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ABSTRACT
NewYorkCity parks serve as potential sites of both social andphysical climate resilience,
but relatively little is known about howmicrobial organisms and processes contribute to
the functioning of these deeply human-impacted ecosystems.We report the sequencing
and analysis of 15 shotgun metagenomes, including the reconstruction of 129 high-
quality metagenome-assembled genomes, from tidal lagoons and bay water at Bush
Terminal Piers Park in Brooklyn, NY sampled from July to September 2024. Our
metagenomic database for this site provides an important baseline for ongoing studies of
the microbial communities of public parks and waterfront areas in NYC. In particular,
we provide rich functional and taxonomic annotations that enable the use of these
metagenomes and metagenome-assembled genomes for a wide variety of downstream
applications.

Subjects Biodiversity, Ecology, Microbiology, Biological Oceanography
Keywords Urban Ecology, Metagenomics, Metagenomes, Microbial Ecology, Public Parks

INTRODUCTION
We report the sequencing and analysis of 15 shotgun metagenomes from tidal lagoons
and bay water at Bush Terminal Piers Park in Brooklyn, NY from July to September
2024 (Fig. 1). Notably, this waterfront park is an active site of ecological research and
restoration by the Billion Oyster Project, an environmental nonprofit whose mission is
to restore oyster reefs to New York Harbor through public education initiatives. Billion
Oyster Project maintains an active community oyster reef in the innermost of our focal
lagoons (Janis, Birney & Newton, 2016; Acquie, 2022).

Bush Terminal Piers Park is developed on a former brownfield, subject to storm- and sea
level rise-related flooding, and is a social and environmental amenity for area residents. In
combination with efforts to rezone nearby industrial areas for mixed-use development, the
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Figure 1 Map of study site and Bush Terminal Piers Park. Sample sites and oyster reef locations are
noted as red circles and purple squares respectively. Mapping data from OpenStreetMap contributors and
used under the Open Database License allowing free adaptation with attribution. ©OpenStreetMap con-
tributors.
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area is also impacted by the contested forces of gentrification (Birney, 2017). In addition
to sports fields, there are a series of short nature trails through a small, wooded area, and
walking paths near our focal lagoons, which are used during the summer for community
events (e.g., a community boating event in summer 2024).
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In aquatic ecosystems, bivalve populations exert strong top-down control on microbial
communities via size-dependent predation of larger microbes (Prins, Smaal & Dame,
1997) and simultaneously redirect nutrients back to these communities through their
excretions which are in-turn remineralized by microbes (Hulot et al., 2020; Cherif et al.,
2016), making their impact on community structure hard to predict. Second order effects
of bivalve addition, including changes to local hydrology and sedimentation rates, further
complicate this picture (Hulot et al., 2020). These effects may in turn potentially feedback
on oyster population health. In short, it is difficult to predict how the restoration of
oyster reefs around New York Harbor will alter local microbial community structure and
function. Complicating things further, we do not have a detailed baseline for the microbial
community at reef-impacted sites. We constructed a metagenomic time series at this site
during mid-to-late summer of 2024 in order to build a location-specific database that will
serve as an important resource for future studies of the microbial populations in NYC’s
waters, particularly at sites of active restoration like Bush Terminal Piers.

MATERIALS & METHODS
Sample collection
The City of New York Parks & Recreation granted the approval for this field experiment
with project number #768300 to the Billion Oyster Project. Water samples were collected
on four sampling dates from July to September 2024 at Bush Terminal Piers Park,
Brooklyn, NY, during low tide, when the site forms distinct inner and outer lagoons
disconnected from the bay, with the oyster reef located in the inner lagoon (Table 1).
Samples were taken from the surface 1m using clean 1L polypropylene bottles after
rinsing bottles with sample water three times. Sampling locations are noted in Fig. 1.
On the day of collection, water samples were immediately vacuum-filtered onto 0.22 µm
Cellulose Nitrate Filter membranes (Sigma Aldrich GSWP04700). The filter membranes
were then stored at −80 ◦C until DNA extraction. We also downloaded metadata
from nearby NYC Department of Environmental Protection water quality monitoring
stations, including salinity, pH, and nutrient measurements during our sampling period
(7/16/2024-9/18/2024; New York City Department of Environmental Protection, 2025).

