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]Honey bees play crucial roles as pollinators in both natural agricultural and ecological \ Agiklama [V1]: Honey bees play crucial
roles as pollinators in natural, agricultural,

and ecological systems.

systems. h’he role of gut microbiota in the overwinter survival of honey bees is attracting

attention.\ Compared with Western honey bees (Apis mellifera), Eastern honey bees (Apis

microbiota in the overwinter survival of
honey bees is gaining attention

Aciklama [V2]: The role of gut ‘

cerana) are more tolerant to low-temperature stress. This study compared the hindgut

microbiota of the Japanese honey bees (Apis cerana japonica), a subspecies of A. cerana,
during the overwintering period (December) with that before overwintering (October) and
after overwintering (March) to estimate beneficial hindgut bacteria contributing to survival
during the overwintering period. Overall, the hindgut microbiota of A. c. japonica was
occupied by Actinobacteriota, Bacteroidota, Firmicutes, and Proteobacteria at the phylum
level and Apibacter, Bifidobacterium, Bombilactobacillus, Gilliamella, Lactobacillus, and
Snodgrassella at the genus level. The hindgut microbiota composition of A. c. japonica was
similar to that of A. cerana in other regions, suggesting that phylogeny influenced the
composition. Wany sequences assigned to the six core genera showed low homology
(<98.7%) to type strains of honey bee gut bacteria, suggesting that A. c. japonica harbors

novel candidate bacterial species.\ Komparison of the microbiota composition over the Agiklama [V3]: Many sequences
assigned to these six core genera showed
<98.7% similarity to type strains, indicating

potential novel bacterial species.

three periods showed that the relative abundance of Bifidobacterium, Bombilactobacillus,

and Lactobacillus was higher during overwintering than before overwintering. \Our findings Aciklama [V4]: The relative abundance
of Bifidobacterium, Bombilactobacillus,
and Lactobacillus was higher during

overwintering than in other periods.

highlight changes in the core bacteria of the hindgut microbiota of A. c. japonica during

overwintering and also suggest the presence of novel candidate bacterial species. The
roles of the bacteria that were increased during the overwintering period require further
elucidation.
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ABSTRACT

Honey bees play crucial roles as pollinators in both natural agricultural and ecological systems.

The role of gut microbiota in the overwinter survival of honey bees is attracting attention.

Compared with Western honey bees (Apis mellifera), Eastern honey bees (Apis cerana) are more

tolerant to low-temperature stress. This study compared the hindgut microbiota of the Japanese

honey bees (Apis cerana japonica), a subspecies of A. cerana, during the overwintering period

(December) with that before overwintering (October) and after overwintering (March) to

estimate beneficial hindgut bacteria contributing to survival during the overwintering period.

Overall, the hindgut microbiota of A. c. japonica was occupied by Actinobacteriota,

Bacteroidota, Firmicutes, and Proteobacteria at the phylum level and Apibacter, Bifidobacterium,

Bombilactobacillus, Gilliamella, Lactobacillus, and Snodgrassella at the genus level. The

hindgut microbiota composition of A. c. japonica was similar to that of A. cerana in other

regions, suggesting that phylogeny influenced the composition. Many sequences assigned to the

six core genera showed low homology (<98.7%) to type strains of honey bee gut bacteria,

suggesting that A. c. japonica harbors novel candidate bacterial species. Comparison of the

microbiota composition over the three periods showed that the relative abundance of

Bifidobacterium, Bombilactobacillus, and Lactobacillus was higher during overwintering than
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41  before overwintering. Our findings highlight changes in the core bacteria of the hindgut
42  microbiota of A. c. japonica during overwintering and also suggest the presence of novel
43 candidate bacterial species. The roles of the bacteria that were increased during the

44 overwintering period require further elucidation.
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Introduction

The gut microbiota of honey bees plays a critical role in their health (Raymann & Moran 2018),

including decomposing dietary compounds (Engel, Martinson & Moran 2012), producing short-

chain fatty acids (SCFAS) as an energy source (Zheng et al. 2017), degrading potentially toxic

plant metabolites (Motta et al. 2022), inhibiting the growth of honey bee pathogens (Wu et al.

2014), and stimulating the immune system (Kwong, Mancenido & Moran 2017; Motta & Moran

2024). Disruption of the gut microbiota composition due to antibiotic treatment and pesticide

exposure causes dysbiosis, leading to host mortality (Raymann, Shaffer & Moran 2017; Motta &

Moran 2024).

