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New York City parks serve as potential sites of both social and physical climate resilience,
but relatively little is known about how microbial organisms and processes contribute to
the functioning of these deeply human-impacted ecosystems. We report the sequencing
and analysis of 15 shotgun metagenomes, including the reconstruction of 129 high-quality
metagenome-assembled genomes, from tidal lagoons and bay water at Bush Terminal
Piers Park in Brooklyn, NY sampled from July to September 2024. Our metagenomic
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functional and taxonomic annotations that enable the use of these metagenomes and
metagenome-assembled genomes for a wide variety of downstream applications.
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24 Abstract

25 New York City parks serve as potential sites of both social and physical climate resilience, but 

26 relatively little is known about how microbial organisms and processes contribute to the 

27 functioning of these deeply human-impacted ecosystems. We report the sequencing and analysis 

28 of 15 shotgun metagenomes, including the reconstruction of 129 high-quality metagenome-

29 assembled genomes, from tidal lagoons and bay water at Bush Terminal Piers Park in Brooklyn, 

30 NY sampled from July to September 2024. Our metagenomic database for this site provides an 

31 important baseline for ongoing studies of the microbial communities of public parks and 

32 waterfront areas in NYC. In particular, we provide rich functional and taxonomic annotations 

33 that enable the use of these metagenomes and metagenome-assembled genomes for a wide 

34 variety of downstream applications.

35

36 Introduction

37 We report the sequencing and analysis of 15 shotgun metagenomes from tidal lagoons and bay 

38 water at Bush Terminal Piers Park in Brooklyn, NY from July to September 2024. Notably, this 

39 waterfront park is an active site of ecological research and restoration by the Billion Oyster 

Abstract

÷
÷

÷
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40 Project, an environmental nonprofit whose mission is to restore oyster reefs to New York Harbor 

41 through public education initiatives. Billion Oyster Project maintains an active community oyster 

42 reef in the innermost of our focal lagoons [2, 3].

43

44 Bush Terminal Piers Park is developed on a former brownfield, subject to storm- and sea level 

45 rise-related flooding, and is a social and environmental amenity for area residents. In 

46 combination with efforts to rezone nearby industrial areas for mixed-use development, the area is 

47 also impacted by the contested forces of gentrification [1]. In addition to sports fields, there are a 

48 series of short nature trails through a small, wooded area, and walking paths near our focal 

49 lagoons. These lagoons have been used for community events (e.g., a community boating event 

50 in summer 2024) and we frequently encountered members of the public using these spaces. 

51

52 In aquatic ecosystems, bivalve populations exert strong top-down control on microbial 

53 communities via size-dependent predation of larger microbes [4] and simultaneously redirect 

54 nutrients back to these communities through their excretions which are in-turn remineralized by 

55 microbes [5, 6], making their impact on community structure hard to predict. Second order 

56 effects of bivalve addition, including changes to local hydrology and sedimentation rates, further 

57 complicate this picture [5]. These effects may in turn potentially feedback on oyster population 

58 health. In short, it is difficult to predict how the restoration of oyster reefs around New York 

59 Harbor will alter local microbial community structure and function. Complicating things further, 

60 we do not have a detailed baseline for the microbial community at reef-impacted sites. We 

61 constructed a metagenomic time series at this site during mid-to-late summer of 2024 in order to 

62 build a location-specific database that will serve as an important resource for future studies of the 

63 microbial populations in NYC�s waters, particularly at sites of active restoration like Bush 

64 Terminal Piers.

65

66 Materials & Methods

67

68 Sample Collection

69 Water samples were collected on four sampling dates from July to September 2024 at Bush 

70 Terminal Piers Park, Brooklyn, NY, during low tide, when the site forms distinct inner and outer 

71 lagoons disconnected from the bay, with the oyster reef located in the inner lagoon (Table 1). On 

72 the day of collection, water samples were immediately vacuum-filtered onto 0.22 µm Cellulose 

73 Nitrate Filter membranes (Sigma Aldrich GSWP04700). The filter membranes were then stored 

74 at -80°C until DNA extraction.

