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ABSTRACT

Wheat (Triticum spp.) is a vital food source for a substantial portion of the global
population, with durum wheat (Triticum turgidum L. subsp. durum Desf) particularly
significant in warmer regions like the Mediterranean. However, the aggressive intro-
duction, spread and adoption of elite germplasm has led to crop genetic diversity loss,
prompting efforts to preserve local durum wheat landraces. This study investigates
the phenotypic diversity of 80 durum wheat landraces originating from the Western
Balkan region, including accessions from Montenegro, Bosnia and Herzegovina, and
Croatia. These landraces, locally known under traditional names such as ‘Rogosija’,
‘Grbljanka’, or “Velja psenica’, represent a historical gene pool of durum wheat once
widely cultivated until 1972 but subsequently abandoned. Historically, these landraces
were valued for productivity, disease resistance, and resilience to drought and heat—
traits well suited to Mediterranean conditions. Phenotypic traits were assessed across
17 morphological descriptors following International Union for the Protection of New
Varieties of Plants (UPOV) guidelines. We observed wide trait variability, with high
variation in ear and plant length, and limited variation in straw pith thickness and
ear density. Strong correlations among certain traits suggest coordinated selection
patterns or shared developmental pathways, while others may reflect distinct genetic
or environmental influences. Our study identified 370 differentiated morphological
types across 80 accessions, with most accessions displaying between four and six
phenotypes. This demonstrates the extensive genetic variability within the collection.
The normalized Shannon-Weaver index (H’) across 17 traits averaged 0.59, indicating
moderate to high diversity. Maximum H’ values exceeded 0.80 for traits such as beak
length, shoulder width of the lower glume, ear awn distribution, and recurved flag leaf
frequency. Low variation in traits like straw pith thickness (H = 0.05) and ear density
(H’ = 0.22) may indicate fixation or selection pressure. These findings provide valuable
insights into Western Balkan durum wheat diversity, emphasizing the importance of
considering both morphological traits and geographical origins in crop diversity studies.
Overall, our study provides a foundation for future breeding efforts aimed at enhancing
the agronomic performance and resilience of durum wheat cultivars.
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INTRODUCTION

Wheat (Triticumn spp.) is a staple food and main food source for nearly 2.5 billion people
(Shiferaw et al., 2013; Tang et al., 2019). Its adaptability to diverse climatic conditions, has
made wheat the most widely cultivated cereal, grown on 220 million hectares worldwide,
with an annual production of 770 million tons (FAOSTAT, 2023). While common wheat
(Triticum aestivum L., 2n = 6x = 42, BBAADD) dominates global production accounting
for about 95% of the total wheat growing area, the cultivation of durum wheat (Triticum
turgidum L. subsp. durum Desf, 2n = 4x = 28, BBAA) has the greatest importance in
warmer areas, including the Mediterranean (Peng, Sun & Nevo, 2011; Boudiar et al., 2025).
The domestication of wheat, which began around 12,000 years ago during the “Neolithic
Revolution”, was marked by the cultivation of diploid einkorn (Triticurn monococcum L.)
in Anatolia and tetraploid emmer wheat ( Triticum turgidum subsp. dicoccum) in the Levant
(Velimirovic, Jovovic & Przulj, 20215 Heun et al., 1997; Peleg et al., 2011). Over millennia,
these ancestral forms diversified into locally adapted landraces. However, the 20th
century Green Revolution profoundly altered global agriculture through the widespread
adoption of high-yielding wheat varieties, intense use of mineral fertilizers, pesticides,
and mechanization, tripling global wheat yields (Evenson ¢ Gollin, 2003). This shift also
accelerated the loss of genetic diversity, with locally adapted landraces disappearing at
unprecedented rates (Jovovic ¢ Kratovalieva, 2015; Qaim, 2020). Evident and widespread
decline of traditional crop diversity, commonly termed crop genetic erosion, has been
documented for over a century and reported across regions and crops (Khoury et al.,
2022; FAO, 2025). This erosion of crop genetic diversity also occurred in Montenegro and
Western Balkan region, due to the aggressive introduction of elite germplasm that led
to a noticeable erosion of the wheat gene pool (Jovovic, 2021). Recognizing the danger
of the disappearance of local durum wheat landraces, activities to collect and preserve
durum wheat populations began in the 1950s. During that period, 125 autochthonous
landraces of tetraploid wheat were collected. The relatively late establishment of the plant
gene bank in Montenegro and the absence of a clear conservation program and financial
resources contributed to permanent loss of 36% of the collection (Jovovicet al., 2017;
Velimirovic et al., 2023). These landraces, once widely cultivated for their resilience to
heat, drought, and disease, hold immense genetic potential for addressing contemporary
agricultural challenges (Xue et al., 2012; Tan et al., 2019; Gessese et al., 2019; Sahu et al.,
2022; Velimirovic et al., 2023). Their anticipated capacities for accommodating current
needs of the mankind to tackle climate challenges stemmed from their heterogeneous
genetic makeup. The local wheat landraces consist of a mixture of diverse homozygous lines
forming a wide genetic base that provides adaptiveness to variable adverse environmental
conditions. The substantial number of local durum wheat accessions preserved in gene
banks is often underexploited due to limited phenotypic evaluation, which hampers their
integration into breeding programs (Pigrnone et al., 2015). Morphological traits defined by
the International Union for the Protection of New Varieties of Plants (UPOV) provide a
robust foundation for the initial characterization of accessions. Their application enables
the identification of distinct phenotypes and deepens the understanding of intraspecific
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diversity, which underpins the effective use of genetic resources. These primary phenotypic
insights support broader breeding efforts aimed at improving traits such as adaptability
and resilience, water productivity, lodging resistance, grain yield and phenology (Foulkes
et al., 2011; Reynolds et al., 2011; Sdnchez et al., 2023).

