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ABSTRACT
Harmful algal blooms represent a significant environmental challenge in various
marine ecosystems worldwide. While marine filter-feeder bivalves can consume toxic
phytoplankton, their capacity to mitigate the presence of harmful microalgae is not
yet fully understood. In this study, we examined the filtration rates and enzymatic
activities of Sinonovacula constricta, a commercially valuable bivalve, when exposed
to varying levels of toxic dinoflagellates (Prorocentrum cordatum) and non-toxic
diatoms (Skeletonema costatum) over a 12-h period. Chlorophyll a concentration was
used to reflect the presence of these microalgae. In the initial 2 h, the filtration rate
under toxic conditions was lower than under non-toxic conditions. However, after
the first 2 h, the filtration rate under toxic conditions did not decline as rapidly as it
did under non-toxic conditions, suggesting that S. constricta could adapt to the
presence of toxic microalgae over time. Regarding enzymatic activities, digestive
enzymes were not significantly affected by low concentrations of toxic microalgae,
but lipase activity was inhibited at higher concentrations. Antioxidant enzyme
activity showed no significant changes across all non-toxic microalgal
concentrations. Superoxide dismutase (SOD) activity increased at higher toxic
microalgal concentrations, but both low SOD and catalase activities indicated that
the bivalve’s antioxidant defenses for detoxification may be limited. These results
suggest that S. constricta can tolerate toxic microalgae through adaptive feeding
behaviors and changes in digestive and antioxidant enzymatic activities. This study
revealed S. constricta has a high filtration rate and is sensitive to high concentrations
of toxic microalgae. Therefore, its bioremediation function requires further study.
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INTRODUCTION
Harmful algal blooms (HABs) in marine environments, also called red tides, are often
caused by environmental changes that demonstrate the expanding global human footprint
and effects of climate change (Stauffer et al., 2019; Zohdi & Abbaspour, 2019). HABs
involve multiple species and classes of microalgae that produce toxins or other bioactive
substances that adversely affect beneficial aquatic organisms by influencing disease
susceptibility or death by predation or parasitism, resulting in community structure
alteration and lead to broader, potentially undesirable changes in habitat (Zohdi &
Abbaspour, 2019; Young et al., 2020). Recurrent HABs plague coastal waters worldwide
and their frequency is predicted to increase (Hallegraeff, 2010), owing to coastal
eutrophication and warming (Paerl et al., 2016; Stauffer et al., 2019). Many environmental
factors, such as chlorophyll a have been applied as indicators of photoautotrophic biomass
as related to primary productivity for monitoring the HABs (Boyer et al., 2009). The
dinoflagellate Prorocentrum cordatum (Ostenfeld) Dodge 1976 (former name:
Prorocentrum minimum (Pavillard) Schiller 1933) is one of the major bloom-forming
species in warm, temperate coastal waters around the world (Velikova & Larsen, 1999;
Khanaychenko, Telesh & Skarlato, 2019). P. cordatum is known to produce diarrhetic
shellfish poison (DSP) and cause fish and shellfish mortality, thus posing a serious risk to
aquaculture species and human health (Azanza et al., 2005; Sahraoui et al., 2013).

Filter-feeder bivalves consume phytoplankton, including toxic species. Some studies
have reported that dinoflagellate toxicity can affect bivalve feeding behavior and associated
physiological processes (de Romero-Geraldo, García-Lagunas & Hernández-Saavedra,
2016; Zohdi & Abbaspour, 2019). The filtration rate of bivalves is mainly influenced by
microalgal species and density (Bayne et al., 1993). Bivalves can reduce their filtration rate
by withdrawing their siphons and/or closing their shells to resist high-density toxic
microalgae (Bardouil et al., 1996; Istomina et al., 2021). Toxin accumulation in bivalves
occurs in the digestive gland and affects digestive enzymatic activities (Vidal et al., 2014).
Most bivalves can transform and transport toxins through a series of acylation and
hydrolysis processes catalyzed by antioxidant enzymes such as superoxide dismutase
(SOD) and catalase (CAT) (Vidal et al., 2014; Istomina et al., 2021; Tan et al., 2022).
Bivalves can exhibit varying degrees of tolerance or resistance to harmful algal blooms.
Bivalve species may respond to toxic cells by rejecting them (Bauder et al., 2001; Rosa et al.,
2017) or by ingesting the cells and subsequently eliminating the associated toxins (Blanco,
Estévez-Calvar & Martín, 2025). This tolerance often involves physiological and cellular
adaptations (Lassudrie et al., 2020).

