Dynamics of the hindgut microbiota of the Japanese honey bees (*Apis cerana japonica*) throughout the overwintering period (#121293)

1

First submission

Guidance from your Editor

Please submit by 20 Jul 2025 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

2 Figure file(s)

2 Table file(s)

72 Raw data file(s)

1 Other file(s)

① Custom checks

DNA data checks

Have you checked the authors <u>data deposition statement</u>?

Can you access the deposited data?

Has the data been deposited correctly?

Is the deposition information noted in the manuscript?

2

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see PeerJ policy).

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

Conclusions are well stated, linked to original research question & limited to supporting results.

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue

2. The next most important item

3. ...

4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Dynamics of the hindgut microbiota of the Japanese honey bees (Apis cerana japonica) throughout the overwintering period

Akihiko Suzuki Corresp., 1, Shumpei Hisamoto 2, Yoshiko Sakamoto 1

Corresponding Author: Akihiko Suzuki Email address: suzuki.akihiko@nies.go.jp

Honey bees play crucial roles as pollinators in both natural agricultural and ecological systems. The role of gut microbiota in the overwinter survival of honey bees is attracting attention. Compared with Western honey bees (Apis mellifera), Eastern honey bees (Apis cerana) are more tolerant to low-temperature stress. This study compared the hindgut microbiota of the Japanese honey bees (Apis cerana japonica), a subspecies of A. cerana, during the overwintering period (December) with that before overwintering (October) and after overwintering (March) to estimate beneficial hindgut bacteria contributing to survival during the overwintering period. Overall, the hindgut microbiota of A. c. japonica was occupied by Actinobacteriota, Bacteroidota, Firmicutes, and Proteobacteria at the phylum level and Apibacter, Bifidobacterium, Bombilactobacillus, Gilliamella, Lactobacillus, and Snodgrassella at the genus level. The hindgut microbiota composition of A. c. japonica was similar to that of A. cerana in other regions, suggesting that phylogeny influenced the composition. Many sequences assigned to the six core genera showed low homology (<98.7%) to type strains of honey bee gut bacteria, suggesting that A. c. japonica harbors novel candidate bacterial species. Comparison of the microbiota composition over the three periods showed that the relative abundance of Bifidobacterium, Bombilactobacillus, and Lactobacillus was higher during overwintering than before overwintering. Our findings highlight changes in the core bacteria of the hindgut microbiota of A. c. japonica during overwintering and also suggest the presence of novel candidate bacterial species. The roles of the bacteria that were increased during the overwintering period require further elucidation.

Açıklama [V1]: Honey bees play crucial roles as pollinators in natural, agricultural, and ecological systems.

Açıklama [V2]: The role of gut microbiota in the overwinter survival of honey bees is gaining attention

Açıklama [V3]: Many sequences assigned to these six core genera showed <98.7% similarity to type strains, indicating potential novel bacterial species.

Açıklama [V4]: The relative abundance of *Bifidobacterium*, *Bombilactobacillus*, and *Lactobacillus* was higher during overwintering than in other periods.

 $^{^{1}}$ National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

² Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano, Tokyo, Japan

1	Article type: Research Article
2	
3	Dynamics of the hindgut microbiota of the Japanese honey bees
4	(Apis cerana japonica) throughout the overwintering period
5	
6	Akihiko Suzuki ¹ , Shumpei Hisamoto ² , Yoshiko Sakamoto ¹
V	¹ National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
8	² Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano, Tokyo,
9	164-8525, Japan
10	
11	Corresponding author: Akihiko Suzuki
12	National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
13	E-mail: brak13072@gmail.com, suzuki.akihiko@nies.go.jp
14	Tel: +81-(0)29-850-2480
15	
16	Running title: Changes in hindgut microbiota of winter honey bees
1V	
18	ORCID ID:
19	Akihiko Suzuki: 0000-0002-3179-2106
20	Shumpei Hisamoto: 0000-0002-7855-7621
21	Yoshiko Sakamoto: 0000-0002-6026-242X
22	