During winter, honey bees survive the severe cold environment in a metabolically and

physically active state that is essential for ensuring the colony's survival until the following

spring (Moeller 1977; Doeke, Frazier & Grozinger 2015). Cold stress is a major cause of

individual and colony mortality in honey bees and also increases the risk of disease and infection

| Aciklama [V5]: Therefore, the health

outbreaks (Xu et al. 2017). Therefore, the health status of overwintering honey bees [is crucial ko y status of overwintering honey bees is
"""""""""""""""""" ’ critical to the health of the entire colony

the health of the entire colony (Doeke, Frazier & Grozinger 2015). During overwintering,

feeding is essentially limited to food stored within the colony (pollen, bee bread, and honey). To

cope with the surrounding cold stress, the honey bees must maintain the temperature of the
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colony's outer edge and core by vigorously vibrating their flight muscles to generate heat
(Doeke, Frazier & Grozinger 2015). The gut microbiota of overwintering honey bees has been

\increasingly recognized for its beneficial role in survival during the overwintering period. Most

studies have focused on the Western honey bees (Apis mellifera), reporting an increase in gut
bacteria abundance during the overwintering period (Ke$nerova et al. 2020) along with changes
in gut microbiota composition (Bleau et al. 2020; Kesnerova et al. 2020; Liu et al. 2021; Castelli
etal. 2022; Li et al. 2022; Brar et al. 2025). These findings suggest that gut bacteria may play
crucial roles in energy absorption and immune function, thereby substantially contributing to
survival during the overwintering period.

The Apis genus is naturally distributed across Asia, Europe, and Africa (Ji 2021). The
Western honey bees are widely distributed worldwide, including their native regions of Europe,
Africa, and the Middle East, while Eastern honey bees (Apis cerana) are found throughout
South, Southeast, and East Asia (Ji 2021). Compared with Western honey bees, Eastern honey
\bees exhibit superior cold tolerance and are more capable of surviving the harsh overwintering]

period (Li et al. 2012; Xu et al. 2017). (Considering the beneficial involvement of the gut

| Aciklama [V6]: The gut microbiota of
overwintering honey bees has been
increasingly recognized for its beneficial
role in survival during this period.

- Agiklama [V7]: Compared to Western
honey bees, Eastern honey bees exhibit
superior cold tolerance and are better
adapted to surviving the harsh
overwintering period (Li et al., 2012; Xu et
al., 2017)

microbiota in overwintering honey bees, we hypothesized that the gut microbiota plays a

significant role in enabling Eastern honey bees to tolerate cold stress and successfully

overwinter. Characterizing the hindgut microbiota of overwintering honey bees will help narrow
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It has been demonstrated that this factor
plays a significant role in enabling Eastern
honey bees to tolerate cold stress and
successfully overwinter.
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down the candidate bacteria beneficial for survival under cold and harsh environments, providing
novel insights into the symbiotic relationships between honey bees and their hindgut microbiota.
This study focused on the Japanese honey bees (Apis cerana japonica), a subspecies of the
Eastern honey bee that is native to Japan. NVe aimed to develop a comprehensive inventory of the[
hindgut microbiota using high-throughput sequencing targeting the VV3-V4 region of the
bacterial 165 rRNA gene. We also compared the hindgut microbiota during the overwintering

period, before overwintering, and after overwintering to elucidate the distinctive features of the

hindgut microbiota associated with successful overwintering.

Materials & Methods
Sample collection
The study samples were collected from four A. c. japonica colonies in Ibaraki, Japan. Two were

\kept by our laboratory at the National Institute of Environmental Studies in Tsukuba City, and

- Aciklama [V9]: The aim was to develop

a comprehensive inventory of the hindgut
microbiota using high-throughput
sequencing of the V3-V4 region of the
bacterial 16S rRNA gene.

-| Aciklama [V10]: In addition, we

compared the composition of the hindgut
microbiota before, during, and after the
overwintering period to identify distinctive
microbial features associated with
successful overwintering.

two by beekeepers in Tsukuba City and Inashiki District, respectively. We sampled 30 foragers

from each colony using a net with clean plastic cups over three periods: October 2022 (before

overwintering, BO group), December 2022 (during overwintering, OW group), and March 2023

(after overwintering, AO group) (Table 1). The total number of samples was 360 (30 honey bees
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1 Aciklama [V11]: Two colonies were

maintained by our laboratory at the
National Institute of Environmental Studies
in Tsukuba City, while the other two were
managed by local beekeepers in Tsukuba
City and Inashiki District, respectively.




PeerJ

9V

98

99

100

101

102

103

104

105

106

10V

108

109

110

111

112

113

114

per colony x four colonies x three periods). All honey bees were immediately placed on ice after

collection and stored at 280# until DNA extraction,

DNA extraction

After thawing the honey bees on ice, they were sterilized by soaking in 70% ethanol for 30sand
washing with ultrapure water for 30 s. The hindguts, including the pylorus, ileum, and rectum,
were carefully removed on ice using sterile forceps. Ten hindguts were pooled in 2.0 mL sterile
tubes containing TE buffer (10 mmol L2! Tris-HCI and 1 mmol L2* EDTA-2Na, pH 8.0) with
5% (v/v) Triton X-100 (MP Biomedicals, Irvine, CA, USA) and glass beads (1.0 mm diameter)]
The hindguts were disrupted by three cycles of crushing at 3,200 rpm for 30 s using Beads
Crusher uT-12 (Taitec, Saitama, Japan) and 30 s of cooling on ice. The homogenates were
centrifuged at 6,000 xg for 10 min to sediment debris. Total bacterial DNA was purified from
180 ¢1 of the resultant supernatant using a Qiagen DNeasy Blood and Tissue kit (Qiagen, Hilden|
Germany) per the manufacturer's instructions. The DNA concentration of the 36 samples (three

replicates per colony x four colonies x three sampling periods) was measured using a NanoDrop

One spectrophotometer (Thermo Fisher Scientific, MA, USA).

