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ABSTRACT
Background. Considering the complexity of prognostic assessment in breast cancer
(BRCA) and the potential role of guanylate-binding protein (GBP) genes in immune
regulation, the present research was designed to construct a prognostic model using
GBP-related genes and to explore the mechanism of their role in BRCA.
Methods. Using RNA sequencing data of BRCA frompublic databases, GBP gene scores
of BRCA samples were computed by single-sample GSEA (ssGSEA). The gene modules
associated with the scores were identified by weighted gene co-expression network
analysis (WCGNA). Subsequently, differentially expressed genes (DEGs) between
BRCA samples and paraneoplastic samples were screened by the ‘‘limma’’ package and
intersected with the modular genes. Key prognostic genes were further compressed by
least absolute shrinkage and selection operator (LASSO), univariate and multivariate
stepwise regression analyses were used to develop a risk model. Next, differences in the
biological characteristics and immune infiltration between different risk groups were
explored. Particularly, CCK-8, wound healing and transwell test were performed to
examine the biological role of DACT2 in BRCA.
Results. Low GBP scores in BRCA patients were significantly linked to a poorer overall
survival. Two gene modules were closely and positively correlated with GBP scores,
and their module genes were enriched in immune-related pathways. Subsequently,
four key genes (PSME2, DACT2, PIGR and STX11) were screened to construct a
risk model, which showed strong diagnostic performance. Notably, the infiltration of
immune cells (e.g., CD4/CD8 T cells, mast cells, and macrophages) was higher in low-
risk BRCA patients. In addition, the RiskScore was significantly negatively correlated
with ESTIMATE scores. In vitro cellular experiments demonstrated that PSME2 was
significantly upregulated in BRCA cell lines, while DACT2, PIGR, and STX11 were
all markedly downregulated in BRCA cells. In particular, overexpression of DACT2
markedly suppressed the survival, migration, and invasion of AU565 and MDA-MB-
231 cells.
Conclusion. This study constructed a prognostic model for BRCA based on GBP-
related genes. The model was closely related to the immune microenvironment,
contributing to the prognostic assessment and individualized treatment guidance in
the management of BRCA.
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INTRODUCTION
Breast cancer (BRCA) accounts for more than 24% of new cancer cases worldwide and
approximately 15% of tumor-related death cases (Haikal et al., 2024; Xavier et al., 2023).
The standard treatment for BRCA is neoadjuvant chemotherapy, and radiotherapy is
also a crucial part of its comprehensive treatment. Prospective randomized trials, meta-
analyses, and observational data showed that postoperative radiotherapy can lower the
recurrence and mortality rates of BRCA patients (Whelan et al., 2015; Poortmans et al.,
2015; Naeimzadeh et al., 2023). However, the majority of BRCA patients remain incurable
due to the self-renewal and differentiation of BRCA stem cells, which contribute to the
recurrence, metastasis, and resistance to treatment of cancer (Morel et al., 2008; Creighton
et al., 2009). The complexity of therapeutic responses and tumor heterogeneity further
complicates accurate prognosis prediction for BRCA. Currently, prognostic evaluation for
patients suffering from BRCA primarily relies on clinical and pathologic assessments based
on TNM staging and molecular subtypes. To further reduce the mortality of BRCA, an
accurate evaluation of patients’ prognosis is required (Duffy et al., 2020).

Guanylate-binding proteins (GBPs) are a subfamily of interferon-γ (IFN-γ)-inducible
GTPases that hydrolyze guanosine triphosphate to guanosine monophosphate and
guanosine diphosphate (Ghosh et al., 2006). Humans contain seven well-characterized
GBP proteins (GBP1-7) with molecular weights between 67 and 73 kDa (Tretina et al.,
2019). GBPs, including GBP1 andGBP2, play crucial roles in innate immunity, host defense
against pathogens, and antibacterial/antiviral properties during host anti-inflammatory and
anti-infective defenses (Vestal & Jeyaratnam, 2011; Honkala, Tailor & Malhotra, 2019). A
study highlighted the significance of immune microenvironment in tumor biology (Zhang
et al., 2020). Key tumor-infiltrating immune cells, such as neutrophils, dendritic cells, T
and B lymphocytes, and macrophages, directly or indirectly modulate tumor progression
and influence clinical outcomes in various malignancies (Domingues et al., 2016; Zhang
& Zhang, 2020). At present, GBPs are found to be implicated in the regulation host
immune defense, cancer growth and metastasis (Mustafa et al., 2018; Yu et al., 2020). For
instance, GBP2 exhibits anti-tumor effects on colorectal cancer and represents a potential
immunotherapeutic target (Yu et al., 2011). As one of the IFN-γ-inducible genes, GBPs
significantly upregulate the expression of IFN-γ in many cells, including T cells, NK cells,
B cells (Hunt, Kopacz & Vestal, 2022). Simultaneously, these cells can infiltrate the tumor
to be activated by IFN-γ. Lymph node-negative BRCA patients with a favorable prognosis
have high levels of GBP1, 2, and 5 (Hunt, Kopacz & Vestal, 2022). Although it has been
observed that GBPs play an important immunomodulatory role in a variety of tumors and
is closely related to patients’ prognosis, there is still a paucity of systematic studies probing
into the expression patterns and functional mechanisms of GBPs in BRCA.
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This study was the first to comprehensively assess the prognostic value of GBP family
genes in BRCA and to construct a risk prediction model associated with GBPs. Based on
the public databases, the expression characteristics of GBP family genes in BRCA and their
relationship with prognosis were evaluated. Co-expression network was developed using
WGCNA, and key genes related GBP scores were selected by differential analysis. The
prognostic model was finally constructed by Cox and LASSO regression, and the immune
infiltration characteristics and functional enrichment pathways of the key genes were
further analyzed. Finally, the functional roles of the screened key genes were verified by
cellular experiments. Overall, this study provides a new molecular basis for the prognostic
assessment and immunotherapy treatment of BRCA.

