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ABSTRACT
Thermal stress is a consequence of climate change that threatens food security, causes
plant tissue damage, andharms cropproduction, particularly during the pollination and
fertilization period and in grain-filling stages negatively impacting the number of grains,
grain size, and quality. Genotype-environment interaction (GEN: ENV) complicates the
selection of optimal wheat genotypes due to the complex genetic basis of yield under
varying conditions. Diversified approaches were put forth in response to the pressing
demand for simultaneous enhancements in high-yield performance combined with
stability. This study investigates the selection of ideal wheat genotypes under thermal
stress and complex GEN: ENV using stability analyses and selection indices to assess
genotype performance and stability. Twenty wheat genotypes were evaluated across
optimal conditions (OC) and thermal stress conditions (TSC) over three growing
seasons with six ENVs. Results demonstrated significant GEN: ENV, revealing genetic
variations in thermal tolerance. The additive main effects andmultiplicative interaction
(AMMI2) biplot indicated a combined variance of 99.00%, and eleven genotypes
showed stable grain yield (GY) with six ENVs, three (G05, G09, and G17) were more
stable. The G04, G05, G06, G09, and G18 genotypes were chosen for GY as perfect
(stable and high-performance) genotypes by weighted average of absolute scores biplot
(WAASB) and were also identified as the best genotypes group by WAASB-GY, with
the exception of G18. Ten selection indices showed significant positive associations
under GYoc and GYtsc, so they can be leveraged to detect the genotype’s high yield of
GYtsc indirectly. The heritability, accuracy, and rgen: env values for most indices were
high, indicating a major role of the genotypic effect in their inheritance, with the
exception of the stress-non-stress production index (SNPI) index. Out of the five that
were examined by WAASB, G04, G05, G06, and G09 were the top-ranking genotypes
by the multi-trait genotype ideotype distance index, either before or after removing
variables. This suggests that they could be examined for validation stability measures.
The findings of this study offer valuable insights for ENVs variety selection, facilitating
the identification of improved cultivars and supporting the development of thermal
stress-resilient breeding programs.
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INTRODUCTION
The rate of dietary consumption continues to rise steadily due to an annual birth rate
increase of 1.1% on average—far exceeding many experts’ predictions (Farhad et al.,
2023)—alongside a concurrent agricultural revolution. Despite significant advancements
in the area of agriculture to support global nutritional needs, these advances are increasingly
vulnerable to instability and continuing threats due to negative climate change (Motawei,
Kamara & Rehan, 2025). Heat stress is a consequence of climate change that harms crop
production, particularly during the pollination and fertilization period (transfer of the
pollen across the pollen tube to the ovary which negatively affects the number of grains)
and grain-filling stages (negatively affecting grain size and quality). It poses a threat to
food security and is predicted to have an increasingly severe and negative impact on the
amount of wheat produced over time as global temperatures rise (Al-Ashkar et al., 2020;
Farhad et al., 2023). Due to the strong inverse relation between high seasonal temperatures
and crop yields, a significant portion of global agricultural yield loss is attributed to crop
tissue damage caused by thermal stress (Akter & Islam, 2017; Farhad et al., 2023;Gammans,
Mérel & Ortiz-Bobea, 2017; Suzuki et al., 2012). To accomplish this goal, more research is
needed on increasing crop heat tolerance to meet global food needs. International food
policy must give priority to ensuring global food security by stimulating and encouraging
scholars to initiate research collaboration to produce unique heat stress-tolerant wheat
genotypes (Al-Ashkar et al., 2020; Al-Ashkar et al., 2023b; Arif et al., 2025).

Due to global climate change, the National Oceanic and Atmospheric Administration
(National Oceanic and Atmospheric Administration (NOAA), 2023) notes a trend toward
warmer winters across expanding regions, alongside a consistently heightened greenhouse
effect worldwide. This is undesirable as warmer conditions adversely affect winter crops,
impactingmany yield-contributing traits such as grain numbers, grain size, and grainweight
(Al-Ashkar et al., 2020; Fu et al., 2023; Poudel & Poudel, 2020). Based on the data for field
yield and weather of several regional scales to know the effects of high temperature on wheat
productivity, a 1 ◦C increase in mean air temperature in the growing season was estimated
to reduce wheat yield by 3–21% (Barkley et al., 2014; Fu et al., 2023; Lobell et al., 2005;
Tiwari et al., 2013; You et al., 2009). Globally, wheat yield loss is estimated at 6.0 ± 2.9%
for each 1 ◦C increase (Arif et al., 2025; Asseng et al., 2014; Fu et al., 2023; Zhao et al.,
2017). A plant’s ability to overcome thermal stress depends on appropriate environmental
conditions, agronomic practices, and genetic factors that enhance evaporative cooling
potential (Braun, Atlin & Payne, 2010). A sustainable approach to reducing heat stress
damage involves developing tolerant varieties by examining various genotypes to identify
those with tolerance and then transferring these traits into commercially cultivated varieties
to obtain high-yielding model varieties, combining productivity and thermal tolerance
(Al-Ashkar et al., 2023b; Fu et al., 2023).
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Heat is a polygenic trait that makes it highly vulnerable to the environment, so it
is important to evaluate the genotypes under heat stress (genotype performance varies
from superior to inferior or vice-versa across different seasons) to determine which ones
are ideal for choosing as commercial varieties (genetic stable for sites/site) to become
gratifying for the farmers and/or will be introduced in prospective breeding programs for
continual improvement (Al-Ashkar et al., 2020; Hamidou, Halilou & Vadez, 2012; Qaseem
et al., 2018; Singamsetti et al., 2021), since a quantitative trait like grain yield has very little
heritability (Saba et al., 2001). From this point of view, several heat tolerance indices have
been proposed building on the mathematical relation of genotype yielded capacity under
non-stress and heat stress to measure the level of tolerance and select the heat tolerant
genotypes (Bennani et al., 2017; Lamba et al., 2023). A reliable heat tolerance index must be
able to distinguish genotypes and determine the best ones under non-stress and heat stress
(Bennani et al., 2017; Saba et al., 2001). However, the effectiveness of selection indices
in distinguishing tolerant genotypes depends on the intensity of environmental stress,
which varies across years and regions, thereby affecting the efficacy of selection indices
in identifying tolerant genotypes, so, the genotypes that exhibit exceptional performance
over various stress intensities ought to be chosen (Bennani et al., 2017; Farshadfar et al.,
2012; Lamba et al., 2023). Bennani et al. (2017) indicated that while multiple studies have
highlighted the efficiency of selection indices for tolerance, these studies did not fully
address it due to the indices’ dependence on simple statistics.

The application of multivariate statistical methods has accuracy in the successful
selection of genotypes in breeding programs by combining all studied variables at once. This
integrated method based on highly computationally capable models of multidimensional
data may provide a better understanding of breeding programs, which may help identify
favorable genotypes (Abdolshahi et al., 2015; Al-Ashkar et al., 2019; Al-Ashkar et al., 2022;
Chakraborty et al., 2020; Salami et al., 2025). Therefore, multivariate statistical methods
such as analyses of principal component (PCA) are used to select the most crucial variables
and minimize the number of them, cluster to collect performance convergent genotypes
with each other, discriminant to strengthen the credibility of clustering, additive main-
effects and multiplicative interaction (AMMI) to predict for genotype × environment,
multi-trait genotype-ideotype distance index (MGIDI) to detect ideotype as it focuses on
selecting the genotype depending on multiple traits (with its ability to assess the strengths
and weakness of the selected genotypes), and the weighted average of absolute scores
(WAASB) index to recognize the high-yielding and stable genotypes, could serve as models
for screening tests and for identifying the sources of variation (Al-Ashkar et al., 2022;
Farhad et al., 2022; Olivoto et al., 2019a; Olivoto & Nardino, 2021; Salami et al., 2025).

Since the AMMI analysis was one of the best models used for the selection of preference
genotypes offers a lot of advantages in interpreting genotype-environment interaction
(GEN: ENV), a main limitation was noted when analyzing the structure of the linear
mixed-effect model (LMM), therefore, a novel model, referred as weighted average of
absolute scores (WAASB), was proposed by Olivoto et al. (2019a). WAASB resulted from
the singular value decomposition of BLUP (best linear unbiased prediction) matrix for
GEN: ENV effects generated by an LMM for the description of greater ideal genotypes based
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Table 1 Environment code used and experiments description for production environments.