High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene

PeerJ reviewing PDF | (2025:06:121293:0:1:NEW 7 Jul 2025)

_| Aciklama [V12]: All samples were

immediately placed on ice after collection
and stored at —80 °C until DNA extraction.

1 Aciklama [V13]: After thawing the

honey bees on ice, they were surface-
sterilized by immersing them in 70%
ethanol for 30 seconds, followed by rinsing
with ultrapure water for 30 seconds.

-| Aciklama [V14]: Ten hindguts were

pooled into 2.0 mL sterile tubes containing
TE buffer (10 mmol L' Tris-HCI and

1 mmol L' EDTA-2Na, pH 8.0)
supplemented with 5% (v/v) Triton X-100
(MP Biomedicals, Irvine, CA, USA) and
glass beads (1.0 mm diameter).

-| Aciklama [V15]: Total bacterial DNA

was extracted from 180 pL of the resulting
supernatant using the DNeasy Blood and
Tissue Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s
instructions.
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The bacterial V3 and V4 regions of the 16S rRNA gene were amplified using a universal primer
set; 341f: 5'- ACACTCTTTCCCTACACGACGCTCTTCCGATCT-NNNNN-

CCTACGGGNGGCWGCAG-3' and 805r: 5

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-NNNNN-
GACTACHVGGGTATCTAATCC-3', which contain the adapter sequences for the Illumina
library preparation kit and the primers for amplification of VV3-V4 regions of the 16S rRNA
gene. Polymerase chain reaction (PCR) was performed using template DNA (5 ng plt) with
Blend Tag Plus polymerase (Toyobo, Osaka, Japan) following the manufacturer's instructions.
The PCR cycling conditions were initial denaturation at 94°C for 2 min, followed by 30 cycles of

denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 30 s. The

PCR products underwent 1.5% agarose gel electrophoresis at 100 V for 25 min and were stained

Mith ethidium bromide and visualized under UV light to check for the presence of PCR

1 Agiklama [V16]: The bacterial V3-V4

hypervariable regions of the 16S rRNA
gene were amplified using a universal
primer set comprising 341F (5'-
ACACTCTTTCCCTACACGACGCTCTT
CCGATCT-NNNNN-
CCTACGGGNGGCWGCAG-3') and 805R
(5™
GTGACTGGAGTTCAGACGTGTGCTCT
TCCGATCT-NNNNN-
GACTACHVGGGTATCTAATCC-
3").These primers include adapter sequences
compatible with the Illumina library
preparation workflow and are specific to the
amplification of the bacterial V3-V4
regions.

- Aciklama [V17]: “The authors may

consider including a final extension step
(e.g., 72 °C for 5 minutes) in the PCR
cycling protocol. This step is widely
applied in 16S rRNA gene amplification to
allow complete elongation of PCR
products, which could be beneficial for
ensuring high-quality amplicons in
downstream library preparation and
sequencing.”

amplicons. The PCR amplicons were sent to Bioengineering Lab. Co., Ltd. (Kanagawa, Japan)
for sequencing. The amplicons were purified using AMPure XP Beads (Beckman Coulter, Brea,
CA, USA), and the DNA concentrations were measured using a Synergy H1 multimode
microplate reader (Agilent Technologies, Santa Clara, CA, USA) and a QuantiFluor dsDNA
System (Promega, Madison, W1, USA). fThe libraries were constructed using purified amplicons[

with sample-specific dual indices. After determining the library concentrations as described
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Aciklama [V18]: The resulting PCR
amplicons were verified by 1.5% agarose
gel electrophoresis at 100 V for 25 min,
stained with ethidium bromide, and
visualized under UV illumination.

1 Aciklama [V19]: Library preparation

was performed using the purified amplicons
with dual-index barcoding to enable sample
multiplexing.
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above, quality checking was performed using a dsDNA 915 Reagent kit (Agilent Technologies)

on a Fragment Analyzer System (Agilent Technologies). Each library was pooled at an

equimolar concentration and underwent 300 bp paired-end sequencing using MiSeq Reagent Kit

v3 (Illumina, San Diego, CA, USA) on a MiSeq benchtop sequencer (lllumina).