METHODS
Data collection
We obtained BRCA clinical data and RNA-Seq data in FPKM from The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/). This was achieved by removing
samples without survival time or status, ensuring that the survival time of each patient
was longer than 30 days but shorter than 10 years. Ultimately, 994 BRCA samples and 114
paraneoplastic control samples were included. Here, we focused on protein-coding genes
due to their well-defined biological functions, stronger interpretability and comprehensive
annotation information. Additionally, GSE20685 data was obtained from Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database. In total, 327 BRCA samples
were analyzed after the probes were converted to symbol using the annotation file while
samples without overall survival (OS) data or clinical follow-up were eliminated. GSE20685
dataset and TCGA-BRCA dataset served as independent validation set and training set,
respectively. Furthermore, seven GBPs were collected from previous research literature for
further investigation (Ning et al., 2023).

Differences in the mutation features of GBPs in BRCA samples
Based on the TCGA dataset, variations in the expressions of GBP genes between BRCA and
paraneoplastic samples were analyzed. Next, ssGSEA (Hanzelmann, Castelo & Guinney,
2013) method in the R package ‘‘GSVA’’ was employed to calculate the GBP score for each
sample in the TCGA_BRCA cohort, with the candidate GBPs as the background gene set.
The BRCA samples were assigned into low- and high-GBP scores by the median value.
The GBP gene mutations for each sample in the TCGA cohort were analyzed as genomic
mutations are strongly linked to the progression of disease (Zahn & Travis, 2015). MuTect
2 software (Beroukhim et al., 2010) was utilized to process the mutation dataset of BRCA
samples and paraneoplastic samples downloaded from the TCGA database and to map
gene mutations in the low- and high-GBP subgroups.

Construction of weighted gene co-expression network
Gene modules closely linked to the GBP score were classified by WGCNA. To more
effectively detect strong correlations between modules, the pickSoftThreshold function of
‘‘WGCNA’’ was employed to decide the optimal soft threshold power (β= 7) (Langfelder &
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Horvath, 2008). Under the threshold of minModuleSize = 60, hierarchical cluster analysis
was performed to identify gene modules. According to the first principal components
(PCs) of module expression, the ‘‘Heatmap’’ package (Saunders, Liang & Li, 2007), several
module-trait genes were selected. Then, the correlation between module-trait genes and
clinical trait for diagnosis was analyzed to evaluate the association between the modules
and GBP scores. For modules showing the strongest module-trait relationships, the genes
contained in the modules were tested for further analysis.

Enrichment analysis
Subsequently, the ‘‘limma’’ package was employed to screen DEGs between tumor samples
and paraneoplastic normal samples in the TCGA_BRCA cohort under |log2 (Fold Change)|
> log2(2) with an adjusted p < 0.05 as the screening criteria. Then, genes (p < 0.05) in the
intersection between the selectedmodular genes andDEGswere subjected toGeneOntology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses using
the R package ‘‘clusterProfiler’’ (Yu et al., 2012; Xia et al., 2024). Top functions enriched
in biological process (BP) term in GO analysis and the top enriched KEGG pathways were
visualized into bar graphs.