Although local genetic resources are recognized as valuable reservoirs of desirable genes
for crop improvement, the extent and pattern of genetic variation in tetraploid wheat
landraces from the Western Balkans, maintained in the Montenegrin gene bank, remain
insufficiently studied. The first tetraploid free-threshing wheats (Triticum durum Desf.
and Triticum turgidum L.) most likely arrived in Montenegro via maritime routes from
Greece or southern Italy through multiple introductions, which contributed to increasing
their genetic diversity. Additionally, some new varieties and forms may have arisen locally
through prolonged evolutionary processes. Their cultivation was primarily associated with
the Adriatic climate, occurring in the coastal zone and river valleys up to 600 m above
sea level. Until the early 1970s, these species dominated wheat production in southern
Montenegro, after which tetraploid free-threshing wheats declined rapidly (Jovovicet al.,
2017). Local populations of T. turgidum and related tetraploid wheats are traditionally
known as Rogosija, Velja or Velika, names reflecting their larger plants, ears, grains, and
stronger straw compared to other wheat species (Pavicevic, 1975). Although a conservation
program was initiated in the mid-20th century, resulting in the collection of over 150
diploid and tetraploid wheat populations in Montenegro and Herzegovina between 1955
and 1964, these accessions have yet to undergo detailed characterization, with available
data remaining scarce (Jovovic et al., 2012).

Morphological markers remain an essential tool for assessing genetic diversity in crop
species due to their high heritability and practicality (Al-Ashkar et al., 2020; Haque et al.,
2021).

Standardized protocols established by International Plant Genetic Resources Institute
(IPGRI) and UPOV have facilitated the evaluation of phenotypic traits in wheat diversity
studies (Rabieyan et al., 2023; Fiore et al., 2022). Besides morphological characteristics,
certain phenological and agronomic traits (such as days to heading and plant height) are
also used as descriptors. These traits exhibit broad-sense heritability values greater than
0.80, implying strong genetic control and limited environmental influence (Gharib et al.,
2021).

