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ABSTRACT

We investigate spatially explicit models and ensemble modeling techniques for esti-
mating animal abundance from line-transect survey data. Spatially explicit models are
expected to be statistically more efficient, resulting in more precise abundance esti-
mates, than design-based abundance estimators that rely heavily on assumptions about
survey design and realization. Ensemble modeling reduces error by averaging among
models, and allows for model selection uncertainty to propagate to the abundance
estimator. We develop density surface models using Matérn covariance functions and
spline-based smooths for a case study, belugas (Delphinapterus leucas) from the Eastern
Bering Sea (EBS) stock. EBS belugas are upper trophic level predators in a rapidly
changing ecosystem and are a vital nutritional and cultural resource for Alaska Natives.
Effective management of this stock requires regular monitoring to derive accurate and
unbiased estimates of abundance. Since 1992, aerial line-transect surveys have been the
primary means of surveying and estimating abundance of EBS belugas in the region. We
compare EBS beluga abundance estimates for 2017 and 2022 that were derived using
post-stratified, design-based abundance estimators with analogous estimates the we
derive using spatially explicit and ensemble modeling methods. The estimated precision
in the abundance estimates from the individual density surface models (DSMs) and the
ensemble average of DSMs is higher than for the design-based estimator in both survey
years. The design-based models estimated that there were 12,269 belugas in 2017 (coef-
ficient of variation (CV) = 0.118) and 19,811 belugas within a larger study area in 2022
(CV = 0.343). The ensemble spatial models estimate that there were 11,654 belugas
in 2017 (CV = 0.118) and 13,313 belugas in 2022 (CV = 0.216). Among the
individual spatially explicit models, abundance estimates range from 11,242 to 11,963
(CV =0.111 to 0.114) in 2017 and 12,023 to 15,593 (CV = 0.172 to 0.198) in 2022.
Because spatial models identify spatial patterns in beluga density at finer resolutions
than design-based models, we argue that ensembles of spatially explicit density
models provide a reasonable path forward for estimating EBS beluga abundance and
distribution in a way that is useful to management and conservation efforts.
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INTRODUCTION

Natural resource management inevitably involves choosing among alternative actions
that may have different effects on a population in the future. Therefore, effective wildlife
management is often based on estimates of abundance, together with a characterization
of uncertainty. Our ability to predict the future depends on how well we know the
ecosystem today and the magnitude and direction of cascading effects that may result from
a particular management action. Transparent communication about scientific uncertainty
is particularly important when managing populations that are hunted for Native subsistence
due to the animals’ nutritional, cultural and spiritual value to Indigenous peoples.

For decades, line-transect data were analyzed using a two-stage process invoking model-
based inference to estimate detection probability, followed by design-based inference to
extrapolate an estimate of the number of animals on the surveyed transects to an estimate of
the number of animals throughout the study area. Design-based inference has a rich history
in sampling (Cochran, 1977), and is appealing in its simplicity. In particular, random or
systematic placement of transects ensures that simple extrapolations of densities from
sampled to unsampled areas (e.g., using simple random sampling or stratified random
sampling estimators) will be unbiased, assuming that the specified design was correctly
followed during field sampling.

In the context of line-transect sampling, spatially explicit, model-based estimators
are often referred to as “density surface models” (DSMs; Miller et al., 2013). Since the
early 2000s, model-based approaches to inference from line-transect survey data (Hedley
& Buckland, 2004; Johnson, Laake ¢ Ver Hoef, 2010; Miller et al., 2013; Yuan et al., 2017)
have seen increased use relative to design-based inference. Modeling animal density as a
function of spatial or environmental covariates may increase precision and reduce bias
in the overall abundance estimate for the survey area. This applies particularly to cases
in which animal density is spatially heterogeneous and achieved survey coverage is non-
uniform, for example, due to incomplete survey effort or spatially heterogeneous detection
probability (Hedley ¢ Bravington, 2014). Additionally, DSMs can be used to create high-
resolution maps of animal density, which are useful for marine spatial planning, estimating
potential impacts from anthropogenic activities, and investigating ecological relationships.
We are particularly interested in the sensitivity of abundance estimates to DSM model
structure, how this variance propagates through ensemble models, and how model-based
abundance estimators compare with conventional post-stratified design-based abundance
estimators. We identify similarities and differences among different analytical approaches
both theoretically and with a case study, the Eastern Bering Sea (EBS) beluga whale
(Delphinapterus leucas) stock, which is hunted for subsistence by Alaska Natives.

EBS belugas are vital to Indigenous communities near Norton Sound and the Yukon
River Delta in northwestern Alaska (Fig. 1). The northern Bering Sea ecosystem is
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Figure 1 Study area for the Eastern Bering Sea beluga case study. The geographic strata used in the
design-based abundance estimates for 2017 and 2022 are outlined in dark gray and lavender, respectively.
The complete 2022 study area is outlined in violet.

Full-size Gl DOI: 10.7717/peer;j.20077/fig-1

experiencing rapid ecological changes (Siddon, 2023) and increased human activities.
EBS belugas are one of four beluga stocks that have been co-managed since 1988 by the
Alaska Beluga Whale Committee (ABWC) and the U.S. National Oceanic and Atmospheric
Administration (NOAA)/National Marine Fisheries Service (NMES) (Adams, Frost ¢
Harwood, 1993; Frost et al., 2021). The ABWC includes hunters, resource managers,

and scientists. The goals of the ABWC are to maintain healthy beluga populations in
Alaska waters, provide adequate subsistence harvest of beluga whales, and protect hunting
privileges for Alaskan subsistence hunters (Frost et al., 2021). Since its founding, the ABWC
has believed that education, maintaining accurate harvest data and conducting surveys to
estimate stock abundance on a regular schedule are critical to the health of northwestern
Alaska’s beluga stocks and the communities that depend on them.
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The distribution and movement patterns of EBS belugas are primarily known from
Indigenous and other local knowledge (Huntington ¢ Communities of Buckland, Elim,
Koyuk, Point Lay, and Shaktoolik, 1999; Oceana and Kawerak Inc., 2014; Lowry et al., 2017),
aerial surveys (Lowry et al., 2017; Ferguson et al., 2023), telemetry studies (Citta ef al.,
2017), and genetics (e.g., O’Corry-Crowe et al., 2018; O’Corry-Crowe et al., 2021). EBS
belugas predictably occur in the Norton Sound/Yukon Delta region during the period
from shortly after sea ice breakup (usually mid-May) until freeze-up (usually November)
(Lowry et al., 2017; Citta et al., 2017). Belugas from this stock are hunted by more than 20
villages during spring, summer and autumn (Lowry et al., 2019). EBS beluga distribution
from spring through autumn reflects high densities of prey, particularly fishes (Lowry et al.,
2017), but can also be affected by sea ice conditions and human disturbance (Huntington
& Communities of Buckland, Elim, Koyuk, Point Lay, and Shaktoolik, 1999; Oceana and
Kawerak Inc., 2014).

To obtain an estimate of EBS beluga abundance that could be used to evaluate the
sustainability of beluga subsistence harvests, the ABWC conducted aerial surveys in Norton
Sound and along the Yukon River Delta each year from 1992 to 1995 and 1999 to 2000
(Lowry et al., 2017). In 1992, aerial surveys were conducted in May, June and September
to determine the best month for conducting future surveys. Based on those results, aerial
surveys for all remaining years were conducted in June, when belugas tend to concentrate
near Pastol Bay and the Yukon River Delta (Fig. 1). Lowry et al. (2017) estimated EBS
beluga abundance to be 6,994 belugas (95% confidence interval 3,162-15,472) based on
the aerial surveys conducted in June 2000. This estimate included a correction factor of 2.0
to account for availability bias (Marsh ¢ Sinclair, 1989), which arises when belugas in the
area searched during the surveys are underwater when the aircraft flies over them.

