessment further
highlighted a significant risk of bias in the blinding domain, acknowledging the inherent
challenges of achieving blinding in supervised training interventions. This limitation
suggests that while the overall methodological quality is acceptable, the potential biases
introduced by the lack of blinding should be considered when interpreting the results
(Fig. 2).

The funnel plot for the included studies is illustrated in Fig. 3. A visual examination
of the funnel plot, along with a non-significant Egger’s regression intercept (p= 0.276),
indicates no evidence of asymmetry, suggesting a low risk of publication bias among the
studies. However, we acknowledge that visual inspection alone may not be sufficient to
detect subtle biases, as it is dependent on the observer’s interpretation and the number of
studies included. To further assess the risk of publication bias, we also conducted Egger’s
regression test, which confirmed the absence of significant bias. Additionally, the Galbraith
plot shows that the regression line is close to the ‘no effect’ line, further supporting the
conclusion that there is no significant systematic bias (Fig. 4).

Main effects
The pooled results indicated a significant positive effect of RST on agility and COD
performance (SMD = −0.31, 95% CI [−0.44 to −0.17], Z = −4.34, p< 0.001), with a
moderate effect size (Fig. 5). The heterogeneity analysis indicated a low level of statistical
heterogeneity among the studies (I2 = 0%), reflecting a degree of consistency in the results.
This result suggests that the studies included in the analysis were highly consistent, showing
minimal variation in outcomes across different study designs and populations.

Results of subgroup analyses
We observed moderate-to-substantial statistical heterogeneity within the subgroups
comparing resistive type (p= 0.07; I 2 = 61.4%). A leave-one-out sensitivity analysis
indicated that the effect was primarily driven by two small-squad studies; removing
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Table 3 Methodological quality assessment of the included studies (k = 13).

Study Eligibility
criteria

Randomized
assignation

Concealed
allocation

Similarity
baseline

Blinded
subjects

Blinded
coaches

Blinded
investigator

Dropout
<15%

Intention-to-treat
analysis

Between-group
comparisons

Point and
variability
measures

Total
score

Carlos-Vivas et al. (2020) X X × X × × × X X X X 7

De Hoyo et al. (2016) X × × X × × × X × X X 5

McMorrow, Ditroilo & Egan (2019) X × × X × × × X × X X 5

Sal-de-Rellan et al. (2024) X X X X × × × X X X X 8

Grazioli et al. (2023) X X X X × × × X X X X 8

Shalfawi et al. (2013) X X × X × × × X X X X 7

Gil et al. (2018) X X X X × × × X X X X 8

Otero-Esquina et al. (2017) X X X X × × × X X X X 8

Pareja-Blanco, Asian-Clemente
& Saez de Villarreal (2021)

X X × X × × × X X X X 7

Rodriguez-Osorio, Gonzalo-Skok
& Pareja-Blanco (2019)

X X × X × × × X × X X 6

Loturco et al. (2017) X X × X × × × X × X X 6

Raya-González et al. (2017) X X × X × × × X × X X 6

Simpson et al. (2020) X X X X × × × X × X X 7

Notes.
PEDro, Physiotherapy Evidence Database.
The eligibility criteria have to be excluded for calculation of the total PEDro score; ‘‘X’’ = indicates a ‘‘yes’’ score; ‘‘×’’ = indicates a ‘‘no’’ score.
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Figure 3 Funnel plot illustrating the distribution of study results and assessing the risk of publication
bias.

Full-size DOI: 10.7717/peerj.20084/fig-3

Figure 4 Galbraith plot displaying the regression line and supporting the conclusion of no significant
systematic bias.

Full-size DOI: 10.7717/peerj.20084/fig-4
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Figure 5 Pooled results of the main effect of resisted sprint training on agility and COD performance,
indicating a significant positive effect size.HRS, horizontal resisted sprinting; VRS, vertical resisted
sprinting; CRS, combined resisted sprinting; URS, unresisted sprinting; URP, unresisted plyometrics; FT,
functional training; M, moderate intensity; H, high intensity; HRAS, horizontal resisted agility training;
RT, resistance training; CG, control group; VRAS, vertical resisted agility training; URAS, unresisted
agility training. Notes: Carlos-Vivas et al., 2020; De Hoyo et al., 2016; Sal-de-Rellan et al., 2024; Grazioli
et al., 2023; Shalfawi et al., 2013; Gil et al., 2018; Otero-Esquina et al., 2017; Pareja-Blanco, Asian-Clemente
& Saez de Villarreal, 2021; Rodriguez-Osorio, Gonzalo-Skok & Pareja-Blanco, 2019; Loturco et al., 2017;
Raya-González et al., 2017; Simpson et al., 2020;McMorrow, Ditroilo & Egan, 2019.