The objective of this study is to investigate whether the Montenegrin gene bank
collection of durum wheat landraces contains significant phenotypic diversity that remains
undercharacterized and to evaluate whether this diversity can be effectively assessed using
standardized morphological and agronomic descriptors. Accordingly, this research aims
to assess the extent of the phenotypic diversity and analyze the efficiency of available
descriptors—defined as their capacity to discriminate among landrace phenotypes—for
the classification of Western Balkan durum wheat landraces. Additionally, it seeks to
provide insights into adaptive traits exhibiting broad variability relevant for conservation
and breeding.
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MATERIALS & METHODS

Plant material and field experiment

The study included 80 durum wheat accessions collected from traditional farming systems
across the Western Balkan, representing a spectrum of local agro-ecological zones.

The geographic coordinates, altitudes, and Koppen—Geiger climate classifications of
the collection sites were determined using 1-km resolution climate classification maps
(Beck et al., 2018). Detailed information on each collection site is provided in Table S1.
These accessions are part of the national gene bank collection and are listed with their
corresponding phenotype codes in the same table. The field experiment was carried out
in the 2020-2021 season at the Research Unit in Banjaluka (Bosnia and Herzegovina).
The experimental site is characterized by alluvial soils formed on river sediments, with

a loamy texture and balanced proportions of sand, silt, and clay, supporting good water
retention and aeration capacity (Tvica ¢» Tunguz, 2023). The growing season was marked
by moderate temperatures and variable precipitation, with average monthly temperatures
ranging from 1.5 °C in January to 22.3 °C in July, and total rainfall highest in December
and July (Table S2). Standard agronomic practices for wheat cultivation were followed,
including soil preparation and the application of NPK fertilizer (8:24:24) at 300 kg ha=!.
Considering the heterogeneous genetic background of the local durum landraces and to
capture diversity within the population, each of 80 landraces was represented with 60
ears. Seeds of each accession were sown by hand at a depth of five cm in a plot consisting
of twenty 1 m-long rows. Each of 20 rows was sown using the seeds from a single ear
of the landrace. Rows were spaced 0.2 m apart, with 1 m between plots to minimize
inter-plot interference and avoid unwanted pollen movements, thus ensuring seed purity.
During the growing season, three individuals from each row were randomly selected for
measuring to account for genetic variability totaling 60 samples per each landrace. Due
to the exploratory nature of this study and the limited availability of seeds, no replicated
block design or standard checks were included. This approach aligns with standard
gene bank operations during seed renewal processes. Preliminary characterization using
morphological descriptors is recommended, particularly for traits with high heritability,
to be conducted alongside seed regeneration (FAO, 2014). Although analyses based on a
single season and environment may limit the robustness of statistical inferences, there are
scientific studies that have successfully employed UPOV descriptors, morphological and
phenological data to characterize wheat during a single growing season (Eticha et al., 2005;
Zarkti et al., 2012; Chauhan et al., 2020).

Morphological characterization

Morphological traits were assessed following the guidelines for distinctness, uniformity
and stability (DUS) established by UPOV. Nineteen morphological descriptors were used,
encompassing traits related to the coleoptile, flag leaf, ear, and glumes, among others
(Table S3). Data were scored by harvesting a random sample of three representative plants
from all 20 rows in the plot (60 plants in total), which represents a landrace. To further
refine the characterization, phenotypic traits were grouped based on their relevance to
specific plant organs (e.g., ear, flag leaf, plant habit) in accordance with UPOV standards
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Figure 1 Geographic location of the 80 collection sites of durum accessions collected in the West-
ern Balkan Peninsula (geographically proximate sites may overlap). © OpenStreetMap contributors
(ODbL).

Full-size G DOI: 10.7717/peer;j.20068/fig-1

(Table S4). Data were summarized and analyzed collectively to better assess diversity

patterns within and among accessions.