Keywords: hindgut microbiota, honey bees, *Apis cerana japonica*, overwintering

ABSTRACT

- 25 Honey bees play crucial roles as pollinators in both natural agricultural and ecological systems.
- The role of gut microbiota in the overwinter survival of honey bees is attracting attention.
- Compared with Western honey bees (Apis mellifera), Eastern honey bees (Apis cerana) are more
- 28 tolerant to low-temperature stress. This study compared the hindgut microbiota of the Japanese
- 29 honey bees (Apis cerana japonica), a subspecies of A. cerana, during the overwintering period
- 30 (December) with that before overwintering (October) and after overwintering (March) to
- 31 estimate beneficial hindgut bacteria contributing to survival during the overwintering period.
- 32 Overall, the hindgut microbiota of A. c. japonica was occupied by Actinobacteriota,
- 33 Bacteroidota, Firmicutes, and Proteobacteria at the phylum level and Apibacter, Bifidobacterium,
- 34 Bombilactobacillus, Gilliamella, Lactobacillus, and Snodgrassella at the genus level. The
- 35 hindgut microbiota composition of A. c. japonica was similar to that of A. cerana in other
- 36 regions, suggesting that phylogeny influenced the composition. Many sequences assigned to the
- 3V six core genera showed low homology (<98.7%) to type strains of honey bee gut bacteria,
- suggesting that A. c. japonica harbors novel candidate bacterial species. Comparison of the
- 39 microbiota composition over the three periods showed that the relative abundance of
- 40 Bifidobacterium, Bombilactobacillus, and Lactobacillus was higher during overwintering than

- 41 before overwintering. Our findings highlight changes in the core bacteria of the hindgut
- 42 microbiota of A. c. japonica during overwintering and also suggest the presence of novel
- 43 candidate bacterial species. The roles of the bacteria that were increased during the
- 44 overwintering period require further elucidation.

Manuscript to be reviewed

Introduction

- 46 The gut microbiota of honey bees plays a critical role in their health (Raymann & Moran 2018),
- 4V including decomposing dietary compounds (Engel, Martinson & Moran 2012), producing short-
- 48 chain fatty acids (SCFAs) as an energy source (Zheng et al. 2017), degrading potentially toxic
- 49 plant metabolites (Motta et al. 2022), inhibiting the growth of honey bee pathogens (Wu et al.
- 50 2014), and stimulating the immune system (Kwong, Mancenido & Moran 2017; Motta & Moran
- 51 2024). Disruption of the gut microbiota composition due to antibiotic treatment and pesticide
- 52 exposure causes dysbiosis, leading to host mortality (Raymann, Shaffer & Moran 2017; Motta &
- 53 Moran 2024).

5V

- 54 During winter, honey bees survive the severe cold environment in a metabolically and
- 55 physically active state that is essential for ensuring the colony's survival until the following
- spring (Moeller 1977; Doeke, Frazier & Grozinger 2015). Cold stress is a major cause of
 - individual and colony mortality in honey bees and also increases the risk of disease and infection
- outbreaks (Xu et al. 2017). Therefore, the health status of overwintering honey bees is crucial to
 - the health of the entire colony (Doeke, Frazier & Grozinger 2015). During overwintering,
- 60 feeding is essentially limited to food stored within the colony (pollen, bee bread, and honey). To
- 61 cope with the surrounding cold stress, the honey bees must maintain the temperature of the

Açıklama [V5]: Therefore, the health status of overwintering honey bees is critical to the health of the entire colony