During June 2017 and 2022, ABWC and NMFS collaborated to conduct aerial line-
transect survey in the Norton Sound/Yukon Delta region to collect data to derive updated
abundance estimates for the EBS beluga stock. Ferguson et al. (2023) presented an estimate
of EBS beluga abundance of 12,269 belugas (coefficient of variation (CV) = 0.12) based on
the 2017 surveys. Their abundance estimate incorporated correction factors for availability
bias and transect detection probability, and was derived using design-based methods with
post-stratification (Ferguson et al., 2023). Compared to 2017, the 2022 surveys included
less survey effort and beluga sightings were more patchily distributed. We were interested
in whether DSMs could provide a reasonable alternative to design-based abundance
estimators for these two most recent survey years. There are a considerable number of ways
to formulate DSMs. Therefore, we also examined how different types of DSMs performed
on the same dataset. We expected to see differences among density surfaces and total
population abundance estimates across DSMs due to differing assumptions about spatial
covariance.

This paper compares different analytical methods used to estimate population abundance
from line-transect survey data for the purpose of effectively managing a population. The
remainder of this paper is structured as follows: (i) introduction to basic estimators
of animal density and abundance from line-transect survey data; (ii) definition of the
marginal likelihood that forms the core of the DSMs; (iii) definition of the random effects
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that form the basis of the different DSMs that we compared; (iv) description of methods
for predicting abundance from individual DSMs; (v) explanation of model validation and
evaluation methods; (vi) description of methods for calculating uncertainty in abundance
estimates for each individual DSM; (vii) definition of the ensemble modelling approach
that was used to account for model selection uncertainty; and, finally, (viii) application to
the EBS beluga case study, focusing on how results from the individual DSMs, ensemble
DSMs, and design-based estimators of abundance compare. Throughout, we assume that
the reader is familiar with basic terminology and definitions associated with distance
sampling (Buckland et al., 2001).

MATERIALS & METHODS

Fundamentally, our density surface model uses assumptions about the spatial relationships
among animals in a particular geographic area to extrapolate from what is known about the
number and distribution of animals sighted on transects during a survey to an estimate of
the total number of animals that were truly present in the geographic area during the survey
period. We estimate abundance independently for a specified point or period in time and
do not explicitly model changes in abundance over time. A density surface represents the
estimated density (number of individuals per unit area) of animals in each cell of a grid.
To estimate total abundance during a given survey period, we integrate across the density
surface, which involves multiplying each cell’s estimate of animal density by its geographic
area and then summing cellwise abundances across all cells in the study area.

The analytical methods that we present below may be used for a wide range of datasets
and taxa. However, to employ them one will generally need access to (1) a line-transect
observation dataset to estimate a detection function and animal density; (2) auxiliary
information to estimate detection probability at distance zero; and (3) auxiliary information
to estimate availability probability. To understand the flexibility in the methods and critical
elements that were included to accommodate the Eastern Bering Sea beluga case study, we
note that three independent datasets were used in the case study: (1) aerial line-transect
marine mammal observer (i.e., “aerial observer”) data from the eastern Bering Sea in
2017 and 2022 (Supplement 2, hereafter “S2”) were used to estimate a multiple covariates
distance-sampling (MCDS) detection function (54) and to construct the DSMs; (2) aerial
imagery collected in the eastern Chukchi and western Beaufort seas during July through
October in 2018 and 2019 (53) were used to estimate the probability of detecting a beluga
group on the transect line (Buckland et al., 2015; Laake ¢ Borchers, 2004; S4); and (3)
Very High Frequency (VHF) telemetry data from Bristol Bay, Alaska, in June 1983, and
Cunningham Inlet, Somerset Island, Canada, in July 1988 (Frost, Lowry ¢ Nelson, 1985;
Frost ¢ Lowry, 1995) were used to estimate availability probability (54).

Unless otherwise stated, the following text uses unbolded symbols to denote scalars,
lower case bolded symbols to denote vectors, and upper case bolded symbols to denote
matrices. See S1 for a Glossary of Notation and Abbreviations.
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Design-based estimator

Although our primary focus is on developing density surface models for EBS belugas,
previous abundance estimates for this stock were generated using a design-based estimator.
A basic Horvitz-Thompson-like line-transect estimator of animal density is (Buckland et
al., 2001; Burt et al., 2014):

ng

p=1y 3 (1)
a3 p(z;0)

where

ng : number of groups detected;

S; : size of group indexed by j;

a : area searched during line-transect survey, where a =2Lw, L is the total
length of transects surveyed, and w is the width of the strip searched on one
side of the aircraft;

p(z;; 0) : model-based estimate of the overall probability that an observer detects
group j, given covariates z; that affect detectability. This term accounts for
all sources of perception and availability bias (Marsh & Sinclair, 1989; S4);

0 : parameter estimates required to estimate detection probabilities.

To derive an estimate of the total number of animals in the study area (N'), we multiply
the total study area size, A, by the density estimate from Eq. (1):

N =AD. (2)

Under this formulation, inference proceeds by first fitting detection function models to
observed distances and other covariates to produce estimates of detection parameters (i.e.,
6), before applying Eq. (1) in a second step. The abundance estimator in Eq. (2) is unbiased
if certain assumptions about the survey design and realization hold (Buckland et al., 2001;
Hedley ¢ Bravington, 2014). Hence, this N is referred to as a design-based estimator.

In addition to allowing calculation of the design-based estimator, we also use these
estimates of detection probability when fitting DSMs. In the following, we shorten notation
such that p; = p(z;; 0) for sightings and p; = p(z;; §) for segments. For more information
about detection probability calculations, see 54.

DSMs: marginal likelihood

As with most DSM implementations, we construct a spatial model for counts of individuals,
which in our case were summarized over 10-km transect segments (see Eastern Bering Sea
beluga case study for further information). For all DSMs, we write a generic marginal
likelihood of a parameter vector, &, given observed counts of individual animals, ¢, and
other known variables, x, as

L@qm=/k@mﬂmmam- 3)
n

Here, [c|&,7,x] is the conditional probability density function of observed counts,
given parameters, random effects (1), and known covariates. The counts represent the

Ferguson et al. (2025), PeerdJ, DOI 10.7717/peerj.20077 6/32


https://peerj.com
http://dx.doi.org/10.7717/peerj.20077#supp-4
http://dx.doi.org/10.7717/peerj.20077#supp-4
http://dx.doi.org/10.7717/peerj.20077

Peer

number of animals detected on rectangular transect segments (with width 2w, as in the
design-based estimator). The component [n|x, ] represents the distribution of random
effects. We use the integral to indicate that the random effects will be integrated out of the
joint likelihood—in our case using the Laplace approximation available in TMB software
(Kristensen et al., 2015). As usual in likelihood-based inferential statistics, the likelihood is
viewed as a function of the unknown parameters, &.

In order to derive [c|&, 5,x], we must first specify a suitable probability mass or density
function. Although it is customary to specify probability mass functions for count data,
initial exploration of Poisson and negative binomial distributions indicated considerable
lack-of-fit when applied to our EBS beluga data set. Specifically, model diagnostic plots
examining the relationship between the mean and variance in the residuals compared to
the theoretical distribution (Ver Hoef ¢ Boveng, 2007), and quantile residuals computed
using a probability integral transform (PIT; Dunn ¢ Smyth, 1996) and visualized using the
R package DHARMa (Hartig, 2022), showed that Tweedie distributions (Jorgensen, 1987;
Dunn & Smyth, 2005; Kendal, 2004) provided a better fit to the data. Therefore, we adopted
a parameterization based on the Tweedie distribution.

