
Submitted 12 September 2024
Accepted 21 August 2025
Published 10 October 2025

Corresponding author
Kyle R. Grant, kgrant@nait.ca

Academic editor
Tika Adhikari

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj.20073

Copyright
2025 Grant et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Contrasting microbial assembly patterns
in the woody endosphere of hybrid and
non-hybrid Populus trees
Kyle R. Grant1,2, Steven W. Kembel3, Sachin Naik1 and Selvadurai Dayanandan1

1Department of Biology, Concordia University, Montréal, Québec, Canada
2Centre for Boreal Research, Northern Alberta Institute of Technology, Peace River, Alberta, Canada
3Département des Sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada

ABSTRACT
Endophytes asymptomatically infect virtually all plant species, yet little is known
about endophyte community assembly and diversity within the woody tissues of forest
trees. We utilised phylogenetic null models of alpha (ses.MNTDab and ses.MPDab)
and beta diversity (ses.βMNTDab and ses.βMPDab) to infer the role of deterministic
and stochastic ecological processes in structuring bacterial and fungal endophyte
communities in the woody tissues of Populus deltoides and the naturally occurring
P. × jackii hybrid complex (P. deltoides × P. balsamifera). Microbial communities
were characterised through Illumina amplicon sequencing (MiSeq) of the ITS and 16S
rRNA gene. We detected 227 fungal ASVs, which were mainly classified as Ascomycota
(92.4%). Among the 667 bacterial ASVs detected, themajority were classified as phylum
Actinobacteriota (47.6%) and Proteobacteria (44.9%).We predicted that hybridisation
could lead to a host environment that applies weaker selective effects on microbial taxa
due to variability in host chemical and morphological phenotypes. Although bacterial
communities did not support our prediction, fungal assemblages of the hybrid host
(P. × jackii) were more phylogenetically random within (ses.MNTDab) and between
assemblages (ses.βMNTDab and ses.βMPDab) then the non-hybrid (P. deltoides)—
consistent with an increased role of stochastic community assembly processes and less
selective host environment. Host identity had a large influence on fungal community
composition (weighted UniFrac R2

= 34%), which may result from the differences
in fungal selection we detected between hosts. Conversely, host identity was a weaker
predictor of bacterial composition (weighted UniFrac R2

= 13%), which may reflect
the more dominant role of stochasticity we detected in bacterial assembly. Our findings
provide evidence that host hybridisation may alter fungal assembly processes and
diversity within the woody endosphere, leading to more phylogenetically diverse
associations both within and between the fungal assemblages of hybrid trees. More
broadly, our results highlight how genetically diverse host populations may promote
microbial biodiversity within forests and hybrid transition zones.
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INTRODUCTION
Microbes that asymptomatically establish within the internal tissues of plants
(endosphere)—referred to as endophytes (Wennström, 1994; Wilson, 1995)—have gained
considerable attention for their ability to influence the function and fitness of their plant
hosts. Endophytes may influence host growth (Ji, Gururani & Chun, 2014; Mayer, Dörr de
Quadros & Fulthorpe, 2019; Varga et al., 2020), susceptibility to pathogens (Ji, Gururani &
Chun, 2014;Mishra et al., 2018; Constantin et al., 2020), nutrient acquisition, and tolerance
to abiotic stress (Baltruschat et al., 2008; Christian, Herre & Clay, 2019; Tiryaki, Aydın
& Atıcı, 2019; Varga et al., 2020; Zhou et al., 2021) and have been linked to ecosystem
processes, such as the early stages of decomposition following leaf senescence (Yuan &
Chen, 2014; Szink et al., 2016; Guerreiro et al., 2018) and wood decomposition (Song et al.,
2017; Cline et al., 2018).

Endophytes form diverse communities within plants that vary across space and
time (Lau, Arnold & Johnson, 2013; Borruso et al., 2018; Gomes et al., 2018; Barge et al.,
2019; Materatski et al., 2019). Within forest trees, these communities are structured by a
combination of factors, including the host (species or genotype) and microbial niche (host
organ or tissue type) they inhabit, reflecting differences in the chemistry andmorphology of
these microbial environments (Lau, Arnold & Johnson, 2013; Lamit et al., 2014; Cregger et
al., 2018; Pellitier, Zak & Salley, 2019; Tellez et al., 2022). Abiotic factors, including climate
seasonality, temperature (Gomes et al., 2018; Oita et al., 2021), and precipitation (Lau,
Arnold & Johnson, 2013; Gomes et al., 2018; Oita et al., 2021), also play a crucial role in
structuring the diversity and composition of endophyte communities.

The aboveground surfaces and inner compartments of forest trees, collectively referred
to as the phyllosphere, is a heterogeneous microbial environment whose surface area spans
more than 108 km2 globally (Morris & Kinkel, 2002). This heterogeneity, combinedwith the
ease of sampling aboveground plant tissues, makes the phyllosphere a tractable system for
testing fundamental questions in ecology (see Meyer & Leveau, 2012) and elucidating the
assembly rules structuring plant-associated microbial communities. Community assembly
rules are most broadly classified as deterministic or stochastic: Deterministic processes are
associatedwith ecological selection (sensuVellend, 2010) that results from fitness differences
between taxa within a given environment, including processes of competition, facilitation,
and environmental filtering. Conversely, stochastic processes do not relate to fitness and
include neutral processes of dispersal and ecological drift (Stegen et al., 2013;Dini-Andreote
et al., 2015). In the phyllosphere, host structural and chemical factors that vary across plant
species and compartments (Lau, Arnold & Johnson, 2013; Borruso et al., 2018; Pellitier,
Zak & Salley, 2019; Tellez et al., 2022) may apply unique selective pressures on microbial
taxa, contributing to deterministic community assembly. The influence of stochastic
processes in the phyllosphere is thought to be most prevalent during the early stages
of plant growth, as seen in young Populus trees (Dove et al., 2021) and the phyllosphere
bacterial communities of Arabidopsis thaliana (Maignien et al., 2014) and perennial grass
species (Grady et al., 2019). Stochastic processes may give way to deterministic as the initial
microbial community is established, as better-adapted and more competitive microbes
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replace early colonisers across time (Emerson & Gillespie, 2008; Dini-Andreote et al., 2015;
Dini-Andreote & Raaijmakers, 2018).