Data analysis

To generate amplicon sequence variants (ASVs), DADAZ2 ver. 1.16 (Callahan et al. 2016) in

[ Aciklama [V20]: paired-end FASTQ

RStudio software ver. 2023.12.0+369 was used for trimming and filtering the [forward and reads

reverse fastq read data obtained following MiSeq high-throughput sequencing. Low-quality

distributions and primers from each forward and reverse sequence were trimmed using

parameters set to truncLen = ¢(290, 230) and trimLeft = ¢(17,21), respectively, and then the

sequences were filtered using maxN = 0, maxEE = c¢(2,2), and truncQ = 2 parameters. Next, the

forward and reverse reads were merged, after which chimeras and short reads (<400 bp) were

discarded. The taxonomic classification of representative ASVs from phylum to genus level was

assigned using the SILVA ver. 138.1 prokaryotic SSU database (Quast et al. 2013) as a reference

dataset. Before downstream analysis, ASVs that were unclassified at the phylum level and were

. ; ) [ Aciklama [V21]: non-bacterial groups J
Chloroplast and MltochondrlaD were manually removed. ) { Agiklama [V22]: chloroplasts and J

assigned as nonbacterid (e.g.,

mitochondria

To standardize sequencing depth across samples, abundance-based read resampling was
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performed using the rrarefy function of the vegan package ver. 2.6.4 (Oksanen et al. 2023),

based on the minimum read count among samples. Rarefaction curves were generated using the

rarecurve function of the vegan package and the ggplot2 package ver. 3.4.2 (Wickham 2016).
The Coverage function in the entropart package ver. 1.6.12 (Marcon & Hérault 2015) was used
to calculate coverage and evaluate whether the sequencing depth was sufficient to fully represent

the bacterial communities in each sample before and after standardization|. After pooling ASVs at

the lowest taxonomic level (bacterial genus), the bacterial community composition at the phylum
and genus levels was visualized for each sample as bar plots using ggplot2. Taxa with a relative

abundance of <1% across all samples were ]grouped as “Others.”]

Bacterial genera with a relative abundance >1% across all samples were defined as the

core hindgut bacteria of LA c. japonical. All ASVs assigned to these core genera underwent

similarity searches against the bacterial 16S rRNA gene sequence database in EzBioCloud (Yoon
et al. 2017) to identify the closest related species.

We generated a non-metric multidimensional scaling (NMDS) plots based on the Bray—
Curtis dissimilarity index using the metaMDS function in vegan and ggplot2 to visualize the -

diversity of hindgut microbiota at the ASV level for the three periods.

Statistical analysis
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) [ Aciklama [V23]: among all samples

[ Aciklama [V24]: before and after

rarefaction

[ Aciklama [V25]: and represented as

“Others.”

[ Aciklama [V26]: Apis cerana japonica

-| Agiklama [V27]: Non-metric

multidimensional scaling (NMDS) plots
were generated based on Bray—Curtis
dissimilarity using the metaMDS function
from the vegan package and visualized
using ggplot2, in order to assess the B-
diversity of the hindgut microbiota at the
ASV level across the three time periods.
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To detect differences in the hindgut microbial compositions among the three periods, we

performed pairwise comparisons using jpermutational multivariate analysis of variance| based on

the Bray—Curtis dissimilarity index with 9,999 permutations using the pairwise.adonis function
of the pairwiseAdonis package ver. 0.4.1 (Martinez 2020).

To investigate the effect of the three sampling periods on the abundance of the core
bacterial genera, we performed a generalized linear mixed model (GLMM) analysis assuming a
Poisson distribution and log link function using the glmer function of the Ime4 package ver,
1.1.32 (Bates et al. 2015). The read count of each core bacterial genus was set as the response

variable, with sampling period as a fixed effect and colony as a random effect. P-values < 0.05

were considered statistically significant for all comparisons.

Results

Sequence dataset overview

The high-throughput sequencing yielded 1,381,026 raw reads (mean + SD: 38,362 + 5,199) from

all samples. After trimming and filtering, 1,098,689 high-quality reads (mean + SD: 30,519 +
3,678) remained (Table S1), clustering into 260 ASVs (mean = SD: 59 + 10). Next, all
nonbacterial reads were removed from all samples, and a read count-based cutoff was applied to

match the minimum read count (21,808), fesulting in a final set of 241 ASVs (mean + SD: 54 #

| Aciklama [V28]: permutational
multivariate analysis of variance
(PERMANOVA)

1 Aciklama [V29]: To investigate the
effect of sampling period on the abundance
of core bacterial genera, a generalized
linear mixed model (GLMM) analysis
was conducted, assuming a Poisson
distribution with a log link function, using
the glmer function from the Ime4 package
(v1.1-32; Bates et al., 2015).

) [ Aciklama [V30]: generated ]

Aciklama [V31]: "resulting in a final
dataset of..
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8). The rarefaction curves for each sample plateaued at the minimum read depth (Figure S1), and

the stimated coverage was >99% for ll samples (Table S2), indicating that the sequencing

) [ Aciklama [V32]: exceeded 99%”

depth was sufficient to identify most of the hindgut bacteria in the study samples.