Risk modeling and validation
The intersecting genes were subjected to univariate Cox proportional risk regression in
the R package ‘‘survival’’ (Therneau & Lumley, 2015) to select genes closely (p < 0.05)
linked to the prognostic outcomes of BRCA patients in the TCGA_BRCA cohort (Zhang
et al., 2025). The final genes for developing an effective risk model were refined applying
10-fold cross-validation and LASSO Cox regression analysis with the ‘‘glmnet’’ package
(Friedman, Hastie & Tibshirani, 2010). The RiskScoremodel was developed byMultivariate
stepwise regression analysis to screen important genes that showed a correlation coefficient
independently linked to the prognosis of BRCA in the TCGA_BRCA dataset. The formula
of the risk model was: RiskScore = 6βi × Expi, where βi represents the multivariate
regression Cox analysis coefficient of each gene, and Expi represents the expression of each
gene. Following zscore normalization, the optimal threshold value of Riskscore was used
to divide the patients in the TCGA_BRCA dataset into low- and high-risk groups. The R
package ‘‘survminer’’ (Ozhan, Tombaz & Konu, 2021) was then used to conduct survival
analysis between high- and low-risk groups, and Kaplan–Meier (KM) survival curves were
plotted for prognostic analysis. Furthermore, the diagnostic accuracy of the Riskscore in
the TCGA-BRCA training set was assessed according to receiver operating characteristic
analysis (ROC) using the R package ‘‘timeROC’’ (Blanche, 2015) and area under ROC
curve (AUC) of 1-, 3- and 5-year. Next, the performance of the Riskscore was similarly
validated in GSE20685.

Functional characterization and immune infiltration analysis of BRCA
patients in different risk groups
The DEGs between the two risk groups were filtered by the ‘‘limma’’ package under
the filtering criterion |log2 (Fold Change)| > log2(2) and an adjusted p< 0.05. The
DEGs were then subjected to functional annotation through GO and KEGG pathway
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enrichment analyses using the DAVID online tool (https://davidbioinformatics.nih.gov/).
Briefly, the DEGs were loaded into DAVID and the organism was selected as ‘‘Homo
sapiens’’ to conduct GO (in three terms) and KEGG functional enrichment analysis. The
gene-correlated pathways were examined by KEGG enrichment analysis. Only entries with
p< 0.05 were selected.

The ssGSEA function of the R package ‘‘GSVA’’ was employed to calculate the scores
of 28 types of immune cells (Charoentong et al., 2017) for the two risk subgroups, so as
to analyze the correlation between Riskscore and immune function in different BRCA
patients. The immune infiltration for the TCGA-BRCA dataset samples was assessed
by calculating StromalScore, ImmuneScoreh and ESTIMATEScore with the R package
‘‘estimate’’ (Yoshihara et al., 2013). Then, we collected 29 gene signatures that represent
the primary functional components of the tumor and immune, stromal, and other cell
populations (Bagaev et al., 2021). The correlations between gene signatures and Riskscore
were analyzed using ssGSEA (Liu & Huang, 2023).

Cell culture and plasmid transfection
From the American Type Culture Collection (ATCC, Manassas, VA, USA), we ordered
human BRCA cells (MDA-MB-231 and AU565) and human normal mammary epithelial
cells (MCF-10A). DMEMmedium (11965092, Gibco,Waltham,MA, USA) and RPMI 1640
(11875093, Gibco, USA) medium were used to culture MDA-MB-231 cells and AU565
cells, respectively. All the cultures were added with 1% penicillin streptomycin (15140122,
Gibco, USA) and 10% heat-inactivated fetal bovine serum (FBS, 10099141, Gibco, USA).
Cells were cultured at 37 ◦C and 5% CO2 in an incubator.

Following the instructions, DACT2 overexpression plasmid (oe-DACT2) or control
plasmid (oe-NC) purchased from GenePharma (Shanghai, China) was transfected into
MDA-MB-231 and AU565 cells in logarithmic growth phase (2 × 104 cells/well) using
Lipo3000 Liposome Transfection Reagent (L3000-001, Thermo Fisher Scientific, Waltham,
MA, USA). After transfection for 48 h, the cells were collected for further study.

RNA extraction and quantitative real-time PCR
Total RNA was separated from MDA-MB-231, MCF-10A, and AU565 cells using the RNA
Extraction Kit (TRIzol, Invitrogen, Waltham, MA, USA), following the protocols. The
purity and concentration of the total RNA was quantified, and the cDNA templates were
generated using the HiScript II kit (R233-01, Vazyme, Nanjing, China). The qRT-PCR
was conducted utilizing specific primers and the KAPA SYBR® FAST kit (Sigma Aldrich,
St Louis, MO, USA). Data were processed using the 2−11CT method, with GAPDH as
an internal control (Zhang et al., 2023). See Table 1 for the primer sequences used in the
study.

Cell viability
Following the instructions, CCK-8 assay (Dojindo, Rockville, MD, USA) was applied to
assess the effect of DACT2 on the viability of MDA-MB-231 and AU565 cells. Briefly, the
cells were cultured for 0 (7,000 cells/well), 24 (5,000 cells/well), 48 (3,000 cells/well) and
72 (2,000 cells/well) h in 96-well microtiter plates. After washing the cells with PBS twice,
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Table 1 Primer sequences applied in this study.

