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ABSTRACT
Background. Circular RNA (circRNA) are a new class of non-coding RNAs that are
involved in the molecular pathology of cancer. This study aims to screen and validate
key circRNAs with diagnostic potential in o ral squamous cell carcinoma (OSCC), and
explore their possible molecular mechanism.
Methods. This study first integrated the GSE131182 dataset with clinically obtained
OSCC sample data and used the limma package to identify differentially expressed
circular RNAs (DEcircRNAs). Subsequently, circRNAs associated with head and neck
squamous cell carcinoma were identified using CircNet2.0 and intersected with the
differentially expressed circRNAs to determine the key circRNA. The diagnostic value
of the key circRNA was evaluated using receiver operating characteristic (ROC)
curves, followed by functional validation through in vitro assays including cell counting
kit-8 (CCK-8), wound healing, transwell assay, and flow cytometry. Finally, target
microRNAs (miRNAs) were predicted using CircNet2.0 andmiRDB, a ceRNA network
was constructed, and functional enrichment analysis of target genes was performed
using Metascape tool.
Results. A total of 318 and 46 differentially expressed circRNAs (DEcircRNAs) were
identified from the GSE131182 dataset and clinical samples, respectively. Through in-
tersection analysis, the key circRNAhsa_circ_0000831was identified. hsa_circ_0000831
was upregulated in OSCC samples, and ROC curve analysis indicated its high diag-
nostic performance. In vitro experiments showed that inhibition of hsa_circ_0000831
significantly reduced OSCC cell viability, migration, and invasion, while markedly
enhancing apoptosis. ceRNA network analysis predicted that hsa_circ_0000831 targets
five miRNAs (including hsa-miR-136-5p, hsa-miR-100-3p, hsa-miR-144-5p, hsa-miR-
149-5p and hsa-miR-214-5p), with the associated target genes mainly enriched in
cancer-related pathways.
Conclusion. This work offer s a novel foundation for the early identification of OSCC
and provides potential clues for finding new therapeutic targets.

Subjects Cell Biology, Molecular Biology, Oncology, Translational Medicine
Keywords Oral squamous cell carcinoma, circRNA, Biomarker, ceRNA network, miRNA
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INTRODUCTION
Oral cancer is a prevalent malignancy, and oral squamous cell carcinoma (OSCC) is the
most common pathological type, accounting for approximately 90% of all oral cancer
cases worldwide (Lan et al., 2024; Li, Tang & Dai, 2023). The major risk factors for oral
cancer include tobacco use, alcohol consumption, and betel nut chewing (Li, Tang &
Dai, 2023; Jiang et al., 2019; Dong, Zhang & Chang, 2023). Ulceration is a typical clinical
manifestation of OSCC (Tan et al., 2023), and nearly half of the patients are diagnosed at an
advanced stage, making early detection challenging (Li et al., 2025). Currently, the primary
treatments for OSCC involve surgery combined with radiotherapy and chemotherapy
(Gamez et al., 2018). However, due to frequent tumor metastasis and recurrence (Ling,
Cheng & Tao, 2021), the prognosis for OSCC remains poor, with a five-year survival rate
of less than 50% (Qi et al., 2025; Ge et al., 2015). Therefore, the identification of reliable
biomarkers is crucial for early diagnosis and may contribute to improving the survival rate
of OSCC patients (Seyfinejad & Jouyban, 2022).

Circular RNA (circRNA) refers to a category of single-stranded non-coding RNAs that
are covalently closed RNAmolecules produced by reverse splicing (Patop, Wüst & Kadener,
2019;Zeng et al., 2023) and canmodulate gene expression via acting as protein scaffolds and
sponges and microRNAs (miRNAs) sponges, coding for proteins, and regulating splicing
and transcription (Fernández-Tussy, Ruz-Maldonado & Fernández-Hernando, 2021; Chen
et al., 2023a). The circRNAs are implicated in multiple types of carcinomas, exhibiting
aberrant expression (Zhang et al., 2018; Chen & Shan, 2021; Xu et al., 2023). Previous
research has manifested that circRNAs such as hsa_circ_0001971, hsa_circ_0001874, and
circ-KIAA0907 promote the proliferation of OSCC cells by affecting multiple signaling
pathways (Dong et al., 2021; Jun et al., 2021). CircFNDC3B has been found to accelerate
angiogenesis and metastasis in OSCC (Li et al., 2023). Additionally, it has been discovered
by researchers that circRNF13 facilitates the stabilization of ITGB1 messenger RNA
(mRNA) through phase separation mediated by IGF2BP1 in a manner dependent on m6A,
thereby contributing to the chemoresistance of oral cancer to cisplatin (Xu et al., 2025).
Exploring the relationship between circRNAs and OSCC can help find new biomarkers
and provide novel targets for early diagnosis of OSCC.