The Tweedie distribution provides increased flexibility compared to the Poisson and
negative binomial distributions, allowing a diversity of shapes and accommodating zero-
inflation. It is a specific case of an exponential dispersion model, with mean ., and variance
V() =¢u? (Dunn & Smyth, 2005). We specifically set the range of p tobeon 1 < p <2,
a parameterization variously known as “compound Poisson”, “compound gamma”, or
“Poisson-gamma” (Dunn ¢ Smyth, 2005; Kendal, 2004). This distribution has support on
the non-negative real line, although authors often use this distribution for non-negative
integers (e.g., counts; Kendal, 2002; Miller et al., 2013; Sigourney et al., 2020), which is our
approach in this paper. Kendal (2002) and Kendal (2004) discuss the relationship between
the Tweedie distribution and Taylor’s power law in ecology, which explains clustered spatial
distributions as manifestations of power function relationships between the variance and
mean number of organisms in an area (Taylor, 1961).

For 1 < p < 2, the Tweedie distribution does not have a closed form, but can be
evaluated numerically (e.g., using the ‘dtweedie’ function in the TMB library). Therefore,
we symbolically write

[cl&,n,x] =] [ Tweedie(ci; 11i. ¢, ). (4)

That is, the joint likelihood of observed counts on transect segments indexed by i is a
product of conditionally independent univariate Tweedie density functions, with mean pu;
and constant dispersion and power parameters, ¢ and p. The mean, u;, is a function of
fixed and random effects, and “known” detection probability and survey coverage offsets,
such that

1 =exp(Bo+3+log(a)+log(p)). (5)

Here, By represents an intercept parameter (no other fixed effects were included in our
models), § is a vector of ‘realized’ random effects for transect counts, a is a vector of the area
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surveyed for each transect segment (a; = 2L;w), and p is a vector of the overall detection
probability (including both availability and perception bias corrections) for each segment
(pi, see 54 Eq. 6).

Note that this parameterization requires that any covariates used to estimate detectability
relate only to the transect segment; observation-specific covariates (e.g., color, group
size) cannot be used in this parameterization. See Miller et al. (2013) for an alternative
parameterization that allows observation-specific covariates by specifying the response
variable to be an estimate of bias-corrected abundance.

The actual dimension of random effects often differs from the number of transect
segments. Specifically, we model § = An, where the matrix A has dimension (n;,n,), with
n, denoting the true number of random effects, and #; the number of transect segments.
Next, we elaborate on the random effects specifications.

Random effects specifications
We have yet to describe [5]x,&] in Eq. (3). This component defines the specification of
spatially autocorrelated random effects. For a given survey period (year) the data likelihood
Eq. (4) is the same for all the models that we considered, so the random effects specification
is the only difference among the DSMs we developed.

For all models, random effects were assumed to be drawn from a multivariate normal
distribuion with mean zero, and a spatially patterned covariance matrix, X:

n ~ Multivariate normal(0, X).

Spatial autocorrelation is imparted by constraints on the (1,) X 1) X matrix. In practice, we
chose to work with a precision matrix Q= X!, which was often sparse, enabling greater
computational efficiency.

We employed two related, but conceptually different types of models to specify Q:
stochastic partial differential equations (SPDEs) to approximate Matérn geostatistical
models (Lindgren, Rue & Lindstrom, 2011), and spline-based models. The latter are
commonly used in generalized additive models (e.g., Wood, 2006), where smooth terms
are often viewed as penalized fixed effects. However, it is also possible to conceptualize
smooths as mean-zero random effects, with an associated precision matrix (Miller, Glennie
& Seaton, 2020), which is the approach that we used in this paper. Further details on how
Q is specified for individual models is provided below.

We conducted all analyses in the R programming environment (version 4.3.2; R Core
Team, 2023) using the TMB package (Kristensen et al., 2015) to formulate marginal log-
likelihoods and generate DSM parameter estimates, the mgcv package (Wood, 2006) to
set up spatial spline bases, and R-INLA (Rue, Martino & Chopin, 2009) to create Delaunay
triangulation meshes for Stochastic Partial Differential Equation (SPDE) models. All
data and code used in this paper have been uploaded to a public GitHub repository at
https:/github.com/meganferg/FergusonEtal_20250125_EBS_Beluga_DSM and are available
on Zenodo at https:/doi.org/10.5281/zenodo.16269135.
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Matérn covariance models

SPDE Matérn model. We used an SPDE approximation to model the precision matrix
associated with the Matérn covariance function (Lindgren, Rue ¢ Lindstrom, 2011). This
required establishing a set of n,, vertices at locations s C R? (often termed “knots”). The
knot locations s are each associated with one of the 1, random effects. We used the function
“inla.mesh.2d” from R-INLA to specify knot locations, creating a triangular mesh (i.e.,
spatial basis) that allows animal density to be predicted at any location on the mesh.

A particular mesh is defined by a number of characteristics, including the spatial
domain (i.e., geographic boundary), location of knots, and maximum and minimum
distances between knots. Additionally, boundary conditions must be imposed to create
SPDE solutions on bounded domains (Lindgren ¢ Rue, 2015). R-INLA uses Neumann
conditions, which results in variance inflation by a factor of two along straight boundaries
and a factor of four near right-angled corners. At a distance equal to the geostatistical
range (i.e., the distance at which the correlation between two points approaches zero),
the boundary effect is negligible. To eliminate boundary effects in the area of interest,
Lindgren ¢ Rue (2015) recommend extending the outer boundary of the spatial domain by
a distance at least equal to the range. Knot density can be reduced in the outer buffer area
to minimize the additional computational burden of the knots located far from the data.

Different meshes could result in different estimates of animal density. There are
no strict rules on how to create a mesh for a particular dataset. Therefore, we used
preliminary analyses with a variety of meshes to guide our decisions on which mesh was
best suited to each year’s data. For example, a certain mesh might be a poor fit to the data
because the numerical optimization of the geostatistical range parameter can fail if spatial
autocorrelation occurs at a much finer scale than the minimum distance between knots. In
general, we followed the suggestions of Belmont (2022) to create the meshes. Initial knot
locations were placed at the transect segment midpoints. The maximum distance between
knots in the buffer area was twice that in the aerial survey boundaries. The minimum
distance between knots equaled % the maximum distance between knots. The extension
radius used to set the overall boundary of the spatial domain (hence, the width of the buffer
area) was approximately 35% of the diameter of the aerial survey study area.

Interpolations of random effects between knot locations and data locations are made
with a bilinear interpolation matrix (A), where the data location is taken to be the centroid
of each 10-km transect segment. We used the R-INLA function “inla.spde.make.A” to
create interpolation matrices. Interpolation matrices are completely determined by the
underlying mesh and the data locations, and are nonzero for only three elements of each
row (corresponding to the three triangular vertices that surround a given point).

To define a precision matrix for the Matérn covariance model at knot locations, we
used the function “inla.spde2.matern” in R-INLA (Rue, Martino & Chopin, 2009; Lindgren,
Rue & Lindstrom, 2011), which generates three structure matrices, My, M;, and M,. The
precision matrix is then specified using these three matrices, together with two unknown
parameters, T and k:

Q=1>(k*My +2c>M; +M,). (6)
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Here, 7 can be be interpreted as a precision parameter and « as an inverse geostatistical range
parameter. Equation (6) results from applying finite-element methods to approximate

a stochastic partial differential equation representing diffusion. Using notation from
Lindgren, Rue ¢ Lindstrom (2011 ), we see that a diffusive SPDE for second-order adjacency
results in a precision with the form:

Q=KC 'K (7)

where K=«?(C + G) is interpreted as the instantaneous diffusion rate, and where C and
G are both sparse matrices. Replacing C with a diagonal matrix C (so that C™! remains
sparse), plugging in K, and simplifying, we then obtain Eq. (6) where Mg =C, M; =G,
and M, = GC_IG. However, we retain M-notation in Eq. (6) to maintain consistency with
terminology that is common when using the R-INLA package.