Environment code Experiments Planting dates Season

ENV1 Optimal conditions (timely sown) 15 November 2018/19
ENV2 Thermal stress conditions (late sown) 20 December 2018/19
ENV3 Optimal conditions (timely sown) 17 November 2019/20
ENV4 Thermal stress conditions (late sown) 25 December 2019/20
ENV5 Optimal conditions (timely sown) 17 November 2020/21
ENV6 Thermal stress conditions (late sown) 25 December 2020/21

on a combination of stability and yield performance (Olivoto et al., 2019a). The WAASB
model combines the characteristic features of the AMMI and BLUP models (as distinct
approaches achieving the same goal of discriminating the GEN: ENV pattern from random
error, despite being statistically different) in a unique one index, allowing the selection of
high-yielding and stable genotypes (Ahakpaz et al., 2021; Al-Ashkar et al., 2023a; Zuffo et
al., 2020). In this perspective, the present study aimed to (i) identify the optimal genotypes
that combine stability and high productivity to confront thermal stress (ii) validate the
proficiency of 18 selection indices used in screening tolerant genotypes via a variety of
statistical approaches (iii) assess the associations among the different indices.

MATERIALS AND METHODS
Experiment description
Experimental material: Twenty wheat genotypes were chosen (DHL12 (G01), DHL02
(G02), DHL25 (G03), DHL07 (G04), DHL26 (G05), Gemmeiza-9 (G06), DHL11 (G07),
KSU106 (G08), Gemmeiza-12 (G09), DHL01 (G10), DHL14 (G11), DHL29 (G12), DHL15
(G13), DHL06 (G14), Misr1 (G15), DHL05 (G16), DHL23 (G17), Sakha-93 (G18),
Pavone-76 (G19) and DHL08 (G20)), the pedigree for these genotypes is listed in Table S1.
Environment description: The experiment was conducted for three seasons from 2018/19
to 2020/21 at the King Saud University Agricultural Research Station (24◦42’N, 44◦46’E,
400 m asl), with a total of six experiments/environments (ENVs), the environments
(optimal conditions (OC) and thermal stress conditions (TSC)) were separated (Table 1).
Each environment for twenty genotypes was three-repeated in a randomized complete
block design. Plot area, texture soil type, seedling rate, fertilizer rates and the timing of
their application, and meteorological conditions (Table S2) as detailed in earlier studies
(Al-Ashkar et al., 2022; Al-Ashkar et al., 2023c).

Measurements
To measure differences between the 20 genotypes used under (OC and TSC), the
grain yield (GY, ton ha−1) trait was valuated after harvest from yield three rows two
m long. The GY data had been used to assess heat tolerance indices according to the
subsequent mathematical formulas presented by Bennani et al. (2017) and Lamba et
al. (2023). TOLstress tolerance =GYoc−GYtsc, STIstress tolerance index = (GYoc×GYtsc)/x2tsc,
STIm modified stress tolerance index = [(6GY2

tsc/6GY
2
tsc)× STI], SSIstress susceptibility index =

[(1− (GYtsc/GYtsc))/(1− (x tsc/xoc))], SSPIstress susceptibility percentage index = [(GYoc−
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GYtsc/2xoc)× 100], YIyield index = [GYtsc/xoc ], YSIyield stability index = [GYtsc/GYoc],
RDIrelative drought index= [(GYtsc/GYoc)/(x tsc/xoc)], MPmean productivity= [(GYoc+GYtsc)/2],
GMPgeometric mean productivity = [

√(GYoc × GYtsc)], HMharmonic mean = 2[(GYoc ×

GYtsc)/(GYoc +GYtsc)], MRPmean relative performance = [(GYtsc/x tsc)+ (GYtsc/xoc)],
PYRpercent yield reduction = [((GYoc −GYtsc)/GYoc)× 100], REIrelative efficiency index =

(GYtsc/x tsc)× (GYoc/xoc), ATIabiotic tolerance index = (GYoc − GYtsc)/(xoc/x tsc)×
√
((GYoc×GYtsc), SNPIstress/non−stress production index=

[
3
√
(GYoc+GYtsc)/(GYoc−GYtsc)

]
×[

3
√
(GYoc×GYtsc×GYtsc)

]
, SWPIstress−weighted performance index =

√
GYoc/GYtsc and

RSCrelative stress change= ((GYoc−GYtsc)/GYoc)×100, where GYoc and GYtsc are the GY of
genotypes, while xoc and x tsc are the overall mean GY under optimal conditions (oc) and
thermal stress conditions (tsc), respectively.

Statistical analyses
The variance components were appreciated by restricted maximum likelihood (REML) as
described by Dempster, Laird & Rubin (1977). To evaluate the significance of the random
effects, a likelihood ratio test (LRT) was performed involving comparing two models (one
that included all random terms and another that excluded one of these terms), utilizing a
chi-square (χ2) test for the comparison. Eight parameters were calculated as described by
Sampaio Filho et al. (2023):

- Heritabilityexpected mean square (h2ems)= (σ 2
gen)/(σ

2
gen+

σ 2
gen:env
b +σ 2

res)

- Heritabilityplot mean (h2pm) = (σ 2
gen)/(σ

2
gen+

σ 2
gen:env
b×env +

σ 2
res

b×env)

- Accuracy =
√
h2pm

- Coefficient of determinationGEN:ENV effects (R2) = (σ 2
gen:env)/(σ

2
gen+σ

2
gen:env+σ

2
res)

- Coefficient of variationgenotypic (CVgen) =
√
σ 2
gen/x× 100

- Coefficient of variationresidual (CVres) =
√
σ 2
res/x× 100

- CV ratio = Cvgen/Cvres
- Correlationgenotype−environment (rgen:env) = (σ 2

gen)/(σ
2
gen+σ

2
gen:env)

where σ 2
gen, σ

2
gen:env and σ

2
res signify the variances of genotypic, genotype × environment,

and residual (error), respectively; b and env signify the blocks number and environments
respectively x is the overall mean.

Data of GY trait from six ENVs underwent a variety of analyses for estimating genetic
stability—AMMI analysis (AMMI-ANOVA and AMMI biplots; AMMI’s model was
employed to assess multiplicative effects and identify stable genotypes), Joint regression
model, stability indexes, and WAAS biplot). Data of selection indices generated by GY
under optimal and thermal stress conditions underwent a variety of analyses for estimating
relationships between the various indices, including genetic (rg) and phenotypic (rp)
correlations, genetic parameters, and MGIDI index. All statistics analyses and biplots were
created by RStudio packages (R version 4.3.3; R Core Team, 2023). The metan R package
was used as per Olivoto, Lúcio & Jarman (2020). Selection indices were computed to the
mathematical formulas by Microsoft Excel 2019.
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Figure 1 Plotting the mean performance for 20 wheat genotypes.
Full-size DOI: 10.7717/peerj.20061/fig-1

RESULTS
The variance in wheat grain yield
This conclusionwas strengthened by the range in the performance of the genotypes assessed,
which varied for optimum conditions from 3.5 (t ha−1) (G01 in E1) to 7.0 (t ha−1) (G04
in E1), (G04, G18 and G19 in E3) and (G04, and G19 in E5). The G01 genotype showed
the minimum performance at one place (E1). In contrast, the G04 genotype showed the
maximum performance at the three ENVs (E1, E3, and E5). In every optimum condition,
genotype G04 performed best (Fig. 1A). Under thermal stress values, they varied from 2.4
(t ha−1) (G15 and G17 in E4) to 6.3 (t ha−1) (G04 in E2). The G15 and G17 genotypes
showed the lowest performance at one place (E4), whereas the G04 genotype showed the
highest performance at one place (E2) (Fig. 1A). The performance of the genotypes in
the three seasons varied from 3.1 (t ha−1) (G17 in S2) to 6.7 (t ha−1) (G04 in S1), and
genotypes G04 or G18 performed best in the three seasons and the average (Fig. 1B). In
the case of treatments, the values ranged from 3.7 (t ha−1) in (G04) to 7.0 (t ha−1) in (G04
and G17) under OC, and ranged from 2.8 (t ha−1) in (G17) to 5.9 (t ha−1) in (G18) under
TSC. In the two cases, genotypes G04 and G18 grossed the most (Fig. 1C).