Manuscript to be reviewed

63 (Doeke, Frazier & Grozinger 2015). The gut microbiota of overwintering honey bees has been 64 increasingly recognized for its beneficial role in survival during the overwintering period. Most 65 studies have focused on the Western honey bees (Apis mellifera), reporting an increase in gut 66 bacteria abundance during the overwintering period (Kešnerová et al. 2020) along with changes in gut microbiota composition (Bleau et al. 2020; Kešnerová et al. 2020; Liu et al. 2021; Castelli 68 et al. 2022; Li et al. 2022; Brar et al. 2025). These findings suggest that gut bacteria may play 69 crucial roles in energy absorption and immune function, thereby substantially contributing to V0 survival during the overwintering period. V1 The Apis genus is naturally distributed across Asia, Europe, and Africa (Ji 2021). The Western honey bees are widely distributed worldwide, including their native regions of Europe, ٧3 Africa, and the Middle East, while Eastern honey bees (Apis cerana) are found throughout South, Southeast, and East Asia (Ji 2021). Compared with Western honey bees, Eastern honey V5 bees exhibit superior cold tolerance and are more capable of surviving the harsh overwintering ۷6 period (Li et al. 2012; Xu et al. 2017). Considering the beneficial involvement of the gut ٧V microbiota in overwintering honey bees, we hypothesized that the gut microbiota plays a V8 significant role in enabling Eastern honey bees to tolerate cold stress and successfully V9 overwinter. Characterizing the hindgut microbiota of overwintering honey bees will help narrow

colony's outer edge and core by vigorously vibrating their flight muscles to generate heat

Açıklama [V6]: The gut microbiota of overwintering honey bees has been increasingly recognized for its beneficial role in survival during this period.

Açıklama [V7]: Compared to Western honey bees, Eastern honey bees exhibit superior cold tolerance and are better adapted to surviving the harsh overwintering period (Li et al., 2012; Xu et al., 2017)

Açıklama [V8]: In consideration of the advantageous role of the gut microbiota in the overwintering process of honey bees, a hypothesis was formulated proposing its involvement in this phenomenon. It has been demonstrated that this factor plays a significant role in enabling Eastern honey bees to tolerate cold stress and successfully overwinter.

Manuscript to be reviewed

down the candidate bacteria beneficial for survival under cold and harsh environments, providing
novel insights into the symbiotic relationships between honey bees and their hindgut microbiota.

This study focused on the Japanese honey bees (*Apis cerana japonica*), a subspecies of the
Eastern honey bee that is native to Japan. We aimed to develop a comprehensive inventory of the
hindgut microbiota using high-throughput sequencing targeting the V3–V4 region of the
bacterial 16S rRNA gene. We also compared the hindgut microbiota during the overwintering
period, before overwintering, and after overwintering to elucidate the distinctive features of the
hindgut microbiota associated with successful overwintering.

Açıklama [V9]: The aim was to develop a comprehensive inventory of the hindgut microbiota using high-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene.

Açıklama [V10]: In addition, we compared the composition of the hindgut microbiota before, during, and after the overwintering period to identify distinctive microbial features associated with successful overwintering.

89 Materials & Methods

90 Sample collection

88

91

93

95

96

The study samples were collected from four A. c. japonica colonies in Ibaraki, Japan. Two were

92 kept by our laboratory at the National Institute of Environmental Studies in Tsukuba City, and

two by beekeepers in Tsukuba City and Inashiki District, respectively. We sampled 30 foragers

from each colony using a net with clean plastic cups over three periods: October 2022 (before

overwintering, BO group), December 2022 (during overwintering, OW group), and March 2023

(after overwintering, AO group) (Table 1). The total number of samples was 360 (30 honey bees

Açıklama [V11]: Two colonies were maintained by our laboratory at the National Institute of Environmental Studies in Tsukuba City, while the other two were managed by local beekeepers in Tsukuba City and Inashiki District, respectively.