Gene name Forward primer Revers primer

PSME2 5′CCTGGTTAAGCCAGAAGTCTGG 3′ 5′CATTCACCCTCTCCAGCACCTT 3′

DACT2 5′CTACACCAGGAGCGACTCAGAG 3′ 5′ACTCACGGTCTCCGAATCGGTT 3′

PIGR 5′TACTGGTGTGGAGTGAAGCAGG 3′ 5′AGCACCTTCTCATCAGGAGCAG 3′

STX11 5′GAGATGAAGCAGCGCGACAACT 3′ 5′CCAGCAAGTTCTCGGAAAACACG 3′

GAPDH 5′TTGCCCTCAACGACCACTTT 3′ 5′TCCTCTTGTGCTCTTGCTGG 3′

100 µL of fresh culture media and 10 µL of CCK-8 solution were added into each well
for cell incubation at 37 ◦C with 5% CO2 for 3 h. The absorbance at 450 nm was read by
SPECTROstar® Nano (BMG LABTECHGmbH, Ortenberg, Germany) (Tang et al., 2024).

Cell migration and invasion assays
The impact of DACT2 expression on the migration and invasion capacities of MDA-
MB-231 and AU565 cells was also investigated. Wound healing assay was conducted to
measure the cell migratory ability. Briefly, 6-well plates were added with transfected cells
(5 × 105/mL) and two mL of cell suspension for cell incubation at 37 ◦C with 5% CO2. A
10 µL plastic pipette tip was utilized to scratch a uniform wound on the monolayer once
the cell density reached approximately 80%. Following PBS wash, the monolayers were
cultured in non-FBS medium. The wound edge between the two edges of the migrating
cell sheet were measured and photographs at 0 and 48 h. Each experiment was carried out
in triplicate. The upper transwell chamber coated with 10% Matrigel (Corning, Corning,
NY, USA) contained 1 × 105 cells. After incubating the cells for 24 h, those still in the
upper chamber were removed. After that, the cells in the lower chamber was fixed by
4% paraformaldehyde and colored by 0.1% crystal violet solution. Finally, the invaded or
migrated cells were quantified from six distinct fields of view under a microscope.

Statistical analysis
All the statistical analyses were conducted using R software version 3.6.0 (R Foundation,
Vienna, Austria) and GraphPad Prism 8 (GraphPad Software, San Diego, CA, USA).
Differences between continuous variables in the two groups were calculated by Wilcoxon
rank-sum test. Correlations were computed by Spearman method, and the log-rank test
was applied to compare survival differences between two groups of patients. In cellular
assays, multiple group comparisons were performed using Student’s t -test or two-way
ANOVA. For data that did not conform to normal distribution, non-parametric tests such
as Mann–Whitney U test or the Kruskal–Wallis test were used for statistical analysis. A p
< 0.05 stood for statistically significant difference.

RESULTS
GBP gene expression and mutation in BRCA
In the TCGA cohort, analysis on the expressions of GBPs showed that the levels of
GBP2, GBP4 and GBP6 were lower in BRCA samples than in paraneoplastic samples
(p < 0.0001), while the expressions of GBP3 and GBP5 were notably higher in BRCA
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Figure 1 Expression andmutation analysis of GBP gene in TCGA cohort. (A) Differential analysis of
GBP gene expression between BRCA samples and paraneoplastic samples in TCGA. (B) Relationship be-
tween GBP score and OS in BRCA patients. (C) Mutations of BRCA gene in paraneoplastic tissues. (D)
Mutations of BRCA gene in BRCA tissues. ns indicates p > 0.05; *p < 0.05, **p < 0.01, and ****p <
0.0001.

Full-size DOI: 10.7717/peerj.20058/fig-1
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samples than paraneoplastic samples (p < 0.05, Fig. 1A). The GBP score for each sample
in the TCGA_BRCA dataset was computed by the ssGSEA method, and the patients
were divided by the median value into high and low GBP score groups. Prognostic study
demonstrated that BRCA patients with high GBP scores had longer survival time, whereas
those with low GBP values had a worse OS (p = 0.014, Fig. 1B). Next, analysis on the GBP
gene mutations between BRCA and paraneoplastic samples in TCGA cohort showed that
only GBP4 (2%) and GBP5 (1%) genes were mutant in paraneoplastic tissues (Fig. 1C).
In contrast, BRCA tissues had numerous mutations in GBP3 and GBP5 genes in the same
sample. Additionally, we identified mutations in GBP7 (1%) and GBP3 (1%) genes, along
with the previously mentioned GBP4 (1%) and GBP5 (1%) (Fig. 1D).