Joint ANOVA and AMMI model analyses for grain yield
The joint analysis of variance (ANOVA) and AMMI model for the six environments is
shown in Table 2. The joint ANOVA determined that the GEN, ENV, and GEN: ENV were
highly significant (Table 2), given that GEN: ENV significantly impacts GY. IPCA [1] and
IPCA [2] were determined to be significant, and there was an inequality between ENVs for
genotype classifications. The best-predicted AMMI model was with two IPCs, the first two
components were significant and accounted for 84.90% and 14.10% of the GEN: ENV,
respectively, for six ENVs at the 0.001 probability level.
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Table 2 AMMI analysis of variance for grain yield trait among 20 genotypes in six environments.

Source df SS MS F -Value Total variation explained (%) GEN× ENV variation explained (%)

Proportion Accumulated Proportion Accumulated

ENV 5 138.00 27.50 335.000*** 25.81 25.81
REP(ENV) 12 0.99 0.08 1.690ns 0.18 25.99
GEN 19 264.00 13.90 286.000*** 49.52 75.51
GEN:ENV 95 59.90 0.63 13.000*** 11.24 86.75
IPCA[1] 23 50.90 2.21 45.600*** 9.55 96.3 84.90 84.90
IPCA[2] 21 8.46 0.40 8.300*** 1.59 97.89 14.10 99.00
IPCA[3] 19 0.53 0.03 0.580ns 0.10 97.99 0.90 99.90
IPCA[4] 17 0.00 0.00 0.050ns 0.00 97.99 0.10 100.00
IPCA[5] 15 0.00 0.00 0.000ns 0.00 97.99 0.00 100.00
Residuals 228 11.10 0.05 2.01 100.00
Total 454 533.00 1.17

Notes.
df, Degrees of freedom; SS, Sum of squares; MS, mean squares.

***Significant at 0.001.
nsnot significant.

Joint regression model of stability analysis
The joint regressionmodel (Eberhart & Russell, 1966) detected highly significant differences
by a pooled ANOVA for all model effects (Table 3). The mean GY ranged between 3.30
(G17) to 6.31 (G18), with an average of 4.72 t ha−1. The stability analysis parameter (bi)
noted no genotype had bi= 1 and S2di= 0. The genotypes G05 and G09 had bi values close
to 1 indicating that they are more stable under every six ENVs (Table 3). Genotypes G04
(µ= 6.20, bi= 1.51***, S2di= 0.042***), G06 (µ= 4.74, bi= 1.420***, S2di= 0.011), G12
(µ= 4.59, bi = 1.240***, S2di = −0.008), G13 (µ= 4.24, bi = 1.610***, S2di = −0.014),
G15 (µ= 5.07, bi = 2.650***, S2di = 0.053***) and G19 (µ= 6.04, bi = 1.750***, S2di
= 0.020) were observed to be stable in optimal (ENV1, ENV3 and ENV5) conditions
(Table 3), whereas for genotypes G08 (µ= 5.20, bi = 0.393**, S2di = 0.031*), G10 (µ=
5.25, bi = 0.161**, S2di = 0.017), and G18 (µ= 6.31, bi = 0.735**, S2di = 0.019), high
means with bi values less than 1 indicate that these genotypes show more resilience to
unfavorable environments as thermal stress (ENV2, ENV4 and ENV6) were observed. The
root mean square error (RMSE) is used to evaluate the prediction quality, which ranged
between 0.021 (G17) and 0.327 (G14), while R2 values ranged between 0.265 (G20) and
0.999 (G13 and G17).

Stability indexes of evaluated genotypes
The Annicchiarico method measures genotypic stability, which received the top rank for
genotypes G19, G04, G18, and G15 of analysis favorable environment, genotypes G18, G04,
G10, and G19 of analysis unfavorable environment, and genotypes G18, G04, G19, and
G09 of general analysis (Table 4). Shukla’s rank-summethod integrates mean performance
and stability into a unified selection criterion, which revealed that the top four ranks
were for genotypes (G17, G12, G02, and G16), which matched in ranking with Wricke’s
(1962) ecovalence. The AMMI-based stability parameter (ASTAB) computes by significant
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Table 3 Pooled analysis of variance of 20 wheat genotypes across six environmental for GY (Eberhart
& Russell, 1966model).

S.O.V Df MS F value Pr (>F)

GEN 19 13.900 104.511 0.000
ENV+ (GEN× ENV) 100 1.980 14.887 0.000
ENV (linear) 1 138.000 1037.594 0.000
GEN x ENV (linear) 19 2.590 19.474 0.000
Pooled deviation 80 0.133 2.742 0.000
Pooled error 228 0.049

Stability parameters
GEN GY bi s2 di RMSE R2

G01 3.36 0.653*** 0.002 0.109 0.932
G02 4.54 1.170* 0.016 0.147 0.961
G03 4.06 0.577*** 0.052*** 0.212 0.739
G04 6.20 1.510*** 0.042*** 0.198 0.957
G05 5.20 1.050ns 0.053*** 0.214 0.902
G06 4.74 1.420*** 0.011 0.135 0.977
G07 4.24 0.256*** −0.004 0.091 0.753
G08 5.20 0.393*** 0.031* 0.177 0.652
G09 5.39 1.010ns 0.061*** 0.227 0.884
G10 5.25 0.161*** 0.017 0.148 0.312
G11 3.87 0.490*** 0.030* 0.175 0.750
G12 4.59 1.240*** −0.008 0.072 0.991
G13 4.24 1.610*** −0.014 0.038 0.999
G14 3.72 1.110ns 0.144*** 0.327 0.815
G15 5.07 2.650*** 0.053*** 0.214 0.983
G16 4.17 1.110ns 0.032* 0.180 0.936
G17 3.30 0.937ns −0.016 0.021 0.999
G18 6.31 0.735*** 0.019 0.153 0.898
G19 6.04 1.750*** 0.020 0.156 0.980
G20 4.89 0.157*** 0.023* 0.162 0.265

Notes.
*Significant at 0.05.

***Significant at 0.001.
nsnot significant.

interaction principal components (IPCs) in the AMMI model, which revealed that the
top four ranks were genotypes G17, G12, G01, and G02. AMMI Stability Index (ASI),
AMMI-stability value (ASV), modified AMMI Stability Index (MASI), modified AMMI
Stability value (MASV), and weighted average of absolute scores (WAAS) were matched
in ranking genotypes, which received the top four genotypes G17, G05, G09, and G16.
Annicchiarico’s D parameter values (DA) and stability measure based on fitted AMMI
model (FA) were matched in ranking genotypes, which received the top four genotypes
G17, G12, G02, and G16. Zhang’s D parameter (DZ) and sums of the averages of the
squared eigenvector values (EV) were matched in ranking genotypes, which received the
top four genotypes G17, G12, G01, and G18. Sums of the absolute value of the IPC Scores
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Figure 2 AMMI1, AMMI2 and nominal biplot for the GY trait of 20 wheat genotypes evaluated in six
environments.

Full-size DOI: 10.7717/peerj.20061/fig-2

(SIPC), which received the top four genotypes G17, G12, G02, and G05.WAASY (the index
that considers the weights for stability and productivity in the genotype ranking) received
the top four genotypes G18, G09, G04, and G05 (Table 4).