Peerd

Manuscript to be reviewed

per colony × four colonies × three periods). All honey bees were immediately placed on ice after Açıklama [V12]: All samples were collection and stored at 280# until DNA extraction. 98 99 100 **DNA** extraction 101 After thawing the honey bees on ice, they were sterilized by soaking in 70% ethanol for 30 s and 102 washing with ultrapure water for 30 s. The hindguts, including the pylorus, ileum, and rectum, 103 were carefully removed on ice using sterile forceps. Ten hindguts were pooled in 2.0 mL sterile 104 tubes containing TE buffer (10 mmol L²¹ Tris-HCl and 1 mmol L²¹ EDTA-2Na, pH 8.0) with 105 5% (v/v) Triton X-100 (MP Biomedicals, Irvine, CA, USA) and glass beads (1.0 mm diameter). 106 The hindguts were disrupted by three cycles of crushing at 3,200 rpm for 30 s using Beads 10V Crusher µT-12 (Taitec, Saitama, Japan) and 30 s of cooling on ice. The homogenates were 108 centrifuged at 6,000 ×g for 10 min to sediment debris. Total bacterial DNA was purified from Açıklama [V15]: Total bacterial DNA 109 180 ¿l of the resultant supernatant using a Qiagen DNeasy Blood and Tissue kit (Qiagen, Hilden, 110 Germany) per the manufacturer's instructions. The DNA concentration of the 36 samples (three instructions. 111 replicates per colony × four colonies × three sampling periods) was measured using a NanoDrop 112 One spectrophotometer (Thermo Fisher Scientific, MA, USA). 113 114 High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene

immediately placed on ice after collection and stored at -80 °C until DNA extraction.

Açıklama [V13]: After thawing the honey bees on ice, they were surfacesterilized by immersing them in 70% ethanol for 30 seconds, followed by rinsing with ultrapure water for 30 seconds.

Açıklama [V14]: Ten hindguts were pooled into 2.0 mL sterile tubes containing TE buffer (10 mmol L⁻¹ Tris-HCl and 1 mmol L⁻¹ EDTA-2Na, pH 8.0) supplemented with 5% (v/v) Triton X-100 (MP Biomedicals, Irvine, CA, USA) and glass beads (1.0 mm diameter).

was extracted from 180 µL of the resulting supernatant using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer's

120

121

122

123

124

126

128

129

130

Manuscript to be reviewed

The bacterial V3 and V4 regions of the 16S rRNA gene were amplified using a universal primer set; 341f: 5'- ACACTCTTTCCCTACACGACGCTCTTCCGATCT-NNNNN-

11V CCTACGGGNGGCWGCAG-3' and 805r: 5'-

118 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-NNNNN-

119 GACTACHVGGGTATCTAATCC-3', which contain the adapter sequences for the Illumina

library preparation kit and the primers for amplification of V3–V4 regions of the 16S rRNA

gene. Polymerase chain reaction (PCR) was performed using template DNA (5 ng µl-1) with

Blend Taq Plus polymerase (Toyobo, Osaka, Japan) following the manufacturer's instructions.

The PCR cycling conditions were initial denaturation at 94°C for 2 min, followed by 30 cycles of

denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 30 s. The

125 PCR products underwent 1.5% agarose gel electrophoresis at 100 V for 25 min and were stained

with ethidium bromide and visualized under UV light to check for the presence of PCR

12V amplicons. The PCR amplicons were sent to Bioengineering Lab. Co., Ltd. (Kanagawa, Japan)

for sequencing. The amplicons were purified using AMPure XP Beads (Beckman Coulter, Brea,

CA, USA), and the DNA concentrations were measured using a Synergy H1 multimode

microplate reader (Agilent Technologies, Santa Clara, CA, USA) and a QuantiFluor dsDNA

131 System (Promega, Madison, WI, USA). The libraries were constructed using purified amplicons

132 with sample-specific dual indices. After determining the library concentrations as described

Açıklama [V16]: The bacterial V3–V4 hypervariable regions of the 16S rRNA gene were amplified using a universal primer set comprising 34IF (5'-ACACTCTTTCCCTACACGACGCTCTT CCGATCT-NNNN-CCTACGGGGGGCWGCAG-3') and 805R (5'-GTGACTGGAGTTCAGACGTGTGCTCT TCCGATCT NNNNI).