Full-size DOI: 10.7717/peerj.20084/fig-5
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either study reduced I2 to 39% and rendered the subgroup comparison non-significant
(p> 0.10). A striking observation from the data comparison was that both VRS (SMD
= −0.36, p= 0.009) and CRS (SMD = −0.53, p< 0.01) demonstrated significant agility
adaptations compared to HRS (SMD = −0.13, p= 0.25). Notably, the effect of HRS
on agility and COD performance was not significant (SMD = −0.13, p= 0.26) (Fig. 6).
However, it is important to interpret the borderline statistical significance of the VRS
versusHRS difference (p= 0.07) with caution, as this result did not reach the conventional
threshold for statistical significance (p< 0.05). The I2 value (61.4%) suggests a moderate
level of heterogeneity across the studies in this subgroup analysis, further emphasizing the
need for cautious interpretation. Regarding athletic proficiency, eleven studies evaluated
the agility performance and COD speed in elite and professional athletes revealed that RST
significantly improved agility performance (p< 0.01). In contrast, two studies involving
amateur players indicated that there was no significant enhancement in agility and COD
performance compared to the control group (SMD = −0.05; p= 0.77) (Fig. 7). A trend
of greater improvement was observed at higher levels of competition, although this trend
did not reach statistical significance. In terms of control characteristics, RST exhibited
superior agility and COD adaptations compared to both URS (SMD = −0.29; p= 0.03)
and alternative training (SMD = −0.36; p= 0.0007). However, the comparison between
RST and non-exposed control was based on only three trials (n= 3), yielding a pooled
SMD of −0.12 (p= 0.53) with substantial imprecision (Fig. 8). According to GRADE
criteria, the evidence was rated as ‘‘very low certainty’’ due to risk of bias, inconsistency,
and serious imprecision. The heterogeneity analysis revealed low inter-study heterogeneity
(I2 = 6%), indicating that the results of the included studies are statistically consistent
and that the pooled effect size estimate is reliable. It is crucial to highlight that the current
evidence is limited, necessitating cautious interpretation of the findings. Additionally,
significant improvements were observed in agility tests involving cognitive engagement
(SMD = −0.36; p< 0.001) and COD ability (SMD = −0.29; p= 0.001) (Fig. 9).

DISCUSSION
Ourmeta-analysis of 13 randomized controlled trials (RCTs) demonstrates resistance sprint
training (RST) significantly improves key soccer performance metrics (SMD=−0.31, 95%
CI [−0.44 to −0.17]; p< 0.001) with minimal heterogeneity (I2=0%). The short duration
of the interventions may promote more consistent neuromuscular adaptations. Notably,
vertical resistance training was particularly beneficial compared to horizontal resistance,
particularly among elite athletes. This specificity likely stems from vertical resistance’s
biomechanical congruence with soccer-specific movement patterns during directional
changes. These findings position RST as an evidence-based training modality requiring
individualized prescription based on athletes’ competitive levels and positional demands.

Subgroup analyses revealed larger agility improvements in elite players than in amateurs.
The lack of significant improvements among amateur players underscores the need for
individualized training programs that consider an athlete’s developmental stage and
background. Tailoring resistance to match specific needs can optimize performance

He et al. (2025), PeerJ, DOI 10.7717/peerj.20084 15/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.20084


Figure 6 Standardized mean differences comparing the effects of performing resisted sprint train-
ing using different resistive type. SD, standard deviation; CI, confidence interval. Notes: Carlos-Vivas
et al., 2020; De Hoyo et al., 2016; Sal-de-Rellan et al., 2024; Grazioli et al., 2023; Shalfawi et al., 2013; Gil
et al., 2018; Otero-Esquina et al., 2017; Pareja-Blanco, Asian-Clemente & Saez de Villarreal, 2021; Rodriguez-
Osorio, Gonzalo-Skok & Pareja-Blanco, 2019; Loturco et al., 2017; Raya-González et al., 2017; Simpson et al.,
2020;McMorrow, Ditroilo & Egan, 2019.

Full-size DOI: 10.7717/peerj.20084/fig-6

outcomes and facilitate effective skill acquisition. Understanding these nuances is essential
for coaches aiming to enhance agility and COD performance in soccer.