Using data generated through amplicon sequencing (Illumina MiSeq), we examined
bacterial- and fungal-endophytic community patterns in the aboveground woody tissues
(twigs) of P. deltoides and the naturally occurring P.× jackii hybrid complex (P. balsamifera
× P. deltoides), through a combination of phylogenetic and taxonomic alpha and beta
diversity metrics. We aimed to examine how hybridisation may influence endophyte
communities and assembly processes within the woody endosphere of this widely cultivated
and ecologically important genus (Cooke & Rood, 2007), which has become a model
organism for testing hypotheses regarding plant-microbe interaction in woody plants (see
Cregger et al., 2021). Endophyte assembly in the phyllosphere of Populus is thought to be
largely deterministic (Bálint et al., 2013;Cregger et al., 2018), withmore stochastic processes
dominating during the initial stages of plant growth (Dove et al., 2021). Although factors
structuring the microbial diversity of Populus have been examined, it remains unclear how
different ecological processes contribute to microbial assembly (but see Dove et al., 2021),
especially within aboveground woody tissues. Understanding how host hybridisation may
alter microbial assembly processes and diversity may be of interest, given the susceptibility
of natural and cultivated hybrid Populus trees to wood-inhabiting pathogens of the genus
Septoria, which currently limit the geographical extent of their cultivation (Ostry, 1987;
Newcombe & Ostry, 2001; Cregger et al., 2018).

Populus hybrid zones can exceed the genetic diversity of parental species combined due
to the ability of hybrid Populus to form backcrosses (Whitham et al., 1999). This diversity
can lead to greater phenotypic variability within hybrid Populus populations (Whitham
et al., 1999), as Populus genotypes are known to exhibit phenotypic plasticity and vary in
their defensive compounds and physical traits (Lindroth & St. Clair, 2013; Bandau et al.,
2015; Liu & El-Kassaby, 2019; Bandau et al., 2021). Breakdowns in chemistry, including the
formation of defensive compounds, or changes in the physical structures of hybrid trees
could lead to a less selective host environment, reducing the role of deterministic processes
in structuring endophyte communities. We therefore hypothesised that hybridisation
could shift the balance between stochastic and deterministic ecological processes within
the woody endosphere of Populus.

Phylogenetic community patterns can provide insights into the role of stochastic
versus deterministic processes in microbial assembly, under an assumption that the
ecological preferences of microbial taxa are phylogenetically conserved (Stegen et al.,
2013; Dini-Andreote et al., 2015)—that is, microbes that are close relatives (closer on a
phylogeny) are more similar in their ecological preferences than distant relatives (Webb
et al., 2002; Cavender-Bares et al., 2009; Cadotte & Davies, 2016). Under this assumption,
when the host environment selects for microbial taxa with specific ecological preferences,
the resulting microbial assemblage will be composed of closer or more distant relatives
than expected (i.e., compared to a null expectation of random assembly; see Webb et al.,
2002; Webb, 2000). The observed phylogenetic structure of an assemblage will thus be
less random as the balance between stochastic and deterministic processes shifts towards
determinism. This approach of measuring phylogenetic structure relative to an expectation
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of random assembly can be extended to the level of the host population (see Stegen et al.,
2013; Dini-Andreote et al., 2015). For example, when individual host environments are
homogeneous and apply strong selective effects on microbial taxa, each host environment
may select for microbes with similar ecological preferences. If these ecological preferences
are phylogenetically conserved, then the resulting microbial assemblages would be more
similar (i.e., phylogenetic beta diversity) than expected under random assembly (termed
homogenising selection). Alternatively, if host environments are heterogeneous and apply
strong selective effects, then each host environment selects for microbes with different
ecological preferences, leading assemblages to be more phylogenetically dissimilar than
expected (variable selection). Both patterns reflect an increasing role of determinism in
microbial assembly (see Dini-Andreote et al., 2015) and more selective host environment.

We therefore predicted that the microbial assemblages associated with hybrid trees
(P. × jackii) would be more phylogenetically random both within (alpha diversity) and
between (beta diversity) assemblages compared to non-hybrids (P. deltoides), consistent
with the hybrid host environment imposing weaker selection on microbial taxa and a
greater role of stochastic ecological processes in microbial assembly. Woody endosphere
bacterial and fungal communities are likely to respond differently to host environments,
given differences in their life history strategies, dispersal abilities, and evolutionary histories
(Dove et al., 2021). We thus contrasted community patterns across these two major groups
to infer the role of host identity and community assembly processes in structuring their
diversity. Our work may help to direct future studies examining the links between host
hybridisation and the plant microbiome.

MATERIALS & METHODS
Sampling design
Twig samples were collected from natural tree stands located across two study sites in
southern Quebec: Mont-Saint-Hilaire and Oka National Park (collection approved by the
Société des établissements de plein air du Québec; authorisation number: PNO-2020-008),
located ∼70 km from each other. At each site, twigs were collected from two host taxa:
Populus deltoides and the naturally occurring hybrid, P. × jackii (P. balsamifera × P.
deltoides). Five trees of each host were sampled between July 20th and July 28th, 2020, at
each of the two sites, resulting in a total of 10 trees per host. Five shaded branchesmeasuring
∼24 inches were excised from the phyllosphere of each tree at a height of ∼10–20 ft from
the forest floor. Cuttings were placed in plastic bags and transported to the laboratory on
ice, where they were stored at 4 ◦C until processing.

Sample processing
We processed all stored samples within 48 h of collection. Processing involved several
steps: Asymptomatic twigs were first cut from tree branches using sterilised loppers and
then rinsed with sterile double-distilled water and several drops of Tween 20 before surface
sterilization. The twigs were then submerged and stirred vigorously in 70% ethanol for one
minute, followed by 4% sodium hypochlorite for 10 min. We rinsed the samples between
wash steps by submerging them in sterilised double-distilled water, with an additional five
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rinses at the end of sterilisation to remove any residual chemicals. To assess the effectiveness
of surface sterilisation, twigs were pressed into culture plates containing potato-dextrose
agar and incubated at room temperature for 48 h. The sterilised twig samples were then
stored in sterile falcon tubes at −80 ◦C until DNA extraction. We repeated these steps for
each of the 20 twig samples.