Therefore, in this study, we innovatively identified a circRNA, hsa_circ_0000831, as
a potential biomarker for OSCC by integrating self-measured clinical data with publicly
available datasets. Its functional role was subsequently validated through a series of in vitro
experiments. Based on this biomarker, a ceRNA regulatory network involving associated
miRNAs and target genes was constructed. The detection of this circRNA is expected
to facilitate the earlier diagnosis of OSCC, thereby increasing the chances of timely
intervention, improving clinical outcomes, and ultimately enhancing patient prognosis
and quality of life.
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MATERIAL AND METHODS
Obtaining of tissue samples from OSCC patients
OSCC patients who underwent surgeries in the Department of Oral and Maxillofacial
Surgery of Hainan Provincial People’s Hospital from November 2023 to April 2024 were
collected. Three pairs of OSCC and adjacent normal tissues were acquired. After the
surgically excised tissue specimens are removed from the body, they are washed with
normal saline and then placed in a −80 ◦C refrigerator within half an hour. Inclusion
criteria included patients without chemotherapy or radiotherapy before surgery, and tissue
specimens that were pathologically confirmed as oral squamous cell carcinoma. Patients
with cancer in other parts of the body were excluded. The medical ethics committee of
Hainan General Hospital approved the current study (ethic approval no. [2024] 240).
Written informed consent was acquired from the patients before the operation.

RNA extraction
Following the specifications, total RNA was collected with the use of Trizol reagent
(15596018CN, Thermofisher, Waltham, MA). Bioanalyzer 2100 and RNA 6000 Nano
LabChip Kit (5067-1511, Agilent, CA, USA) was used to measure the quantity and purity
of RNA, with RIN number > 7.0. About five µg of RNA was utilized to deplete ribosomal
RNA through the Ribo-Zero Gold rRNA Removal Kit (MRZG12324, Illumina, San Diego,
USA). Afterwards, employing divalent cations, the remanent RNAs were split into short
fragments at a high temperature. Thereafter, reverse transcription of the RNA fragments
into cDNA was achieved with the use of SuperScript™ II Reverse Transcriptase (1896649,
Invitrogen, USA). Next, the U-labeled second-stranded DNAs was synthesized by E. coli
DNA polymerase I (m0209, NEB, USA), RNase H (NEB, cat.m0297, USA) and dUTP
Solution (R0133, Thermo Fisher, USA). A-base was added to the blunt ends of each strand
to ligate to the indexed adapters that contained a T-base overhang. The fragments were
then ligated with either single- or dual-index adapters, followed by size selection (300–
600 bp) using the AMPureXP beads. The ligated products were amplified by polymerase
chain reaction (PCR) after the U-labeled second-stranded DNAs were treated with the
heat-labile UDG enzyme (m0280, NEB, USA). Specifically, the following conditions were
set to carry out PCR amplification: initial denaturation at 95 ◦C for 3 min; 8 cycles at 98 ◦C
for 15 s, at 60 ◦C for 15 s, at 72 ◦C for 30 s, and at 72 ◦C for 5 min. The cDNA library
had an average insert size of 300 ± 50 bp. The final libraries were subjected to paired-end
150 bp sequencing (2 × 150 bp, PE150) on the Illumina NovaSeq 6000 platform (LC-Bio
Technology Co., Ltd., Hangzhou, China). The sequencing depth per sample exceeded
20 million reads. Quality control of raw reads was performed using FastQC (v0.11.9),
and reads with Phred quality score >30 for more than 85% of bases were retained for
downstream analysis. The overall Q30 percentage and GC content were reported to ensure
high-quality sequencing data.