75

76 DNA Extraction and Sequencing

77 DNA was extracted from the stored filters using the Qiagen DNEasy PowerWater Kit (14900-

78 100-N) following the manufacturer�s protocol. Extracted DNA was quantified using the Qubit 

79 dsDNA BR Assay Kit (Invitrogen, Massachusetts, US) and stored at -20°C. DNA samples were 
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80 sequenced on the NovaSeq XP platform with paired-end sequencing, generating high-resolution 

81 microbial community profiles. One sample was prefiltered and MgCL2 was added to enrich 

82 potential viral sequences [7].

83

84 Sequence Analysis

85 Adapters and low-quality reads were trimmed using fastp v0.23.4 with default settings [8]. Reads 

86 from each sample were assembled using the SPAdes v4.0.0 genome assembler with option �--

87 meta� (metaSPAdes; [9]). Coverage of each contig across all samples was calculated using fairy 

88 v0.5.7 [10]. Metagenomic bins were then inferred from bins for each sample, using coverages 

89 across all samples, with MetaBAT2 v2.17 with a minimum contig length set to 2kb [11]. Bin 

90 quality was assessed using CheckM2 v1.0.1 [12]. 

91

92 Bins were annotated with prokka v1.14.6 [13] and eggnogmapper v 2.1.12 [14]. We predicted 

93 the maximum growth rate of each bin using gRodon v 2.4.0 [15]. Taxonomy was assigned to 

94 each bin using gtdb-tk v2.1.1 [16]. We used CoverM v0.7.0 to assess bin abundances across 

95 samples [17], and bin relative abundances were mclr transformed using the SPRING v1.0.4 R 

96 package [18].

97

98 We also ran both prokka v1.14.6 [13] (with option metagenome) and gRodon v2.4.0 [19] (with 

99 option metagenome_v2) to obtain bulk growth rate predictions for each microbial community. 

100 We used sylph v0.8.0 for rapid community-level taxonomic profiling [20] and the R package 

101 vegan v2.6-8 for NMDS analysis [21].

102

103 Results

104 Community Composition

105 In general, taxonomic abundances across sample dates and sites remained relatively constant 

106 (Fig 1a-d), though samples tended to group by date and by site within dates in their composition 

107 (Fig 1e). We noted that early-season samples (July, August) had a higher proportion of 

108 Rhodobacteriales, whereas later season samples (September) tended to have a higher proportion 

109 of Pelagibacteriales and Flavobacteriales (Fig 1c). One sample, the lone sample taken from site 

110 �R� representing water sampled directly from the shore of the Upper New York Bay rather than 

111 from our two tidal lagoons, had a distinct taxonomic composition with a higher proportion of 

112 Pelagibacteriales and a low proportion of both Rhodobacteriales and Flavobacteriales.

113

114 Reconstructed Bins

115 We obtained 1016 total bins, 129 of which were determined to be high quality with less than 5% 

116 contamination and being over 90% complete with the total number of contigs ranging from 8-

117 692 and the average contig length ranging from 4,785- 372,700bp (S1 Table; [22]). Another 366 

118 were determined to be of medium quality (<10% contamination,>50% completeness). All bins 

119 have annotations, including trait data, but we restrict our discussion of results to our high-quality 
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120 bins. Our high-quality bins span 10 phyla and at least 45 genera. A total of 16 high-quality bins 

121 could not be confidently assigned to a known genus and our lone bin from the Chlamydiota 

122 could not be assigned to a known family, potentially representing novel diversity at these 

123 taxonomic levels.

124

125 Trait Data

126 These bins have diverse functional content on the basis of assigned gene families, with bins from 

127 the same phylum typically having a similar number of functional gene assignments but with a 

128 great deal of variation both within and between phyla (Fig. 2). Notably, our bins span a range of 

129 growth classes, including slow-growth classes that are often missed by isolation-based methods 

130 (Fig 3a-b; [15]). 