This study found that RST significantly improved agility and COD in soccer players.
While previous research has primarily focused on RST’s impact on acceleration and
sprinting performance (Alcaraz et al., 2018; Ward et al., 2024), our findings highlight its
effects on agility, which have been less explored. Some studies suggested that URS may be
comparable or even superior to resisted sprint modalities (Clark et al., 2010; Thompson et
al., 2021). In the present meta-analysis, VRS demonstrated only a trend-level advantage
over HRS (SMD=−0.39, p= 0.07). Given the marginal statistical significance and the very
low certainty of evidence (GRADE Working Group, 2004), we caution against definitive
claims of superiority. Future adequately powered trials are required to confirm or refute
this potential benefit. The observed differences in the effects of VRS and HRS underscore
the potential of RST in improving specific athletic abilities, with VRS yielding greater
improvements in agility and COD. Additionally, RST demonstrated greater benefits in
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Figure 7 Forest plot of effects of resisted sprint training on agility and change of direction
performance according to competitive level. SD, standard deviation; CI, confidence interval. Notes:
Carlos-Vivas et al., 2020; De Hoyo et al., 2016; Sal-de-Rellan et al., 2024; Grazioli et al., 2023; Shalfawi et al.,
2013; Gil et al., 2018; Otero-Esquina et al., 2017; Pareja-Blanco, Asian-Clemente & Saez de Villarreal, 2021;
Rodriguez-Osorio, Gonzalo-Skok & Pareja-Blanco, 2019; Loturco et al., 2017; Raya-González et al., 2017;
Simpson et al., 2020;McMorrow, Ditroilo & Egan, 2019.

Full-size DOI: 10.7717/peerj.20084/fig-7

elite soccer players, possibly due to their enhanced ability to adapt to the training stimulus,
leading to greater competitive performance gains (Loturco et al., 2017). The results of
this study are partly related to the research by Alcaraz et al. (2018), which indicated that
RST can significantly enhance athletes’ sprint ability (Alcaraz et al., 2018). However, this
study further refines this effect, particularly regarding agility and COD performance. The
comparison between VRS (SMD = −0.36, p= 0.009) and HRS (SMD = −0.13, p= 0.25)
indicates that the direction of resistance may influence training outcomes, although the
statistical significance of this difference is marginal. Further research is necessary to validate
these findings and explore the mechanisms underlying the observed effects.

RST significantly enhances muscle strength and explosive power, crucial for rapid
directional changes (Deshmukh et al., 2021;Ward et al., 2024). Both vertical and horizontal
resistance increase loads that improve force production, leading to better sprinting and
agility performance (Fernandez-Galvan et al., 2022; Hoff & Helgerud, 2004). RST compels
athletes to generate greater force and faster RFD during acceleration, fostering muscle and
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Figure 8 Forest plot of effects of resisted sprint training on agility and change of direction
performance according to comparators. SD, standard deviation; CI, confidence interval; URT: unresisted
sprint training; AT, alternative training; CG, control group. Notes: Carlos-Vivas et al., 2020; De Hoyo et al.,
2016; Sal-de-Rellan et al., 2024; Grazioli et al., 2023; Shalfawi et al., 2013; Gil et al., 2018; Otero-Esquina
et al., 2017; Pareja-Blanco, Asian-Clemente & Saez de Villarreal, 2021; Rodriguez-Osorio, Gonzalo-Skok
& Pareja-Blanco, 2019; Loturco et al., 2017; Raya-González et al., 2017; Simpson et al., 2020;McMorrow,
Ditroilo & Egan, 2019.

Full-size DOI: 10.7717/peerj.20084/fig-8

neural adaptations that enhance recruitment efficiency and synchronization of muscle
fibers (Hernández-Davó & Sabido, 2014; Morin et al., 2017). These adaptations enable
athletes to generate greater force more quickly, facilitating effective directional changes
and maintaining speed during maneuvers. The practical implications of these findings
suggest that incorporating RST, particularly vertical resistance, into training programs
could provide a competitive advantage in soccer, where agility and COD are pivotal for
success.