Data analysis

Phenotypes with all identical scores across all traits (duplicates) were removed prior to the
analyses. Phenotypes with at least one trait score different from the others are considered
unique. For the grouping of genotypes based on morphological data, agglomerative
hierarchical cluster analysis (AHC) was applied using Ward’s method in XLSTAT
(Addinsoft, Seattle, WA, USA; https:/www.xlstat.com/). The categorical data obtained
from morphological descriptors were used to calculate the normalized Shannon diversity
index (H’) for measuring of morphological diversity (Shannon ¢ Weaver, 1949). Multiple
correspondence analysis (MCA) was used to visualize obtained categorical variables and
explore relations among morphological traits in R version 4.4.1 (R Core Team, 2024),
packages FactoMineR v.2.7 (Lé, Josse & Husson, 2008) and Homals v. 1.0-10 (De Leeuw &
Mair, 2009). The geographic coordinates of all accession collection sites were recorded and
mapped using QGIS 3.34 (Fig. 1) (Durum Wheat Accessions Sampling Sites Location: QGIS
Development Team, 2024). The analyzed landraces originated from 80 distinct collection
sites, with their co-ordinates and corresponding toponyms listed in Table S1.
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Trait frequencies were calculated by dividing the number of accessions exhibiting
a specific category (or grade) of a morphological characteristic—based on UPOV
descriptors—by the total number of accessions analyzed.
For each trait the normalized Shannon-Weaver diversity index (H’) was calculated as

_ T > i1 pilog, (pi)
log, (1)

where p; is the relative frequency of the i-th category, and # is the total number of
categories for the trait. H' ranges between 0 (no diversity, only one category observed)
and 1 (maximum diversity, all categories equally represented). The H' values were also
averaged for specific plant organs grouped according to UPOV guidelines (International
Union for the Protection of New Varieties of Plants, 2012).

RESULTS

Cluster analysis of obtained morphological data

Morphological characterization of 80 durum wheat accessions revealed significant
phenotypic diversity, with 370 distinct morphological types (phenotypes) identified
(Table S1). The number of phenotypes per accession ranged from 1 to 11, with most
accessions exhibiting four to six phenotypes. The morphological differentiation of 370
unique phenotypes reveals the heterogeneous genetic backgrounds of local durum landraces
as an adaptive strategy for specific agro-ecological microenvironments.

Measured morphological traits grouped all phenotypes into three AHC classes of 180,
135 and 57 genotypes, respectively (Fig. 2). All 180 phenotypes from the Cluster 1 (denoted
as blue circles) did not exhibit a geographic clustering pattern, since they were collected
from dispersed locations, across the northern parts of the Dalmatian coast, Herzegovina, the
Montenegrin coast and near Skadar Lake and, one site in the northern mountainous region
of Montenegro. Most of the collection sites from class two (133 out of 135 phenotypes
denoted as yellow circles) and three (54 out of 57 phenotypes denoted as red circles)
distributed around Skadar Lake, and north from the Skadar Lake, in the vicinity of the
capital city Podgorica.

Diversity of morphological traits
The normalized Shannon-Weaver index (H’), used as an indicator of morphological
diversity of 370 phenotypes, ranged between 0 and 0.92 (Fig. 3). All accessions belonged
to the alternative seasonal type without hairiness on external surface of lower glume,
indicating fixed traits (Table 1 and Fig. 3). Low diversity values were measured for lower
glume: hairiness of external surface of the lower glume (H” = 0.03) with only one accession
with thin cross section, while all others had medium thickness. The majority of accessions
were characterized by lax ear density (96%), while only 4% had medium ear density,
resulting in low H’ values (0.23).

The length of awns at the tip relative to the length of ear lacked diversity, since 91% of
the phenotypes had the grade “equal” for this trait (H = 0.30). The normalized diversity
index between 0.60 and 0.70 was determined for ear length, ear glaucosity, and glaucosity
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Figure 2 Agglomerative hierarchical cluster analysis of 370 durum wheat phenotypes. The accessions
included in classes one, two and three according to AHC are presented in blue, yellow and red circles,
respectively.