WGCNA identified GBP-related gene modules
Gene expression modules linked to GBPs in the TCGA-BRCA cohort were identified by the
R package ‘‘WGCNA’’. The soft threshold power of 7 was selected to develop a topological
network to ensure the scale-free topology of the network (Fig. 2A). Ultimately, we obtained
16 co-expression modules, with 60 genes in each module at least (Fig. 2B). Notably, the
number of genes in the magenta, grey, and turquoise modules was comparatively high
(Fig. 2C). Genes in the grey module could not be merged into other modules. In order
to select clinically significant modules, we calculated the correlation of each module with
GBP score and plotted a heat map of module-shape correlation. Light cyan and magenta
modules were closely positively connected with the GBP score (cor= 0.73, p= 1.42e−165;
cor = 0.77, p = 3.97e−192, Fig. 2D). Moreover, a strong association between MM and GS
was detected in the lightcyan module (cor= 0.72, p= 3.6e−14) and magenta module (cor
= 0.9, p < 1e−200) (Figs. 2E–2F).

Differential gene analysis and functional characterization
Subsequently, we identified DEGs between BRCA samples and paraneoplastic samples
in the TCGA dataset and finally screened 4,215 DEGs (Fig. 3A). Subsequently, we found
393 present in the intersection between the lightcyan and magenta module genes and
the DEGs (Fig. 3B). GO and KEGG was performed on the common genes to investigate
their regulatory functions in BRCA pathogenesis. GO-BP analysis showed significant
enrichment of the intersecting genes in immune-related functions (Fig. 3C), including
leukocyte migration, T-cell activation, positive regulation of cytokine production. The
KEGG analysis revealed that the intersecting genes were considerably enriched in the viral
protein interaction with cytokines and cytokine receptors and cytokine-cytokine receptor
interaction pathways (Fig. 3D).

Establishment of a risk model and verification
The intersecting genes were subjected to univariate Cox regression to identify GBP-
linked DEGs with the most significant influence on the prognostic ourcomes of BRCA
in TCGA-BRCA while removing redundant confounding genes. The screened genes were
then further compressed based on LASSO analysis (Figs. 4A–4B). Multivariate stepwise
regression analysis determined four distinctive genes (PSME2, DACT2, PIGR and STX11)
independently linked to the prognosis of TCGA-BRCA patients (Fig. 4C). Then, the
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Figure 2 Development of a co-expression network for the TCGA-BRCA cohort. (A) Scale-free fit index
analysis on different soft threshold powers (β), which were subjected to average connectivity analysis. (B)
Gene dendrogram based on dissimilarity metric (1-TOM) clustering. (C) Gene number in each module.
(D) Correlation of module eigenvectors with features for each module. (E) Gene significance vs.module
membership for GBP-related genes score in the lightcyan module was visualized into a scatter diagram.
(F) Gene significance vs.module membership for GBP-related genes score in the magenta module was vi-
sualized into a scatter diagram.

Full-size DOI: 10.7717/peerj.20058/fig-2

prognostic outcomes of TCGA-BRCA patients was predicted by the risk model: RiskScore
= (−0.28*PSME2) + (−0.157*DACT2) + (−0.066*PIGR) + (−0.237*STX11). Additionally,
based on the optimal critical value of RiskScore, TCGA-BRCA patients were classified into
low- and high-risk groups. The OS of low-risk TCGA-BRCA patients wasmore unfavorable
than that the high-risk patients, as shown by the KM curves (p < 0.0001, Fig. 4D). Utilizing
the ‘‘timeROC’’ R package, ROC analysis for 1-, 3-, and 5- year prognostic prediction was
performed to evaluate the effectiveness of RiskScore in prognostic characterization. The
AUC results verified the classification accuracy of the RiskScore, with an AUC value of
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Figure 3 Functional enrichment analysis of DEGs with modular gene intersection genes. (A) Volcano
plot of DEGs between BRCA samples and paraneoplastic samples in the TCGA-BRCA dataset. (B) The
intersection of DEGs with lightcyan and magenta module genes. (C-D) GO and KEGG functional
enrichment analysis of the intersected genes.

Full-size DOI: 10.7717/peerj.20058/fig-3

0.73, 0.66 and 0.69 for 1-, 3-, and 5- year prognostic prediction, respectively (Fig. 4E).
Analysis on the expressions of the identified genes in TCGA-BRCA patients indicated that
the high-risk BRCA group had lower expressions of PSME2,DACT2, PIGR and STX11 than
the low-risk group (Fig. 4F). We divided TCGA-BRCA patients by the median expression
of the four genes into low and high expression groups, and examined the correlation
between the expression of the four genes and patient prognosis. It was found that BRCA
patients in the low expression groups of PSME2 (p = 0.00064), DACT2 (p = 0.00015),
PIGR (p = 0.00093) and STX11 (p = 0.0001) had poorer prognosis and shorter survival
time (Fig. 4G).