Hindgut microbiota composition

The composition at the phylum and genus levels for each period were described for those taxa
with a relative abundance >1% across all samples, while those with a relative abundance <1%
were grouped as “Others” (Figure 1). At the phylum level, the hindgut microbiota of A. c.
japonica was dominated by Actinobacteriota (0.4%-13.1%), Bacteroidota (11.7%—36.3%),
Firmicutes (9.2%-33.9%), and Proteobacteria (35.2%-68.6%), collectively accounting for
>99.9% of the relative abundance. At the genus level, six bacterial genera, namely Apibacter
(11.6%—36.3%), Bifidobacterium (0.2%-13.1%), Bombilactobacillus (0.3%-13.6%), Gilliamella
(26.6%-59.8%), Lactobacillus (6.9%—28.2%), and Snodgrassella (0.7%—-22.4%) predominated,

accounting for >96% of the jhindgut microbiota in all three periods and all samples. The relative

Aciklama [V33]: Since three periods are
mentioned, it is not specified whether there
is a statistical difference (e.g. ANOVA,
Kruskal-Wallis or PERMANOVA). This
analysis may be in another section, but it
would be useful to provide a brief reference
here.

details of felative abundance at the phylum and genus levels are listed in Tables S3-S6.

Aciklama [V34]: «The distinction
between ‘Unclassified” and ‘Others’ is
scientific, but it can be expressed more
clearly for readers: Unclassified”
indicates sequences not assigned at the
genus level; “Others” includes genera
with <1% abundance across all samples.

Further examination of the six major bacterial genera revealed that, except for

[Bifidobacterium, many ASVs of the core genera exhibited sequence similarities with type strains[

PeerJ reviewing PDF | (2025:06:121293:0:1:NEW 7 Jul 2025)

Aciklama [V35]: “Were these values
computed after removing
chloroplast/mitochondrial reads and
unclassified ASVs?”

| Aciklama [V36]: Further examination of

the six major bacterial genera revealed that,
except for Bifidobacterium, many ASVs
assigned to the core genera exhibited
sequence similarities with type strains in the
EzBioCloud database (Yoon et al., 2017)
below the 98.7% threshold, which is
commonly used to distinguish closely
related species (Chun et al., 2018; Table 2).




PeerJ

204

205

206

20V

208

209

210

211

212

213

214

215

216

21V

218

219

220

221

in the EzBioCloud database (Yoon et al. 2017) below the threshold of 98.7% suggested for

distinguishing closely related species from type strains (Chun et al. 2018) (Table 2). Notably,

90% (27/30) of the ASVs assigned to Gilliamella showed this pattern, followed by Snodgrassella

(65%, 13/20), Bombilactobacillus (60%, 3/5), Apibacter (53.8%, 7/13), and Lactobacillus

(41.6%, 5/12), suggesting the presence of potential novel species|

The result of the NMDS plot of B-diversity of the hindgut microbiota at the ASVs level
based on Bray-Curtis dissimilarity is shown in Figure 2. Pairwise comparisons among three
periods revealed that the hindgut microbiota composition only differed significantly only

between BO group and OW group (F = 3.037, R2 = 0.121, p = 0.029, Table S7)|

Comparison of the core genera among the three periods
The GLMM analysis revealed that the OW group had a significant positive effect on the read

counts of Bifidobacterium, Bombilactobacillus, and Lactobacillus (coefficient: 0.977, 1.036, and

0.320; 95% CI: 0.237-1.716, 0.138-1.933, and 0.131-0.509; p = 0.009, 0.024, and 0.001,

respectively; Table S8).

Data availability

The raw amplicon sequence datasets generated in this study are available in the DDBJ Sequence
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Read Archive (accession numbers: DRR685263-DRR685298 for DRA Run and PRIDB20791
for BioProject). All scripts and datasets are deposited to figshare under DOI:

10.6084/m9.figshare.29396408.

Discussion

This study revealed that the hindgut microbiota of LA ¢. japonicajwas dominated by four phyla:

[Aglklama [V40]: Apis cerana japonica ]

Actinobacteriota, Bacteroidota, Firmicutes, and Proteobacteria, and six core bacterial genera:
Apibacter, Bifidobacterium, Bombilactobacillus, Gilliamella, Lactobacillus, and Snodgrassella.

[This is consistent with the results of previous studies jon the gut microbiota of honey bees

(Kwong et al. 2017; Dong et al. 2020). In contrast, compared with the core gut microbiota of A.
mellifera, Apibacter is more abundant in Asian honey bee species, such as A. cerana, A. dorsata,
and A. andreniformis (Kwong & Moran 2016; Kwong et al. 2017; Duong et al. 2020; Ellegaard

etal. 2020; Khan et al. 2023). The hindgut microbiota of |A. ¢. japonicashowed a similar trend at

Aciklama [V41]: This finding is
consistent with previous studies

[Aglklama [V42]: Apis cerana japonica }

the genus level, suggesting that host phylogeny influenced microbial community structure.

However, the identification ]of ASVs Mith similarities lower than the threshold for distinguishing

closely related species suggests the presence of many potentially novel bacterial species, despite
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their genus-level similarity. Further studies involving bacterial isolation, biochemical

characterization, and genome analysis are warranted to elucidate the taxonomy and function of

these candidate novel bacteria.