The Chinese razor clam (Sinonovacula constricta Lamarck 1818) is a common, benthic
filter-feeding bivalve that is widely distributed along the coast of the western Pacific Ocean
(Orita et al., 2021; Yao et al., 2021). S. constricta is an economically important aquaculture
clam species in China. The clams usually half-bury themselves in the soft bottom of
mudflats, reaching out their siphons to filter water and consume microalgae and
suspended organic particles in the water. S. constricta can also improve water quality by
filtering suspended solids and reducing nutrient fluxes in the water body (Yang et al., 2017;
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Zhao et al., 2019). Therefore, S. constricta has been used as a bioremediation species in the
aquaculture industry to improve polluted water (Zhao et al., 2019; Zhang et al., 2022).
Although S. constricta has great potential to reduce levels of harmful algae, the response of
the clam to toxic microalgae has not been reported.

The primary aim of this study was to determine the short-term effects of toxic
dinoflagellate P. cordatum on the feeding behavior and associated physiological processes
of S. constricta. To achieve this goal, the filtration rate and activities of four digestive
enzymes and two antioxidant enzymes of S. constricta were explored with different
concentrations of P. cordatum compared to those under nontoxic conditions with diatom
Skeletonema costatum (Greville) Cleve 1873. The results of this study provide evidence for
evaluating the suitability of S. constricta as a biological mitigation agent for harmful algal
blooms, by elucidating its capacity to maintain filtration efficiency and physiological
stability under exposure to toxic P. cordatum, and thereby its potential effectiveness in
reducing algal biomass in natural waters.

MATERIALS AND METHODS
Microalgae culture and clam collection
Prorocentrum cordatum and Skeletonema costatum were aseptically maintained in
f/2 medium (Guillard & Ryther, 1962) in 10 L glass conical flasks at 22 �C and 100 µmol
photon m−2 s−1, with a 12:12 h light/dark cycle. The chlorophyll a content of each conical
flask was measured daily using a Hawk TriLux fluorometer (Chelsea Technologies Ltd.,
West Molesey, UK). When the chlorophyll a concentration reached over 200 µg L−1, the
microalgae were dispersed into four new conical flasks to reduce microalgal mortality
caused by high density.

Sinonovacula constricta were collected from a bivalve aquaculture farm in Xiangshan,
Zhejiang, China. One-year-old adult calms with similar lengths (674.2 ± 4.6 mm) and
weights (25.2 ± 3.6 g) were selected and divided into two groups: exposed and control.
Each group was placed in a polypropylene carbonate tank filled with seawater for five days
and was fed S. costatum daily to allow the clams to adapt to the laboratory environment.
Dead clams and feces were removed from the tanks daily, which were then filled with clean
seawater.