GTGACTGGAGTTCAGACGTGTGCTCT TCCGATCT-NNNN-GACTACHVGGGTATCTAATCC-3). These primers include adapter sequences

3). These primers include adapter sequences compatible with the Illumina library preparation workflow and are specific to the amplification of the bacterial V3–V4 regions.

Açıklama [V17]: "The authors may consider including a final extension step (e.g., 72 °C for 5 minutes) in the PCR cycling protocol. This step is widely applied in 165 rRNA gene amplification to allow complete elongation of PCR products, which could be beneficial for ensuring high-quality amplicons in downstream library preparation and sequencing."

Açıklama [V18]: The resulting PCR amplicons were verified by 1.5% agarose gel electrophoresis at 100 V for 25 min, stained with ethidium bromide, and visualized under UV illumination.

Açıklama [V19]: Library preparation was performed using the purified amplicons with dual-index barcoding to enable sample multiplexing.

Manuscript to be reviewed

above, quality checking was performed using a dsDNA 915 Reagent kit (Agilent Technologies) 133 134 on a Fragment Analyzer System (Agilent Technologies). Each library was pooled at an 135 equimolar concentration and underwent 300 bp paired-end sequencing using MiSeq Reagent Kit 136 v3 (Illumina, San Diego, CA, USA) on a MiSeq benchtop sequencer (Illumina). 13V 138 Data analysis 139 To generate amplicon sequence variants (ASVs), DADA2 ver. 1.16 (Callahan et al. 2016) in Açıklama [V20]: paired-end FASTQ 140 RStudio software ver. 2023.12.0+369 was used for trimming and filtering the forward and 141 reverse fastq read data obtained following MiSeq high-throughput sequencing. Low-quality 142 distributions and primers from each forward and reverse sequence were trimmed using 143 parameters set to truncLen = c(290, 230) and trimLeft = c(17,21), respectively, and then the 144 sequences were filtered using maxN = 0, maxEE = c(2,2), and truncQ = 2 parameters. Next, the 145 forward and reverse reads were merged, after which chimeras and short reads (<400 bp) were 146 discarded. The taxonomic classification of representative ASVs from phylum to genus level was 14V assigned using the SILVA ver. 138.1 prokaryotic SSU database (Quast et al. 2013) as a reference 148 dataset. Before downstream analysis, ASVs that were unclassified at the phylum level and were Açıklama [V21]: non-bacterial groups 149 assigned as nonbacteria (e.g., Chloroplast and Mitochondria) were manually removed. Açıklama [V22]: chloroplasts and

To standardize sequencing depth across samples, abundance-based read resampling was

150

Manuscript to be reviewed

performed using the *rrarefy* function of the vegan package ver. 2.6.4 (Oksanen et al. 2023), 151 Açıklama [V23]: among all samples 152 based on the minimum read count among samples. Rarefaction curves were generated using the 153 rarecurve function of the vegan package and the ggplot2 package ver. 3.4.2 (Wickham 2016). 154 The Coverage function in the entropart package ver. 1.6.12 (Marcon & Hérault 2015) was used 155 to calculate coverage and evaluate whether the sequencing depth was sufficient to fully represent Açıklama [V24]: before and after the bacterial communities in each sample before and after standardization. After pooling ASVs at 156 15V the lowest taxonomic level (bacterial genus), the bacterial community composition at the phylum 158 and genus levels was visualized for each sample as bar plots using ggplot2. Taxa with a relative Açıklama [V25]: and represented as 159 abundance of <1% across all samples were grouped as "Others." 160 Bacterial genera with a relative abundance >1% across all samples were defined as the Açıklama [V26]: Apis cerana japonica 161 core hindgut bacteria of A. c. japonica. All ASVs assigned to these core genera underwent 162 similarity searches against the bacterial 16S rRNA gene sequence database in EzBioCloud (Yoon 163 et al. 2017) to identify the closest related species. 164 We generated a non-metric multidimensional scaling (NMDS) plots based on the Bray-165 Curtis dissimilarity index using the *metaMDS* function in vegan and ggplot2 to visualize the β -Açıklama [V27]: Non-metric 166 diversity of hindgut microbiota at the ASV level for the three periods. multidimensional scaling (NMDS) plots were generated based on Bray-Curtis dissimilarity using the metaMDS function from the vegan package and visualized 16V using ggplot2, in order to assess the β diversity of the hindgut microbiota at the ASV level across the three time periods. 168 Statistical analysis