The hindgut microbiota composition of A. c. japonica in the OW group differed

significantly from that of the BO group. Notably, the mean relative abundance of

Bifidobacterium, Bombilactobacillus, and Lactobacillus in OW group was higher than that in BO

group. These three core bacterial genera are known to produce SCFAs from pollen-derived

polysaccharides and nectar-derived glucose (Zheng et al. 2017; Zheng et al. 2019). Among the

SCFAs derived from honey bee gut bacteria, butyrate is absorbed into the hemolymph via the

ileum or rectum and is therefore considered an important energy source for thermogenesis to

maintain hive temperature during the overwintering period (Den Besten et al. 2013; Zheng et al.

2017). Moreover, genera Bifidobacterium and Lactobacillus contribute substantially to infection

control and immune regulation in honey bees through mechanisms such as antimicrobial activity

against pathogens (Wu et al. 2013) and upregulating antimicrobial peptide expression (Daisley et

al. 2020). Therefore, the genus-level increase in Bifidobacterium, Bombilactobacillus, and

Lactobacillus in the OW group may play a beneficial role in the overwintering of honey bees in

terms of thermogenesis and immune activation. Further studies quantifying SCFA levels in the

gut and the expression of genes related to the immune system during the overwintering period
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are necessary to clarify the functional roles of these gut bacteria in successful overwintering.

The observed compositional changes in the hindgut microbiota of |A. ¢. japonica in the

overwintering period are intriguing. A possible contributing factor is the difference in pollen and

nectar sources consumed by honey bees before and during overwintering period. Honey bees

forage across a wide temperature range (10°C—40°C) (Abou-Shaara et al. 2017), but during the

overwintering period, when temperatures fall below 10°C, they rarely leave the hive to forage

(Joshi & Joshi 2010). Consequently, honey bees are more likely to consume stored pollen and

honey during overwintering period. Furthermore, the consumption of aged or stored pollen and

honey influences gut microbiota composition (Maes et al. 2016). In our study, although daily

maximum temperatures exceeded 10°C on all sampling days before and after overwintering

period, only one-third of the days during the overwintering period reached this threshold (Japan

Meteorological Agency 2025). Another factor that may influence hindgut microbiota is

variations in hive temperature. Typically, the hive temperature is maintained at 33°C—35.5°C

(Abou-Shaara et al. 2017). In A. c. japonica, the average winter hive temperature is 30.7°C,

while the average temperature before and after winter is 34.3°C (Akimoto 2000). This

temperature fluctuation may affect bacterial growth rates, thereby altering microbiota

composition (Ludvigsen et al. 2015; Kesnerova et al. 2017).
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Conclusions

This study on the hindgut microbiota of A. c. japonica revealed the influence of phylogeny on
microbiota composition, the presence of potentially novel species, and distinctive compositional
changes during the overwintering period. The biochemical properties of the genera that increased
during overwintering period (i.e., genera Bifidobacterium, Bombilactobacillus, and
Lactobacillus) suggest that these changes supply energy for thermogenesis and activate the host
immune system. Further surveys in other regions with different dietary environments and studies
focusing on elucidating the functional roles of hindgut microbiota during overwintering and their

symbioatic relationship with host health are warranted.
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Table legends
Table 1. Detailed information on sampling in this study.
Table 2. List of BLAST results against the EzBioCloud 16S rRNA database of ASVs assigned to the six

core bacteria genera in the hindgut of the Japanese honey bees (Apis cerana japonica)

Figure legends
Figure 1. Hindgut microbiota composition of the Japanese honey bees (Apis cerana japonica) sampled for
each period at the (A) phylum and (B) genus levels. BO: before overwintering, OW: during overwintering,

AO: after overwintering.

Figure 2. Nonmetric multidimensional scaling (NMDS) ordination plots of hindgut microbiota of the
Japanese honey bees (Apis cerana japonica) at three sampling periods. The plot was generated with the
Bray—Curtis dissimilarity index based on the ASVs obtained from each sample. BO: before overwintering,

OW: during overwintering, and AO: after overwintering.
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Supporting information

Table S1. Number of reads obtained after filtering and trimming each sample using DADA2.

Table S2. Number of coverages after rarefaction at the minimum lead (21,808) for each sample.

Table S3. Relative abundance of bacterial phyla in the hindgut microbiota of the Japanese honey bees (Apis
cerana japonica) in all samples.

Table S4. Relative abundance of bacterial phyla in the hindgut microbiota of the Japanese honey bees (Apis
cerana japonica) at each of the three sampling periods.

Table S5. Relative abundance of bacterial genera in the hindgut microbiota of the Japanese honey bees (Apis
cerana japonica) in all samples.

Table S6. Relative abundance of bacterial genera in the hindgut microbiota of the Japanese honey bees (Apis
cerana japonica) at each of the three sampling periods.

Table S7. Results of pairwise permutational multivariate analysis of variance of the hindgut microbiota in the
Japanese honey bees (Apis cerana japonica) from four colonies during three sampling periods.