DNA extraction, library preparation, & sequencing
To homogenise each of the samples, a sterile scalpel was used to cut approximately 12
randomly sampled sterilised twigs into small pieces between 1.0 to 2.0 mm in size. The cut
pieces were mixed, and 150 mg of tissue was collected in tubes for bead beating. Samples
were bead-beaten for 90 s prior to DNA extraction. We extracted genomic DNA from
samples using a DNeasy Plant Mini Kit (Qiagen) following the manufactures instructions.

To reduce contamination from host DNA, we chose to amplify the V5–V6 region
of the 16S rDNA gene using the chloroplast discriminating primers, 799F/1115R. For
fungal DNA amplification, we targeted the ITS1 rDNA gene using the universal fungal
primers, ITS1F/ITS2. A two-step PCR approach was used to amplify both gene regions.
PCR amplification of the V5–V6 region was performed in a 25 µL mixture containing
three µL of DNA extract, 0.2 µM of both forward and reverse primer, 0.5 U of Phusion
Hot Start II High-Fidelity DNA Polymerase (ThermoFisher), 1x of Phusion HF Buffer,
0.2 µM of dNTPs, and 3% DMSO. We used the same mixture for ITS1 amplification with
the exception that four µL of DNA extract was included in the mixture.

PCR cycles for amplification of the V5-V6 region were performed for 30 s at 98 ◦C for
initial denaturation, followed by 15 s at 98 ◦C, 36 cycles of 30s at 64 ◦C, 30 s at 72 ◦C,
and 10 min at 72 ◦C for final extension. The same intermediate steps were used for ITS1
amplification, except 37 cycles were performed at 55 ◦C. A 2% agarose gel was used to
visualise PCR products, which were normalised using a Just-a-Plate Normalisation Kit,
following the manufacturer’s protocols (CharmBiotech). Samples were pooled into V5-V6
and ITS1, and V5-V6 samples were purified with AMPure XP beads at a ratio of 0.75:1
(bead-to-DNA ratio; Beckman Coulter). ITS1 pools were purified three times with a 0.8:1
bead to DNA ratio to eliminate primer dimers. A PhiX control library (Illumina) was
spiked into the amplicon pool, and Illumina MiSeq sequencing was performed using a
MiSeq reagent kit V3 (paired-end 300 bp; Illumina).

Bioinformatics & data processing
Weutilised theQuantitative Insights IntoMicrobial Ecology pipeline (QIIME2 v.2020.11.1)
for all data processing steps (Bolyen et al., 2019). Cutadapt was first used to trim primer
regions from demultiplexed reads prior to denoising steps (Martin, 2011). Fungal and
bacterial-derived datasets were denoised independently through the DADA2 algorithm to
generate amplicon sequence variants (ASVs), remove chimeric and low-quality sequences,
and merge paired-end sequences (Callahan et al., 2016). We used the default settings
of DADA2 with the following exceptions: (1) low-quality tails were first removed from
sequences (Q score <30) by trimming the ITS1 forward reads at 276 bp and the reverse
reads at 239 bp. The 16S rRNA reads were trimmed at 281 and 217 bp, respectively; (2) We
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used the pseudo-pooling parameter to increase the detection sensitivity of low-frequency
ASVs.

Taxonomic assignment was then performed using the naive Bayes classifier available
in the sklearn Python package using the SILVA database for 16S rRNA (Quast et al.,
2012) and the UNITE database for ITS1 sequences (Abarenkov et al., 2010). Classified
sequences were then filtered to remove contamination from non-target DNA, including
chloroplast and plant DNA. Unassigned ASVs were also removed for downstream analysis.
We detected three reads belonging to the genus Modestobacter and five reads belonging
to an unidentified fungal ASV within bacterial and fungal negative control samples,
respectively. The low number of reads detected indicates that our samples were free from
contamination. We, therefore, removed the negative controls from subsequent analyses.
Finally, we removed potentially spurious low-abundance ASVs that contained fewer
than 10 sequences. Although there is no consensus on the most appropriate filtering
threshold for phyllosphere amplicon sequencing studies, we chose a conservative filtering
approach, as our analysis relied heavily on diversity comparisons, which may be sensitive
to low-abundance taxa (Nikodemova et al., 2023). For example, Nikodemova et al. (2023)
found that most sporadically detected operational taxonomic units generated through 16S
rRNA sequencing occur at less than 10 copies, and removing such microbiota may improve
the reliability of our microbial diversity estimates.

Phylogenetic inference
Phylogenetic trees were constructed for bacterial and fungal communities using the
FastTree 2 algorithm in QIIME2 with a midpoint root (Price, Dehal & Arkin, 2010); Figs.
S1 & S2). However, the high variability of ITS sequences can lead to poor sequence
alignments among disparate fungal lineages, resulting in unresolved phylogenies that may
bias metrics of community phylogenetic structure (Molina-Venegas & Roquet, 2014). We,
therefore, ran the fungal community phylogenetic analysis using two trees: the original
tree generated with FastTree 2 and a second tree generated using a ‘ghost tree-like’ method
(Fouquier et al., 2016), whereby extension trees inferred from ITS sequences were grafted
onto a resolved backbone phylogeny (Fig. S3).

For the ‘ghost tree-like’ method, we used Shen et al.’s (2020) phylogeny of Ascomycota
as a backbone tree, accessed through TreeHouse (Steenwyk & Rokas, 2019). To generate
extension trees, we first grouped ASVs by Class and generated an ITS sequence alignment
for each group using theMUSCLE algorithm (Edgar, 2004).We then generated an extension
tree for each alignment, using the IQTREE algorithm (Nguyen et al., 2014) in QIIME2, and
grafted the resulting trees onto the backbone tree at their respective crown node (i.e., their
Class node). An ITS extension tree was also generated for Basidiomycete sequences and
grafted to the root of the backbone tree.