CircRNA identification of self-measured datasets
Circular RNAs were de novo assembled from mapped reads using CIRCExplorer2 (2.2.6,
default) and CIRI (2.0.2, default). Next, the tophat-fusion and CIRCExplorer2 or CIRI

Liu et al. (2025), PeerJ, DOI 10.7717/peerj.20082 3/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.20082


were employed to identify back-spliced junction reads from unmapped reads. This ensured
the identification of unique circRNAs from the samples.

Quantification of circRNA abundance
To quantitatively compare back splicing from different RNA-seq, the back-spliced reads
(support for circRNA) were normalized through read length and number of mapped reads
(spliced reads per billion mapping, SRPBM). The number of reads mapped to the reference
genome in the samples was quantified, followed by normalizing the number of reads
spanning the back-spliced junction to the total number of mapped reads (units in billion)
and read length. The Perl script was utilized to calculate the SRPBM value for circRNA in
each sample, which served as the abundance of expression. SRPBM = number of circular
reads/number of mapped reads (units in billion)/read length.

Data sources
The dataset used in this study includes public datasets and self-measured datasets
obtained according to the previous methods. The public dataset was the GSE131182,
which contained the circRNA expression profiles of six pairs of OSCC and normal oral
mucosal tissue samples, was acquired from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131182).

Differential analysis
Employing the limma package (Ritchie et al., 2015), the differentially expressed circular
RNAs (DEcircRNAs) in theGSE131182 and self-measured data were screened. DEcircRNAs
were identified with the threshold of |log2FoldChange| ≥ 1 and p < 0.05. To control for false
positives, multiple testing correction was performed using the Benjamini–Hochberg
method, and adjusted p-values (FDR) were also calculated.

Enrichment analysis
Parental genes for circRNAs up-regulated in OSCC were subjected to Gene Ontology
(GO) enrichment analysis in three categories (biological process, cellular component, and
molecular function) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis using the ‘‘clusterProfiler’’ R package (Wang et al., 2025).

Identification of key circRNAs
The circRNAs with top50 associated with head and neck squamous cell carcinoma (HNSC)
were identified using CircNet2.0 (https://awi.cuhk.edu.cn/~CircNet/php/index.php), after
removing duplicates, and then intersected with the public dataset and the up-regulated
circRNAs in the self-measured data to obtain the key circRNAs. The diagnostic sensitivity
and specificity of the key circRNAs were verified using receiver operating characteristic
(ROC) curves.

Construction of competing endogenous RNA (ceRNA) network
The target miRNAs of key circRNAs were obtained by taking intersections through
CircNet2.0 website and miRDB (https://mirdb.org/). The regulatory network was
visualized by Ctyoscape 3.9.1 software (Shannon et al., 2003). Functional enrichment
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analysis of target genes was conducted utilizing the Metascape online tool (https:
//metascape.org/gp/index.html#/main/step1).

Cell culture
Human OSCC WSU-HN30 (IM-H729) and HSC-3 (IM-H705) were obtained from
Immocell (http://www.immocell.com/) (Xiamen, China). All cells used were identified by
short tandem repeats (STR) to confirm that they were free of contamination. Cultures
were conducted using Dulbecco’s Modified Eagle Medium (DMEM) (BDBio, Hangzhou,
China) and Eagle’s Minimum Essential Medium (EMEM) (30-2003, ATCC, Manassas,
VA), respectively, with 10% fetal bovine serum (FBS) (C0226, Beyotime, Shanghai, China)
and 1% penicillin-streptomycin (P/S) (15140148, ThermoFisher Scientific, Waltham,
MA). The incubation was performed in an environment at 37 ◦C, 5% CO2 and saturated
humidity.