Full-size B8 DOI: 10.7717/peerj.20068/fig-2

on the lower side of flag leaf blade and curvature of the beak of the lower glume. Values
between 0.70 and 0.80 were measured for plant length and growth habit, anthocyanin
coloration of flag leaf auricles, time of ear emergence, and shape of the shoulder of lower
glume. Finally, an even distribution of all grades and a Shannon-Weaver index above
0.80 were measured for four traits: length of beak and width of shoulder of lower glume,
anthocyanin coloration of coleoptile, distribution of ear awns and frequency of plants with
recurved flag leaves. Among trait groups, flag leaf and lower glume traits recorded the
highest diversity (H = 0.74 and 0.66, respectively), whereas ear and plant traits showed
lower values (H’ = 0.57 and 0.50, respectively).
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Figure 3 The normalized Shannon-Weaver diversity index (H’) calculated for mean value for each of
19 morphological characteristics, and for the mean values for plant, flag leaf, ear, and lower glume trait

groups in durum wheat collection.

Full-size & DOI: 10.7717/peer;j.20068/fig-3

Grouping of phenotypes and discriminative power of morphological

traits

The multiple correspondence analysis (MCA) revealed limited clustering within the

Western Balkan durum wheat collection, with dimensions 1 and 2 explaining only 1.8% of

the total variability (Fig. 4).

Phenotypes were closely grouped, except for one outlier, METD-52/01, a phenotype

from the Rogosija landrace characterized by white ears, dark awns, and very short stature

(group 1, Tables S1 and S3). Excluding this outlier and the descriptor for anthocyanin

coloration of the coleoptile, which had numerous missing values, and plant seasonal

type and hairiness of external surface of lower glumes (100% monomorphic and 99.7%

monomorphic, respectively) improved phenotype dispersion on the biplot, with the first

two dimensions explaining over 14% of the variance (Fig. 5).

Plant length contributed most to the first two dimensions (Fig. 6), with additional

contributions from ear-related traits such as awn distribution, awn length relative to ear

length, and ear glaucosity for the first dimension, and straw pith thickness, glume shoulder
shape and width, and glume beak curvature for the second. Traits most distant from the
biplot origin, such as plant length and ear traits, were the most variable and provided the
highest differentiation among genotypes. Positive relationships, indicated by the alignment
of long vectors, were observed between plant length and ear length, ear density, glume beak
curvature, and recurved flag leaves. Negative relationships were observed between plant
height, on the one hand, and awn length, flag leaf glaucosity, and ear glaucosity, on the
other (Fig. 7).
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Table 1 UPOV characteristics, corresponding categories (grades), and genotype frequency distribution in the durum wheat collection.

UPOV Characteristic/Grade 1 3 5 7 9
CAC—Coleoptile: anthocyanin coloration absent or very weak weak medium strong very strong
Genotypes (%) 15 0 32 53 0

PGH- Plant: growth habit erect semi erect intermidiate semi prostrate prostrate
Genotypes (%) 77 23 0 0 0
PRFL—Frequency of plants with recurved flag leaves absent or very low low medium high very high
Genotypes (%) 34 44 17 5 0
TEE—Time of ear emergence early medium late

Genotypes (%) 49 47 4

FLACA—Flag leaf: anthocyanin coloration of auricles absent or very weak weak (2) medium (3) strong (4) very strong (5)
Genotypes (%) 27 59 12 2 0
FLGLB—Flag leaf: glaucosity of lower side of leaf blade absent or very weak weak medium strong

Genotypes (%) 13 76 11 0

EG—Ear: glaucosity absent or very weak weak medium strong

Genotypes (%) 1 59 40 0

PL—Plant: length very short short medium long

Genotypes (%) 0 20 56 24

EDA—Ear: distribution of awns awneless tip awned (2) half awned (3) fully awned (4)

Genotypes (%) 0 0 72 28

ELA—Ear: length of awns at tip relative to length of ear shorter equal (2) longer (3)

Genotypes (%) 1 91 8

LGSS—Lower glume: shape of shoulder sloping rounded (2) straight (3) elevated (4) elevated with 2nd beak (5)
Genotypes (%) 2 39 31 26 2
LGWS—Lower glume: width of shoulder very narrow narrow medium broad