We focused our analysis on the fungal community results obtained with the FastTree
2 method, as we were only able to run the ghost tree analysis with ASVs identified to the
class level, which excluded ∼36% of sequences; however, we report the results obtained
with the ghost tree (Figs. S4–S7, Tables S1 & S2) and where they differ from those of the
FastTree 2 method.
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Community analysis
Rarefaction curves were generated for bacterial and fungal samples independently (Fig. S8).
To standardise sampling effort, we rarefied bacterial samples to 1,628 reads and fungal
samples to 6,342 reads. These values represented the minimum resampling depths that
would allow us to maintain all samples for subsequent analysis. To ensure adequate
sequencing depth was achieved, we used Good’s coverage index, which indicated that all
samples had greater than 99% coverage (Fig. S9). Community analysis was performed
with the rarefied dataset using the phyloseq (McMurdie & Holmes, 2013), picante (Kembel
et al., 2010), and vegan (Oksanen et al., 2020) packages in R v.4.3.2 (R Core Team, 2023).
We performed all community analyses independently on bacterial and fungal community
data.

We first explored whether the taxonomic or phylogenetic diversity within samples
(alpha diversity) differed between host taxa. Taxonomic measures included ASV richness,
Simpson’s dominance, Chao1, and Pilous evenness. We utilised picante (Kembel et al.,
2010) to assess the phylogenetic dispersion of microbial communities (i.e., if assemblages
consist of taxa that are closer or more distant relatives than expected) by calculating the
standardised effect size of mean pairwise distance (ses.MPD) and mean nearest taxon
distance (ses.MNTD). Both indices represent complementary measures of dispersion, with
ses.MPD placing greater emphasis on deeper branches connecting taxa in the phylogeny
(basal patterns) and ses.MNTD shallower branches (terminal patterns; Mazel et al., 2016).
We utilised the abundance-weighted versions of ses.MPD (ses.MPDab) and ses.MNTD
(ses.MNTDab), which emphasise microbial taxa that are common within samples and,
therefore, account for bias that may result from rare microbial ASVs. Both dispersion
measures are independent of the species richness of samples and are expressed as z-scores
relative to a null distribution of random community assembly. We computed ses.MPDab

and ses.MNTDab using the null model argument taxa.labels and 1,000 randomisations.
To assess potential differences in alpha diversity between hosts, an analysis of variance
(ANOVA) was performed.

We then calculated the between-sample (beta diversity) equivalent of ses.MPDab and
ses.MNTDab—that is, ses.βMPDab and ses.βMNTDab—following methods adapted from
Dini-Andreote et al. (2015). ses.βMPDab and ses.βMNTDab measure the phylogenetic
distance separating ASVs in two assemblages (Kembel et al., 2010) and are expressed as
z-scores relative to a null distribution of phylogenetic distances generated from random
communities. The null distribution thus reflects the expected βMPDab or βMNTDab

between assemblages when stochastic ecological processes dominate community assembly
(Dini-Andreote et al., 2015). To calculate ses.βMPDab and ses.βMNTDab, we first Hellinger
transformed the community matrix (Oksanen et al., 2020) and calculated the observed
βMPDab and βMNTDab between samples using the comdistnt and comdist functions,
respectively. We then constructed null distributions using 1,000 randomly assembled
communities generated by randomising the community matrix and ASV labels on the
phylogeny using the randomiseMatrix function (with the null.model argument set to
richness) and the tipShuffle function, respectively. Each random matrix was Hellinger
transformed before calculating their respective βMPDab or βMNTDab pairwise distances.
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ses.βMPDab and ses.βMNTDab were then calculated as follows:

ses.β =βobs−βnull/sd(βnull)

where ses.β is ses.βMPDab or ses.βMNTDab, βobs is the observed pairwise distance between
samples (βMPDab or βMNTDab), and βnull and sd(β null) are the mean and the standard
deviation of the corresponding null distribution of each pairwise comparison, respectively.
When ses.βMPDab or ses.βMNTDab diverge from the mean of the null distribution by
more than two standard deviations (z-score <−2 or >+2), they significantly differ from
βMPDab or βMNTDab expected under stochastic community assembly, reflecting the role
of deterministic ecological processes. Conversely, ses.βMPDab or ses.βMNTDab z-scores
within two standard deviations of the mean are consistent with stochastic processes
dominating community assembly (Stegen et al., 2013; Dini-Andreote et al., 2015). Positive
z-scores indicate that assemblages are more phylogenetically dissimilar than expected,
reflecting variable selection (z-score >+2), while negative z-scores indicate that assemblages
are more similar than expected, reflecting homogenising selection (z-score <−2; see
Dini-Andreote et al., 2015).

To assess differences in community composition between hosts, we utilised the
abundance-weighted taxonomic measure Bray–Curtis dissimilarity (Bray & Curtis,
1957) and its phylogenetic analog weighted UniFrac (Lozupone & Knight, 2005; Lozupone,
Hamady & Knight, 2006). Distance matrices were generated using Hellinger-transformed
community data and visualised through principal coordinates analysis (PCoA) to examine
differences in the composition of host-associated microbial communities. We performed
a permutational analysis of variance (PERMANOVA) on distance matrices to test for
differences in community composition between host taxa and sites using the adonis2
function in vegan. We also utilised a permutational analysis of multivariate dispersions
(PERMDISP), available through the betadisper function, to test for differences in variance
between the microbial communities of host taxa and sites using the same distance matrices
(Oksanen et al., 2020).

To test for differences in the abundance of microbial taxa between host taxa
(i.e.,differential abundance analysis), we used theAnalysis of Compositions ofMicrobiomes
with Bias Correction (ANCOM-BC) R package (Lin & Peddada, 2020). Given that
ANCOM-BC accounts for differences in sequencing depth, we ran the analysis separately
on filtered non-rarefied bacterial and fungal data. We used default arguments with the
exception that we set the alpha threshold to 0.001 and struc_zero argument to TRUE. This
argument performs a presence-absence test for microbial taxa that are only present within
a single host. By default, the ancombc function excludes taxa from the analysis that are
detected in fewer than 10% of samples, which for our analysis excluded taxa that were
detected in only one sample.