Table S8. Generalized linear mixed model analysis. The number of reads of the six core bacterial genera in the
hindgut microbiota of the Japanese honey bees (Apis cerana japonica) was used as the objective variable, the
three time periods as explanatory variables, and the colony as a random effect. BO group is set as a reference

group.
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461  Figure S1. Rarefaction curves of the microbiota in the hindgut of the Japanese honey bees (Apis cerana
462  japonica) before (A) and after (B) setting the minimal sequence read (21,808) from the raw read dataset. The
463 black dotted line in panel (B) shows 21,808 leads as the rarefaction point. The letter in each sample indicates

464  the colony ID, and the number indicates the month of sample collection.
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Figure 1

reviewed

Hindgut microbiota composition of the Japanese honey bees (Apis cerana japonica)

sampled for each period at the (A) phylum and (B) genus levels.
BO: before overwintering, OW: during overwintering, AO: after overwintering.
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Figure 2

Nonmetric multidimensional scaling (NMDS) ordination plots of hindgut microbiota of
the Japanese honey bees (Apis cerana japonica) at three sampling periods.

The plot was generated with the Bray3Curtis dissimilarity index based on the ASVs obtained
from each sample. BO: before overwintering, OW: during overwintering, and AO: after

overwintering.

0.6
0.3
Season
» BO
S
s 007 ow
AO
0.3
-0.50 0.25 0.00 0.25 0.50

NMDS1

PeerJ reviewing PDF | (2025:06:121293:0:1:NEW 7 Jul 2025)



PeerJ Manuscript to be reviewed

Table 1 (on next page)

Detailed information on sampling in this study.
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1 Table 1. Detailed information on sampling in this study.

Period V Sampling date Colony ID Location 2 DNA sample ID

BO 10/19/2022 H Tsukuba city, Ibaraki, Japan H10-1, H10-2, H10-3
10/27/2022 | Inashiki district, Ibaraki, Japan 110-1, 110-2, 110-3
10/20/2022 T NIES T10-1, T10-2, T10-3
10/20/2022 X NIES X10-1, X10-2, X10-3

ow 12/19/2022 H Tsukuba city, Ibaraki, Japan H12-1, H12-2. H12-3
12/18/2022 | Inashiki district, Ibaraki, Japan 112-1, 112-2. 112-3
12/19/2022 T NIES T12-1, T12-2. T12-3
12/19/2022 X NIES X12-1, X12-2. X12-3

AO 3/15/2023 H Tsukuba city, Ibaraki, Japan H3-1, H3-2, H3-3
3/16/2023 | Inashiki district, Ibaraki, Japan 13-1, 13-2, 13-3
3/7/2023 T NIES T3-1,T3-2,T3-3
3/7/2023 X NIES X3-1, X3-2, X3-3

2 D Before overwintering: BO, during overwintering: OW, after overwintering: AO.
3 2NIES: National Institute for Environmental Studies (Tsukuba, Ibaraki, Japan).
4
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Table 2 (on next page)

List of BLAST results against the EzBioCloud 16S rRNA database of ASVs assigned to the

six core bacteria genera in the hindgut of the Japanese honey bees (Apis cerana
japonica).
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Table 2. List of BLAST results against the EzBioCloud 16S rRNA database of ASVs assigned to the six
core bacteria genera in the hindgut of the Japanese honey bees (Apis cerana japonica)