Genotypes (%) 7 41 35 17

LGLB—Lower glume: length of beak very short short medium long

Genotypes (%) 9 22 38 31

LGCB—Lower glume: curvature of beak absent weak moderate strong

Genotypes (%) 62 29 5 4

LGHES—Lower glume: hairiness of external surface absent present
Genotypes (%) 100 0
SPCS—Straw: pith in cross section thin medium thick

Genotypes (%) 1 99 0

EL—Ear: length (excluding awns) short medium long

Genotypes (%) 0 58 42

ED—Ear: density lax medium dense

Genotypes (%) 96 4 0

PST—Plant: seasonal type winter type alternative type (2) spring type (3)

Genotypes (%) 0 100 0

MCA effectively differentiated accessions by plant length into three distinct groups:

medium (green), long (blue), and short-stemmed (red) wheats (Fig. 8). Similar grouping

patterns, consisting of two partly overlapping groups, were observed for ear glaucosity

(Fig. 9) and awn distribution (Fig. 10). Most of the fully awned wheat accessions grouped
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Figure 4 Multiple correspondence analysis (MCA) of 370 Western Balkan durum wheat genotypes
based on 18 polymorphic morphological descriptors. Dim1, dimension 1; and Dim2, dimension 2.
Full-size & DOIL: 10.7717/peerj.20068/fig-4

with those exhibiting medium ear glaucosity, while the other group included accessions
with shorter awns and a less glaucous appearance of ears. Awn length (Fig. 11) revealed a
distinct smaller group of genotypes with awns longer than the ear (blue), contrasting with
genotypes having equal (green) or shorter (red) awns.

DISCUSSION

The genetic variability within the durum wheat populations reflected in an average

of five phenotypes per landrace (accession) is a well-known evolutionary stress-buffering
mechanism that enables stable yields and tolerance to biotic and abiotic stress factors (Lopes
et al., 2015; Nadeem et al., 2021; Fiore et al., 2019; Adhikari et al., 2022). The geographic
clustering in Clusters 2 and 3 suggests the influence of microenvironmental factors on
morphological differentiation. Such geographic structuring parallels findings from other
studies, such as those in Sicilian durum wheat, where high variability in traits was attributed
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Figure 5 Multiple correspondence analysis (MCA) of 370 Western Balkan durum wheat genotypes
(without the genotype METD-52/01) with 16 polymorphic morphological descriptors. Dim1 = dimen-
sion 1, and Dim2 = dimension 2.
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primarily to genotypic diversity (Fiore et al., 2019). Similarly, Ethiopian landrace studies
emphasize the role of both genetic and environmental factors in shaping diversity and
adaptation (Mengistu, Kiros ¢ Pe, 2015). Minimal diversity observed for traits with one
predominate category, such as alternative seasonal type, absence of hairiness on the lower
glume surface, equal length of awns at tip and the length of ear and lax ear density (with H’
values below 0.30) likely reflects adaptive advantages or historical selection pressures, either
for these specific traits or for other agronomically important characteristics genetically
linked to them. Diversity level is generally considered high when H” > 0.60, intermediate
when 0.40 < H’ < 0.60 or low when 0.10 < H’ < 0.40 (Eticha et al., 2005). The low
Shannon-Weaver diversity index for these traits suggests that they may represent fixed
features within the population, possibly maintained due to their role in conferring stability,
stress tolerance, or compatibility with traditional cultivation practices. Lax ear density, for
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Full-size & DOI: 10.7717/peerj.20068/fig-6