Exposure experiment and filtration rate
After the 5-day adaptation period, 24 clams that could extend and retract their siphons
normally were selected from each group and starved one day before the exposure
experiment. The cultivated microalgae were diluted with filtered seawater to arrive at the
four chlorophyll a concentration treatments. Each treatment consisted of six replicate
tanks each containing one clam and two tanks containing no clams. All tanks were filled
with 2 L filtered seawater mixed with P. cordatum (exposed group) or S. costatum (control
group). The exposed and control groups each consisted of four treatments according to
the chlorophyll a concentration of the microalgae: 60.2 ± 0.8 µg L−1 (treatment 1),
126.8 ± 1.4 µg L−1 (treatment 2), 171.9 ± 1.9 µg L−1 (treatment 3), and 229.2 ± 2.5 µg L−1
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(treatment 4). The chlorophyll a concentration in treatment 1 was slightly above the
typical threshold for HABs (40 µg L−1) (Busari, Sahoo & Jana, 2024), while treatment 2
represented a strong HABs event commonly observed along the Chinese coast (Chen et al.,
2023). To further investigate the tolerance of S. constricta to toxic microalgae, two
additional treatments (treatment 3 and 4) were designed with chlorophyll a concentrations
exceeding those found in most HABs. The water temperature was 23.1 ± 0.6 �C and
salinity was 28.0 ± 0.5 during the exposure experiment. S. constricta has a diurnal cycle
rhythm of feeding rate that is highly associated with digestive enzyme activities (Liu et al.,
2021). To minimize the influence of the diurnal cycle upon the filtration rate and
enzymatic activities, the exposure experiment lasted for 12 h (from 6 am to 6 pm). No clam
mortality was observed during the exposure experiment. From 0 to 6 h, the concentration
of chlorophyll a was measured every hour. From 6 to 12 h, the chlorophyll a concentration
was measured every 2 h. All chlorophyll a concentrations throughout the exposure
experiment were measured by a Hawk TriLux fluorometer (Chelsea Technologies Ltd.,
West Molesey, UK).

The filtration rate (FR) of the clams was calculated for each group based on chlorophyll
a concentration and expressed in unit µg h−1. The FR can be expressed as follows:

FR ¼ V A0 � A1ð Þ � B0 � B1ð Þ½ �
T

(1)

where, V is the volume of seawater, A0 is the initial chlorophyll a concentration in the tank
with clams, A1 is the chlorophyll a concentration after time T (h), B0 is the initial
chlorophyll a concentration in the tank without clams, and B1 is the chlorophyll a
concentration after time T (h).

Determination of enzymatic activities
After the exposure experiment, clams were dissected immediately, and the digestive glands
were separated, individually homogenized in saline solution, and centrifuged at 2,500 rpm
for 10 min at 4 �C. The resultant supernatants were stored at −80 �C for use in digestive
enzyme assays. Spectrophotometric assays were used to determine enzymatic activities.
The methods used to test the enzymatic activities were listed in Table 1. All enzymatic
activities were expressed in units per milligram of protein (U mg−1 prot).

Statistical analysis
All statistical analyses were conducted using SPSS 20 software (IBM Corp., Armonk, NY,
USA) with statistical significance set at a = 0.05. The data are expressed as mean ±
standard deviation (SD). The results were initially tested for normality and homogeneity of
variance using Shapiro-Wilk and Levene’s tests, respectively. Two-way repeated-measures
analysis of variance (ANOVA) was used to analyze filtration rate differences between
groups (exposed and control) for each treatment over time. Enzymatic activities were
compared using two-way ANOVA with group and treatment as factors. Tukey’s honest
significant difference (Tukey’s Honestly Significant Difference (HSD)) test was used to
determine differences within groups. One-way ANOVA was performed to determine
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differences between treatments for each group. Origin 2018 graphing software was used to
create the diagrams (OriginLab Corporation, Northampton, USA).

RESULTS
Filtration rate
The exposed groups had lower chlorophyll a concentrations than the control groups
starting from the first hour of the exposure experiment (Fig. 1). But at the end of the
exposure experiment, the chlorophyll a concentrations were lower than 30 µg in all groups
and treatments. The FR of S. constricta increased when exposed to high chlorophyll a
concentrations of both toxic and non-toxic microalgae. The two-way ANOVA results
indicated that group membership significantly (P < 0.05) affected treatments 3 and 4, while
time significantly (P < 0.05) affected treatments 2, 3, and 4 (P < 0.05). There was no
significant interaction between group and time for any treatment (Table 2). The FR of
clams exposed to toxic microalgae was high during the first hour, decreased rapidly in the
next 4 h, and remained at low levels during the rest of the experimental period (Fig. 2). The
FR in the control group showed a similar trend, but was lower than in the exposed group
during the first hour. The FR of clams exposed to toxic microalgae did not decrease as
rapidly as that of the control group over the exposed period, but was higher than that of the
control group at 6–12 h.