The robustness of the RiskScore in the GSE20685 dataset was tested applying the
RiskScore and equivalent coefficients used in the analysis on the training set. The validation
set showed similar results to those in the training set that high-risk BRCA patients had a
worse prognostic outcome than BRCA patients with a low risk (p < 0.015, Fig. 4H). The
AUC value of 1-, 2-, 3-, 4-, and 5- year prognostic prediction in GSE20685 validation set
reached 0.69, 0.6, 0.58, 0.58 and 0.57, respectively (Fig. 4I). All the four prognostic genes
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Figure 4 Establishment of a prognosis model for BRCA patients and validation. (A) Path diagram of
LASSO coefficients for pivotal genes in TCGA-BRCA training with GBP. (B) Cross-validation curves in
LASSO regression. The optimal λ value in the training group determined by 10-fold cross-validation. (C)
Multivariate random forest plot. (D) The TCGA training data cohort was plotted with KM survival curves.
(E) ROC curves for the performance of the RiskScore in the TCGA training data cohort. (continued on
next page. . . )

Full-size DOI: 10.7717/peerj.20058/fig-4
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Figure 4 (. . .continued)
(F) Expressions of the prognosis genes in the TCGA cohort. (G) KM survival curves for the prognosis
genes. (H) KM survival curves was plotted to reflect the performance of the RiskScore in the GSE20685
cohort. (I) ROC curve of RiskScore in the GSE20685 cohort. (J) The levels of prognosis genes in the
GSE20685 cohort. **p< 0.01 and ****p< 0.0001.

were low-expressed in the high-risk category in the GSE20685 validation cohort (Fig. 4J),
suggesting the accuracy of these genes as prognostic predictors for BRCA.

TCGA-BRCA enrichment analysis on the DEGs between the two risk
groups
Next, 813 DEGs were filtered between low- and high-risk subgroups. The GO-BP
enrichment analysis revealed that these DEGs were mainly implicated in inflammatory
response, signal transduction, inflammatory response immune response, adaptive immune
response, and adaptive immune response pathways (Fig. 5A). In CC terms, these genes
mainly localized at the extracellular space, cell surface, external side of the plasma
membrane, and some other structures (Fig. 5B). In MF terms, these genes were closely
involved in signaling receptor activity and cytokine activity (Fig. 5C). The DEGs among
different risk subgroups of BRCA mainly influenced cytokine activity, hematopoietic cell
lineages, cell adhesion molecules, transmembrane signaling receptor activity, viral protein-
cytokine, cytokine-cytokine receptor interactions, and cytokine receptor interactions
(Fig. 5D).

Relationship between RiskScore and immune characteristics
Immune cell infiltration in TCGA-BRCA patients was analyzed to examine the differences
in the immunologicalmilieu of the patients across risk groupings. Analysis of the infiltration
abundance of 28 immune cells in BRCA patients revealed that high-risk BRCA patients
had higher infiltration of activated CD8 T cells, activated CD4 T cells, activated B cells
than the low-risk group, while the infiltration of mast cells, macrophages, and effector
memory CD8 T cells was lower in the high-risk group (Fig. 6A), indicating that high-risk
BRCA patients had lower immunoreactivity. The ESTIMATE showed a negative correlation
between RiskScore and StromalScore, ImmuneScore, and ESTIMATEScore (Fig. 6B). This
suggested that immune cell infiltration may be lowered in patients in the BRCA high-risk
group. Next, applying the ssGSEA method, it was observed that the majority of the 29
gene signatures were closely linked to PSME2, DACT2, PIGR and STX11. Furthermore, the
RiskScore had a negative correlation with anti-tumor immune infiltrate but was irrelevant
to tumor proliferation (Fig. 6C).

In vitro cell-based model to validate the expressions and potential
biological functions of the key signature genes
According to the results of qPCR, MDA-MB-231 and AU565 cells had remarkably higher
PSME2 levels than in MCF-10A cells, while both AU565 and MDA-MB-231 cells had
significantly lower levels of DACT2 and STX11. However, only AU565 cells had notably
downregulated expression of PIGR (Fig. 7A). Research showed that DACT2 could cause
cellular G1/S phase inhibition and suppress BRCA cell proliferation, demonstrating a
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Figure 5 Differentially expressed genes between TCGA-BRCA low- and high-risk groups were
subjected to functional enrichment analysis. (A) Bubble plots for GO-BP enrichment analysis. (B)
Bubble plots for GO-CC enrichment analysis. (C) Bubble plots for GO-MF enrichment analysis. (D)
KEGG enrichment analysis bubble plots.