Cell transfection and quantitative reverse transcription PCR
(qRT-PCR)
The WSU-HN30 and HSC-3 cells were transfected with the hsa_circ_0000831
interference plasmid employing the Lipofectamine 2000 Transfection Kit (11668027,
Invitrogen, Carlsbad, CA, USA). The plasmids (sh-hsa_circ_0000831 and sh-NC) were
synthesized and constructed by GenePharma Co., Ltd. (Shanghai, China), and sequence
verification was performed prior to transfection. The targeting sequence was 5′-
GCTGTTTCTACACTTGCTAGG-3′, and negative control was set up. And sh-NC repre-
sents the negative control, while sh-hsa_circ_0000831 represents theWSU-HN30 or HSC-3
cells transfected with hsa_circ_0000831. After transfection, the cells were incubated at 37 ◦C
for 48 h. After extracting RNA following a similar procedure as described previously, direct
reverse transcription was performed. After generating cDNA, quantitative reverse tran-
scription (qRT-PCR)was applied to test the transfection efficiency. The primer pairs were as
follows: hsa_circ_0000831-F 5′-CGAGGTATAGCAGAAGAATCA-3′, hsa_circ_0000831-
R 5′-CTTGGTTCAGCATCACTCT-3′; GAPDH -F 5′-CTACATGGTTTACATGTTCC-3′,
GAPDH -R 5′-CATACTTCTCATGGTTCACA-3′. Afterwards, qRT-PCR was carried out
applying AriaMx Real-Time PCR System (Agilent, USA) utilizing the SYBR Green I
(SY1020, Solarbio). The expression level of hsa_circ_0000831 was obtained through
2−11CT method (Zhang & Li, 2021), and GAPDH was utilized for normalization.

Cell counting Kit-8 (CCK-8) assay
Cell proliferation was examined using the Cell counting Kit-8 (CCK-8, C0037, Beyotime,
Shanghai, China) according to the manufacturer’s instructions. Transfected WSU-HN30
and HSC-3 cells were seeded into 96-well plates at a density of 5×103 cells per well in
100 µL of complete medium. Cells were incubated at 37 ◦C in a humidified incubator
containing 5% CO2. At 24, 48, and 72 h after seeding, 10 µL of CCK-8 reagent was added
to each well, followed by incubation at 37 ◦C for 30 min while protected from light. After
incubation, absorbance (OD) at 450 nm was detected in each well by an enzyme labeling
instrument (Skanlt RE 7.0) (Ma et al., 2023).
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Wound healing assay
The transfected WSU-HN30 and HSC-3 cells were planted into 6-well plates respectively.
After reaching full confluence, a sterile pipette tip was employed to make a straight scratch
on the monolayer cells for creating an artificial wound. Next, after removing the used
medium, Phosphate Buffered Saline (PBS) (C0221A, Beyotime, Shanghai, China) was used
for washing the cells twice to discard cell debris. Then, the culture dishes were returned
to the incubator after the addition of fresh serum-free medium under the original culture
conditions for further incubation. The culture dishes were taken out at 0 h and 48 h
respectively, and the scratched areas were photographed using a microscope (Olympus
Corporation, Tokyo, Japan). The wound width changes were analyzed by ImageJ software,
and the migration capability of WSU-HN30 and HSC-3 cells was reflected by wound
closure rated at each time point measured.

Transwell assay
The polycarbonatemembrane (pore size: eightµm, 3422, Corning, Inc, Corning, NY, USA)
of a 24-well plate was pre-coated with Matrigel (C0372, Beyotime, Shanghai, China). The
upper transwell chamber had 200 µL of serum-free medium, whereas the lower transwell
chamber contained 700 µL of medium and 10% FBS. After 48 h, 4% paraformaldehyde
(P0099, Beyotime, Shanghai, China) was employed to fix the cells invading into the lower
chamber, and 0.1% crystal violet (C0121, Beyotime, Shanghai, China) was used for dyeing
the cells for 30 min. The cells were observed and quantified from three random fields of the
inverted optical microscope (Olympus Corporation, Tokyo, Japan) to evaluate the invasive
ability of WSU-HN30 and HSC-3 cells.