Enzymatic activities
Trypsin and lipase activities were significantly (P < 0.05) affected by the concentration of
chlorophyll a in the water (Fig. 3A). In the control group, trypsin activity under treatments
1 and 2 was significantly higher than that under treatments 3 and 4. Meanwhile in the
exposed groups, trypsin activity under treatments 1–3 was significantly higher than that
under treatment 4. Lipase activity under treatment 1 was significantly lower than that
under treatments 2–4 in the control group, displaying an increasing trend with increasing
chlorophyll a concentration. Meanwhile, lipase activity decreased with increasing
chlorophyll a concentration in the exposed group (Fig. 3D), with significantly higher lipase
activity under treatments 1–3 than under treatment 4. The lipase activity of the control
group was significantly higher than that of the exposed group under treatments 3 and 4,
whereas lipase activity under treatments 1 and 2 did not differ significantly between

Table 1 Spectrophotometric methods were used to assay enzymatic activities.

Enzyme Substrate Wavelength (nm) Reference

Trypsin N-benzoyl-L-arginine ethyl ester 253 Inagami & Sturtevant (1960)

Cellulase Carboxymethylcellulose 550 Fernández-Reiriz et al. (2001)

Amylase Starch 660 Vega-Villasante, Nolasco & Civera (1993)

Lipase 2,3-dimercapto-1-propanol tributyrate 570 Li et al. (2020)

SOD \ 550 Paoletti et al. (1986)

CAT \ 405 Regoli & Principato (1995)
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groups. Cellulase and amylase activities did not differ significantly between groups and/or
treatments (Figs. 3B and 3C).

SOD activity in the control group was significantly lower under treatments 3 and 4 than
in the exposed group, whereas SOD activity under treatments 1 and 2 did not differ
significantly between groups (Fig. 4A). Further, SOD activity did not differ significantly
among treatments in the control group, whereas in the exposed group, it showed a
non-significant increase with increasing chlorophyll a concentration. SOD activity in the
exposed group under treatment 4 was significantly higher than that under treatment 1.
CAT activity did not differ significantly between groups or treatments (Fig. 4B).

DISCUSSION
FR responds to toxic microalgal exposure
The feeding behavior of bivalves is affected by the consumption of toxic microalgae (Zohdi
& Abbaspour, 2019). Indeed, bivalves have developed highly flexible feeding regimens in
response to changes in the quantity and quality of suspended particles, enabling them to

Figure 1 Chlorophyll a concentration under (A) treatments 1 (chlorophyll a concentration: 60.2
± 0.8 µg L−1), (B) 2 (chlorophyll a concentration: 126.8 ± 1.4 µg L−1), (C) 3 (chlorophyll a
concentration: 171.9 ± 1.9 µg L−1), and (D) 4 (chlorophyll a concentration: 229.2 ± 2.5 µg L−1)
during the 12 h exposure experiment. Values are represented as means ± SE (n = 6).

Full-size DOI: 10.7717/peerj.20072/fig-1
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optimize energy gains. Nielsen et al. (2020) suggested that blue mussel Mytilus edulis can
reduced clearance rates of feeding when they exposed to DSP-toxic dinoflagellate. Bauder
et al. (2001) investigated how bay scallops Argopecten irradians uptake, retain, and
eliminate DSP toxins, reporting that bivalves can quickly accumulate DSP toxins and also
detoxify them effectively. These studies suggest that some bivalve species may have greater
tolerance to DSP toxins producing dinoflagellates in terms of their survival and feeding,
but they still accumulate DSP toxins.