Full-size DOI: 10.7717/peerj.20058/fig-5
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Figure 6 Relationship between RiskScore and BRCA immunologic profile. (A) ssGSEA assessment of
immune infiltration in low-risk and high-risk groups. (B) Association between cellular infiltration score
and RiskScore in ESTIMATE. (C) TCGA cohort RiskScore correlates with 29 gene signatures. ****p <
0.0001, ***p< 0.001, **p< 0.01, *p< 0.05, ns indicates p> 0.05.

Full-size DOI: 10.7717/peerj.20058/fig-6

strong research basis and biological feasibility (Li et al., 2017). For this reason, we selected
DACT2 for further verification. The CCK-8 assay revealed that AU565 and MDA-MB-231
cell viability was considerably downregulated byDACT2 overexpression (Figs. 7B–7C). The
wound healing and transwell assays demonstrated that DACT2 overexpression markedly
suppressed MDA-MB-231 and AU565 cell migration and metastasis (Figs. 7D–7G).

DISCUSSION
Highly heterogeneous nature of BRCA limits the reliability of using conventional
clinicopathologic variables to predict patients’ prognosis. Advancement of sequencing
technology has allowed researchers to analyze the prognostic significance of molecular
pathways in cancers and identify effective biomarkers (Foote et al., 2023). This study
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Figure 7 Exploring the biological role ofDACT2 in BRCA. (A) The expressions of PSME2, DACT2,
PIGR and STX11 in MCF-10A, MDA-MB-231 and AU565 cells were detected by qPCR. (B–C)
Verification of the effect of DACT2 overexpression on the viability of MDA-MB-231 and AU565 cells.
(D–G) Statistical analysis of representative images and invasive cell counts of AU565 and MDA-MB-
231 cells after DACT2 overexpression in wound healing assay and transwell assay. All procedures
were conducted in three independent replicated experiments. Data were shown as SD±mean, ****,
p< 0.0001, ***, p< 0.001; **, p< 0.01; *, p< 0.05; ns, p> 0.05, not statistically significant.

Full-size DOI: 10.7717/peerj.20058/fig-7

measured the expressions of GBP genes and their relationship with the prognostic outcomes
of BRCA based on public databases. The key modular genes linked to GBP score were
identified by performing WGCNA and differential analysis, and a prognosis model was
finally developed using PSME2, DACT2, PIGR and STX11. The results demonstrated that
high GBP scores were predictive of longer survival, and that the low-risk group had higher
immune cell infiltration. In vitro experiments revealed thatDACT2 significantly suppressed
the activity, invasive and migratory capabilities of BRCA cells. This study confirmed the
potential prognostic value of GBP-correlated genes in BRCA and their close relation
with the immune microenvironment, providing new understanding for individualized
treatment in BRCA.
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We created a risk model to accurately assess the prognosis of BRCA using a machine
learning approach to identify gene modules associated with GBPs. Based on the DEGs
between BRCA tissues and para-cancerous tissues, PSME2, DACT2, PIGR and STX11
were determined as the signature genes potentially related to the prognosis of BRCA.
PSME2 is primarily linked to the assembly of pre-replicative cell complexes (Choi et al.,
2019; Jayadev & Yusuff, 2024). According to the prognostic characterization of BRCA
prognosis-related gene constructs including PSME2, high-risk BRCA patients had higher
levels of mutational landscapes, lower immune infiltration and an unfavorable prognosis.
High-risk BRCA patients responded to chemotherapy but were resistant to immunotherapy
(Fang et al., 2023). BRCA cells were unable to proliferate and create clones when PSME2 is
downregulated (Qiu et al., 2024). According to Huang et al., BRCA cells had low DACT2
expression. UpregulatingDACT2 prevents glycolysis and increases mitochondrial oxidative
phosphorylation in BRCA, which could inhibit themalignant transformation of BRCA cells
(Huang et al., 2021). DACT2 suppresses tumor formation in xenografted mouse BRCA
cells by inhibiting BRCA cell growth and inducing G1/S-phase blockage in BRCA cells
(Li et al., 2017). Though upregulated expression of polymeric immunoglobulin receptor
(PIGR) may indicate the polarized state of tumor-associated immune cells in BRCA
(Asanprakit et al., 2022), differential expression of PIGR as a transporter of polymeric
immunoglobulins across epithelial cells in BRCA cells may not necessarily impact cellular
and cellular behaviors (Asanprakit et al., 2023). STX11 is abundant in immune cells, while
TNFα release and phagocytosis of apoptotic cells and antibody-dependent target cells are
promoted by silencing STX11 in macrophages (Zhang et al., 2008). Compared to normal
samples, STX11 expression is lower in BRCA samples (Dong, Li & Zhuang, 2024). These
findings indicated that GBPs might be viable gene targets for prognostic evaluation and
the development of personalized BRCA therapies.