Analyses biplots
AMMI biplot
TheAMMIbiplots (GGEbiplots) were used to visually the yield potential (GY) of the twenty
genotypes in six environments by describing the relationship between the genotypes and six
environments vs. IPC1 (Fig. 2). The AMMI1 biplot indicated that the one ENV4 (E4) was
beyond their sources and had a longer vector, pointing to a higher interaction, while the five
other ENVs had a shorter vector and were closer to their source point to a lower interaction.
The non-stressful environments (E1, E3, and E5) had an angle between the vectors mostly
less than 90◦, pointing to positive correlations, and the heat-stress environments (E2, E4,
and E6) gave themselves similar results. This suggests that when applied under comparable
conditions, the genotype–environment interactions (GEI) effects are often given within the
same range. The AMMI2 biplot indicated that IPCA1 and IPCA2 described a combined
variance of 99.00%. Figure 2 shows the GEI volume with the ENV type by the vertical
projection from the GEN to the ENV vector. Accordingly, the genotypes might be viewed
(G03, G05, G06, G08, G09, G10, G14, G15, and G20) as unstable in environments used.
Using the AMMI biplot (generic genotypic adaptation) map (nominal plot) for genotypes.
The adaptation map showed that G05, G09, and G17 were more suited, and exhibited
identical performance in all environments. Although they vary from environment to
environment, G15 performed best in E1, unlike G10 and G20 performance of the least in
E1. The G02, G11, and G16 exhibited reduced GEI.

Ghazy et al. (2025), PeerJ, DOI 10.7717/peerj.20061 9/27

https://peerj.com
https://doi.org/10.7717/peerj.20061/fig-2
http://dx.doi.org/10.7717/peerj.20061


Table 4 Stability indexes of 20 wheat genotypes across six environmental for GY.

Annichiarico environment index

Favorable Unfavorable General Shukla ecovalence ASTAB ASI ASV

GEN value rank value rank value rank value rank value rank value rank value rank value rank

G01 70.50 20 72.10 17 71.30 19 0.065 8 1.040 8 0.098 3 0.230 9 1.630 9

G02 98.20 12 93.40 10 95.80 11 0.033 3 0.596 3 0.101 4 0.102 5 0.725 5

G03 83.70 16 89.50 13 86.60 15 0.139 11 2.040 11 0.281 14 0.255 11 1.810 11

G04 132.00 2 130.00 2 131.00 2 0.173 13 2.490 13 0.190 10 0.355 13 2.520 13

G05 110.00 6 111.00 7 110.00 5 0.051 5 0.845 5 0.165 7 0.058 2 0.408 2

G06 104.00 7 94.70 12 99.60 9 0.101 9 1.520 9 0.178 8 0.252 10 1.790 10

G07 83.20 15 98.80 9 91.00 14 0.281 16 3.950 16 0.320 15 0.479 16 3.400 16

G08 103.00 8 120.00 6 111.00 6 0.218 15 3.100 15 0.277 13 0.409 15 2.900 15

G09 113.00 5 116.00 5 114.00 4 0.057 7 0.926 7 0.182 9 0.063 3 0.448 3

G10 102.00 10 124.00 3 113.00 7 0.376 18 5.230 18 0.496 19 0.521 18 3.700 18

G11 79.00 18 86.20 15 82.60 17 0.162 12 2.340 12 0.275 12 0.311 12 2.200 12

G12 100.00 9 93.60 11 96.80 10 0.025 2 0.491 2 0.056 2 0.145 7 1.030 7

G13 97.20 11 79.80 16 88.50 16 0.179 14 2.580 14 0.211 11 0.385 14 2.730 14

G14 82.80 17 73.50 18 78.10 18 0.137 10 2.010 10 0.375 17 0.134 6 0.950 6

G15 124.00 4 85.10 19 105.00 12 1.430 20 19.500 20 1.580 20 1.060 20 7.510 20

G16 91.20 14 84.80 14 88.00 13 0.038 4 0.670 4 0.115 6 0.100 4 0.711 4

G17 72.60 19 66.60 20 69.60 20 −0.009 1 0.035 1 0.004 1 0.037 1 0.259 1

G18 127.00 3 143.00 1 135.00 1 0.055 6 0.905 6 0.110 5 0.186 8 1.320 8

G19 132.00 1 122.00 4 127.00 3 0.310 17 4.350 17 0.345 16 0.498 17 3.530 17

G20 94.70 13 116.00 8 105.00 8 0.385 19 5.360 19 0.437 18 0.554 19 3.930 19

GEN DA DZ EV FA MASI MASV SIPC WAAS WAASY

value rank value rank value rank value rank value rank value rank value rank value rank value rank

G01 0.585 8 0.181 3 0.016 3 0.343 8 0.230 9 1.630 9 0.429 6 0.254 9 40.90 19

G02 0.445 3 0.236 7 0.028 7 0.198 3 0.102 5 0.725 5 0.407 3 0.137 5 66.10 6

G03 0.824 11 0.371 17 0.069 17 0.679 11 0.255 11 1.810 11 0.734 16 0.313 11 49.70 15

G04 0.863 12 0.227 5 0.026 5 0.745 12 0.355 13 2.520 13 0.542 10 0.376 13 82.30 3

G05 0.527 5 0.314 13 0.049 13 0.278 5 0.058 2 0.408 2 0.413 4 0.063 2 80.60 4

G06 0.712 9 0.275 9 0.038 9 0.507 9 0.252 10 1.790 10 0.596 11 0.294 10 61.80 9

G07 1.150 16 0.280 10 0.039 10 1.320 16 0.479 16 3.400 16 0.601 12 0.489 16 44.20 17

G08 1.010 15 0.289 11 0.042 11 1.030 15 0.409 15 2.900 15 0.694 14 0.443 15 62.40 8

G09 0.555 7 0.329 14 0.054 14 0.308 7 0.063 3 0.448 3 0.449 7 0.080 3 82.80 2

G10 1.320 18 0.404 18 0.082 18 1.740 18 0.521 18 3.700 18 0.960 19 0.574 18 57.10 11

G11 0.883 13 0.344 16 0.059 16 0.779 13 0.311 12 2.200 12 0.742 17 0.363 12 44.10 18

G12 0.403 2 0.152 2 0.012 2 0.163 2 0.145 7 1.030 7 0.333 2 0.168 6 65.50 7

G13 0.926 14 0.231 6 0.027 6 0.857 14 0.385 14 2.730 14 0.528 9 0.400 14 48.60 16

G14 0.816 10 0.467 19 0.109 19 0.666 10 0.134 6 0.950 6 0.722 15 0.190 7 49.80 14

G15 2.540 20 0.627 20 0.196 20 6.460 20 1.060 20 7.510 20 1.410 20 1.090 20 29.40 20

G16 0.470 4 0.254 8 0.032 8 0.221 4 0.100 4 0.711 4 0.428 5 0.136 4 60.00 10

G17 0.104 1 0.041 1 0.001 1 0.011 1 0.037 1 0.259 1 0.087 1 0.043 1 50.00 13

G18 0.546 6 0.223 4 0.025 4 0.298 6 0.186 8 1.320 8 0.468 8 0.220 8 91.60 1

G19 1.190 17 0.289 12 0.042 12 1.420 17 0.498 17 3.530 17 0.606 13 0.506 17 73.50 5

G20 1.330 19 0.332 15 0.055 15 1.770 19 0.554 19 3.930 19 0.759 18 0.575 19 51.00 12
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Figure 3 WAAS analysis (WAAS biplot, WAAS and heatmap) for 20 wheat genotypes across six envi-
ronments.

Full-size DOI: 10.7717/peerj.20061/fig-3

WAAS biplot
To gain a more thorough and improved yield characterization (genotypes/environment),
theWAASB analyses were utilized in selecting genotypes based on performance and stability
(Fig. 3). Sector-I contains unstable genotypes with significant contributions to GEI and
high distinction capacity, Sector-II contains unstable but highly productive genotypes
where environments significantly influence GEI, Sector-III contains genotypes adopted on
a larger scale with lower performance than average, indicating stable genotype performance
across environments due to reducedWAASB values and Sector-IV contains genotypes with
high performance and stability. For this, the G04, G05, G06, G09, and G18 genotypes were
chosen for GY as perfect genotypes (Fig. 3). The genotype ranking (WAASBY) based on the
weights of the stability (WAASB) and mean performance (Y) considering weights of 50 and
50 for GY, for the mean performance trait andWAASB (Fig. 3). Building on the number of
IPCAs used in theWAASB assessment, the heatmap was used to show the genotype ranking
of stable individuals (Fig. 3). The genotype’s relative ranking is demonstrated by the color
(intensity or hue), where higher ranks are represented by darker hues and lower rankings by
lighter hues. Three IPCAs for traits were particularly noticeable, and the genotype ranking
was modified by the IPCAs utilized in the WAASB assessment. Using genotype colors, it
is easy to identify the groups with the same performance levels and stability (Fig. 3). The
genotypes G01, G02, G03, G04, G05, G06, and G09 showed the lowest WAASB values (so
were more stable), genotypes gathered in the same cluster (based on one or more IPCAs).