In the current study, the FR of S. constricta for toxic P. cordatum was lower than that for
nontoxic S. costatum at all chlorophyll a concentrations at the beginning of the
experiment, which suggested that toxic microalgae initially interfered with the feeding
behavior of S. constricta. However, the FR for toxic microalgae did not decrease as rapidly
as that for nontoxic microalgae at all chlorophyll a concentrations, likely because
S. constricta gradually became used to feeding on toxic microalgae. Both the exposed and
control groups were fed with the nontoxic diatom S. costatum prior to the exposure
experiment. Therefore, clams in the exposed group may have required an adaptation
period to the toxic dinoflagellate P. cordatum, which could explain the initially lower FR
observed in exposed group. The FR of bivalves typically decreases with declining
microalgal concentrations (Sauvey et al., 2021), which explains the rapid decrease in FR
observed in the control group. Additionally, digestive enzymatic activities did not differ
significantly between the control and exposed groups at low chlorophyll a concentrations
(treatments 1 and 2), suggesting that this adaptation to toxic microalgae was not regulated
by enzymatic activities at low toxic microalgae concentrations. Similar conclusions have
been drawn in previous studies, indicating that the feeding activity of bivalves is not

Table 2 Effects of group and sampling time point on filtration rate of S. constricta (two-way ANOVA
results).

Factor df F P

Treatment 1

Group 1 <0.001 0.987

Time 8 8.235 0.055

Group & Time 8 0.632 0.732

Treatment 2

Group 1 <0.001 0.995

Time 8 24.946 0.012

Group & Time 8 0.341 0.900

Treatment 3

Group 1 6.901 0.025

Time 8 19.244 0.017

Group & Time 8 2.345 0.260

Treatment 4

Group 1 8.220 0.017

Time 8 176.409 0.001

Group & Time 8 1.135 0.509
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affected by toxic microalgae at certain concentrations (Bauder et al., 2001; McGuire et al.,
2025). Since the chlorophyll a concentrations in treatments 1 and 2 were comparable to
those observed during natural HAB events, S. constricta may maintain normal feeding
function in natural environments during such blooms.

Only high chlorophyll a concentrations (treatments 3 and 4) caused significant
differences in FR between the control and exposed groups. This result illustrates that
S. constricta can tolerate low concentrations of toxic microalgae. Moreover, the chlorophyll
a concentration in the natural environment during HABs is usually less than 20 µg L−1

(Wei, Tang &Wang, 2008; Stauffer et al., 2019), which is much lower than the chlorophyll
a concentrations used in the current experiment. Therefore, S. constricta could be
considered a potential bioremediation species for HABs in natural seawater where the
chlorophyll a concentration is lower. Zhang et al. (2022) previously reported that a high
razor clam stocking density could reduce the nontoxic phytoplankton biomass and net
primary production in mariculture ponds with swimming crabs and shrimp. Similarly,
Jiang et al. (2019) found that cultivated oysters control phytoplankton blooms in natural

Figure 2 Filtration rate (FR) of S. constricta under (A) treatments 1 (chlorophyll a concentration:
60.2 ± 0.8 µg L−1), (B) 2 (chlorophyll a concentration: 126.8 ± 1.4 µg L−1), (C) 3 (chlorophyll a
concentration: 171 ± 1.9 µg L−1), and (D) 4 (chlorophyll a concentration: 229.2 ± 2.5 µg L−1)
during the 12 h exposure experiment. Values are represented as means ± SD (n = 6).

Full-size DOI: 10.7717/peerj.20072/fig-2
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Figure 3 Activities of digestive enzymes (A) Trypsin, (B) Cellulase, (C) Amylase, and (D) Lipase in
the digestive glands of S. constricta after the 12 h exposure experiment. Values are represented as
means ± SD (n = 6). Different letters indicate significant differences among treatments within each group
(Tukey’s HSD test, P < 0.05). Asterisks indicate significant differences between groups within each
treatment (one-way ANOVA, P < 0.05). Full-size DOI: 10.7717/peerj.20072/fig-3

Figure 4 Activities of antioxidant enzymes (A) superoxide dismutase (SOD) and (B) catalase (CAT)
(B) in the digestive glands of S. constricta after the 12 h exposure experiment. Values are represented
as means ± SD (n = 6). Different letters indicate significant differences among treatments within each
group (Tukey’s HSD test, P < 0.05). Asterisks indicate significant differences between groups within each
treatment (one-way ANOVA, P < 0.05). Full-size DOI: 10.7717/peerj.20072/fig-4
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waters of Xiangshan Bay, China. Since S. constricta is one of the major polyculture species
used in East Asian aquaculture, along with shrimp and crab (Xie, Jiang & Yang, 2011;
Guan et al., 2020; Zhang et al., 2022), our study demonstrates that S. constricta could be
used to efficiently reduce nontoxic as well as toxic phytoplankton density.