RESULTS
Sequencing & filtering
Illumina sequencing generated ∼1.56 million raw reads (680,153 16S rRNA and 874,920
ITS1 reads). Denoising and quality filtering with DADA2 resulted in the retention of
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356,641 and 360,050 reads from 16S rRNA and ITS1 libraries, respectively. 16S rRNA
reads contained a high proportion of contamination (50.2% of reads), resulting from the
presence of mitochondria and chloroplast DNA, which accounted for 28.5% and 21.7%
of reads, respectively. ITS1 reads contained low amounts of Populus DNA contamination
(∼0.6% of reads) and lepidopteran DNA belonging to a single ASV (0.02%). Filtering out
contaminants, unclassified reads, and low-abundance ASVs (<10 sequences; Nikodemova
et al., 2023) resulted in 355,245 fungal and 176,528 bacterial reads, belonging to 227 and
667 ASVs, respectively. The number of sequences per sample ranged from 1,628 to 35,003
for bacterial samples and 6,342 to 39,711 for fungal samples. We rarefied samples to a
sequencing depth of 1,628 and 6,342 for bacterial and fungal samples, respectively (Fig.
S8). These rarefied data were used for all subsequent steps in our analysis. No differences
in the qualitative patterns or significance of our results were detected between resampled
runs of the analysis. We present the results of a single run with rarefied data.

Alpha & beta diversity analysis
The bacterial endophytic communities of twigswere, on average,more diverse and exhibited
more even species distributions than fungal communities, although no differences in
taxonomic diversity were detected between host taxa (Fig. S10). Measures of basal and
terminal phylogenetic dispersion indicated that both bacterial and fungal communities
trended towards phylogenetic clustering (i.e., negative z-scores), although some individual
host plants harboured microbial assemblages with weak to random phylogenetic structure
(i.e., z-scores ≈ 0). We detected no significant differences in phylogenetic dispersion
between the microbial communities of host taxa, except for the fungal community of P. ×
jackii, which was less terminally clustered (ses.MNTDab) than P. deltoides (Fig. 1).

Phylogenetic beta diversity patterns revealed that microbial assembly was driven by a
combination of ecological processes. Stochastic processes tended to be more prevalent
in bacterial assembly; however, deterministic processes were more common within the
bacterial community of P.× jackii than P. deltoides when measured through ses.βMNTDab

(53.3% versus 24.5% of pairwise comparisons, respectively; Fig. 2). Conversely, fungal
assembly was characterised mainly by deterministic processes, although stochastic
processes were more dominant in the fungal community of P. × jackii than P. deltoides
when measured through ses.βMNTDab (80.0% versus 20.0% of pairwise comparisons,
respectively) and ses.βMPDab (44.4% versus 4.4%, respectively; Fig. 2). The fungal
community of P. deltoides displayed a strong signature of determinism in the form of
homogenising selection (80.0% of ses.βMNTDab and 95.6% of ses.βMPDab pairwise
comparisons; Fig. 2).

Visualisation of community composition through PCoA plots revealed that host-
associated communities formed distinct clusters within multivariate ordination space
through both weighted UniFrac (Fig. 3) and Bray–Curtis distance measures computed on
Hellinger-transformed community data (Fig. S11). Results from the PERMANOVA (using
the same distance matrices) indicated that variance in the fungal and bacterial community
was explained by host identity, while sampling site and the interactions between sampling
site and host identity were not significant predictors (Table 1). The fungal community of P.

Grant et al. (2025), PeerJ, DOI 10.7717/peerj.20073 9/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.20073#supp-8
http://dx.doi.org/10.7717/peerj.20073#supp-8
http://dx.doi.org/10.7717/peerj.20073#supp-10
http://dx.doi.org/10.7717/peerj.20073#supp-11
http://dx.doi.org/10.7717/peerj.20073


−2

−1

0

   
   

   
Z−

sc
or

e 
(s

es
.M

N
TD

ab
)

A. P. deltoidesHost identity: P. x jackii

−1.5

−1.0

−0.5

   
   

   
Z−

sc
or

e 
(s

es
.M

N
TD

ab
)

B.

a
a

a

b

−4

−3

−2

−1

0

   
   

   
Z−

sc
or

e 
(s

es
.M

PD
ab

)
−2

−1

0

   
   

   
Z−

sc
or

e 
(s

es
.M

PD
ab

)

a a

a
a

Figure 1 Comparisons of phylogenetic dispersion (ses.MNTDab and ses.MPDab) of microbial commu-
nities associated with the twig endobiome of P. deltoides and P.× jackii. The phylogenetic dispersion of
host-associated (A) bacterial and (B) fungal communities are displayed. Letters within plots indicate sig-
nificant differences between host taxa (ANOVA at 95% confidence). The interquartile range and median
are displayed (black).

Full-size DOI: 10.7717/peerj.20073/fig-1

× jackii had greater variance in taxonomic and phylogenetic community composition (i.e.,
weighted UniFrac and Bray–Curtis distances) than P. deltoides, as indicated by PERMDISP
(Fig. 3 & Table 2). However, we did not detect significant differences in variance through
PERMDISP analysis with the ghost tree, suggesting that fungal community variance among
P. × jackii is primarily driven by ASVs that are not identified to the class level (Table S2).
No significant differences in bacterial community variance were detected between host
taxa (Fig. 3 & Table 2).