Ultimately, the complexity (i.e., effective degrees of freedom) of the SPDE Matérn
model is a function of the mesh resolution (i.e., the number of knots in the mesh) and
the maximum likelihood estimates of the correlation function parameters, « and t.
Asymptotically, increasing the number of knots in the mesh will converge on the “best”
functional approximation of the underlying function, and further increases in mesh
resolution will not influence model results. However, this resolution is rarely achieved in
practice due to computational limitations. Care must be taken to construct an appropriate
mesh and specify SPDE parameters (e.g., boundary conditions, anisotropy) to approximate
the correlation function based on knowledge of the system, followed by implementation
of model evaluation tools to identify an appropriate mesh. The primary determinant of
SPDE Matérn model complexity (and, therefore, conditional deviance explained) are the
MLEs of k and 7, which are informed by the data. Maximum likelihood estimation of these
correlation function parameters has good asymptotic properties (Thorson & Kristensen,
2024).

SPDE Matérn model with barriers. The SPDE model defined above approximates a
stationary, isotropic Matérn covariance function. Conditional on t and «, the only
variable affecting spatial autocorrelation is the distance between knots. However, in areas
with complex coastlines (such as islands, bays, peninsulas, and points), it is plausible
that spatial connectivity for the distribution and density of marine animals would be
interrupted by land barriers, making points that are close together in the contiguous
ocean more “alike” than two points separated at the same distance on the opposite
sides of a land barrier. Therefore, we implemented an alternative SPDE Matérn model
that accounts for land-based barriers. Specifically, we followed the approach outlined by
Bakka et al. (2019), where locations that occur on land are assigned a small, fixed effective
range value, and the range parameter for locations at sea is estimated during model
fitting. To implement the Q matrix for this model in TMB, we used the code template at
https:/github.com/skaug/tmb-case-studies/tree/master/spdeBarrier. This essentially specifies
a high value for decorrelation rate « for knots over land, to ensure that correlations between
locations in water are calculated from the set of paths over water.
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Spline-based smoothers

We considered several types of spline-based smoothers as alternatives for specifying spatial
random effects. In each case, we used mgcv to construct spline bases and appropriate
penalization matrices, then passed these into TMB when formulating our marginal log-
likelihood. We implemented three types of bivariate smoothing splines: isotropic, thin plate
regression splines (tprs) with shrinkage (Wood, 2003); anisotropic tensor product splines
(Wood, 2017) comprising tprs with shrinkage; and isotropic soap film smoothing splines
(Wood, Bravington ¢ Hedley, 2008). The first two types of splines treat spatial correlation
as depending on distance only (isotropic tprs), or distance and direction (tensor product
splines). The soap film smoother allows spatial correlation to be interrupted when there
are barriers, such as land, between suitable habitat. We reasoned this would be a desirable
property given the complex coastline in our study area, which included multiple peninsulas
and estuaries (Fig. 1).

Bivariate and isotropic thin plate regression spline. For the bivariate and isotropic thin
plate regression spline, we used the gam() function in the mgcv R package to construct a
bivariate “ts” spline basis of easting and northing for observed data (A, typically referred
to as a design matrix in this context), an interpolation matrix for predictions (AP) and a
penalization matrix, S. We then set Q = AS in our TMB optimization, where the smoothing
parameter A was treated as an estimated parameter. This procedure follows the example by
H. Skaug at https:/github.com/skaugtmb-case-studiestree/master/pSplines.

Tensor product smoother. The tensor product smoother produces an anisotropic spline
basis, allowing different correlations on the dimensions corresponding to easting and
northing in our analysis. For the tensor product smoother, we again used a gam() function
in the mgev R package to construct a “ts” spline basis for observed data (A) and an
interpolation matrix for predictions (A?*?). In this case, mgcv produces two penalization
matrices, S; and S, (one for easting and one for northing). Following code from D. Miller
(https:/github.com/dill/mgcvminusminus), we set Q = A1S1 4+ A,S;, where A; and A, are
treated as estimated parameters.

Soap film smoother. The soap film smoother (Wood, Bravington ¢» Hedley, 2008; Miller
& Wood, 2014) is another approach to constructing a smooth surface over space where
correlation does not persist over boundaries (e.g., penninsulas). To produce A, AP, and
penalization matrices, we again used mgcv. In particular, we supplied the gam() function
with a dataframe delineating study area boundaries. Like the tensor product smoother, the
soap film smoother option in mgcv produces two penalization matrices, S; and S,, this
time associated with boundaries and internal space, respectively. However, we constructed
the precision matrix in the same manner (i.e., Q = 1181 +X,S;, where A; and A, are treated
as estimated parameters).

Prediction
For each model and year of analysis, we summed predictions of the number of belugas in
each hexagonal grid cell h in our study area (see Eastern Bering Sea beluga case study for
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how these were defined), applying epsilon bias-correction to this total (see Correcting for
detransformation bias). Specifically, we calculated

Nj, = exp(Bo + 85, +log(an)). (8)

Note that aj gives the area of ocean in hexagon h (i.e., omitting land). There is no offset
for detection probability because we are interested in all belugas, not just those that are
detectable and detected. The vector of “realized” random effects 8 is calculated as § = A4
where 7 is the value of 5 that maximizes the joint likelihood conditional upon the maximum
likelihood estimator (MLE) .S for fixed effects (termed the empirical Bayes estimator for
1). This predictor for Ny, is called the “plug-in estimator” because it plugs in the empirical
Bayes estimator as if it were fixed. For SPDE models, the (1, ,)) interpolation matrix, Apred
was constructed using the “inla.spde.make.A” function in R-INLA, using the centroid of
each hexagon as the prediction location. For spline-based smoothers, we obtained A?"*
using mgev’s “predict()” function with “type=Ilpmatrix”, again using the centroids of
each hexagon as prediction locations. An estimate of total abundance is then calculated as
N= ZhNh' The epsilon bias-correction was applied to N.

Model evaluation and final candidate model selection
To evaluate DSMs and select the final candidate DSMs for the ensemble model, we advocate
using several criteria, including: examining conditional PIT residuals via the DHARMa
package (Hartig, 2022); extrapolation metrics (defined below); and visual examination of
maps showing the DSM predictions overlaid with the sightings used to build the models.
We provide a detailed example in the Eastern Bering Sea beluga case study.

To identify models whose predictions might be unreliable due to extrapolation bias, we
considered two types of ad hoc metrics. First, for each combination of model and cell (i.e.,
hexagon, h), we computed the following ratio:

)\m,h

9)

)‘-m,max '
Here X,  is the predicted abundance from model m for unsampled location h, and A, yax
is the maximum predicted abundance across all sampled cells. Second, for each model
we counted the number of unsampled cells (i.e., cells that did not have line-transect
survey effort) with predicted abundance exceeding the maximum predicted abundance
in sampled cells. These procedures are motivated by a generalized version of Cook’s
independent variable hull (Cook, 1979; Conn, Johnson ¢ Boveng, 2015).

Uncertainty estimation
Correcting for detransformation bias

Random effects 5 are treated as random variables (and marginalized across) during
maximum likelihood estimation, but are then treated as if they were fixed at the modes of
their distributions (conditional on the MLEs for the fixed effects) by the plug-in estimator.
However, 5 will generally have substantial variance and skewness, and this will cause the
plug-in estimator to be a poor estimator for the expectation of N when integrating across
the distribution for random effects.
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To better estimate the expectation for N, we employed the epsilon bias-correction
procedure described by Thorson ¢ Kristensen (2016) and implemented in TMB to obtain
estimates. This epsilon method corrects for both the nonlinearity of the transformation
(i.e., exponentiation in Eq. (8)) and the variance and skewness of random effects. Thorson
¢ Kristensen (2024) Chap. 6 shows a closed-form calculation for the epsilon method in a
simplified scenario involving a single (scalar-valued) random effect, and confirms that it
provides very close to the known expectation when transforming skewed random variables
with a number of different nonlinear functions.