Flow cytometry
After digesting the transfected WSU-HN30 and HSC-3 cells with 0.25% trypsin and cell
washing with PBS (C0221A, Beyotime, China), Annexin V-FITC Apoptosis Detection Kit
(C1062S, Beyotime) was employed to dye the cells, followed by using a flow cytometer (BD
Biosciences, San Jose, CA, USA) for the detection of apoptosis.

Statistical analysis
All the data were analyzed by R 4.2.0 software and GraphPad Prism 8. For two variables,
the Unpaired t test was used for statistical test. Analysis of variance (ANOVA) and Sidak’s
multiple comparisons test were employed for three or more variables. Mean ± standard
deviation (SD) was used to express the data. Differences in expression between OSCC
and control samples were compared using the wilcoxon rank-sum test. And p <0.05
was considered statistically significant. All cell experiments were performed in three
independent replicates (n= 3).

RESULTS
Differential analysis of circRNAs
Differential analysis of circRNA expression profiles in 6 pairs of OSCC and normal oral
mucosal tissue samples from GSE131182 detected a sum of 318 DEcircRNAs, including
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Figure 1 Identification of DEcircRNA. (A) Volcano plot of DEcircRNA in GSE131182. (B) Heatmap of
DEcircRNA in GSE131182. (C) Volcano plot of DEcircRNA in the self-measured data. (D) Heatmap of
DEcircRNA in the self-measured data.

Full-size DOI: 10.7717/peerj.20082/fig-1

290 up-regulated and 28 down-regulated DEcircRNAs. The 318 statistically significant
DEcircRNAs were displayed in the volcano plot (Fig. 1A) and clustered heatmap (Fig. 1B).
Moreover, a sum of 46 DEcircRNAs were detected in the self-measured data, of which 43
were up-regulated and three were down-regulated, and displaying 46 DEcircRNAs (Fig. 1C,
Fig. 1D).

Enrichment analysis of parental genes for upregulated circRNAs
Since up-regulated circRNAs accounted for a majority of DEcircRNAs, enrichment analysis
of parental genes for circRNAs upregulated in OSCC was performed. As revealed by Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the up-regulated genes
in GSE131182 were primarily implicated in pathways such as proteoglycans in cancer,
regulation of actin cytoskeleton, endocytosis, etc (Fig. 2A). The Gene Ontology analysis in
Molecular Function term displayed that the up-regulated genes in GSE131182 were chiefly
relevant to the pathways of adenosine triphosphate (ATP) hydrolysis activity, protein
serine/threonine kinase activity, and actin binding (Fig. 2B). The Cellular Component (CC)
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Full-size DOI: 10.7717/peerj.20082/fig-2

enrichment of GO showed that GSE131182 upregulated genes mainly in actin cytoskeleton
and lytic vacuole membrane and mitochondrial matrix pathways (Fig. 2B). And Biological
Process (BP) enrichment of GO demonstrated that the upregulated genes in GSE131182
were principally in the chromatin remodeling, proteasome-mediated ubiquitin-dependent
protein catabolic process, and other pathways (Fig. 2B). While KEGG analysis of the self-
measured data showed enrichment in calcium signaling pathway, human T-cell leukemia
virus 1 infection, cGMP-PKG signaling pathway, transcriptional misregulation in cancer,
protein digestion and absorption (Fig. 2C). GO analysis on the self-measured data revealed
that the BP, CC and MF processes were respectively enriched in pathways such as protein
binding, chromatin, and protein phosphorylation, among many others (Fig. 2D).

Identification and validation of the biomarker
After removing duplicates from the top 50 circRNAs related to HNSC and then intersected
with the up-regulated circRNAs from the public dataset and self-test data to obtain a
circRNA: hsa_circ_0000831 (derived from the exon of CEP192) (Fig. 3A). Next, the
expression of hsa_circ_0000831 in control samples and OSCC was compared in the two
datasets. The hsa_circ_0000831 expression in the OSCC group of GSE131182 dataset had
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a trend to be higher than the control group (Fig. 3B), and its diagnostic value reflected
in the area under the curve (AUC) value (Fig. 3C). The self-measured data also showed
hsa_circ_0000831 was high-expressed in OSCC (Fig. 3D, p < 0.05), and the level of
hsa_circ_0000831 expression was used to plot the ROC curve, which could be seen that the
AUC was also large, implying higher diagnostic sensitivity and specificity (Fig. 3E). Thus,
hsa_circ_0000831 might be able to be served as a diagnostic biomarker for OSCC.