131

132 Community-wide average maximum growth rate predictions varied across sample sites, with 

133 inner lagoon samples seeming to have higher growth rates, though our sample sizes were 

134 insufficient to detect any significant effect of sample site on growth (Fig 3c-d; ANOVA, p>0.39, 

135 df=2, F=0.999). Looking across inner-lagoon samples, for which we had the most data, the 

136 relative abundance of bins was correlated with that bin�s codon usage bias, which is the basis for 

137 our genomic maximum growth rate predictions, indicating that increased genomic growth 

138 optimization is correlated with higher relative abundances in these samples (Fig 3e; linear 

139 regression, p<1e-16, adjusted r2=0.166, coefficient=5.97). 

140

141 Discussion

142 We present a comprehensive baseline metagenomic dataset for the urban tidal lagoons located at 

143 Bush Terminal Piers Park in Brooklyn, NY, including 15 shotgun metagenomes and 129 high-

144 quality metagenome-assembled genomes (MAGs) with rich functional and taxonomic 

145 annotations. Our efforts supplement existing microbiome datasets from the NYC subway system, 

146 wastewaters, and park soils [23, 24]. Our focus on waterfront parks and their aquatic 

147 microbiomes centers the unique vulnerability of waterfront spaces in a coastal city exposed to 

148 increasingly severe flooding [25]. More broadly our work complements a growing body of 

149 research examining the functional capacity of microbiomes in human-constructed spaces and 

150 their potential impacts on human wellbeing [26-30].

151

152 Our community-level data revealed overwhelmingly stable taxonomic composition despite daily 

153 flushing by the tides (Fig 1e), with a pattern of gradual taxonomic succession over the course of 

154 the season. In a comparison to water sampled directly from the Upper Bay of New York, both 

155 tidal lagoons had distinct taxonomic patterns. Stable differentiation between the lagoons and 

156 surrounding waters despite flooding with each tide suggests that either (1) the local environment 

157 quickly seeds microbes into these waters (e.g. from the surrounding sediments; [31]), or (2) by 

158 the time of sampling at low-tide the microbial communities in these waters have responded to 

159 changes in local conditions in a predictable diel pattern (e.g., shallower, stagnant conditions with 
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160 abundant invertebrates present including oysters and crabs; [32, 33]). We expect the reality to be 

161 some combination of the two. In contrast, we did not see any directional pattern of succession 

162 over time in our community-level maximum growth rate predictions (Fig 3c-d), although there 

163 may be differentiation across sample sites (not significant, ANOVA, F=0.999). 

164

165 Our reconstructed MAGs had diverse taxonomic affiliations and functional content. Notably, 16 

166 of our MAGs could not be classified at the genus level to anything in the GTDB v220 taxonomy. 

167 These MAGs had a range of predicted growth rates that suggested many would not have been 

168 readily captured by short-term culturing approaches that often miss slow-growing organisms 

169 (maximum growth rates greater than 0.13 in Fig 3a, corresponding to minimum doubling times 

170 longer than 5 hours; [15]). We also captured MAGs that ranged widely in their abundances 

171 across samples, with fast-growing MAGs predicted to have the highest relative abundances on 

172 average (Fig. 3e). These MAGs varied greatly in the proportion of their coding genome 

173 associated with particular functions (Fig 2), suggesting that this library covers of range of 

174 ecological niches.

175

176 Conclusions

177 As a dense, coastal city, NYC serves as a valuable model for understanding how climate change-

178 related extreme weather events and sea level rise will impact complex socio-ecological systems 

179 [25]. In particular, New York parks serve as potential sites of both social and physical climate 

180 resilience, providing relief from recurring heatwaves and flooding events at the same time they 

181 allow for community organizing in areas that have suffered a historic lack of investment [34-37]. 

182 Our metagenomic database for this site provides an important baseline for ongoing studies of the 

183 microbial communities of New York City�s parks and waterfront areas. 

184

185 Data Availability

186 Metagenomes are available in SRA under BioProject PRJNA1251010. High-quality bins with 

187 annotations and code to generate figures are available on Zenodo [38]. Scripts to run 

188 metagenomic analysis available at https://github.com/jlw-ecoevo/bushterminalnyc-

189 metagenomics.