Variance estimation

We relied on the law of total variance to construct an unconditional variance estimator for
each DSM that includes uncertainty from the MCDS contribution to detection probability,
pg (55). Specifically, we calculated

Var(K) = E(Var(N[p,)) + Var(E(Np,)). (10)

The first part of Eq. (10), E(Var(N [Pg)), is the expected variance of the abundance estimator
given a particular realization of detection probability, p,. We approximated this component
with Var(N [P¢), which is the variance of the plug-in abundance estimator conditioned
on the MLEs for detection probability from the MCDS analysis. This variance estimate
is produced by the TMB software, using the algorithm detailed below (see Conditional
variance of abundance estimator).

The second component of Eq. (10), Var(E(N IPg)), in effect gives the variance of the
mean, representing how estimates of abundance vary depending on the values of p, that
are sampled. To approximate Var(E(N IPg)), we used the following bootstrap procedure
(see S5 for pseudocode):

1. Forkel,2,...,K,sample pg(k) ~ f (py), where f (p ) is the joint predictive distribution
of detection probabilities from the MCDS detection function analysis. In practice, each
sample pfgk) was obtained by assuming that the parameters of the detection function
had a multivariate normal distribution on the logit scale.

2. For each k, fita TMB DSM to the beluga data, treating p, = p(gk) as a fixed value, and
record the abundance estimate, N¥), To approximate Var(IE(N |p¢)) for the epsilon
bias-corrected abundance estimate of N, the value N®) should be the bias-corrected
estimate, not the plug-in estimate.

3. Approximate Var(E(N |pg)) as K", (N® —N)2, where N is the mean abundance
estimate from all K bootstrap iterations.

Following application of this procedure, to generate estimates of total uncertainty in the
abundance estimate from each individual DSM (i.e., CV,; (N,,) in Eq. 5 of S5), the delta
method (Dorfman, 1938) could be used to incorporate the uncertainty due to independent
estimates of transect detection probability or availability probability.

Conditional variance of abundance estimator. We compute an estimator for the variance
of Eq. (8) that accounts for uncertainty in both fixed and random effects. We call this a
conditional estimator because we are specifically conditioning on a fixed vector of detection
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probabilities. Although different estimators are available, TMB software uses the estimator
from Kass & Steffey (1989). This involves calculating the joint precision Qjyin: for fixed and
random effects:

H, ~H,V
oint = 11
Qoint (—VtHl V‘HIV—l—Hz) (1)

where H; is the matrix of second derivatives for logL(&|c,x) (the “outer Hessian matrix”),
H, is the matrix of second derivatives for log([c|&, ,x][5|x, &]) conditional upon the MLE
for fixed effects & (the “inner Hessian matrix”), and V is the matrix of gradients of predicted
random effects with respect to fixed effects (the “outer Jacobian matrix”).

We then compute the variance for derived quantity N from this joint precision. We
specifically calculate the gradient J of N with respect to the vector of fixed and random
effects. We then compute

Var(Npg) =JQp;,J"- (12)

Ensemble model

Fitting multiple DSMs to sightings raises the question of which model, or collection of
models, should be used to generate a final abundance estimate and density surface. The
question is particularly important when different models produce markedly different
estimates of abundance. We chose to base ultimate inference on an ensemble (Araiijo
& New, 2007), whereby estimates from different models are averaged to produce a final
estimate. Specifically, we compute

Nens=ZWmNm (13)
m

where N, is the MLE of abundance from TMB for each model . The model weight is w,,,,
where ), w,, = 1.0. The advantage of averaging models is that there is often a reduction
in prediction error (Burnham ¢ Anderson, 2002; Dormann et al., 2018).

There are different approaches for setting the model weights (Dormann et al., 2018). For
instance, a common approach is to use Akaike’s information criterion (AIC) associated
with fitted models to calculate weights (Burnham e Anderson, 2002). However, calculation
of AIC weights relies on the complexity of a model, often computed as the effective degrees
of freedom from a generalization of the hat-matrix, and this is difficult to compute in a
hierarchical model using maximum-likelihood methods. Instead, we used equal model
weights, which have been shown to perform well in prediction of species distributions
(Dormann et al., 2018). This procedure has the added advantage that a single model with
an extremely high or low abundance estimate will not dominate inference.

The variance of model-averaged predictions was calculated using the standard
unconditional variance estimator (i.e., Burnham ¢ Anderson, 2002):

2
V&r(Nens) = [Zwm\/var(Nm)_f'(Nm_Nens)z} . (14)
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Eastern Bering Sea beluga case study

The EBS beluga survey design and data collection methods are similar to those previously
described in Ferguson, Conn ¢ Thorson (2024); the analytical methods and results reflect
improvements to Ferguson, Conn & Thorson (2024). The data collection methods and
sighting and effort summaries are presented in S2 for the aerial line-transect surveys and
S3 for the aerial imagery. All aerial surveys were approved by the Alaska Fisheries Science
Center/Northwest Fisheries Science Center Institutional Animal Care and Use Committee
(IACUC Number NW/AK2016-6). The analytical methods used to estimate detection
probabilities and corresponding results are presented in S4. See Frost, Lowry ¢ Nelson
(1985) and Frost ¢ Lowry (1995) for details about the VHF telemetry data and analyses.
There were no estimates of uncertainty for availability probability (Ferguson et al., 2023);
therefore, this parameter was included as a known constant in the offset for the DSM Eq. (5).

To derive spatially-explicit estimates of EBS beluga abundance, we constructed density
surface models separately for each year, 2017 and 2022. The 2017 study area boundary
corresponded to the area covered by the geographic stratain Lowry et al. (2017) (Fig. 1). The
ABWC advocated for a larger survey area in 2022. They noted that Indigenous knowledge
has confirmed that the southern extent of the EBS beluga stock’s distribution during early
summer extends farther south than the historical survey boundaries. Therefore, the 2022
survey area extended south of Hooper Bay (Fig. 1). The study area boundary used to
estimate abundance in 2022 excluded Scammon Bay because that bay was not included in
the 2022 survey design, there was no survey effort inside the bay (i.e., east of the barrier
islands), and we have insufficient information about beluga habitat to make inference about
beluga density in Scammon Bay based on density in the area surveyed outside Scammon Bay.

DSMs were constructed using aerial line-transect sighting and effort summaries for
10-km segments of transect effort. This segment length is approximately the distance
between adjacent transects (9.3 km). The segments were created by sequentially slicing
transect effort conducted in Beaufort Sea State <4, beginning with the start of each transect.
End segments <10 km were added to adjacent segments so that all segments used in the
analysis were >10 km. Predictions from the DSM were based on a hexagonal grid with
cell midpoints located 10 km apart. All geospatial data were projected into an equidistant
conic projection (false easting: 0.0; false northing: 0.0; central meridian: —164.0°; latitude
of origin: 63.5°; standard parallels: 62.5°, 64.5°; WGS84 datum; linear unit: kilometer), and
this projection was used when calculating cell areas and distances for the spatial correlation
functions or splines.

The DSMs required segment-specific estimates of detection probability, p; Eq. (5). The
best-fitting MCDS detection function for EBS belugas included covariates for Beaufort Sea
State (integer-valued) and turbidity (binary) (54). To build the DSMs, effort data for these
variables were summarized by segment. The segment-specific Beaufort Sea State variable
was calculated as the average value of integer-valued Beaufort Sea State for all records
that were located on the segment; all records were weighted equally. The segment-specific
turbidity variable was calculated by assigning the binary turbidity variable an integer
value (no = 0; yes = 1), computing the average of the integer-valued turbidity values for
all records located on the segment, and rounding the result. For example, if segment i
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comprised three data records with turbidity “yes”, “yes”, and “no”, the average of their
integer-valued analogs would be 1 + 1 + 0 = 0.67, which rounds to 1, so the segment would
be designated as turbidity = “yes”.