Inflammatory cytokines, which belong to the IFN γ-stimulated superfamily, also trigger
GBPs in immune cells (Lubeseder-Martellato et al., 2002). Inflammatory cytokines may
contribute to inflammatory activity by inducing GBPs. According to a retrospective study,
patients with rheumatoid arthritis, psoriasis, inflammatory bowel disease, and some other
conditions have elevated levels of GBPs in their serum and afflicted tissues (Haque et al.,
2021). In hepatocellular carcinoma studies, tumor samples with high GBP scores also
manifest significant inflammatory features, less tumor proliferation, and more immune-
related features (Ning et al., 2023). By regulating this pathway, cytokine-cytokine receptor
interactions implicated in adaptive and innate inflammatory host defense, cell death, and
other processes may prevent the development of BRCA (He et al., 2024). Modification of
bone marrow hematopoietic spectrum potential reduces bone metastases from BRCA, and
recurrence-free survival could be lowered by the presence of disseminated tumor cells in
bone marrow (Ubellacker et al., 2018). In tumor cells, some biological processes, including
cell adhesion, are mostly uncontrollable and are linked to the development of invasion
and metastasis (Sathyanarayana et al., 2003). Cell adhesion-related genes are considered
as promising therapeutic targets for the prevention of human BRCA because they are
particularly prevalent in advanced BRCA stages and are closely linked to the tumor growth
(Calaf et al., 2022). We conducted GO and KEGG enrichment analyses to better examine
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the biological significance of the GBP genes in BRCA. It was found that the most involved
processes of DEGs between low- and high-risk BRCA groups were immune response and
inflammatory response, which are mainly localized on structures such as cell membranes
and extracellular fluids. These DEGs were chiefly related to the biological functions such
as transmembrane signaling receptor activity and chemokine activity. These findings
demonstrated that the interaction of these pathways with the four prognosis genes may be
critically involved in a worse prognosis of the high-risk BRCA patients.

Tumor microenvironment is a complex and dynamic ecology that mainly consists of
immune cells, tumor cells, and supportive cells, and is essential for the development,
spread, and metastasis of cancers (Arneth, 2019). This study found that the immune scores
in the low-risk BRCA group were higher than those of the high-risk group. These findings
aligned with previous studies, which demonstrate that enhanced immune infiltration is
correlated with favorable clinical outcomes (Sui et al., 2020). Furthermore, the low-risk
group had high infiltration of M1 macrophages and CD8 T cells. According to earlier
research, these immune cells also have strong anticancer and immuno-boosting properties
(Ali et al., 2014; Mehta et al., 2021). CD4 T cells realize its antiproliferative effect through
the advancement of the cancer cell cycle in G1/S. Furthermore, BRCA growth is inhibited
in vivo by CD4 T cells alone, and T cell-dependent tumor regression is induced via indirect
pro-inflammatory/immune impact (Seung et al., 2022). A transcriptome data analysis
reported that B cell profiles in BRCA samples are linked to better survival (Hu et al., 2021).
On the other hand, B lymphocytes have been shown to have a favorable association with
high histological-grade cancers and can accelerate the growth of tumors (Guan et al., 2016),
which might be explained by various states of B cells. The BRCA low-risk group in our
study had higher infiltration of 28 types of immune cells, including activated CD4 T cells,
activated CD8 T cells, and activated B cells. This indicated that the low-risk BRCA group
may have higher immunoreactivity. StromalScore, ImmuneScore and ESTIMATEScore
were all negatively correlated with RiskScore, indicating that BRCA patients in the high-risk
group may have lower immune cell infiltration. These findings suggested that low immune
infiltration in the high-risk group could contribute to poor clinical prognosis of BRCA
patients.

This research had several limitations. Firstly, this study was mainly based on
transcriptomic data from TCGA and GEO databases, and lacked validation on multi-
center and multi-population clinical samples. In the future, prospective studies should
be conducted to improve the generalization and clinical applicability of the model
by combining clinical cohorts from multiple centers, different regions and different
populations. Secondly, despite validation through external datasets, there was still a lack
of experimental and follow-up data from clinical samples. Our further study will carry out
prospective follow-up analysis using clinical samples and validate the correlation between
the clinical outcomes and the expressions of model genes applying immunohistochemistry
and other techniques. Finally, as our immune cell infiltration analysis relied on algorithmic
analysis, we plan to collect clinical tissue samples and perform immunohistochemical
staining or flow cytometry to further confirm the relationship between the RiskScore and
immune cell infiltration.
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CONCLUSION
The significance of GBP family genes in BRCA was investigated based on their expression
pattern. Four GBP-related signature genes (PSME2, DACT2, PIGR and STX11) were
integrated into a RiskScore. Comprehensive validation analyses confirmed that the model
had a strong performance in terms of the prognosis, biological function, and immunological
infiltration in BRCA. The current findings may contribute to the individualized therapy
for patients suffering from BRCA.
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