Heat tolerance indices in GY trait
Genetic (rg) and phenotypic (rp) correlations between GY and tolerance
indices
The G10, G20, and G07 genotypes were less lost under heat stress, while the G15, G13,
and G14 genotypes were greater (Table S3). The (rp) and (rg) values between GYoc and
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GYtsc conditions, and with heat-tolerant indices for three seasons were computed to
identify which approach would be best suited. The (rp) and (rg) values were positively
significant between GYoc and GYtsc, indicating that they can be used to recognize the
best-performance genotypes (Table 5). Stress susceptibility index (SSI), RDI, percent yield
reduction (PYR), and relative stress change (RSC) had a significant negative correlation
with GYtsc but a positive correlation with GYoc; so, these indices can be beneficial in
selection for improving yields in non-stressed settings, but they may not be ideal for under
more stressful environments with both (rp) and (rg) correlations. The stress tolerance
index (STI), STIm, yield index (YI), mean productivity (MP), geometric mean productivity
(GMP), harmonic mean (HM), mean relative performance (MRP), relative heat index
(RHI), stress-weighted performance index (SWPI), and stress-non-stress production index
(SNPI) indices showed significant positive associations (p≤ 0.01) with Yp and Ys both (rp)
and (rg) correlations, except for the SNPI index with rg, so they can be leveraged in detect
genotypes that high-yield with Yp and Ys (Table 5). Some indices indicated a complete
positive correlation (r = 1.00) for both (rp) and (rg), which is evidence of the collinearity
of these indices, such as GYtsc with YI, TOL with stress susceptibility percentage index
(SSPI), STI with STIm and REI, STIm with REI, SSI with PYR and RSC, MP and MRP, and
PYR with RSC (Table 5).

Variance components of indices traits
The LRT exhibited highly significant (p< 0.001) for all indices for both GEN and GEN:
ENV, except for the SNPI index (Table 6). The variance components exhibited great
variation between indices, the genotypic variance exhibited the highest value for the MP
index and the lowest value for the SNPI index. The GEN: ENV exhibited the highest value
for the RDI index and the lowest value for the SNPI index, and the residual exhibited the
highest value for the SNPI index and the lowest value for the YI index. h2ems showed mixed
heritability values, in which most indices were more than 0.60, except for the RDI index
(0.53), and the SNPI index is very low (0.18). The h2mg exhibited more value compared
to h2ems for all indices. The accuracy exhibited a high value for all indices (>81.00%). The
coefficient of variation (CVs) (g/r) ratio was greater than 1, except for the SNPI index. The
rgen:env showed high values for all indices, which shows that the genotypic effect plays a
major role in their inheritance, except for GYoc and SNPI indices.

Factor identifying and selection of heat-tolerant genotypes
Principal component analysis (PCA) stated that the first two components (eigenvalue >1)
illustrated 94.30% (before removing) and 87.80% (after removing) collinear variables of
the cumulative variation among the 20 and 7 studied variables, respectively (Table 7).
Before removing, FA illustrated that ten variables GYoc, GYtsc, STI, STIm, YI, MP, GMP,
HM, MRP, and REI were settling in FA1; and the remaining ten variables stress tolerance
(TOL), SSPI, SSI, yield stability index (YSI), RDI, PYR, SWP, RSC, ATI and SNPI were
settling in FA2. After removing variables, FA illustrated that four variables YSI, PYR, RSC,
and SNPI were settling in FA1, and three variables STI, STIm and GMP were settling in
FA2. The MGIDI index was used to identify the ideotype heat-tolerant after and before
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Table 5 Phenotypic (upper diagonal) and genotypic (below diagonal) correlations for GY and eighteen tolerance indices (n= 180).

GYoc GYtsc TOL STI STIm SSPI SSI YI YSI RDI MP GMP HM MRP REI PYR SWP RDC ATI SNPI

GYoc 1.000 0.759 0.490 0.920 0.920 0.490 0.167 0.757 −0.170 0.234 0.945 0.629 0.897 0.936 0.919 0.170 0.456 0.170 0.716 0.216

GYtsc 0.757 1.000 −0.195 0.944 0.944 −0.196 −0.509 1.000 0.507 −0.445 0.930 0.619 0.968 0.940 0.945 −0.507 0.924 −0.507 0.094 0.706

TOL 0.497 −0.191 1.000 0.122 0.122 1.000 0.932 −0.198 −0.933 0.947 0.179 0.119 0.056 0.152 0.121 0.933 −0.550 0.933 0.952 −0.619

STI 0.920 0.943 0.129 1.000 1.000 0.122 −0.207 0.943 0.204 −0.151 0.993 0.648 0.994 0.994 1.000 −0.204 0.748 −0.204 0.403 0.482

STIm 0.920 0.943 0.129 1.000 1.000 0.122 −0.207 0.943 0.204 −0.151 0.993 0.648 0.994 0.994 1.000 −0.204 0.748 −0.204 0.403 0.482

SSPI 0.497 −0.191 1.000 0.128 0.128 1.000 0.933 −0.198 −0.934 0.947 0.179 0.118 0.055 0.152 0.120 0.934 −0.550 0.934 0.952 −0.619

SSI 0.174 −0.505 0.932 −0.201 −0.201 0.932 1.000 −0.511 −1.000 0.968 −0.161 −0.145 −0.278 −0.188 −0.209 1.000 −0.799 1.000 0.789 −0.789

YI 0.755 1.000 −0.193 0.943 0.943 −0.193 −0.507 1.000 0.509 −0.447 0.929 0.618 0.967 0.939 0.944 −0.509 0.925 −0.509 0.091 0.707

YSI −0.177 0.502 −0.933 0.197 0.197 −0.933 −1.000 0.504 1.000 −0.968 0.158 0.142 0.275 0.185 0.206 −1.000 0.797 −1.000 −0.791 0.790

RDI 0.242 −0.439 0.947 −0.143 −0.143 0.947 0.967 −0.441 −0.967 1.000 −0.091 −0.115 −0.218 −0.118 −0.152 0.968 −0.738 0.968 0.810 −0.654

MP 0.945 0.929 0.186 0.993 0.993 0.186 −0.154 0.928 0.151 −0.082 1.000 0.665 0.992 1.000 0.993 −0.158 0.721 −0.158 0.451 0.476

GMP 0.630 0.619 0.126 0.649 0.649 0.125 −0.138 0.618 0.135 −0.107 0.667 1.000 0.663 0.665 0.648 −0.142 0.495 −0.142 0.340 0.365

HM 0.896 0.967 0.062 0.993 0.993 0.062 −0.271 0.967 0.268 −0.210 0.991 0.664 1.000 0.995 0.994 −0.275 0.798 −0.275 0.340 0.542

MRP 0.936 0.939 0.159 0.994 0.994 0.159 −0.181 0.938 0.177 −0.109 1.000 0.666 0.994 1.000 0.994 −0.185 0.739 −0.185 0.427 0.495

REI 0.919 0.944 0.127 1.000 1.000 0.127 −0.202 0.943 0.199 −0.144 0.993 0.649 0.994 0.994 1.000 −0.206 0.749 −0.206 0.401 0.483

PYR 0.177 −0.502 0.933 −0.197 −0.197 0.933 1.000 −0.504 −1.000 0.967 −0.151 −0.135 −0.268 −0.177 −0.199 1.000 −0.797 1.000 0.791 −0.790

SWP 0.451 0.923 −0.548 0.745 0.745 −0.548 −0.798 0.924 0.796 −0.736 0.717 0.492 0.795 0.736 0.746 −0.796 1.000 −0.797 −0.286 0.851

RDC 0.177 −0.502 0.933 −0.197 −0.197 0.933 1.000 −0.504 −1.000 0.967 −0.151 −0.135 −0.268 −0.177 −0.199 1.000 −0.796 1.000 0.791 −0.790

ATI 0.719 0.096 0.953 0.406 0.406 0.953 0.789 0.093 −0.791 0.812 0.455 0.344 0.343 0.431 0.404 0.791 −0.287 0.791 1.000 −0.466

SNPI 0.177 0.579 −0.502 0.396 0.396 −0.502 −0.643 0.580 0.644 −0.532 0.390 0.305 0.444 0.406 0.396 −0.644 0.697 −0.644 −0.378 1.000

Notes.
Values in bold are significant at 0.05, underlined values are insignificant, and the remaining values are significant at 0.01.
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Table 6 Deviance analysis, estimated variance components and genetic parameters for GY and eighteen tolerance indices of 20 wheat genotypes.