For 2017 and 2022, 13 and 17 DSMs, respectively, were constructed and examined. For
each year, we allowed at most one Matérn and one SPDE Matérn model with barriers
to be included in the ensemble. Overviews of key aspects of each model are provided in
Tables S6.1 and 5S6.2. To ensure that all models for a given year were allowed the same
flexibility to construct the spatial surface, we specified the DSMs for each year using
approximately the same number of random effects. For each year, the number of random
effects for all DSMs was based on the number of random effects (i.e., vertices) in that year’s
SPDE Matérn model, which was determined using the guidelines provided in Belmont
(2022). The knot locations for the soap film smoothers corresponded to the locations of
the vertices for the corresponding SPDE Matérn model that were within the soap boundary.
This resulted in fewer total knots for the soap film smoother than the corresponding SPDE
Matérn model; however, both models had the same number of knots inside the soap
boundary, and the soap film smoother was specified to have the same number of random
effects as the corresponding SPDE Matérn model. The total number of random effects
for the bivariate tensor product smoother corresponds to the product of each of the basis
dimensions used to build the smoother, and it was not possible to exactly match the
number of random effects in the corresponding SPDE Matérn model.

Identical DSMs were fit in mgcv and TMB, with the exception of the barrier SPDE
models, for which mgcv functions defining this type of basis were not available, so they
were constructed only in TMB. We constructed identical models in both software platforms
for two reasons: (1) to apply the methods presented in Miller, Glennie ¢~ Seaton (2020) to
the EBS beluga data and confirm that nearly identical results could be derived using mgcv
and TMB; and (2) to evaluate whether the existing “ds_varprop” function in the dsm
package (Bravington, Miller & Hedley, 2021; Miller et al., 2022) would be an alternative to
Eq. (10) and the methods presented in S5 for propagating uncertainty from the MCDS
detection function model into the overall estimate of uncertainty in the abundance estimate.
However, as of dsm version 2.3.3, the “dsm_varprop” function could not propagate errors
through SPDE models (M Ferguson with D Miller, pers. comm., 2023).

Because the variance in the MLE of abundance from TMB for each candidate DSM,
Var(N,,), did not include uncertainty from the estimate of transect detection probability
in the beluga case study (i.e., ﬁMR(O,z]-; éMR) in S54), we applied the delta method to add
this component of uncertainty to Var(Neps), resulting in Var o (Nops) (see Eq. 4 of S5).

For comparison with the 2017 EBS beluga DSM results, we examined the conventional
abundance estimate derived using the post-stratified design-based abundance estimator
of Ferguson et al. (2023). Their variance estimator had three components: (1) variation
from uncertainty in estimating the MCDS parameters; (2) variation from uncertainty in
estimating transect detection probability; and (3) variation in abundance due to random
sample selection. Two conventional abundance estimates for 2022 were derived using the
post-stratified design-based estimator. One conventional estimate for 2022 used the same
strata as the conventional abundance estimate for 2017 (i.e., the Lowry et al. (2017) strata;
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Ferguson et al. (2023)). The other conventional estimate for 2022 used geographic strata
covering the full extent of the 2022 study area (Fig. 1). The modified geographic strata for
2022 incorporated the latitudinal boundaries from Lowry et al. (2017) (Figs. 1, 52.2). Unlike
the Lowry et al. (2017) strata, the modified 2022 strata extended to the western border of
the 2022 study area and two new strata were created to encompass the northernmost and
southernmost portions of the 2022 study area. Both conventional abundance estimates for
2022 used the methods of Ferguson et al. (2023), with a MCDS detection function model
based on the pooled data from 2017 and 2022 (discussed briefly above and in 54).

The detection function model used in the post-stratified design-based estimator for
2017 was based on only a single year of data (Ferguson et al., 2023), whereas the detection
function model used in our model-based estimators for 2017 and 2022 was based on data
from both years pooled (54). However, the CV of the former detection function model
was 0.043 and the CV of the latter was 0.037, only trivially smaller; therefore, we do not
believe that this difference in detection function models affected our overall comparison
of the precision in the different abundance estimators.

RESULTS

Here, we focus on results of the EBS beluga case study. None of the 13 candidate models for
2017 exhibited signs of extrapolation bias based our extrapolation diagnostics (Table S6.1).
For 2022, three of the 17 candidate models had one cell (out of a total of 554 cells in the
prediction grid) with extrapolation ratios > 1.0 Eq. (9), and all three of those models were
SPDE Matérn models with barriers (Table S6.2). Based on these metrics, we did not find
evidence for concern about extrapolation bias.

The number of models per year that were selected for inclusion in the ensemble model
average was not chosen a priori. Rather, we examined PIT residuals via the R package
DHARMa (Hartig, 2022; S6), extrapolation metrics, and visual inspection of maps of N
predictions, sightings, and effort to narrow the field to four candidate models for 2017
and three candidate models for 2022 (Tables 1; S6). For both years, the SPDE Matérn
models with 60-km maximum edge length were included in the ensemble. The SPDE
Matérn model with barriers was eliminated from the ensemble model for 2017 because the
residual analyses from the DHARMa package showed quantile deviations and the combined
adjusted quantile tests were significant. The tensor product smoother was eliminated from
the ensemble model for 2022 because it had relatively low percent deviance explained, even
though it had 323 random effects compared to 308 for the corresponding SPDE Matérn
model, and models in 277 out of the 500 iterations failed to converge in the parametric
bootstrap. The bivariate isotropic tprs was eliminated from the 2022 ensemble because
residual analyses from the DHARMa package showed significant quantile deviations and
the estimated values of the Tweedie dispersion and power parameters were suspiciously
low relative to all other models.

The candidate DSMs included in the ensemble for 2017 were the SPDE Matérn, soap
film smoother, tensor product smoother, and bivariate isotropic thin plate regression
spline (Fig. 2). The candidate DSMs included in the ensemble for 2022 were the SPDE
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Table 1 Estimated abundance (N) of Eastern Bering Sea belugas from models fitted to 2017 and 2022
aerial line-transect survey data. For spatial models, we present both uncorrected estimates and those that
employed epsilon bias correction (“Corrected”). Because precision estimates were numerically intensive
to calculate, and only of primary interest for epsilon bias-corrected models, we provide estimated CVs
(parentheses) for epsilon bias-corrected estimates and for the full area surveyed each year. We also pro-
vide point estimates of abundance based on the 2022 survey data that were restricted to the area within
the 2017 strata to allow comparison between years for the same region. SPDE = SPDE Matérn model.
SPDE with barriers = SPDE Matérn model with barriers. soap = Soap film smoother. te = Tensor product
smoother. s = Bivariate and isotropic thin plate regression spline.

Year Model N in 2017 Strata N in 2022 Strata
Uncorrected Corrected Uncorrected Corrected

2017 SPDE 10140 11242 (0.111)

2017 soap 10445 11665 (0.114)

2017 te 10586 11963 (0.112)

2017 s 10313 11747 (0.112)

2017 Ensemble 11654 (0.115)

2017 Conventional 12269 (0.118)

2022 SPDE 7871 9446 10250 12023 (0.172)

2022 SPDE with barriers 7936 10282 9598 12325 (0.198)

2022 soap 9311 11980 12521 15593 (0.174)

2022 Ensemble 13313 (0.216)

2022 Conventional 11891 (0.318) 19811 (0.343)

Table 2 Number of random effects (#RE) used in the density surface models fitted to 2017 and 2022 Eastern Bering Sea beluga aerial line-
transect survey data and included in the ensemble model for each year. For a given model type, the number of random effects differs between
years due to differences in the sample sizes available for fitting the models and in the study area extent. The effective degrees of freedom (EDF)
were estimated using the mgcv package and are shown for all models except the SPDE Matérn with barriers, because the computation was not yet
available for this model type. The percent deviance explained (Pct. Dev. Expl.) for each candidate model in the ensemble is also shown. Models
showing “NA” in the table were not included in the ensemble model for that year.