instance, is associated with open flowering, enhancing cross-pollination and seed dispersal,
potentially linked to resilience in heterogeneous environments (Bayles et al., 2009). Equal
awn length—prevalent in 91% of genotypes—has agronomic significance, contributing to
photosynthetic efficiency, grain yield, and drought tolerance (Maydup et al., 2014). The
average H’ value across all traits was 0.62., similarly to that reported for Serbian durum
wheat genotypes (H = 0.616, Takac et al., 2019) and slightly lower than Tunisian wheat
collections (H’ = 0.67, Ouaja, Bahri ¢ Aouini, 2021). This overall value masks important
variation among trait groups: traits related to flag leaves and glumes showed the highest
diversity (H = 0.74 and 0.66, respectively), while ear- and plant-level traits exhibited
more uniform expression (H = 0.57 and 0.50, respectively), possibly reflecting stabilizing
selection or common adaptation strategies within the local agro-ecological context.
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The low proportion of total variability explained indicates that the categorical variables
used in the analysis may not exhibit strong patterns of association, contrasting with other
MCA studies that successfully identified distinct clusters or groups within datasets (Beebe
et al., 2001; Habtie, Dejen ¢» Dessalegn, 2017; Koffi et al., 2021). This may also be due to
the fact that the majority of the analyzed phenotypes belong to the Rogosija lineage
and therefore share a similar origin and characteristics. Although our study relied on
accessions maintained ex situ, it is important to acknowledge the growing consensus
that the long-term conservation and adaptive evolution of landraces are best supported
through in situ cultivation by traditional farmers. Unfortunately, durum wheat cultivation
in Montenegro ceased in the early 1970s, and local landraces have since only been preserved
in the national gene bank, with periodic regeneration efforts to maintain seed viability. The
absence of farmer-maintained populations limited our ability to include in situ samples in
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this analysis. However, we agree that future comparative studies integrating both ex situ and
in situ maintained landraces would provide valuable insights into ongoing evolutionary
dynamics, farmer-led selection, and conservation priorities. Given that no traditional
farmers currently maintain local durum wheat populations, the gene bank remains the
only viable source of this unique genetic material.