Genetic parameters GYoc GYtsc TOL STI STIm SSPI SSIm YI YSI RDI

x2 80.212 54.661 26.275 70.136 70.136 26.390 28.067 54.692 27.488 16.713
GEN

p-value 3.36×10−19 1.43×10−13 2.96×10−7 5.54×10−17 5.54×10−17 2.79×10−7 1.17×10−7 1.41×10−13 1.58×10−7 4.35×10−5

x2 15.368 189.257 68.862 81.831 81.831 68.462 79.844 191.044 82.041 132.613
GEN:ENV

p-value 8.85×10−5 4.62×10−43 1.06×10−16 1.48×10−19 1.48×10−19 1.29×10−16 4.05×10−19 1.88×10−43 1.33×10−19 1.10×10−30

GEN 0.964 0.731 0.377 0.096 15326.83 15326.83 25086.99 0.036 0.010 0.05

GEN:ENV 0.046 0.119 0.158 0.009 1412.55 1412.55 10470.11 0.006 0.004 0.037

Residual 0.085 0.013 0.075 0.003 542.98 542.98 4966.57 0.001 0.002 0.007

Phenotypic variance 1.09 0.863 0.609 0.108 17282.36 40523.67 0.864 0.043 0.015 0.094

h2ems 0.881 0.848 0.618 0.887 0.887 0.619 0.644 0.848 0.639 0.528

R2
gen:env 0.042 0.138 0.26 0.082 0.082 0.258 0.255 0.138 0.261 0.394

h2pm 0.975 0.947 0.861 0.967 0.967 0.861 0.87 0.947 0.867 0.79

Accuracy 0.987 0.973 0.928 0.983 0.983 0.928 0.933 0.973 0.931 0.889

rgen:env 0.354 0.904 0.68 0.722 0.722 0.678 0.716 0.906 0.723 0.835

CVgen 18.6 20.606 53.856 36.567 36.567 53.853 46.927 20.625 12.388 14.739

CVres 5.49 2.704 23.957 6.883 6.883 23.961 18.591 2.681 4.898 5.657

CV ratio 3.38 7.621 2.248 5.313 5.313 2.247 2.524 7.693 2.529 2.606

Genetic parameters MP GMP HM MRP REI PYR SWP RDC ATI SNPI

x2 83.424 57.655 64.996 81.818 70.539 27.488 38.274 27.488 28.794 9.205
GEN

p-value 6.62×10−20 3.12×10−14 7.50×10−16 1.49×10−19 4.51×10−17 1.58×10−7 6.15×10−10 1.58×10−7 8.05×10−8 24×10−2

x2 47.787 84.701 108.290 56.016 81.965 82.041 161.146 82.041 54.712 0.000
GEN:ENV

p-value 4.75×10−12 3.47×10−20 2.32×10−25 0.781 1.39×10−19 1.33×10−19 6.36×10−37 1.33×10−19 1.40×10−13 1.00

GEN 0.783 0.483 0.783 0.129 0.126 96.03 0.068 96.03 0.0181 60.966

GEN:ENV 0.043 0.059 0.082 0.008 0.011 39.183 0.019 39.183 0.0065 0

Residual 0.030 0.022 0.022 0.005 0.004 15.015 0.003 15.015 0.004 273.278

Phenotypic variance 0.826 0.51 0.836 0.142 0.142 150.227 0.09 150.227 0.029 334.244

h2ems 0.912 0.843 0.876 0.911 0.888 0.639 0.755 0.639 0.633 0.182

R2
gen:env 0.052 0.115 0.098 0.056 0.081 0.261 0.214 0.261 0.229 0

h2pm 0.977 0.952 0.961 0.976 0.967 0.867 0.91 0.867 0.873 0.668

Accuracy 0.988 0.975 0.98 0.988 0.983 0.931 0.954 0.931 0.935 0.817

rgen:env 0.59 0.731 0.79 0.629 0.723 0.723 0.875 0.723 0.623 0

CVgen 18.389 14.148 18.561 18.451 36.565 46.898 14.454 46.898 58.575 61.628

CVres 3.663 3.169 3.201 3.518 6.835 18.544 2.909 18.544 27.404 130.478

CV ratio 5.02 4.465 5.799 5.244 5.35 2.529 4.969 2.529 2.137 0.472
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Figure 4 Genotype ranking for the MGIDI and strengths and weaknesses view of the selected
genotypes.

Full-size DOI: 10.7717/peerj.20061/fig-4

removing collinear. The selection gains (MGIDI index) before removing revealed that
13 out of 20 variables were desired gains, and four out of seven after removing collinear
variables. The results illustrated that MGIDI showed higher total gains of 345.96 and 106.54
for variables that increased and −5.78 and −1.757 for variables that decreased before and
after removing variables, respectively (Table 8). The abiotic tolerance index (ATI), REI,
and SSPI illustrated the highest genetic gains (43.90%, 33.00%, and 26.10%, respectively)
before removing variables, but after removing variables were STIm (40.100) and GMP
(19.50). The MGIDI index of the original population (Xo) before and after removing
variables varied from 0.229 and 0.846 (the lowest one), for the ATI and STI to 339.00 (the
highest one) for the STIm, respectively (Table 8). The genotypes selected using the MGIDI
were G04, G05, G06, and G19 before removing variables and they were G04, G05, G09,
and G19 after removing variables (Fig. 4). The G05 was very close to the cutting point
before and after removing variables. The strengths and weaknesses illustrated that before
removing variables, FA1 had the highest contribution for G04, G06 and G19. FA2 had the
highest contribution for G05 (Fig. 4). But after removing variables, FA2 had the highest
contribution for the four genotypes, while FA1 didn’t have any contributions.

DISCUSSION
Thermal stress is one of the biggest environmental stresses negatively impacting wheat
yields across wheat-growing countries. Breeding programs focus on enhancing the genetics
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Table 7 PCA and FA with factorial loadings obtained using varimax rotation and communalities resulted.

All traits before removing colinear variables Selected traits after removing colinear variables

PCA PCA

PCA PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

Eigenvalues 10.90 7.94 0.55 0.493 3.92 2.19 0.46 0.43
Variance (%) 54.60 39.70 2.76 2.47 56.00 31.30 6.50 6.17
Cumul (%)* 54.60 94.30 97.10 99.6 56.00 87.30 93.80 100.00

FA FA
Variable FA1 FA2 Comm# Uniqu$ FA1 FA2 Comm# Uniqu$

GYoc 0.938 −0.343 0.996 0.004
GYtsc 0.933 0.352 0.995 0.005
TOL 0.169 −0.982 0.994 0.006
STI 0.993 0.034 0.988 0.012 0.133 −0.958 0.935 0.065
STIm 0.993 0.034 0.988 0.012 −0.133 0.958 0.935 0.065
SSPI −0.169 0.982 0.994 0.006
SSI 0.172 0.981 0.992 0.008
YI −0.932 −0.355 0.995 0.005
YSI −0.168 −0.982 0.992 0.008 −0.989 0.061 0.981 0.019
RDI 0.103 0.970 0.951 0.049
MP −0.998 0.018 0.996 0.004
GMP −0.706 −0.003 0.498 0.502 −0.074 0.810 0.662 0.338
HM −0.992 −0.104 0.995 0.005
MRP −0.998 −0.010 0.996 0.004
REI −0.993 −0.035 0.988 0.012
PYR 0.168 0.982 0.992 0.008 0.989 −0.061 0.981 0.019
SWP −0.727 −0.684 0.996 0.004
RDC 0.168 0.982 0.992 0.008 0.989 −0.061 0.981 0.019
ATI −0.443 0.889 0.987 0.013
SNPI −0.409 −0.612 0.542 0.458 −0.713 0.360 0.638 0.362

Notes.
Values in bold refer to critical variable on FA.