Model 2017
#RE EDF Pct. Dev. Expl. #RE EDF Pct. Dev. Expl.
SPDE Matérn 199 39.2 53.6 308 50.1 83.4
SPDE Matérn with barriers NA NA NA 316 NA 82.0
Soap film smoother 199 35.6 52.7 308 46.5 84.5
Tensor product smoother 195 40.2 56.3 NA NA NA
Bivariate isotropic thin plate regression spline 199 49.3 58 NA NA NA

Matérn with and without barriers, and soap film smoother (Fig. 3). The number of random
effects used to fit each candidate model in the ensembles for 2017 and 2022 are shown in

Table 2, along with the estimated effective degrees of freedom (computed using the mgcv

package). The percent deviance explained is also shown in Table 2, and it was computed as

100% (1 — %), where R1 is the sum of squared deviance residuals for model m and RO is the
sum of squared deviance residuals for the null (intercept-only) model. The candidate DSMs
for 2017 explained between 52.7% (soap film smoother) and 58.0% (bivariate isotropic
tprs) of the deviance. Among the 2022 candidate DSMs, the percent deviance explained
ranged from 82.0% (SPDE Matérn with barriers) to 84.5% (soap film smoother).
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Figure 2 Predicted abundance of Eastern Bering Sea belugas in 2017 based on the four candidate den-
sity surface models selected for the ensemble model. soap, Soap film smoother; SPDE, SPDE Matérn
model; te, Tensor product smoother; s, Bivariate and isotropic thin plate regression spline.

Full-size Gal DOI: 10.7717/peerj.20077/fig-2

The maximum predicted abundance per cell was lower in 2017 than 2022. The year
2022 had less transect effort and fewer beluga sightings than 2017, and it also had three
sightings with very large group sizes. Data with these characteristics can be challenging to
fit with spatial models. To investigate differences among the 2022 DSMs, we conducted
pairwise comparisons of predicted beluga abundance for all pairs of DSMs selected for the
ensemble model. Specifically, for each cell i, we computed scaled differences in predicted
abundance between models n1; and m; as (le,h —I\7ml,h)/rrzax(abs(l\Afm1 b —le 1)), where
the denominator of this expression ensures that the resulting values are constrained to
[—1,1]. Two points are worth highlighting from these comparisons (Fig. 4). First, predicted
abundance was largely consistent between models throughout the overwhelming majority
of the study area. The largest discrepancies in model predictions were in the area of high
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Figure 3 Predicted abundance of Eastern Bering Sea belugas in 2022 based on the three candidate den-
sity surface models selected for the ensemble model. soap, Soap film smoother; SPDE, SPDE Matérn
model; SPDE.bnd, SPDE Matérn model with barriers.

Full-size Gal DOI: 10.7717/peerj.20077/fig-3

beluga sighting density near Scammon Bay, where some of the largest beluga groups were
detected in 2022 (Fig. S2.2): the soap film smoother tended to estimate higher abundance
than either SPDE Matérn-type model in a small cluster of cells near Scammon Bay; the
SPDE Matérn model without barriers estimated higher abundance than the SPDE Matérn
model with barriers in one cell.

The Tweedie distribution is underdispersed relative to the Poisson distribution when
the mean is small; however, ecological data are often overdispersed. We expected that
the EBS beluga data would be overdispersed. We examined whether the DSMs resulted in
underdispersion by computing the ratio of the estimated variance to the estimated mean for
each cell in the study area. The Tweedie parameter estimates for each of the cadidate DSMs
included in the ensemble models are shown in Table 3. In 2017, the Tweedie parameter
estimates were underdispersed only in cells in the northwestern corner of the study area,
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Figure 4 Pairwise comparisons of density surface model (DSM) predictions for Eastern Bering Sea
belugas in 2022. Each map shows the scaled differences between two DSMs (11, m,) in predicted bel-
uga abundance by cell (h): (I\Afml,;, — le,h)/max(abs(I\AIml’;, — le,h)). Comparisons between all pairs of
DSMs selected for the ensemble model are shown. soap, Soap film smoother; SPDE, SPDE Matérn model;
SPDE.bnd, SPDE Matérn model with barriers.
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where no belugas were sighted and predicted densities were extremely low (56). In 2022,
all of the Tweedie parameter estimates were overdispersed.

The area-integrated estimates of EBS beluga abundance (with and without
detransformation bias correction via the epsilon method) are shown in Table 1 and
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Table 3 Estimates of Tweedie dispersion (¢) and power (p) parameters for density surface models fit-
ted to Eastern Bering Sea beluga aerial line-transect survey data, where Var(Y) = ¢u’.

Year Model ) P

2017 SPDE 5.80 1.42
2017 Soap film smoother 5.85 1.42
2017 Tensor product smoother 5.58 1.42
2017 Bivariate isotropic thin plate regression spline 5.50 1.42
2022 SPDE 5.26 1.40
2022 SPDE with barriers 5.84 1.44
2022 Soap film smoother 5.08 1.41

Fig. 5 for the following: each of the candidate DSMs included in the 2017 and 2022
ensemble models; the ensemble models; and the conventional (post-stratified design-based)
estimator. For the candidate DSMs in 2017, epsilon bias correction resulted in abundance
estimates that were 11% to 14% larger than the plug-in estimators. For the candidate
DSMs in 2022, the corresponding increase was higher, ranging between 17-28%. In 2017,
the epsilon-corrected area-integrated abundance estimates ranged from 11,242 to 11,963
(CV = 0.111 to 0.114). In 2022, the range was from 12,023 to 15,593 (CV = 0.172 to
0.198). Nevertheless, within a survey year, the 95% lognormal confidence intervals for
abundance overlapped across all candidate DSMs (Fig. 5). The ensemble spatial models
estimated that there were 11,654 belugas in 2017 (CV = 0.115) and 13,313 belugas in 2022
(CV = 0.216). For comparison, the conventional, design-based models estimated that
there were 12,269 belugas in 2017 (CV = 0.118; Ferguson et al., 2023) and 19,811 belugas
in 2022 (CV = 0.343).

The abundance estimates for the full 2022 study area that were derived from two of the
three candidate DSMs, the ensemble model, and the conventional estimator were all higher
than the estimates for 2017. To investigate how much of this larger abundance in 2022 was
due to the larger study area, we used each individual candidate DSM from 2022 to compute
area-integrated abundances for the area corresponding to the geographic strata from the
2017 analysis. The results of this investigation suggest that approximately the same number
of belugas were within the reduced study area during surveys in both years (Table 1).

DISCUSSION

In this paper, we present detailed methods for constructing and evaluating hierarchical
spatially explicit density models to estimate abundance from line-transect survey data
using two leading model frameworks, SPDE approximations to geostatistical models and
spline-based smoothers. Critical issues that we addressed include: (1) accounting for
the precision and bias of all components of the hierarchical model in the final estimate
of uncertainty in abundance via a parametric bootstrap; (2) applying the epsilon bias
correction factor (Thorson ¢ Kristensen, 2016) to account for detransformation bias in
the DSM; (3) implementing a thorough model evaluation and selection process that
incorporated examination of conditional PIT residuals, maps of model predictions, and
extrapolation diagnostic metrics; and (4) using ensemble model averaging techniques to
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Figure 5 Estimates of abundance and lognormal 95% confidence intervals for Eastern Bering Sea bel-
ugas in 2017 and 2022. SPDE, SPDE Matérn model; SPDE.bnd, SPDE Matérn model with barriers; soap,

Soap film smoother; s, Bivariate and isotropic thin plate regression spline; te, Tensor product smoother.
Full-size Gl DOL: 10.7717/peer;j.20077/fig-5

derive the ultimate estimates of abundance and uncertainty to account for model selection
uncertainty, which is especially important in situations for which different structurally
sound models produce different results.