Manuscript to be reviewed

To detect differences in the hindgut microbial compositions among the three periods, we 169 Açıklama [V28]: permutational 1V0 multivariate analysis of variance (PERMANOVA) performed pairwise comparisons using permutational multivariate analysis of variance based on 1V1 the Bray-Curtis dissimilarity index with 9,999 permutations using the pairwise.adonis function 1V2 of the pairwiseAdonis package ver. 0.4.1 (Martinez 2020). 1V3 To investigate the effect of the three sampling periods on the abundance of the core 1V4 bacterial genera, we performed a generalized linear mixed model (GLMM) analysis assuming a Açıklama [V29]: To investigate the 1V5 Poisson distribution and log link function using the glmer function of the lme4 package ver. effect of sampling period on the abundance of core bacterial genera, a generalized linear mixed model (GLMM) analysis was conducted, assuming a Poisson 1V6 1.1.32 (Bates et al. 2015). The read count of each core bacterial genus was set as the response distribution with a log link function, using the glmer function from the lme4 package (v1.1-32; Bates et al., 2015). 1VV variable, with sampling period as a fixed effect and colony as a random effect. P-values < 0.05 1V8 were considered statistically significant for all comparisons. **Results** 1V9 180 Sequence dataset overview Açıklama [V30]: generated 181 The high-throughput sequencing yielded 1,381,026 raw reads (mean \pm SD: 38,362 \pm 5,199) from 182 all samples. After trimming and filtering, 1,098,689 high-quality reads (mean \pm SD: 30,519 \pm 183 3,678) remained (Table S1), clustering into 260 ASVs (mean \pm SD: 59 \pm 10). Next, all 184 nonbacterial reads were removed from all samples, and a read count-based cutoff was applied to Açıklama [V31]: "resulting in a final 185 match the minimum read count (21,808), resulting in a final set of 241 ASVs (mean ± SD: 54 ±

Manuscript to be reviewed

8). The rarefaction curves for each sample plateaued at the minimum read depth (Figure S1), and 186 the estimated coverage was >99% for all samples (Table S2), indicating that the sequencing 18V 188 depth was sufficient to identify most of the hindgut bacteria in the study samples. 189 190 Hindgut microbiota composition 191 The composition at the phylum and genus levels for each period were described for those taxa 192 with a relative abundance >1% across all samples, while those with a relative abundance <1% 193 were grouped as "Others" (Figure 1). At the phylum level, the hindgut microbiota of A. c. 194 japonica was dominated by Actinobacteriota (0.4%–13.1%), Bacteroidota (11.7%–36.3%), 195 Firmicutes (9.2%-33.9%), and Proteobacteria (35.2%-68.6%), collectively accounting for 196 >99.9% of the relative abundance. At the genus level, six bacterial genera, namely Apibacter 19V (11.6%–36.3%), Bifidobacterium (0.2%–13.1%), Bombilactobacillus (0.3%–13.6%), Gilliamella 198 (26.6%–59.8%), Lactobacillus (6.9%–28.2%), and Snodgrassella (0.7%–22.4%) predominated, 199 accounting for >96% of the hindgut microbiota in all three periods and all samples. The relative 200 abundance of "Unclassified" and "Others" was 0.0%-5.4% and 0.0%-12.1%, respectively. The 201 details of relative abundance at the phylum and genus levels are listed in Tables S3–S6. 202 Further examination of the six major bacterial genera revealed that, except for 203 Bifidobacterium, many ASVs of the core genera exhibited sequence similarities with type strains