Plant height is an important trait closely associated with yield. It is measured from the
ground to the top of the canopy at maturity. However, due to stem arching in the field
or lodging, which may not always be apparent, this measurement can slightly differ from
plant length, which refers to the distance from the base of the stem to the top of the ear
on a straightened plant. While plant height has practical agronomic relevance, plant length
is a more biological term and is preferred by UPOV as a more precise descriptor. These
findings are consistent with previous research in traditional wheat landraces. For instance,
DeLacy, Skovmand ¢ Huerta (2000) reported strong phenotypic associations between
yield components and morphological traits (e.g., spike size, grain weight, maturity) in
Mexican landraces, using pattern analysis of unreplicated trials. These co-expressed
traits may reflect coordinated selection pressures or adaptation patterns in traditional
agroecosystems. Certain morphological traits with their short vectors on the biplot (Fig. 7),
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Figure 9 Multiple correspondence analysis (MCA) of 370 Western Balkan durum wheat genotypes
based on 16 polymorphic morphological descriptors. Grouping of genotypes for ear glaucosity. Diml,
dimension 1; and Dim2, dimension 2.
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such as anthocyanin coloration of flag leaf auricles and time of ear emergence, did not
contribute importantly to the observed clustering and appear to be unlinked or weakly
associated with plant length-related traits, suggesting distinct genetic mechanisms or the
influence of different environmental factors. It appears that shorter plants in this durum
wheat collection tended to have longer awns and a more intense glaucous layer on their
surfaces. Negative correlations imply trade-offs where improvements in one trait may come
at the expense of others (Dwivedi, Reynolds ¢ Ortiz, 2021; Liu et al., 2018). However, these
characteristics may work synergistically, as reduced plant height generally lowers lodging
risk, while enhanced epicuticular leaf wax deposition has been shown to improve water
retention and confer greater drought tolerance in wheat (Shepherd & Wynne Griffiths,
20065 Guo et al., 2016). Multiple correspondence analysis allowed for the analysis of the
pattern of relationships among several categorical dependent variables. Morphological
traits in wheat, such as plant height, ear glaucosity, and awn characteristics, play a key role
in influencing agronomic performance, environmental adaptability, and yield potential.
Plant height has been a major target in wheat breeding programs, particularly during the
Green Revolution, when the incorporation of dwarfing genes such as Rht-B1 and Rht-D1
resulted in semi-dwarf cultivars with reduced lodging susceptibility and improved harvest
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Figure 10 Multiple correspondence analysis (MCA) of 370 Western Balkan durum wheat genotypes
based on 16 polymorphic morphological descriptors. Grouping of genotypes for distribution of awns on
ear. Dim1, dimension 1; and Dim2, dimension 2.
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index by enhancing the allocation of assimilates to reproductive structures (Ukozehasi, Ober
& Griffiths, 2022). Ear glaucosity, resulting from a waxy epicuticular layer, is associated
with improved water-use efficiency and greater tolerance to heat and drought stresses
by minimizing transpirational water loss and increasing reflectance of solar radiation
(Zhang et al., 2019). Awns, which contribute to photosynthetic activity in the wheat
ear, are particularly important under stress conditions, as their presence, length, and
distribution can enhance grain filling and overall yield (Rebetzke, Bonnett ¢ Reynolds,
2016). While morphological traits offer valuable insights into phenotypic variability
and adaptive potential, their effectiveness in providing deeper genetic relationships is
constrained by environment and limited discriminatory capacity. Nonetheless, recent
high-resolution morphological studies on durum wheat landraces confirm the continued
relevance of trait-based diversity analyses for conservation and pre-breeding, particularly
when integrated with genetic data (Marzario et al., 2023). In our study, morphological
assessment represents a component of a broader research framework that complements
the SNP-based study on a subset of the same durum wheat accessions (Velimirovic et al.,
2023) that identified genetic clusters largely corresponding to the morphological groupings
observed in the present analysis. This study builds upon our previous work (Velimirovic
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Figure 11 Multiple correspondence analysis (MCA) of 370 Western Balkan durum wheat genotypes
based on 16 polymorphic morphological descriptors. Grouping of genotypes by trait length of awns at
tip relative to length of ear. Dim1, dimension 1, and Dim2, dimension 2.
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et al., 2023) by expanding both the scope and in-depth morphological characterization.
While the earlier study focused on SNP-based genetic structure and included a limited
set of binary morphological traits for population clustering within the ‘Rogosija’ subset,
the present analysis covers the full Western Balkan durum wheat landrace collection (80
accessions) and identifies 370 distinct phenotypes using 17 detailed UPOV descriptors.
These traits were grouped by plant organs and evaluated using hierarchical clustering,
normalized Shannon-Weaver indices, and multiple correspondence analysis. The broader
sampling and trait resolution enable finer detection of phenotypic variability and adaptive
differentiation, particularly in accessions from Herzegovina, inland Montenegro, and
coastal Croatia. Whereas the previous study focuses on genetic structure, the current work
emphasizes trait-specific diversity patterns, phenotypic correlations, and morphological
features shaped by agro-ecological factors. Together, the two studies offer complementary
insights into the structure and utility of local durum wheat diversity, reinforcing the value of
integrating genotypic and phenotypic data for conservation and pre-breeding strategies. The
concordance between molecular and morphological findings adds value to an integrated
approach for robust characterization of genetic resources and for informed pre-breeding
strategies. The inclusion of key morphological descriptors in breeding programs remains
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vital for the development of durum wheat cultivars with enhanced resilience to stress and
sustainable performance under changing climatic conditions.

CONCLUSIONS

Our study on 80 durum wheat accessions revealed significant genetic diversity and potential
adaptive strategies. The identification of 370 differentiated phenotypes highlights the
extensive variability within the populations. Key observations, such as the absence of
hairiness on the lower glume surface and limited variation in traits like straw pith thickness
and ear density, suggest fixed genetic traits and potential selective breeding history. Our
findings may point to shared developmental pathway and complex trait interactions in
wheat morphology as suggested in previous studies. Understanding these genetic networks
is essential for improving wheat through the integration of landraces in breeding programs.

These findings emphasize the importance of considering both morphological diversity
and geographical origin when evaluating and utilizing durum wheat landraces. This
approach can guide localized breeding programs and conservation strategies aimed at
preserving crop genetic diversity and promoting climate-resilient agriculture. Based on
these insights, we recommend the development of region-specific seed networks and
participatory breeding efforts involving local farmers, which would ensure the sustainable
use of genetically diverse, well-adapted landraces in traditional and low-input agricultural
systems.
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