DNA extraction and sequencing
DNAwas extracted from the stored filters using theDNEasy PowerWater Kit (14900-100-N;
Quigen, Venlo, The Netherlands) following the manufacturer’s protocol. Extracted DNA
was quantified using the Qubit dsDNA BR Assay Kit (Q32850; Invitrogen, Waltham, MA,
USA) and stored at−20 ◦C. Library preparation was performed using the Rapid Plus DNA
Lib Prep Kit for Illumina (RK20208; AB Clonal, Woburn, WA, USA). Samples were then
sequenced on the NovaSeq XP platform with 150 bp paired-end sequencing (Illumina, San
Diego, CA, USA), generating high-resolution microbial community profiles. On 9/2/24
one additional inner-lagoon sample was prefiltered using an 0.22 µm Cellulose Nitrate
Filter membranes (GSWP04700; Sigma-Aldrich, Burlington, MA, USA) to remove cells
and MgCl2 was added to facilitate viral filter-adsorption and then the sample was refiltered
again onto a new 0.22 µm Cellulose Nitrate Filter to enrich potential viral sequences
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Table 1 Sample details. Sample A15 (IL 09-02-2024), which was enriched for metaviromics (see
‘Methods’), not included in this table.

Sample Site Date Water temperature (C)

A01 Inner Lagoon (IL) 07–19–24
A02 Inner Lagoon (IL) 07–19–24

28.4

A03 Inner Lagoon (IL) 08–05–24
A04 Inner Lagoon (IL) 08–05–24
A05 Inner Lagoon (IL) 08–05–24

25.0

A06 Bay Water (R) 09–02–24 24.0
A07 Inner Lagoon (IL) 09–02–24
A08 Inner Lagoon (IL) 09–02–24

24.3

A09 Outer Lagoon (OL) 09–02–24
A10 Outer Lagoon (OL) 09–02–24

24.1

A11 Inner Lagoon (IL) 09–17–24
A12 Inner Lagoon (IL) 09–17–24

24.3

A13 Outer Lagoon (OL) 09–17–24
A14 Outer Lagoon (OL) 09–17–24

24.6

(Lukasik et al., 2000). Extraction and sequencing were then performed on this sample as
above.

Sequence analysis
Adapters and low-quality reads were trimmed using fastp v0.23.4 with default settings
(Chen et al., 2018). Reads from each sample (excluding the virus-enriched sample) were
assembled using the SPAdes v4.0.0 genome assembler with option ‘‘–meta’’ (metaSPAdes;
Nurk et al., 2017). Coverage of each contig across all samples was calculated using fairy
v0.5.7 (Nurk et al., 2017). Metagenomic bins were then inferred from bins for each sample,
using coverages across all samples, with MetaBAT2 v2.17 with a minimum contig length
set to 2 kb (Kang et al., 2019). Bin quality was assessed using CheckM2 v1.0.1 (Chklovski et
al., 2023).

Bins were annotated with prokka v1.14.6 (Chklovski et al., 2023) and eggnogmapper
v 2.1.12 (Seemann, 2014). We predicted the maximum growth rate of each bin using
gRodon v 2.4.0 (Cantalapiedra et al., 2021). Taxonomy was assigned to each bin using
gtdb-tk v2.1.1 (Weissman, Hou & Fuhrman, 2021). We used CoverM v0.7.0 to assess bin
abundances across samples (Chaumeil et al., 2022), and bin relative abundances were mclr
transformed using the SPRING v1.0.4 R package (Aroney et al., 2025).

We also ran both prokka v1.14.6 (Seemann, 2014) (with option metagenome) and
gRodon v2.4.0 (Weissman et al., 2022) (with option metagenome_v2) to obtain bulk
growth rate predictions for each microbial community. We used sylph v0.8.0 for rapid
community-level taxonomic profiling (Shaw & Yu, 2024b) and the R package vegan v2.6-8
for NMDS analysis (Oksanen et al., 2024).