#Communality.
$Uniquenesses.
*Cumulative variance (%).

of increased tolerance to heat stress for better yields, they are essential to maintaining
food security and sustainability in the face of shifting environmental conditions and global
problems because they constantly innovate and modify breeding tactics. Their efforts
result in developing new and enhanced genotypes that fulfill the demands of an expanding
population and strengthen the agricultural system (Lamba et al., 2023; Motawei, Kamara
& Rehan, 2025). This study uses twenty wheat genotypes to evaluate their GY under two
conditions (optimum and thermal stress) for three seasons and found that thermal stress
influenced GY negatively (Fig. 1). The wheat genotype’s performance variances under
optimum conditions were higher compared to the thermal stress and the cause may be the
accumulation of low biomass (due to the negative impact of growth traits like spike length,
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Table 8 Predicted genetic gains for the indexes MGIDI for all variables and selected variables before and after removing colinear variables.

All variables before removing colinear variables Selected variables after removing colinear variables

Var Xo Xs SD SDperc SG MGIDI sense FA Var Xo Xs SD SDperc SG MGIDI sense

FA1 GYoc 5.29 6.32 1.03 19.4 0.986 18.60 decrease FA1 YSI 0.791 0.782 −0.009 −1.200 −0.007 −0.905 increase

FA1 GYtsc 4.15 4.74 0.592 14.3 0.538 13.00 decrease FA1 PYR 20.90 21.800 0.947 4.530 0.716 3.420 increase

FA1 STI 0.846 1.14 0.291 34.3 0.278 32.90 decrease FA1 RDC 20.90 21.800 0.947 4.530 0.716 3.420 increase

FA1 STIm 339 455 116 34.3 111 32.90 decrease FA1 SNPI 12.70 12.400 −0.270 −2.130 −0.108 −0.852 increase

FA1 YI 0.923 1.05 0.132 14.3 0.121 13.10 increase FA2 STI 0.846 1.200 0.355 41.900 0.340 40.100 decrease

FA1 MP 4.72 5.54 0.817 17.3 0.789 16.70 increase FA2 STIm 339.0 480.00 142.00 41.900 136.00 40.100 increase

FA1 GMP 4.64 5.51 0.871 18.8 0.814 17.60 increase FA2 GMP 4.640 5.600 0.967 20.900 0.904 19.500 increase

FA1 HM 4.61 5.39 0.775 16.8 0.733 15.90 increase

FA1 MRP 1.95 2.28 0.333 17.1 0.323 16.60 increase

FA1 REI 0.971 1.30 0.333 34.3 0.32 33.00 increase

FA1 SWP 1.80 1.89 0.085 4.72 0.071 3.92 increase

FA2 TOL 1.14 1.53 0.389 34.1 0.297 26.00 decrease

FA2 SSPI 294 394 100 34.1 76.7 26.10 increase

FA2 SSI 1.59 1.82 0.231 14.6 0.178 11.20 increase

FA2 YSI 0.791 0.76 −0.031 −3.91 −0.023 −2.95 increase

FA2 RDI 1.51 1.56 0.045 3.00 0.032 2.14 increase

FA2 PYR 20.9 24 3.09 14.8 2.33 11.20 increase

FA2 RDC 20.9 24 3.09 14.8 2.33 11.20 increase

FA2 ATI 0.229 0.356 0.127 55.4 0.101 43.90 increase

FA2 SNPI 12.7 11.8 −0.895 −7.07 −0.358 −2.83 increase

Total (increase) 80.53 345.96 106.540

Total (decrease) −1.28 −5.78 −1.757
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grains/spike, and thousand-kernel weight) in tandem with high-temperature in a month
before the end of the growing season (Arif et al., 2025; Farhad et al., 2023; Fu et al., 2023).

The joint ANOVA and AMMI model analyses indicated variable genotype performance
with thermal stress indicating the presence of genetic variations in the genotypes used for
heat tolerance (Table 2). The GEN: ENV interaction was significant, adversely affecting
selection efficiency due to varying genotype rankings (Al-Ashkar et al., 2022; Erdemcı,
2018; Sampaio Filho et al., 2023). To mitigate bias and increase confidence in selection
gains, multi-environment trials (METs) should be utilized. METs provide valuable
insights for breeders aiming to enhance resilience in wheat production. This study’s
the challenge of choosing wheat genotypes that successfully strike a compromise between
stability and excellent performance. It employs innovative statistics to analyze genetic
parameters, enabling the identification of genotypes that are resilient to the negative
effects of thermal stress (Al-Ashkar, 2024; Al-Ashkar et al., 2022; Olivoto & Nardino, 2021;
Pour-Aboughadareh et al., 2021; Pour-Aboughadareh et al., 2019). The pooled ANOVA as
per Eberhart and Russell (Eberhart & Russell, 1966), demonstrated significant distinctions
for all model effects, indicating that the genotype performance varied by ENV. Many
scholars found the same outcome (Al-Ashkar et al., 2022; Al-Ashkar et al., 2023a; Pour-
Aboughadareh et al., 2021). In this study, the two genotypes G05 and G09 had bi values
close to 1 indicating that they are more stable under every six ENVs (Table 3). Genotypes
G04, G06, G12, G13, G15 and G19 were observed to be stable in optimum conditions
(ENV1, ENV3 and ENV5) environments, and genotypes G08, G10, and G18 were more
resilience to thermal stress (ENV2, ENV4 and ENV6) environments (Al-Ashkar et al.,
2023b; Eberhart & Russell, 1966; Gupta et al., 2022; Suresh & Munjal, 2020). As to stability
indices, differing ranking were expressed, but some are compatible with each other
(Table 4).

The Annicchiarico method pointed out that there was consensus acceptable in ranking
between the favorable and unfavorable environment in tandem with general analysis,
this was consensus acceptable with results Eberhart and Russell in Table 3. Our findings
indicate ASI, ASV, MASI, MASV, andWAAS were matched in ranking genotypes, DA with
FA, and DZ with EV were matched. Biplots-AMMI has the featured of taking all IPCA
axes, enabling GEN: ENV not retained in the first IPCA axis for inclusion in the ranking
of genotypes (Al-Ashkar, 2024; Olivoto et al., 2019a). In this study, AMMI revealed that the
sum of squares for the environment was divided into the first two significant components
of 99.00% (Table 2). The AMMI1 biplot illustrated the GEN: ENV, which makes it clear
that when it is far from its origin and has a longer vector, it exhibits higher interaction,
as seen in the ENV4 (Ahmed et al., 2024; Al-Ashkar, 2024; Ebdon & Gauch, 2002; Mebratu
et al., 2019; Popovic et al., 2020; Singamsetti et al., 2021). Conversely, the ENVs that are
close to their origin and have shorter vectors, such as ENV2, indicate less interaction.
The angles among the vectors of optimal conditions (ENV1, ENV3, and ENV5) were
less than 90◦, demonstrating a positive correlation between them. Similarly, the angles
between the vectors of thermal stress conditions (ENV2, ENV4, and ENV6) also show a
positive correlation. It means that GEN: ENV effects tend to be independent and within the
same range when applied under similar circumstances (Fig. 2). The GGE biplot polygon
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has been used to establish his identity of the most desirable genotypes that exhibit high
discriminativeness and representativeness, and are located in the upper right quarter in
the polygon (G04, G14, G15, G16, and G19). A vertical projection from the GEN to the
ENV vector shows the GEN: ENV volume with the ENVs (Al-Ashkar, 2024; Al-Ashkar et
al., 2022; Habib et al., 2024; Singamsetti et al., 2021). Thus, the genotypes that might be
viewed (G03, G05, G06, G08, G09, G10, G14, G15, and G20) are deemed unstable with
the six ENVs used (Fig. 2). The adaption map showed that G05, G09, and G17 were better
suited and exhibited similar performance in the ENVs (Al-Ashkar et al., 2023b;Habib et al.,
2024;Olivoto et al., 2019a). Although their performance varies from ENV to other, the G15
performed best. TheWAASB employs a unique method for selecting genotypes that exhibit
both high performance and stability by considering all IPCAs. This approach successfully
illustrates the GEN: ENV for its combination of AMMI and BLUP models (Ahmed et al.,
2024; Al-Ashkar et al., 2023b;Olivoto et al., 2019a;Olivoto et al., 2019b; Pour-Aboughadareh
et al., 2021). Depending on theWAAS andGY values, aWAAS biplot determined genotypes
of best performance and stability, which are located in the bottom right quartile (Sector
IV) as shown in Fig. 3. This method takes all IPCAs into account and reduces redundancy,
making it a promising approach for discovering high-performing and stable genotypes in
future research, and will facilitate the process of recommending ideotype cultivars (Ahmed
et al., 2024; Al-Ashkar, 2024; Olivoto et al., 2019b). The heatmap demonstrated genotypes
ranking by color (intensity or hue), where higher ranks are represented by darker hues
and lower ranks by lighter hues (Ahmed et al., 2024; Al-Ashkar, 2024). The genotypes G01,
G02, G03, G04, G05, G06, and G09 showed the lowest WAASB values (so they were more
stable and performed well), and were grouped in the same cluster (based on one or more
IPCAs). This is crucial in breeding programs, as breeders may be given a greater priority to
high performance than stability or vice versa, therefore, Fig. 3 can assist breeders in making
informed decisions about selecting genotypes that exhibit similar mean performance and
stability (Olivoto et al., 2019a). In addition to its prospective breeding importance, as a
genetic source in constant development programs aimed at creating high-performance,
thermal stress-tolerant new varieties.