Assigned genus ASVIDY  Length Top-hittaxon (strain level) 2 Accession ID Similarity
(bp) (%)
Apibacter ASV1 423 Apibacter sp. B3924 WINMO01000002 100
ASV16 423 Apibacter mensalis R-531467 LIVMO01000008 99.5
Apibacter sp. B3924 WINMO01000002 99.5
ASV9 423 Apibacter mensalis R-531467 L1VM01000008 99.8
Apibacter sp. B3924 WINMO01000002 99.8
ASV32 423 Apibacter sp. B3924 WINM01000002 99.8
ASV33 423 Apibacter mensalis R-531467 LIVMO01000008 100
ASV118 423 Apibacter sp. B3924 WINMO01000002 96.2
ASV76 426 Apibacter sp. B3924 WINMO01000002 97.9
ASV133 409 Apibacter mensalis R-531467 L1VMO01000008 91.0
Apibacter sp. B3924 WINMO01000002 91.0
ASV151 425 Apibacter sp. B3924 WINMO01000002 97.6
ASV254 423 Apibacter sp. B3924 WINMO01000002 90.6
ASV280 423 Apibacter sp. B3924 WINMO01000002 91.0
ASV174 431 Apibacter mensalis R-531467 L1VM01000008 90.5
ASV279 422 Apibacter sp. B3924 WINM01000002 99.6
Bifidobacterium ASV51 408 Bifidobacterium indicum JCM 13027  LC071807 100
ASV11 410 Bifidobacterium sp. 7101 AWUNO01000009 100
Bombilactobacillus ASV34 432 Bombilactobacillus mellifer BindNT JX099543 99.8
ASV47 431 Uncultured Firmicutes bacterium HM215046 98.1
D08062C1
ASV169 430 Uncultured Firmicutes bacterium HM215046 89.4
D08062C1
ASV12 429 Bombilactobacillus mellis Hon2™ KQO033880 100
ASV23 431 Uncultured Firmicutes bacterium HM215046 98.4
D08062C1
Lactobacillus ASV6 428 Lactobacillus panisapium Bb 2-3T KX447147 100
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ASV10 430 Lactobacillus panisapium Bb 2-3T KX447147 99.8
ASV15 428 Lactobacillus panisapium Bb 2-37 KX447147 99.5
ASV24 429 Lactobacillus melliventris Hma8NT™ JX099551 995
ASV90 429 Lactobacillus panisapium Bb 2-3T KX447147 98.4
ASV135 427 Lactobacillus panisapium Bb 2-3T KX447147 99.5
ASV164 428 Lactobacillus panisapium Bb 2-3T KX447147 95.6
ASV129 430 Lactobacillus huangpiensis F306-1T LC597580 99.8
ASV267 429 Lactobacillus panisapium Bb 2-37 KX447147 99.3
ASV271 427 Lactobacillus panisapium Bb 2-3T KX447147 96.7
ASV292 428 Lactobacillus panisapium Bb 2-3T KX447147 93.7
ASV185 428 Lactobacillus panisapium Bb 2-3T KX447147 97.9
Gilliamella ASV2 428 Gilliamella apicola wkB11 JFON01000004 97.4
ASV3 428 Gilliamella apis NO3T NASD01000045 100
ASV4 428 Gilliamella apicola wkB7 CMO004509 98.6
ASV5 428 Gilliamella apis NO3T NASDO01000045 96.7
ASV8 428 Gilliamella apicola wkB11 JFON01000004 97.7
ASV13 430 Gilliamella apis NO3T NASDO01000045 99.8
ASV14 428 Gilliamella apicola wkB7 CMO004509 98.4
ASV22 429 Gilliamella apicola wkB7 CMO004509 98.4
ASV28 429 Gilliamella apicola wkB7 CMO004509 98.4
ASV30 431 Gilliamella apicola wkB11 JFON01000004 975
ASV39 429 Gilliamella apicola wkB11 JFON01000004 97.4
ASV41 427 Gilliamella apicola wkB7 CMO004509 98.4
ASV58 427 Gilliamella apicola App2-1 LZGR01000055 99.5
ASVT71 428 Gilliamella apicola wkB7 CMO004509 98.4
ASV73 429 Gilliamella apicola wkB11 JFON01000004 95.3
ASV96 428 Gilliamella apicola wkB11 JFON01000004 94.0
ASV100 432 Gilliamella bombi LMG 298797 FMWS01000047 95.4
ASV102 431 Gilliamella apicola wkB7 CMO004509 96.5
ASV104 432 Gilliamella apis NO3T NASD01000045 97.7
ASV109 428 Gilliamella apicola wkB11 JFON01000004 96.5
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ASV138
ASV149
ASV162
ASV170
ASV177
ASV190
ASV207
ASV231
ASV275
ASV298
Snodgrassella ASV7
ASV17
ASV18
ASV21
ASV25
ASV27
ASV31
ASV35

ASV40
ASV45

ASV60

ASV66

ASV111
ASV143
ASV234
ASV235
ASV276
ASV278

ASV307

428

428

427

432

429

428

428

428

427

427

428

428

428

429

429

430

428

428

428

428

428

430

431

429

431

429

433

430

432

Gilliamella apicola wkB7
Gilliamella apicola wkB7
Gilliamella apicola wkB7
Gilliamella apicola wkB11
Gilliamella apicola wkB11
Gilliamella apicola wkB11
Gilliamella apicola wkB7
Gilliamella apicola wkB7
Gilliamella apicola wkB7
Gilliamella apicola wkB7
Snodgrassella alvi wkB298
Snodgrassella alvi wkB298
Snodgrassella alvi wkB298
Snodgrassella alvi wkB298
Snodgrassella alvi wkB298
Snodgrassella alvi WF3-3
Snodgrassella alvi wkB298

Snodgrassella alvi wkB298

Snodgrassella gandavensis LMG

302367

Snodgrassella gandavensis LMG

302367

Snodgrassella alvi wkB298
Snodgrassella alvi WF3-3
Snodgrassella alvi wkB298
Snodgrassella alvi wkB298
Snodgrassella alvi wkB298
Snodgrassella alvi wkB298
Snodgrassella alvi wkB298
Snodgrassella alvi wkB298

Snodgrassella alvi wkB2T
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CMO004509

CMO004509

CMO004509

JFONO01000004

JFONO01000004

JFONO01000004

CMO004509

CMO004509

CMO004509

CMO004509

MEIK01000026

MEIK01000026

MEIK01000026

MEIK01000026

MEIK01000026

MEIO01000062

MEIK01000026

MEIK01000026

0U943324

0U943324

MEIK01000026

MEIO01000062

MEIK01000026

MEIK01000026

MEIK01000026

MEIK01000026

MEIK01000026

MEIK01000026

CP007446

97.2

93.7

96.3

96.3

97.7

96.3

93.5

95.6
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ASV310 431 Snodgrassella alvi wkB298 MEIK01000026 93.7

3 DThe ASVs showing < 98.7% homology against the top-hit taxon are bold.

4 2The superscript T means type strains of the bacteria species.
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