190

191 Portions of this text were previously published as part of a preprint [39]

192
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337 Figure & Table Legends

338

339 Table 1: Sample details

340

341 Figure 1: Taxonomic composition of tidal lagoons over the course of a summer. (a-d) Relative 

342 abundance of taxonomic groups in each metagenomic sample at various levels of taxonomic 

343 resolution. (e) Two dimensional non-metric multidimensional scaling plot of species-level 

344 taxonomic composition across our samples groups sampled by site and date. Taxonomic 

345 composition inferred by sylph [17].

346

347 Figure 2: Functional content of high-quality metagenomic bins. Each bar represents the average 

348 percent of genes belonging to a particular functional class across bins in each phylum. Functional 

349 classifications given by eggnogmapper [11].

350

351 Figure 3: Predicted maximum growth rates for metagenomes and metagenomic bins. (a-b) 

352 Distribution of predicted maximum growth rates for metagenomic bins assuming a reference 

353 temperature of 25C. (c-d) Predicted community-wide average maximum growth rates for each 

354 metagenomic sample. (e) The relative abundances of individual bins across inner-lagoon samples 

355 show a positive association with the codon usage bias of each bin. All growth rates and codon 

356 usage bias inferred using gRodon [12,16].
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Sample details.

Sample details
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1 Table 1: Sample details

Sample Site Date Water Temperature (C) Notes

A01 Inner Lagoon (IL) 07-19-24

A02 Inner Lagoon (IL) 07-19-24

28.4

A03 Inner Lagoon (IL) 08-05-24

A04 Inner Lagoon (IL) 08-05-24

A05 Inner Lagoon (IL) 08-05-24

25.0

A06 Bay Water (R) 09-02-24 24.0

A07 Inner Lagoon (IL) 09-02-24

A08 Inner Lagoon (IL) 09-02-24

24.3

A09 Outer Lagoon (OL) 09-02-24

A10 Outer Lagoon (OL) 09-02-24

24.1

A11 Inner Lagoon (IL) 09-17-24

A12 Inner Lagoon (IL) 09-17-24

24.3

A13 Outer Lagoon (OL) 09-17-24

A14 Outer Lagoon (OL) 09-17-24

24.6

2
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Figure 1
Taxonomic composition of tidal lagoons over the course of a summer.

Taxonomic composition of tidal lagoons over the course of a summer. (a-d) Relative
abundance of taxonomic groups in each metagenomic sample at various levels of taxonomic
resolution. (e) Two dimensional non-metric multidimensional scaling plot of species-level
taxonomic composition across our samples groups sampled by site and date. Taxonomic
composition inferred by sylph [17].
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Sticky Note
For Figure 1:

Would it be worth averaging the relative abundance values of the samples? They were taken on the same day (either IL or OL) and presumably taken at the same location. If so, that would remove the "(AXX)" text on the x-axis and reduce clutter. Averaging values would also make the figure more easy to interpret

Would it also be worth rearranging the values by sample location then date? There might be location-specific differences in taxonomic abundance worth representing more clearly and making mention of in the Results/Discussion. For instance, for Figure 1a, it appears that Desulfobacterota are more prevalent in R and OL than in IL

Figure 1a also looks slightly cut off at the top



Figure 2
Functional content of high-quality metagenomic bins.

Functional content of high-quality metagenomic bins. Each bar represents the average
percent of genes belonging to a particular functional class across bins in each phylum.
Functional classiûcations given by eggnogmapper [11].
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Figure 3
Predicted maximum growth rates for metagenomes and metagenomic bins.

Predicted maximum growth rates for metagenomes and metagenomic bins. (a-b) Distribution
of predicted maximum growth rates for metagenomic bins assuming a reference
temperature of 25C. (c-d) Predicted community-wide average maximum growth rates for
each metagenomic sample. (e) The relative abundances of individual bins across inner-
lagoon samples show a positive association with the codon usage bias of each bin. All growth
rates and codon usage bias inferred using gRodon [12,16].
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I don't understand the range of values relative to their colors and how they are plotted relative to the grey dotted line

For instance, hotter colors seem to correspond to larger circles and higher umax, so what does yellow represent?

I'm guessing the grey dotted line is just a reference point and the values of each sample are jittered, correct?