Recent studies indicate that multitasking training can enhance motor unit
synchronization, improving performance in dynamic tasks (Bender et al., 2017). Increased
mechanical tension from resisted sprints can lead to greater muscle hypertrophy and
improved neuromuscular coordination (Cross et al., 2018). High-intensity sprint training
also enhances metabolic efficiency, optimizing energy utilization during intense efforts
and improving overall athletic performance (Buchheit & Laursen, 2013; Hargreaves &
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Figure 9 Forest plot of effects of resisted sprint training on agility and change of direction
performance according to test. COD, change of direction ability; SD, standard deviation; CI, confidence
interval. Notes: Carlos-Vivas et al., 2020; De Hoyo et al., 2016; Sal-de-Rellan et al., 2024; Grazioli et al.,
2023; Shalfawi et al., 2013; Gil et al., 2018; Otero-Esquina et al., 2017; Pareja-Blanco, Asian-Clemente
& Saez de Villarreal, 2021; Rodriguez-Osorio, Gonzalo-Skok & Pareja-Blanco, 2019; Loturco et al., 2017;
Raya-González et al., 2017; Simpson et al., 2020;McMorrow, Ditroilo & Egan, 2019.

Full-size DOI: 10.7717/peerj.20084/fig-9

Spriet, 2020; Thurlow et al., 2023). RST alters sprinting kinematics, enabling athletes
to adopt more efficient movement patterns (Myrvang & van den Tillaar, 2024). These
adaptations are beneficial in soccer, where players frequently engage in quick pivots and
lateral movements, reducing injury risk and facilitating smoother transitions between
acceleration and deceleration. RST promotes the recruitment of fast-twitch muscle fibers,
essential for explosive movements, thereby improving sprinting speed and the ability to
change direction rapidly (Sal-de-Rellan et al., 2024; Sheppard & Young, 2006). RST mimics
the dynamic nature of competitive soccer, allowing training effects to transfer effectively
to game scenarios. The cognitive demands of RST require athletes to make quick decisions
and adapt their movements, further enhancing physical conditioning and reaction times
(Beato et al., 2019). While RST demonstrates significant benefits in agility and COD
performance, improvements among amateur players may be less pronounced (Michailidis,
2022), emphasizing the need for individualized training programs tailored to athletes’
developmental stages and backgrounds.

The analysis reveals that elite and professional athletes experience significant
enhancements in agility andCODperformance, while amateur players donot. This supports
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existing literature, suggesting that higher athleticism levels lead to more pronounced
adaptations to training stimuli (Thurlow et al., 2023; Ward et al., 2024). Elite athletes’
advanced training experience and physical capabilities likely enable them to maximize RST
benefits (McMorrow, Ditroilo & Egan, 2019). Variability in training responses is linked to
differences in neuromuscular coordination and cognitive processing (Morral-Yepes et al.,
2023). Elite athletes typically demonstrate superior proprioception and decision-making,
enabling efficient execution of complex movements (Buchheit & Laursen, 2013; Yılmaz et
al., 2024). The lack of significant improvements among amateur players compared to elite
athletes suggests that the effectiveness of RST may depend on the athlete’s developmental
stage and training history (Kraemer & Ratamess, 2004). Elite athletes, with higher levels of
neuromuscular coordination, experience greater benefits from RST because their baseline
physical capabilities allow them to fully capitalize on the training stimulus. In contrast,
amateur players may have less developed neuromuscular control and lower physical
conditioning, which could limit their responsiveness to the intensity and specificity of RST.
This suggests that individualized training programs, considering the athlete’s experience
and physical maturity, are essential for optimizing performance outcomes. Furthermore,
the lack of statistical significancemay indicate that RST does not provide additional benefits
over traditional training methods for certain populations, particularly those with lower
training experience or different baseline fitness levels. Additionally, the non-significant
effect of horizontal RST warrants further investigation. Several factors could contribute
to this outcome. First, the training protocols used in the control groups may have been
sufficient to elicit improvements in COD performance, thereby masking any potential
benefits of RST. Second, the variability in individual responses to training interventions
could play a role; athletes with differing levels of neuromuscular coordination and physical
conditioning may not respond uniformly to RST. One possible explanation for the lack
of effect could be the specific nature of horizontal RST. Unlike vertical RST, which more
closely mimics the movement patterns used in soccer, horizontal RST may not engage the
relevant muscle groups or neuromuscular pathways as effectively for improving agility
and COD performance. Understanding these nuances will be essential for optimizing RST
protocols and ensuring that they are effectively tailored to the needs of different athlete
groups.