Results of in vitro experiments
Negative control and hsa_circ_0000831 were transfected into WSU-HN30 and HSC-3
cells and labeled as sh-NC and sh-hsa_circ_0000831, respectively. The results showed
that the transfection was successful (Figs. 4A–4B). CCK8 assay displayed that the cell
viability of the sh-NC group in WSU-HN30 and HSC-3 cells was notably higher than
that of the sh-hsa_circ_0000831 group (p < 0.05, Figs. 4C–4D), indicating that the
cell viability of OSCC decreased significantly after the inhibition of hsa_circ_0000831.
The wound-healing assay indicated that the percentage of wound closure in the sh-NC
group was remarkably higher than in the sh-hsa_circ_0000831 group (p < 0.05, Fig. 5A),
implying that the migration ability of OSCC decreased significantly after the inhibition of
hsa_circ_0000831. Transwell experiment displayed that the invasive capability of OSCC
in the sh-NC group was observably higher than sh-hsa_circ_0000831 group (p < 0.05,
Fig. 5B), indicating that the invasion ability of OSCC decreased significantly after the
inhibition of hsa_circ_0000831. The results of flow cytometry suggested that the apoptosis
of sh-NC group was signally lower than that of sh-hsa_circ_0000831 group (p < 0.05,
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Fig. 5C), indicating that the apoptosis ability of OSCC was remarkably elevated after the
inhibition of hsa_circ_0000831.

Analysis of ceRNA network and target gene enrichment
Given that circRNAs may serve as molecular sponges to lift the inhibition of miRNAs on
mRNAs, therefore influencing mRNA expression. In this study, we took the top 5 miRNAs
predicted to match hsa_circ_0000831 through CircNet 2.0 website, which were hsa-miR-
136-5p, hsa-miR-100-3p, hsa-miR-144-5p, hsa-miR-149-5p and hsa-miR-214-5p, and the
corresponding target genes were obtained by taking the intersection of CircNet andmiRDB
(Fig. 6A). Enrichment analysis suggested that these target genes were principally linked
to regulation of secretion, regulation of T cell cytokine production, cellular responses to
stimuli, and other cancer pathways (Fig. 6B).
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DISCUSSION
OSCC is a common malignant HNSC, which is mostly found in an advanced-stage
and exhibits a terrible prognosis (Ge et al., 2015). The circRNAs are covalently closed-loop
single-stranded RNAs that bind tomiRNAs or othermolecules tomodulate gene expression
at the level of transcription or post-transcription (Chen et al., 2023b). Research showed
that circRNAs may exert an imperative effect in different types of cancers and serve as
biomarkers for cancer (Patop & Kadener, 2018). Based on this, we discovered a circRNA
named hsa_circ_0000831 as a biomarker for OSCC. Besides, we constructed a ceRNA
network map and performed enrichment analysis on the target genes corresponding to the
top 5 miRNAs matched by hsa_circ_0000831. These findings not only reveal the diagnostic
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potential and regulatory mechanisms of hsa_circ_0000831 in OSCC, but also provide new
molecular evidence for early screening and targeted therapy.