The AMMI-ANOVA results indicated significant differences in GEN: ENV and genotype
performance varied under optimal and thermal stress conditions, demonstrating that each
genotype reacted differently in the two conditions for GY. For this reason, plant breeders
employ various methods to select high-yielding genotypes in thermal stress conditions,
known as the stress-tolerance index (STI) or ‘‘selection indices’’. These indices are widely
used in research to identify genotypes capable of assuming thermal stress (Kumar et al.,
2021; Kumar et al., 2023; Lamba et al., 2023; Poudel, Poudel & Puri, 2021). Higher values
in TOL, RDI, SSI, ATI, and SSPI hint at more sensitive genotypes, but the lower values
tolerant genotypes. These indices are maligned in that they cannot differentiate between
the genotype’s high yield (Al-Ashkar, 2024; Lamba et al., 2023). The G10, G20, and G07
genotypes were less lost under thermal stress, and the distinctions between their values
under (optimal and thermal stress) conditions were minimal, while the G15, G13, and
G14 genotypes were more lost (Table S3). Many scientists, Shabani et al. (2018), Kamrani,
Hoseini & Ebadollahi (2017), Lamba et al. (2023) and Al-Ashkar (2024) reported STI, MP,
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and GMP indices are the most appropriate to choose the more tolerant genotypes andmore
productive through higher values of indices such as G04, G10, G18 and G19 genotypes. So,
we carried out genetic (rg) and phenotypic (rp) correlation analyses between GY (under
optimal condition (OC) and thermal stress condition (TSC)) and tolerance indices to
achieve the most appropriate indices for thermal stress tolerance. GYoc and GYtsc both had
a positive correlation, which facilitate the identification of high-performance genotypes
based on GYoc and GYtsc, allowing indirect selection for GYtsc through GYoc. The TOL,
SSPI, RDI, PYR, SSI, and RDC showed a negative with GYtsc but and a positive correlation
with GYoc,; thus, selection according to these indices will improve productivity with
optimal conditions but lower it with thermal stress conditions (vice versa) (Table 5). Ten
out of eighteen indices showed a positive and significant correlation with both GYoc and
GYtsc, which could be used to detect highly productive genotypes in both GYoc and GYtsc

(Al-Ashkar, 2024; Basavaraj et al., 2021; Kumar et al., 2023; Lamba et al., 2023).
This study highlighted the importance of selection indices characterized by strong

genetic stability using cutting-edge statistical techniques to better understand genetic
factors and identify indices that are least influenced by the environment. The σ 2

gen value
(more than 52.81% from σ 2

phenotypic total) exceeded the σ 2
res value (less than 13.85% from

σ 2
phenotypic total) for selection indices (increasing heritability), indicating the right conditions

to choose genotype during the various phases of the breeding program, except SNPI index,
which very low for σ 2

gen and very high for σ 2
res (reducing heritability) (Table 6). The rgen:env

showed high values for all indices, except for SNPI index. The high value indicates that
the genotypic effect is predominant, while the interaction effect is simple; consequently,
low values are undesirable for genotype selection (Al-Ashkar, 2024; Al-Ashkar et al., 2023c;
Olivoto et al., 2019b). The h2ems showed mixed heritability values and most indices were
more than 0.60, which reflects a significant increase in genetic diversity (the accuracy degree
of more than 0.81), except for the SNPI index. This high degree of accuracy suggests a
strong ability to predict genetic worth (Al-Ashkar et al., 2023b; Sampaio Filho et al., 2023).
The CV (g/r) ratio was greater than 1, indicating that genetic variation (CVg) exceeded
residual variation (CVr) (Al-Ashkar, 2024; Olivoto et al., 2019a).

The MGIDI is one new statistical technique that assists in detecting a better genotype
of a broad range of variables at a time (Azam et al., 2020; Khyathi et al., 2025; Olivoto &
Nardino, 2021). The genotype selection process based on one variable is not preferred
by plant breeders because could mislead interpretations of the results (Al-Ashkar, 2024;
Olivoto et al., 2019b). Therefore, the MGIDI is beneficial in the genotype selection process
based on a broad range of variables since it offers a selection process clear and intelligible
(Table 7). The distance is computed for genotype-ideotype using a factor analysis (Olivoto
& Nardino, 2021). Based on the variables under evaluation, the selection gains (MGIDI
index to identify the ideotype heat-tolerant) before removing revealed that 13 out of
20 variables were desired gains, and four out of seven after removing collinear variables
(Table 8). The most desirable or stable genotypes are believed to be G04, G05, G06, and
G19 before removing variables and G04, G05, G09, and G19 after removing variables since
the genotypes with lower MGIDI index values have better stability. In both situations,
the G05 was present. A distinct and easy-to-understand selection process unique with
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numerous practical applications to obtaining long-term genetic gain is the MGIDI index
(Al-Ashkar, 2024; Habib et al., 2024; Olivoto & Nardino, 2021; Salami et al., 2025; Sampaio
Filho et al., 2023). The proportion interpreted by every factor is another benefit of the
MGIDI index ‘‘strengths and weaknesses view’’, a crucial graphical tool for determining
the strengths and weaknesses of test hybrids in terms of ‘‘trait (group of traits) need
to be improved’’ in subsequent hybridization programs to produce new recombination
known as the ideotype (Fig. 4). For instance, future research could explore crossbreeding
genotype G05 with G04, G06, or G19 to develop a novel recombinant ideotype combining
all desired selection indices. The implementation of the MGIDI index makes it easier to
provide recommendations for improved crop cultivars and allows for more informed
strategic decision-making in stability evaluation studies by facilitating the minimization
of redundant calculations (Al-Ashkar et al., 2023b; Habib et al., 2024; Khyathi et al., 2025;
Olivoto & Nardino, 2021).

CONCLUSIONS
This study demonstrates that integrating stability analysis (AMMI, WAASB) with multi-
trait selection (MGIDI) provides an effective framework for identifying climate-resilient
wheat genotypes. The approach successfully distinguished genotypes combining yield
stability (G05, G09, G17) and high performance (G04, G05, G06, G09) under both optimal
and thermal stress conditions. Notably, the strong concordance between statistical models
and selection indices validates their combined use for stress-resilience breeding. This study
establishes a reproducible selection protocol that prioritizes both agronomic performance
and environmental stability—critical criteria for developing climate-ready wheat varieties.
By bridging the gap between phenotypic stability and breeding objectives, this strategy
offers a scalable solution for genotype selection in increasingly variable environments.
Future efforts should focus on validating these genotypes across broader agro-ecological
zones while incorporating genomic tools to accelerate selection.
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