Finally, we attempted to reconstruct viral genomes by first re-assembling all samples
(including virus enriched sample) using SPAdes v4.0.0 genome assembler with option
‘‘–metaviral’’ (Antipov et al., 2020). Viral sequences were then detected using VirSorter2
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v2.2.4 (Guo et al., 2021) and further assessed for quality using CheckV v1.0.3 (Nayfach et
al., 2021). Only high-quality viral genomes as assessed by CheckV were retained.

RESULTS
Community composition
We sequenced 15metagenomes at a depth of 8–10 gb per sample (average 9.8 gb). In general,
taxonomic abundances (inferred via read-based k-mer sketching Shaw & Yu, 2024b) across
sample dates and sites remained relatively constant (Figs. 2A–2D), though samples tended
to group by date and by site within dates in their composition (Fig. 2E). We noted that
early-season samples (July, August) had a higher proportion of Rhodobacteriales, whereas
later season samples (September) tended to have a higher proportion of Pelagibacteriales
and Flavobacteriales (Fig. 2C).One sample, the lone sample taken from site ‘‘R’’ representing
water sampled directly from the shore of the Upper New York Bay directly outside the
inlet to the outer lagoon, rather than from either tidal lagoon, had a distinct taxonomic
composition with a higher proportion of Pelagibacteriales and a low proportion of both
Rhodobacteriales and Flavobacteriales.

Reconstructed bins
Weobtained 1,016 total bins, 129 of which were determined to be high quality with less than
5% contamination and being over 90% complete with the total number of contigs ranging
from 8–692 and the average contig length ranging from 4,785–372, 700 bp (Table S1; Bowers
et al., 2017). Another 366 were determined to be of medium quality (<10% contamination,
>50% completeness). All bins have annotations, including trait data, but we restrict our
discussion of results to our high-quality bins. Our high-quality bins span 10 phyla and
at least 45 genera. A total of 16 high-quality bins could not be confidently assigned to a
known genus and our lone bin from the Chlamydiota could not be assigned to a known
family, potentially representing novel diversity at these taxonomic levels.

Trait data
These bins have diverse functional content on the basis of assigned gene families, with bins
from the same phylum typically having a similar number of functional gene assignments
but with a great deal of variation both within and between phyla (Fig. 3). Notably, our
bins span a range of growth classes, including slow-growth classes that are often missed by
isolation-based methods (Figs. 4A–4B;Weissman, Hou & Fuhrman, 2021).

Community-wide average maximum growth rate predictions varied across sample sites,
with inner lagoon samples seeming to have higher growth rates, though our sample sizes
were insufficient to detect any significant effect of sample site on growth (Figs. 4C–4D;
ANOVA, p> 0.39, df = 2, F = 0.999). Looking across inner-lagoon samples, for which
we had the most data, the relative abundance of bins was correlated with that bin’s
codon usage bias, which is the basis for our genomic maximum growth rate predictions,
indicating that increased genomic growth optimization is correlated with higher relative
abundances in these samples (Fig. 4E; linear regression, p< 1e−16, adjusted r2= 0.166,
coefficient = 5.97).
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Figure 2 Taxonomic composition of tidal lagoons over the course of a summer. (A–D) Relative abun-
dance of taxonomic groups in each in each site during each day (averaged over replicates) at various levels
of taxonomic resolution. (E) Two dimensional non-metric multidimensional scaling plot of species-level
taxonomic composition across our samples groups sampled by site and date. Taxonomic composition in-
ferred directly from reads by sylph (Chaumeil et al., 2022).

Full-size DOI: 10.7717/peerj.20081/fig-2

Viruses
We recovered 50 high-quality viral metagenome-assembled genomes (vMAGs; checkV
quality classification). Of these, 26% were assembled from our virus-enrichment treated
sample (see Methods). Of these viruses, five were predicted to be single-stranded DNA
viruses and the remainder were predicted to be double-stranded.