In this study, a circRNA, hsa_circ_0000831, derived from the CEP192 gene (Chen
et al., 2022), was identified and found to be significantly upregulated in OSCC tissues
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based on both public datasets and clinical samples. Functional validation through in vitro
assays demonstrated that knockdown of hsa_circ_0000831 markedly suppressed OSCC
cell viability, migration, and invasion, while promoting apoptosis. Recently, CEP192
has been recognized as a new gene involved in the advancement of non-alcoholic fatty
liver disease (NAFLD) to hepatocellular carcinoma (HCC) (Cai, Song & Yu, 2020). In
addition, Liu et al. (2022) found that CEP192 expression was closely associated with
an immunosuppressive tumor microenvironment and low immune phenotype scores,
making it a potential predictor of HCC immune checkpoint inhibitor response. RNA
sequencing studies had indicated that hsa_circ_0000831 expression was down-regulated
in human HCC tissues (Luo et al., 2022). Taken together, these findings suggest that
hsa_circ_0000831 may serve as a critical oncogenic regulator in OSCC by promoting
malignant cell behaviors and potentially modulating immune-related pathways through its
parental gene CEP192. The pathogenesis of many diseases, including OSCC, involves the
dysregulated circRNA-miRNA-mRNA interaction network (Sakshi et al., 2021; Saikishore
et al., 2020). By competing for shared miRNAs, ceRNAs regulate each other at the level of
post-transcription (Qi et al., 2015). In this study, by building a network map of ceRNAs,
we found that hsa-miR-214-5p, hsa-miR-136-5p, hsa-miR-149-5p, hsa-miR-100-3p,
hsa-miR-144-5p act as miRNAs of hsa_circ_0000831, which may play a role in OSCC
role. Previous studies have found that these miRNAs play roles in various diseases. For
example, hsa-miR-136-5p, which can be sponged by circRNAs, has been implicated
in androgenetic alopecia as well as several types of cancer (Wei et al., 2022; Chee et al.,
2025), hsa-miR-100-3p is associated with proliferation, DNA synthesis, and apoptosis of
human testicular support cells (Liu et al., 2021), hsa-miR-144-5p affects overall survival
of patients with renal clear cell carcinoma (Zhan et al., 2021), hsa-miR-214- 5 p regulates
tumor proliferation and migration in osteosarcoma (Shi et al., 2020), and endogenous
hsa-miR-149-5p in spongiotic macrophages affects abdominal aortic aneurysms (AAA) by
promoting IL-6 transcription and inflammatory cytokine secretion (Ma et al., 2022). These
evidences laterally imply that hsa_circ_0000831 may affect OSCC development through
these 5 miRNAs, but their specific relationship required additional experiments.

Functional enrichment analysis of hsa_circ_0000831 downstream target genes suggested
that it was primarily enriched in several related pathways. Among them, the enrichment
of cancer pathways further implied that hsa_circ_0000831 affects the occurrence of OSCC
through circRNA-miRNA-mRNA interaction (Li et al., 2021). Whereas the enrichment of
regulation of T cell cytokine production and regulation of secretion implied that this process
was associated with immune response and cell secretion. the T cell immune response was
closely related to the occurrence of OSCC (Burassakarn et al., 2021). Additionally, PD-1
secreted by T cells has been shown to be an important target for immune checkpoint
blockade (ICB) therapy in OSCC (Yu et al., 2024).

The present study contained several limitations to be pointed out. First, the sample
size used in this study was small, which may have led to individual differences or biases,
limiting the generalizability of the results. Future studies will expand the clinical sample
size and introduce OSCC tissue samples frommultiple centers and regions for validation to
improve the statistical power and representativeness of the study. In addition, the ceRNA
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network construction is mainly based on bioinformatics predictions and has not yet been
verified by molecular biology experiments. In the future, the direct binding relationship
between hsa_circ_0000831 and predicted miRNAs can be verified by methods such as dual
luciferase reporter assays and RNA pull-down, and the regulatory role of downstream target
genes can be further confirmed. Finally, the current functional experiments have only been
conducted in the OSCC cell line, and its role in animal models or clinical tissues has not
yet been evaluated. Therefore, in subsequent studies, we will construct an OSCC mouse
xenograft model to validate the role of hsa_circ_0000831 in tumorigenesis, metastasis, and
treatment response in vivo.

CONCLUSION
In this study, hsa_circ_0000831 was successfully identified based on clinical sample data
and public databases. Its role in OSCC was confirmed through bioinformatics analysis and
in vitro experiments. This finding provides a novel basis for the early detection of OSCC,
which may improve diagnostic accuracy and allow timely intervention. Furthermore,
it offers new insights into the molecular mechanisms of OSCC and potential therapeutic
targets, paving the way for future research and the development of more effective treatment
strategies.
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