Bioindicator detection
Fungal endophytic samples were dominated by ASVs belonging to Ascomycota (92.4%),
with Basidiomycota present at lower abundances (0.2%). The remaining ASVs were
unassigned fungal sequences (7.4%). At the class level, Dothideomycetes were the most
abundant ASVs (49.1%), followed by Eurotiomycetes (30.2%), Orbiliomycetes (1.0%),
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Leotiomycetes (0.7%), Saccharomycetes (0.6%), and Agaricomycetes (0.2%), with ∼36%
of sequences not identified to the class level (Fig. 4). Through ANCOM-BC analysis, we
detected a greater relative abundance of phylum Basidiomycota in P. × jackii samples
(which were absent in P. deltoides), as well as the classes Agaricomycetes, Eurotiomycetes,
and Orbiliomycetes, while the class Sordariomycetes was more abundant in P. deltoides
samples (Fig. 4 & Table S3). We detected many differentially abundant fungal ASVs
between host taxa; the most abundant of which belonged to genus Neoconiothyrium
(Dothideomycetes), which was detected in greater abundances in P. deltoides, while ASVs
belonging to genus Xenocylindrosporium (Eurotiomycetes), Orbilia (Orbiliomycetes), and
Knufia (Eurotiomycetes) were more abundant in P.× jackii. Additional differentially
abundant genera and ASVs were detected; however, their relative abundances were low
(Table 3, Tables S3 & S4).
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Table 1 PERMANOVA results for bacterial and fungal communities associated with the twig endo-
biome of P. deltoides and P. × jackii.

Bray–Curtis distance Weighted UniFrac distance

Model F -value R2 p-value F -value R2 p-value

Bacterial community
Host identity 3.287 0.153 <0.001 2.575 0.128 0.012
Sites 1.058 0.049 0.319 0.450 0.022 0.932
Interaction 1.075 0.050 0.297 1.110 0.055 0.334
Fungal community
Host identity 12.417 0.392 <0.001 9.417 0.341 <0.001
Site 1.852 0.058 0.090 1.059 0.038 0.330
Interaction 1.422 0.045 0.178 1.134 0.041 0.307

Notes.
The community matrices were Hellinger transformed prior to computing Bray–Curtis and weighted UniFrac distances. Bolded
values highlight significant factors (p< 0.05).

The most dominant bacteria of endophytic twig communities belonged to phylum
Actinobacteriota (47.6%) and Proteobacteria (44.9%), with smaller abundances of Bac-
teroidota (5.3%). ASVs belonging to Abditibacteriota, Acidobacteriota, Armatimonadota,
Bdellovibrionota, Deinococcota, Firmicutes, Fusobacteriota, Gemmatimonadota, and
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Table 2 PERMDISP results for bacterial and fungal communities associated with the twig endobiome
of P. deltoides and P. × jackii.

Bray–Curtis distance Weighted UniFrac distance

Model Sum Sq F -value p-value Sum Sq F -value p-value

Bacterial community
Host identity <0.001 0.081 0.773 0.004 0.194 0.664
Sites <0.001 0.126 0.721 0.010 0.473 0.509
Interaction 0.013 0.612 0.615 0.038 0.629 0.627
Fungal community
Host identity 0.055 6.439 0.018 0.121 13.438 0.002
Site 0.001 0.168 0.686 0.004 0.244 0.625
Interaction 0.061 1.507 0.260 1.102 2.060 0.155

Notes.
The community matrices were Hellinger transformed prior to computing Bray–Curtis and weighted UniFrac distances. Bolded
values highlight significant factors (p< 0.05).
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Myxococcota were also detected at relative abundances of less than 1%. Through ANCOM-
BC analysis, we detected a greater relative abundance of phylum Gemmatimonadota in P.
deltoides samples, while Acidobacteriota were in greater abundances in P.× jackii samples.
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Table 3 Relative abundance of the twenty most abundant fungal ASVs associated with the twig endobiome of P. deltoides and P. × jackii.

Populus deltoides Populus × jackii

Class Genus ASV (%) Class Genus ASV (%)

Dothideomycetes Neoconiothyrium 34.46 Eurotiomycetes Xenocylindrosporium 34.84
Dothideomycetes Endosporium 10.25 Dothideomycetes Unidentified dothideales 14.79
Unidientified ascomycota Unidentified 10.19 Dothideomycetes Neoconiothyrium 8.45
Unidentified fungi Unidentified 6.16 Eurotiomycetes Xenocylindrosporium 6.31
Eurotiomycetes Xenocylindrosporium 5.76 Eurotiomycetes Xenocylindrosporium 5.47
Dothideomycetes Neoconiothyrium 4.71 Unidentified fungi Unidentified 4.82
Dothideomycetes Neoconiothyrium 4.01 Unidientified ascomycota Unidentifed 4.68
Dothideomycetes Neoconiothyrium 3.23 Dothideomycetes Endosporium 2.56
Dothideomycetes Phoma 3.04 Dothideomycetes Endosporium 1.96
Unidientified ascomycota Unidentified 2.43 Unidientified ascomycota Unidentified 1.33
Dothideomycetes Unidentified dothideales 2.01 Orbiliomycetes Orbilia 1.17
Dothideomycetes Unidentified dothideales 1.10 Eurotiomycetes Xenocylindrosporium 1.03
Eurotiomycetes Unidentified phaeomoniellales 1.07 Eurotiomycetes Unidentified Phaeomoniellales 0.89
Leotiomycetes Phialocephala 1.05 Saccharomycetes Nakazawaea 0.72
Unidentified fungi Unidentified 0.80 Unidentified fungi Unidentified 0.67
Unidientified ascomycota Unidentified 0.79 Eurotiomycetes Xenocylindrosporium 0.52
Dothideomycetes Endosporium 0.76 Eurotiomycetes Knufia 0.49
Dothideomycetes Elsinoe 0.75 Dothideomycetes Unidentified myriangiales 0.41
Unidentified fungi Unidentified 0.69 Saccharomycetes Candida 0.34
Dothideomycetes Neoconiothyrium 0.56 Eurotiomycetes Unidentified chaetothyriales 0.33

Notes.
Bolded text indicates ASVs that were differentially abundant between host taxa and detected in more than on sample (ANCOM-BC analysis; adjusted p< 0.001).
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The classes Acidimicrobiia, Longimicrobia, and Polyangia were more abundant within P.
deltoides, while Acidobacteriae and Armatimonadia were more abundant in P. × jackii
(Fig. 4 & Table S5). We detected many additional differentially abundant ASVs and taxa at
lower taxonomic levels (Table 4, Tables S5 & S6).