DISCUSSION
We present a comprehensive baseline metagenomic dataset for the urban tidal lagoons
located at Bush Terminal Piers Park in Brooklyn, NY, including 15 shotgun metagenomes
and 129 high-quality metagenome-assembled genomes (MAGs) with rich functional and
taxonomic annotations. Our efforts supplement existing microbiome datasets from the
NYC subway system, wastewaters, and park soils (Afshinnekoo et al., 2015; Gulino et al.,
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Full-size DOI: 10.7717/peerj.20081/fig-3

2020). Our focus on waterfront parks and their aquatic microbiomes centers the unique
vulnerability of waterfront spaces in a coastal city exposed to increasingly severe flooding
(Rosenzweig et al., 2024). More broadly our work complements a growing body of research
examining the functional capacity of microbiomes in human-constructed spaces and their
potential impacts on human wellbeing (National Academies of Sciences, Engineering, and
Medicine, 2017; Charlop-Powers et al., 2016; Bruno et al., 2022; Ryon et al., 2022; Mason et
al., 2016).

Our community-level data revealed overwhelmingly stable taxonomic composition
despite daily flushing by the tides (Fig. 2E), with a pattern of gradual taxonomic succession
over the course of the season. In comparison to water sampled directly from the Upper
Bay of New York, both tidal lagoons had distinct taxonomic patterns. Stable differentiation
between the lagoons and surrounding waters despite flooding with each tide suggests that
either (1) the local environment quickly seeds microbes into these waters (e.g., from the
surrounding sediments; Lennon & Jones, 2011), or (2) by the time of sampling at low-tide
the microbial communities in these waters have responded to changes in local conditions in
a predictable diel pattern (e.g., shallower, stagnant conditions with abundant invertebrates
present including oysters and crabs; Zhao et al., 2023; Becker et al., 2020). We expect the
reality to be some combination of the two. In contrast, we did not see any directional
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Figure 4 Predicted maximum growth rates for metagenomes andmetagenomic bins. (A–B) Distri-
bution of predicted maximum growth rates for metagenomic bins assuming a reference temperature of
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using gRodon (Kang et al., 2019;Weissman, Hou & Fuhrman, 2021).

Full-size DOI: 10.7717/peerj.20081/fig-4

pattern of succession over time in our community-level maximum growth rate predictions
(Figs. 3C–3D), although there may be differentiation across sample sites (not significant,
ANOVA, F = 0.999).

Our reconstructed MAGs had diverse taxonomic affiliations and functional content.
Notably, 16 of our MAGs could not be classified at the genus level to anything in the
GTDB v220 taxonomy. These MAGs had a range of predicted growth rates that suggested
many would not have been readily captured by short-term culturing approaches that
often miss slow-growing organisms (maximum growth rates greater than 0.13 in Fig. 4A,
corresponding to minimum doubling times longer than 5 h; Weissman, Hou & Fuhrman,
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2021). We also captured MAGs that ranged widely in their abundances across samples,
with fast-growing MAGs predicted to have the highest relative abundances on average
(Fig. 4E). These MAGs varied greatly in the proportion of their coding genome associated
with particular functions (Fig. 3), suggesting that this library covers a range of ecological
niches.

CONCLUSIONS
As a dense, coastal city, NYC serves as a valuable model for understanding how climate
change-related extreme weather events and sea level rise will impact complex socio-
ecological systems (Rosenzweig et al., 2024). In particular, New York parks serve as potential
sites of both social and physical climate resilience, providing relief from recurring heatwaves
and flooding events at the same time they allow for community organizing in areas that have
suffered a historic lack of investment (Rosan, 2012; Fainstein, 2018; Jabareen, 2014; NYC
Mayor’s Office of Climate & Environmental Justice, 2023). Our metagenomic database for
this site provides an important baseline for ongoing studies of the microbial communities
of New York City’s parks and waterfront areas.
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