Açıklama [V32]: exceeded 99%"

Açıklama [V33]: Since three periods are mentioned, it is not specified whether there is a statistical difference (e.g. ANOVA, Kruskal-Wallis or PERMANOVA). This analysis may be in another section, but it would be useful to provide a brief reference

Açıklama [V34]: "The distinction between 'Unclassified' and 'Others' is scientific, but it can be expressed more clearly for readers: Unclassified" indicates sequences not assigned at the genus level; "Others" includes genera with <1% abundance across all samples

Açıklama [V35]: "Were these values computed after removing chloroplast/mitochondrial reads and unclassified ASVs?"

Açıklama [V36]: Further examination of the six major bacterial genera revealed that, except for Biffdobacterium, many ASVs assigned to the core genera exhibited sequence similarities with type strains in the EzBioCloud database (Yoon et al., 2017) below the 98.7% threshold, which is commonly used to distinguish closely related species (Chun et al., 2018; Table 2).

Manuscript to be reviewed

204	in the EzBioCloud database (Yoon et al. 2017) below the threshold of 98.7% suggested for		
205	distinguishing closely related species from type strains (Chun et al. 2018) (Table 2). Notably,		
206	90% (27/30) of the ASVs assigned to Gilliamella showed this pattern, followed by Snodgrassella		
20V	(65%, 13/20), Bombilactobacillus (60%, 3/5), Apibacter (53.8%, 7/13), and Lactobacillus		
208	(41.6%, 5/12), suggesting the presence of potential novel species.	/	Açıklama [\ bacterial speci microbiota of
209	The result of the NMDS plot of β -diversity of the hindgut microbiota at the ASVs level		
210	based on Bray-Curtis dissimilarity is shown in Figure 2. Pairwise comparisons among three		
211	periods revealed that the hindgut microbiota composition only differed significantly only		
212	between BO group and OW group ($F = 3.037$, $R^2 = 0.121$, $p = 0.029$, Table S7).		Açıklama [V among the thr a significant d microbiota co
213			BO and OW g p = 0.029; Tab
214	Comparison of the core genera among the three periods		
215	The GLMM analysis revealed that the OW group had a significant positive effect on the read		
216	counts of Bifidobacterium, Bombilactobacillus, and Lactobacillus (coefficient: 0.977, 1.036, and		Açıklama [\
21V	0.320; 95% CI: $0.237-1.716$, $0.138-1.933$, and $0.131-0.509$; $p=0.009$, 0.024 , and 0.001 ,		
218	respectively; Table S8).		
218219	respectively; Table S8).		
	respectively; Table S8). Data availability		
219			

Açıklama [V37]: potentially novel bacterial species within the hindgut microbiota of *A. cerana japonica*.

Açıklama [V38]: Pairwise comparisons among the three sampling periods revealed a significant difference in hindgut microbiota composition only between the BO and OW groups (F = 3.037, $R^2 = 0.121$, p = 0.029; Table S7).

Açıklama [V39]: coefficients

PeerJ Manuscript to be reviewed 222 Read Archive (accession numbers: DRR685263-DRR685298 for DRA Run and PRJDB20791 223 for BioProject). All scripts and datasets are deposited to figshare under DOI: 224 10.6084/m9.figshare.29396408. 225 226 **Discussion** 22V Açıklama [V40]: Apis cerana japonica This study revealed that the hindgut microbiota of A. c. japonica was dominated by four phyla: 228 Actinobacteriota, Bacteroidota, Firmicutes, and Proteobacteria, and six core bacterial genera: 229 Apibacter, Bifidobacterium, Bombilactobacillus, Gilliamella, Lactobacillus, and Snodgrassella. 230 **Açıklama [V41]:** This finding is consistent with previous studies 231 This is consistent with the results of previous studies on the gut microbiota of honey bees 232 (Kwong et al. 2017; Dong et al. 2020). In contrast, compared with the core gut microbiota of A. 233 mellifera, Apibacter is more abundant in Asian honey bee species, such as A. cerana, A. dorsata, 234 and A. andreniformis (Kwong & Moran 2016; Kwong et al. 2017; Duong et al. 2020; Ellegaard et al. 2020; Khan et al. 2023). The hindgut microbiota of A. c. japonica showed a similar trend at Açıklama [V42]: Apis cerana japonica 235 the genus level, suggesting that host phylogeny influenced microbial community structure. 236 **Açıklama [V43]:** amplicon sequence variants (ASVs) 23V However, the identification of ASVs with similarities lower than the threshold for distinguishing 238 closely related species suggests the presence of many potentially novel bacterial species, despite