Resistance during sprints enhances athletes’ ability to generate force rapidly, crucial
for effective directional changes (Hoff & Helgerud, 2004). Biomechanically, RST promotes
optimal movement patterns, with added resistance lowering the center of mass and
improving stability during directional shifts (Lockie et al., 2012; Mann & Hagy, 1980).
These adaptations enhance performance under resisted conditions and improve unresisted
movements, boosting agility (Gamble, 2013). Customizing resistance levels to individual
capabilities and matching training intensity to competition duration enhances RST
effectiveness. Understanding training transferability is crucial to show how modalities
like RST enhance related athletic tasks. In soccer, where agility and directional changes are
critical, targeted training strategies that translate improvements across performance
contexts are essential. This approach can significantly enhance an athlete’s overall
effectiveness on the field.
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Agility is a critical element in sports such as soccer, where athletes must rapidly assess
their environment and make quick decisions, skills that are essential for success during
high-intensity situations in game scenarios. While RST has been shown to significantly
enhance agility and COD abilities, its impact on cognitive processing, such as decision-
making and situational awareness, remains unclear and warrants further investigation.
Traditional metabolic-demand training, including aerobic and resistance training,
prioritize physiological and biomechanical adaptations but typically involve limited
cognitive engagement (Ludyga, Gerber & Kamijo, 2022; Tomporowski & Pesce, 2019; Zhang
et al., 2024; Zhang, Fang & Wang, 2025). In contrast, RST enhances muscle strength and
explosiveness, which are crucial for rapid directional changes and acceleration. These
improvements primarily result from neuromuscular adaptations and the recruitment
of fast-twitch muscle fibers. However, agility assessments require substantial cognitive
processing, as athletesmust adapt quickly to changing scenarios during gameplay, involving
both physical and mental agility. To develop well-rounded athletes capable of excelling in
dynamic game environments, coaches should integrate training regimens that challenge
both physical conditioning and cognitive skills, such as decision-making and reaction time
(Voss et al., 2013). Future research should investigate the interplay between physiological
and cognitive factors, particularly how RSTmay influence cognitive aspects of performance
such as decision-making, to optimize athletic capabilities in competitive environments.

Another promising avenue for future research is examining the synergistic effects of RST
when combined with other training modalities like plyometrics, agility drills, and sport-
specific skills training to enhance performance outcomes.Understanding how these training
modalities complement each other may help developmore effective conditioning programs
that enhance both physical and cognitive aspects of athletic performance. Additionally,
investigating the psychological dimensions of RST, such as its impact on mental toughness
and focus, could provide valuable insights. The mental demands of agility and COD tasks,
coupled with the physical challenges of RST, may influence athletes’ cognitive functions,
including confidence, decision-making, and performance under pressure. Research that
explores cognitive process to RST could inform strategies to optimize mental preparedness,
decision-making, and focus during competition.

The meta-analysis acknowledges several limitations despite its interesting findings.
Firstly, the methodological quality of the included studies is compromised by factors
such as a lack of blinding. None of the included trials blinded participants or outcome
assessors. The absence raises the risk of bias to ‘‘some concerns’’ or ‘‘high risk’’. A sensitivity
analysis confined to the four studies rated ‘‘low risk’’ after contact with authors attenuated
the pooled SMD by 0.08 (from −0.36 to −0.28), indicating potential overestimation in
the main model (Nüesch et al., 2010). Secondly, the available evidence is heavily skewed
toward male, academy-level or professional players. Female players experience distinct
neuromuscular loading patterns and hormonal fluctuations that may modulate training
adaptations. Similarly, semi-professional and amateur athletes often possess lower initial
strength levels, potentially altering dose–response relationships. Our findings, therefore,
cannot be generalized to female players or non-elite populations until targeted RCTs are
conducted. This lack of representationmay particularly affect the applicability of findings to
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female athletes, given the physiological and biomechanical differences between genders that
can influence training responses and performance outcomes. Furthermore, understanding
how these training modalities influence performance over extended periods, as well as
exploring the impact of different training loads, will provide valuable insights for coaches
and practitioners. Further exploration of the underlying physiological and biomechanical
mechanisms, particularly through advanced imaging techniques and performance analysis
tools, as well as the effects of varying training loads, could enhance our understanding of
how RST contributes to improved athletic performance.

CONCLUSIONS
RST emerges as a pivotal training modality for enhancing agility and COD speed in soccer
players, significantly contributing to their overall athletic efficacy. Vertical resistance
sprinting may confer a small, uncertain benefit in elite players. Integrating RST with
complementary training modalities allows coaches to design comprehensive regimens
that optimize athletic performance. Future research should explore the long-term effects
of RST, with a focus on female athletes, and investigate the underlying physiological
and biomechanical mechanisms involved. It is important to acknowledge that agility
in team sports involves cognitive components such as decision-making and anticipation.
However, the cognitive demands specifically related to RST and its interaction with physical
performance require further research to better understand their impact on agility and COD
performance in dynamic sporting environments.
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