DISCUSSION
We examined taxonomic and phylogenetic alpha and beta diversity patterns of bacterial and
fungal endophytic communities within the aboveground woody tissues of two naturally
occurring hosts, Populus deltoides and P. × jackii (P. balsamifera × P. deltoides). Host
bacterial communities did not support our prediction that hybridisation would lead to
a less selective host environment, as we detected no signature of increased stochasticity
through phylogenetic alpha or beta diversity metrics. Host identity explained little of the
variation in bacterial communities (weighted UniFrac R2

= 13%), which may reflect
the generally dominant role of stochasticity in bacterial assembly that we detected.
Fungal communities supported our prediction, as fungal assemblages associated with
the hybrid host (P. × jackii) exhibited a more random terminal phylogenetic structure
(ses.MNTDab), and stochastic processes had a greater influence on community assembly.
The hybrid host environment may thus apply weaker selective pressures on fungal lineages,
contributing to the greater divergence in fungal community composition we detected
across host environments (weighted UniFrac R2

= 34%). Our findings provide evidence
that hybridisation can lead to more phylogenetically diverse fungal associations within and
between woody endosphere assemblages, resulting from a less selective host environment
due to a weaker role of deterministic ecological processes in fungal assembly. This reduction
in fungal selectionmay explain the susceptibility of hybrid Populus trees to wood-inhabiting
pathogens (Ostry, 1987; Newcombe & Ostry, 2001) and has broader implications for the
link between host genetic diversity and microbial biodiversity within forests and hybrid
transition zones.

The differences in phylogenetic structure and ecological processes we detected between
the fungal communities of host taxa were most pronounced when measured through
terminalmetrics of phylogenetic alpha and beta diversity (ses.MNTDab and ses.βMNTDab),
although we also detected differences through ses.βMPDab. This larger signal in terminal
metrics would be consistent with processes acting on fungal traits or ecological preferences
that are shallow on the phylogeny, reflecting more recent adaptation among lineages,
assuming phylogenetic conservatism (Mazel et al., 2016;Webb et al., 2002). For endophytes,
such traits could include those that alter their ability to bypass physical barriers on
the surface of the host plant or differences in their metabolic requirements. However,
non-random phylogenetic patterns may also result from competitive interactions when
traits that make species stronger competitors within an environment are phylogenetically
conserved (seeDavies, 2021). Overall, our findings suggest that the hybrid host environment
applies weaker selective effects on microbial taxa, resulting in a greater diversity of fungal
lineages within individual trees and between individuals at the host population level.
Populus genotypes are known to vary in their concentrations of antifungal compounds
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Table 4 Relative abundance of the twenty most abundant bacterial ASVs associated with the twig endobiome of P. deltoides and P. × jackii.

Populus deltoides Populus × jackii

Class Genus ASV (%) Class Genus ASV (%)

Gammaproteobacteria Unidentified enterobacterales 8.89 Actinobacteria Actinoplanes 10.34
Actinobacteria Unidentified microbacteriaceae 4.91 Actinobacteria Unidentified micromonosporaceae 9.42
Actinobacteria Modestobacter 4.13 Gammaproteobacteria Xanthomonas 5.17
Actinobacteria Modestobacter 2.95 Gammaproteobacteria Unidentified burkholderiaceae 3.24
Actinobacteria Quadrisphaera 2.76 Gammaproteobacteria Halotalea 3.22
Alphaproteobacteria Unidentified xanthobacteraceae 2.73 Alphaproteobacteria 1174-901-12 3.05
Actinobacteria Kineococcus 2.52 Actinobacteria Curtobacterium 2.97
Actinobacteria Actinomycetospora 2.33 Actinobacteria Actinomycetospora 2.27
Actinobacteria Modestobacter 2.24 Actinobacteria Actinoplanes 2.04
Actinobacteria Nocardioides 2.05 Gammaproteobacteria Pseudomonas 1.97
Actinobacteria Klenkia 1.87 Alphaproteobacteria Sphingomonas 1.97
Actinobacteria Modestobacter 1.81 Actinobacteria Kineosporia 1.70
Alphaproteobacteria Corticibacterium 1.73 Actinobacteria Unidentified kineosporiaceae 1.64
Actinobacteria Curtobacterium 1.70 Actinobacteria Modestobacter 1.63
Actinobacteria Quadrisphaera 1.47 Actinobacteria Quadrisphaera 1.55
Alphaproteobacteria Bradyrhizobium 1.44 Gammaproteobacteria Unidentified oxalobacteraceae 1.47
Alphaproteobacteria Methylobacterium-Methylorubrum 1.16 Actinobacteria Actinoplanes 1.20
Actinobacteria Frigoribacterium 1.04 Alphaproteobacteria Sphingomonas 1.15
Actinobacteria Frondihabitans 0.89 Gammaproteobacteria Pseudomonas 1.15
Bacteroidia Hymenobacter 0.85 Gammaproteobacteria Unidentified burkholderiaceae 1.08

Notes.
Bolded text indicates ASVs that were differentially abundant between host taxa and detected in more than one sample (ANCOM-BC analysis; adjusted p< 0.001).
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and secondary metabolites (Lindroth et al., 2002; Chen et al., 2009), and differences in their
concentration or composition between genetically diverse host individuals may contribute
to heterogeneity in the host environment (Whitham et al., 1999). Such heterogeneity
may contribute to the relatively weaker selection and greater compositional variance
(PERMDISP) we observed among P. × jackii fungal assemblages. Previous work has also
linked bark fungal community variance among tree species to chemical properties, such as
pH, nitrogen, and total phenolic content (Pellitier, Zak & Salley, 2019).

Bacterial phylogenetic beta diversity was mainly attributable to stochastic ecological
processes (although deterministic processes were more prevalent in P. ×jackii when
measured through ses.βMNTDab). Our finding that determinism may have a weaker role
in bacterial assembly is consistent with previous findings from the leaf and root bacteriome
of young Populus trees, where determinism explained ∼8% of pairwise comparisons
between bacterial assemblages, compared to ∼54% of fungal comparisons (Dove et al.,
2021). Although bacterial assembly was more stochastic, we note that deterministic
processes were still important, and bacterial assemblages were, on average, phylogenetically
clustered when measured through alpha diversity metrics.