We demonstrated our methods using Eastern Bering Sea belugas as a case study. This was
a particularly informative case study because aerial line-transect surveys were conducted
using identical protocols during two years in which survey effort and beluga distribution
differed dramatically, 2017 and 2022. The goals of the EBS beluga analysis were to (1) assess
whether DSMs represent an improvement over conventional, post-stratified design-based
estimators; (2) produce updated estimates of abundance for this stock; and (3) produce
detailed maps of beluga density in the survey area during the 2017 and 2022 survey periods.
For the case study, we constructed identical DSMs using two alternative methods for
building basis functions representing spatially correlated variation in population density;
that is, the SPDE approximation to the Matérn covariance function and bivariate splines.

For EBS belugas, DSMs produced similar estimates to the conventional design-based
estimator in 2017, and were considerably lower than the design-based estimator in 2022
(Table 1). The estimated precision in the abundance estimates from the individual DSMs
and the ensemble average of DSMs was higher (i.e., lower CVs) than for the design-based
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estimator in both survey years (Table 1). The decreased precision in all of the abundance
estimates for 2022 compared to 2017 is likely a function of both decreased survey effort
and increased beluga clustering, particularly in the southern portion of the survey area that
had not be covered by aerial line-transect surveys for belugas in the past. Increased survey
effort, redistribution of survey effort, or some combination thereof will be needed in future
surveys to reduce uncertainty in the abundance estimate.

The abundance estimates for the 2017 study area are similar across estimators (Fig. 5)
and between survey years (Table 1, Fig. 5). The point estimates of abundance in the full
2022 study area for two of the three candidate DSMs included in the 2022 ensemble
model average (i.e., the SPDE Matérn and SPDE Matérn with barriers) are within the 95%
confidence intervals for all of the 2017 abundance estimates (Fig. 5), which correspond
to the smaller study area. The point estimate for the 2022 soap film smoother is only
slightly larger than the upper 95% confidence interval for the 2017 models. The ensemble
model average abundance estimate for the smaller study area in 2017 (11,654 belugas,
CV = 0.115) is only 1,659 belugas lower than the ensemble abundance estimate for the
larger study area in 2022 (13,313 belugas, CV = 0.216). This difference is approximately
12.5% of the ensemble abundance estimate for 2022. The slightly larger abundance estimates
in 2022 could be due to a number of factors, including random error, actual population
decrease or increase between years, emigration or immigration from the system, and
increased survey area between 2017 and 2022.

For 2022, the conventional abundance estimate (19,811 belugas, CV = 0.343) is
approximately 49% larger than the corresponding ensemble abundance estimate (13,313
belugas, CV = 0.216). We cannot know for certain whether the spatially explicit estimators
or the design-based estimator provides the least biased estimate of abundance for the
area surveyed. However, based on the following information, we believe that the spatially
explicit models are the least biased for this case study. The three extremely large groups
of belugas (67, 87, and 120 belugas) detected in 2022 were located nearshore, north of
Scammon Bay, in the new southern portion of the study area that was never surveyed
prior to 2022 (Fig. 52.2). The 2022 design-based estimator appears to be spreading the
influence of the three large groups over a broad area, resulting in a high estimate of
N for the stratum. It is unknown whether there were many undetected large groups in
unsurveyed locations (i.e., between transects within the existing survey area boundaries);
however, we believe that it was unlikely that many large groups were missed. The southern
extension of the study area was surveyed completely in 2022, according to the survey
design, and the transects were surveyed in Beaufort Sea State 2 (Fig. 52.3). A preliminary
soap film smoother model for 2022 that was constructed using fewer knots and only 146
random effects (compared to 308 random effects in the present analysis; Table 2) resulted
in a considerably larger bias-corrected abundance estimate (20,162 belugas, CV = 0.26;
compared to 15,593 belugas, CV = 0.174, in the present analysis; Table 1) and larger
estimates of the Tweedie dispersion (¢, 7.42 vs. 5.08; Table 3) and power (p, 1.49 vs. 1.41;
Table 3) parameter estimates. This suggests that the DSMs with the larger number of
spatial random effects that were used in the present analysis were better able to represent
the patchy beluga sightings in the data.
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Based on the information presented above, we believe that the bias-corrected ensemble
model average abundance estimate derived from the spatially explicit models is less
biased than the conventional estimate for 2022. Furthermore, because the density surface
modeling paradigm also enables estimation of higher resolution maps of species density
(Figs. 2 and 3), we view DSMs as an improvement in statistical methodology for analyzing
EBS beluga data to maximize utility in management and conservation decisions. We
recommend the 2022 ensemble abundance estimate as the most pertinent for management
at present, recognizing that there are still some unaddressed issues (e.g., no sampling of
belugas in rivers; M Ferguson with M Castellote, pers. comm., 2023) that likely make it an
underestimate.

Our study offers a number of lessons for researchers seeking to implement DSMs,
whether with beluga or other species. First, it was apparent from our analysis of the 2022
data that models with different spatial basis function formulations have the potential to
produce quite different abundance estimates (Ferguson, Conn ¢ Thorson, 2024). This is
likely due to the way in which estimated abundance is interpolated (and extrapolated)
into unsampled areas. The tendency for this to occur may be affected by sampling
intensity (lower in 2022) and the level of overdispersion (several large group sizes in
2022). Therefore, we strongly caution against employing just one form of spatial model.
Instead, we recommend that investigators routinely fit models with different spatial basis
functions, implement thorough and repeatable model evaluation and selection process,
and consider ensemble modeling (Araiijo ¢» New, 2007) if models produce substantially
different predictions.

Our approach in this paper was to employ ensemble models with equal weighting.
Alternatives, such as using an information criterion (Burnham & Anderson, 2002) to
weight models, are certainly possible. To our knowledge, the performance of marginal AIC
(i.e., ignoring spatial random effects when counting parameters) for model weighting has
not been rigorously evaluated. In our case, using marginal AIC to weight models would
have placed virtually all model weight on the soap film smoother model for 2022. To be
conservative, we thus adopted an equal weighting strategy, which has been shown to be
reasonable in practice (Dormann et al., 2018). An equal weighting strategy does require
some forethought in developing a “balanced” model set, so that a particular class of models
(e.g., with minor permutations in structure) does not dominate inference (Dormann et al.,
2018). In the EBS beluga case study, the full suite of candidate models we evaluated included
different boundary conditions and spatial autocorrelation characteristics (i.e., with and
without barriers; isotropic and anisotropic), and covered a range of model complexity,
measured by the number of random effects and effective degrees of freedom. Alternative
strategies for DSM ensemble weighting would make for useful future research, potentially
using recent advances in computing cAIC for the spatial models used here (Zheng, Cadigan
& Thorson, 2024).

Although we recommend spatial DSMs for estimating abundance of EBS belugas, this is
not a disavowal of general principles of survey design. Such principles (e.g., randomization
and replication; Buckland et al., 2001) help to ensure that model-based estimators will
be unbiased and should be regarded as good practice in transect surveys, no matter the
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method used to analyze the data (Hedley ¢ Bravington, 2014). Design-based concepts
in survey design (e.g., systematic random samples) are still important for the quality of
inference in DSMs.

CONCLUSIONS

Density surface models (DSMs) are commonly fitted to counts obtained during line-
transect surveys of marine mammal populations as an alternative to conventional design-
based estimators. For EBS belugas, we found DSMs to be preferable, given the extra
information one gains through maps of spatial distributions. However, when fitting DSMs,
researchers need to be cognizent that different spatial basis functions can result in different
estimates, particularly when animals are patchily distributed. In such cases, use of ensemble
predictions are likely warranted. Further, investigators should take care to properly account
for uncertainty by propagating uncertainty in detection probability into resultant estimates,
and to account for possible detransformation bias.
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