Digestive enzymatic activities respond to exposure to toxic microalgae
Digestive enzymatic activities, as important indicators of nutritional status, reflect the
digestion performance of bivalves to a certain degree (Albentosa & Moyano, 2008).
Previous studies have reported that microalgal abundance and species influence FR and
digestive enzymatic activities of bivalves (Galimany et al., 2020; Sauvey et al., 2021). In the
current study, higher toxic phytoplankton concentrations (treatments 3 and 4) caused
statistically significant changes in lipase activity. Reverse trends in lipase activity between
the control and exposed groups confirmed that lipase inhibition in the exposed group was
correlated with the toxicity of P. cordatum. Lipase activity of S. constricta is significantly
associated with environmental factors such as light intensity and pH (Liu et al., 2021; Liang
et al., 2022). Therefore, the present results support that lipase is more sensitive to toxic
microalgae than the other digestive enzymes we analyzed in this study.

Eukaryotic phytoplankton, such as diatoms and dinoflagellates, predominantly
accumulate neutral lipids, mainly in the form of triacylglycerols (TAGs) (Becker et al.,
2018). TAGs are more effective energy stores than carbohydrates because they contain
more chemical energy per mole of carbon and larger quantities can be stored inside the cell
(Berg et al., 2015). Thus, lipids in microalgae are an important energy source for bivalves.
The digestive capability and dietary preference of bivalves are typically closely related
(Li et al., 2020). Therefore, the observed increase in lipase activity from low to high
chlorophyll a concentrations in the control group may suggest a digestive preference of
S. constricta for lipids. Lipase activities of clams in the exposed group were possibly
inhibited by toxic microalgae, which may have resulted in insufficient energy absorption
by S. constricta.

Trypsin activity decreased significantly from low to high chlorophyll a concentrations
in both the exposed and control groups, suggesting that trypsin inhibition was more likely
caused by high density rather than microalgal toxicity. The microalgal densities under all
treatments were higher than those during HABs, which usually occur in natural seawater
(Wei, Tang & Wang, 2008; Stauffer et al., 2019). Indeed, the highest trypsin activity of
S. constrictamay be achieved at lower phytoplankton concentrations than were used in the
present study. Several studies have demonstrated the importance of proteases, including
trypsin, as key enzymes for feed utilization and growth due to their role in protein
digestion processes (Rungruangsak-Torrissen et al., 2006; Albentosa & Moyano, 2008;
Klomklao, 2008). However, distinct proteases respond differently to environmental factors
(Korez, Gutow & Saborowski, 2019). Other protease activities may increase along with
increasing microalgal density while trypsin activity decreases. The activities of digestive
enzymes, except lipase, did not differ significantly between the exposed and control groups.
These results support that the digestive process of S. constricta functions normally when
exposed to high-density toxic phytoplankton.
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Antioxidant enzymes activities respond to exposure to toxic
microalgae
SOD and CAT are key antioxidant enzymes that determine the effectiveness of an
antioxidant system. Studies have shown that bivalves produce antioxidant enzymes to
protect against oxidative stress induced by absorbed microalgal toxins (Shumway, 1990;
Vidal et al., 2014; Ye et al., 2022). The results of the present study revealed that SOD
activity was higher at higher chlorophyll a concentrations (treatments 3 and 4). Higher
SOD activity has also been observed in S. constricta following short-term exposure to
elevated levels of suspended solids (Yang et al., 2017). Higher SOD activity at highly toxic
microalgae concentrations may be a consequence of the enzyme’s detoxifying role.