Host identity had a weak influence on bacterial community composition (Bray–Curtis
R2
= 15%;weightedUniFrac R2

= 13%), suggesting that bacterial assemblages are primarily
composed of microbes that are more generally adapted to endophytic lifestyles rather
than specialised to specific host environments. Frank, Saldierna Guzmán & Shay (2017)
suggested that bacterial endophytes are often horizontally transferred generalists, with
regional species pools being more important in structuring endophyte communities
than host genotypes (Yeoh et al., 2017). This suggestion is supported by our findings and
those of Cregger et al. (2018), who found a similar weak influence of host identity on the
twig bacterial community of three-year-old Populus trees (Bray–Curtis R2

= 10%). This
similarity in the role of host identity between mature and juvenile Populus trees suggests
that the host-related deterministic processes that structure bacterial communities in the
woody endosphere remain relatively stable across the host’s lifespan. Initial bacterial
assembly may, therefore, be important for establishing the bacterial endobiome, with the
host environment imposing relatively weak selective effects on bacterial taxa.

Host identity had a larger influence on fungal community structure (Bray–Curtis R2

= 39%; weighted UniFrac R2
= 34%). Host genotypes are known to be a significant

determinant of leaf fungal endophytic composition in Populus species, suggesting plant-
fungal coevolutionary relationships (Bálint et al., 2013; Cregger et al., 2018; Dove et al.,
2021); however, previous findings have demonstrated a weak influence of host identity
on twig fungal communities (Bray–Curtis R2

= 9%; Cregger et al., 2018). This discrepancy
in our results may arise from Cregger et al. (2018) utilising three-year-old trees for their
analysis, as stochastic processes may have a greater influence on community assembly
during the initial stages of tree growth (Dove et al., 2021). Given that the twig endosphere
is a non-transient environment, community succession is likely to occur across the host’s
lifespan.Our finding that host identity is a strong predictor of fungal communities inmature
Populus trees could suggest that host-adapted fungi accumulate in the woody endosphere
as the host matures—perhaps replacing more generalist endophytes. Alternatively, the
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differences in fungal assembly processes we detected between hosts could drive divergence
in their communities, as non-hybrids select for host-adapted fungi while hybrids associate
with a broader range of stochastically assembled generalist endophytes.

ANCOM-BC analysis supports the role of host selective mechanisms in structuring
the microbial endophytic community of woody tissues, with several bacterial and fungal
bioindicators detected across host taxa. Most of the dissimilarity in host-associated fungal
communities resulted from differences in the relative abundance of dominant ASVs
belonging to the genus Neoconiothyrium (class Dothideomycetes), which were more
abundant in the woody tissues of P. deltoides, and genus Xenocylindrosporium (class
Eurotiomycetes), which dominated P. × jackii—although several other less abundant
genera were also differentially abundant. Our findings suggest that interspecific variance
in the twig fungal endophytic community reflects differences in a relatively small number
of genera. We detected no differences in bacterial or fungal community structure between
sampling sites (PERMANOVA), suggesting that microbes are filtered from a similar species
pool at the spatial scale of our study (∼70 km between sampling sites).

CONCLUSIONS
Our results highlight how woody endosphere environments may impose different selective
effects on bacterial and fungal microbiota, reflecting differences in the role of deterministic
versus stochastic community assembly processes. We found that host hybridisation may
lead to more phylogenetically diverse fungal associations both within and between the
aboveground woody tissues of individual trees. This increase in the diversity of fungal
associations among hybrid trees reflects a less selective host environment and a weaker
influence of determinism in fungal assembly. Our work also demonstrates that endophytic
fungal and bacterial communities in the woody endosphere of Populus trees are structured
primarily by host identity rather than geography at the scale of our analysis (sample sites
were ∼70 km apart). Differences in fungal community composition between hosts are
likely driven by the differences in fungal assembly processes we detected between hybrid
and non-hybrid trees—as the non-hybrid host selects for specific fungal lineages, while
the hybrid associates with a phylogenetically broader range of stochastically assembled
endophytes. The weak influence of host identity on bacterial community composition may
reflect the dominance of stochastic processes in bacterial assembly that we detected, as
both hosts harbour similar communities of bacteria that are randomly assembled from the
regional species pool.

Although it is difficult to know the consequence of these fungal community differences
for host plant health and fitness, more phylogenetically diverse fungal associations in
hybrid trees may contribute to host adaptability under novel environmental conditions.
Alternatively, by imposing more relaxed selection pressures on fungal lineages, hybrid
Populus trees may be more susceptible to colonisation by a broader range of fungal
taxa, such as pathogenic fungi. Understanding how community assembly processes in
woody tissues diverge from non-hybrids can help guide genetic breeding programs and
biocontrol interventions aimed at mitigating disease outbreaks, such as fungal canker
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diseases, which commonly infect hybrid Populus trees (i.e., Septoria species; Ostry, 1987;
Newcombe & Ostry, 2001; Cregger et al., 2018). Furthermore, our work highlights the role
that host genetic diversity can have in structuring the assembly and diversity of microbial
communities within forests and hybrid transition zones.

We emphasise that primer selection can bias community composition in amplicon
sequencing studies (Johnson et al., 2019) and that the endobiome is inherently dynamic
and known to vary across temporal dimensions (Borruso et al., 2018; Barge et al., 2019;
Materatski et al., 2019). As our work represents a single time point, it is important to
consider that community patterns may vary across sampling dates. Furthermore, many
of the fungal ASVs we detected were not identified to the class level (∼36%), which
highlights the underrepresentation of woody endosphere microbiota in public sequencing
databases. Our findings suggest that future work should investigate the influence of host
genetic diversity on chemical and physical traits that may influence microbial community
assembly. Further studies incorporating host traits and microbial assembly models could
elucidate the role of different host factors in structuringmicrobial assembly and biodiversity
within the phyllosphere.
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