SOD and CAT activities in the digestive gland of S. constricta were much lower than
those previously reported in M. trossulus, C. gigas and Mactra chinensis (Istomina et al.,
2021). S. constricta is a typical burrowing bivalve species that usually buries itself in the
sediments of mudflats. Although the activities of antioxidant enzymes in other razor clam
species have rarely been reported, a previous study demonstrated that burrowing bivalves
generally have low metabolic rates and antioxidant system activity, reduced mitochondrial
function, and less accumulation of compounds that cause cellular damage (Philipp, Strahl
& Sukhotin, 2012). Furthermore, bivalves buried in sediment can retract their siphons and
remain in a state of anoxia for several days (Istomina et al., 2021). Nevertheless, SOD and
CAT activities were low even with no sediment in which to bury throughout the exposure
experiment, suggesting that S. constrictamay have limited antioxidant ability compared to
non-burrowing bivalves. However, sheltering in mudflat sediments may protect
S. constricta against toxic microalgae during HABs in the natural environment.

Bioremediation function of S. constricta
The FR of S. constricta increased with higher chlorophyll a concentration. Similarly, some
bivalve species removed more toxic microalgae when they were exposed to higher cell
concentration (Galimany, Lunt & Freeman, 2021). However, high concentration of toxic
microalgae impacted the physiological process of S. constricta by inhibiting lipase activity
and inducing SOD activity. The intensive HABs have caused tremendous economic loss in
the aquaculture industry globally (Trottet et al., 2021). While the long-term effects of toxic
microalgae on S. constricta remain unclear, the short-term exposure in this study suggests
that S. constricta may not tolerate extremely high concentrations of toxic microalgae.
However, it appears capable of withstanding most HABs typically found in natural
seawater. As an important commercial species in East Asia, our results suggested the
harmful algae polluted sea area is not a proper place for S. constricta aquaculture.

Bivalves filter water and particles, and create suitable habitat for other species (van der
Schatte Olivier et al., 2020). S. constricta is considered an aquaculture bivalve, but its role as
a water purifier has not been adequately explored, although a previous study has shown
that S. constricta can promote nutrient recycling in eutrophic waters (Zhao et al., 2019).
Many studies have reported non-selective feeding behavior in bivalves, as indicated by the
similar seasonal patterns of microalgae composition observed in both seawater and bivalve
stomach contents (Kamermans, 1994; Rouillon et al., 2005; Houki, Ozaki & Sano, 2025).

Tang et al. (2025), PeerJ, DOI 10.7717/peerj.20072 11/17

http://dx.doi.org/10.7717/peerj.20072
https://peerj.com/


Outdoor large-scale cultivation of S. constricta may reduce the abundance of both toxic
and non-toxic microalgae, potentially leading to a decline in local primary productivity
(Smaal et al., 2013) and alterations in the food web (Vaughn & Hoellein, 2018). Therefore,
further research is needed to confirm the bioremediation function of S. constricta.

CONCLUSIONS
Short-term exposure to the toxic dinoflagellate Prorocentrum cordatum significantly
affected the filtration rate (FR) and physiological processes of the Chinese razor clam
Sinonovacula constricta. At high concentrations of toxic microalgae, digestive lipase
activity was notably inhibited. While superoxide dismutase (SOD) activity was upregulated
in response to higher concentrations of toxic microalgae, the overall antioxidant enzymatic
activity in S. constricta was lower compared to other bivalves reported in the literature.
These findings suggest that S. constricta can adapt to toxic microalgae through changes in
feeding behavior, as well as modifications in digestive and antioxidant enzymatic activities.
This adaptive response supports the potential of S. constricta as a bioremediation species
for mitigating harmful algal blooms (HABs). However, the full extent of the physiological
mechanisms underlying these responses remains unclear. Future studies incorporating
metabolomic and transcriptomic analyses could offer deeper insights into how bivalves,
such as S. constricta, cope with harmful microalgae.
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