PeerJ reviewing PDF | (2025:06:121293:0:1:NEW 7 Jul 2025)

239	their genus-level similarity. Further studies involving bacterial isolation, biochemical
240	characterization, and genome analysis are warranted to elucidate the taxonomy and function of
241	these candidate novel bacteria.
242	The hindgut microbiota composition of A. c. japonica in the OW group differed
243	significantly from that of the BO group. Notably, the mean relative abundance of
244	Bifidobacterium, Bombilactobacillus, and Lactobacillus in OW group was higher than that in BO
245	group. These three core bacterial genera are known to produce SCFAs from pollen-derived
246	polysaccharides and nectar-derived glucose (Zheng et al. 2017; Zheng et al. 2019). Among the
24V	SCFAs derived from honey bee gut bacteria, butyrate is absorbed into the hemolymph via the
248	ileum or rectum and is therefore considered an important energy source for thermogenesis to
249	maintain hive temperature during the overwintering period (Den Besten et al. 2013; Zheng et al.
250	2017). Moreover, genera Bifidobacterium and Lactobacillus contribute substantially to infection
251	control and immune regulation in honey bees through mechanisms such as antimicrobial activity
252	against pathogens (Wu et al. 2013) and upregulating antimicrobial peptide expression (Daisley et
253	al. 2020). Therefore, the genus-level increase in Bifidobacterium, Bombilactobacillus, and
254	Lactobacillus in the OW group may play a beneficial role in the overwintering of honey bees in
255	terms of thermogenesis and immune activation. Further studies quantifying SCFA levels in the
256	gut and the expression of genes related to the immune system during the overwintering period

258

259

260

261

262

263

264

265

266

26V

268

269

2V0

2V1

2V2

2V3

2V4

Manuscript to be reviewed

25V are necessary to clarify the functional roles of these gut bacteria in successful overwintering.

Açıklama [V44]: Apis cerana japonica

The observed compositional changes in the hindgut microbiota of A. c. japonica in the overwintering period are intriguing. A possible contributing factor is the difference in pollen and nectar sources consumed by honey bees before and during overwintering period. Honey bees forage across a wide temperature range (10°C-40°C) (Abou-Shaara et al. 2017), but during the overwintering period, when temperatures fall below 10°C, they rarely leave the hive to forage (Joshi & Joshi 2010). Consequently, honey bees are more likely to consume stored pollen and honey during overwintering period. Furthermore, the consumption of aged or stored pollen and honey influences gut microbiota composition (Maes et al. 2016). In our study, although daily maximum temperatures exceeded 10°C on all sampling days before and after overwintering period, only one-third of the days during the overwintering period reached this threshold (Japan Meteorological Agency 2025). Another factor that may influence hindgut microbiota is variations in hive temperature. Typically, the hive temperature is maintained at 33°C-35.5°C (Abou-Shaara et al. 2017). In A. c. japonica, the average winter hive temperature is 30.7°C, while the average temperature before and after winter is 34.3°C (Akimoto 2000). This temperature fluctuation may affect bacterial growth rates, thereby altering microbiota composition (Ludvigsen et al. 2015; Kešnerová et al. 2017).

Manuscript to be reviewed

2V5 Conclusions

2V6	This study on the hindgut microbiota of A. c. japonica revealed the influence of phylogeny on
2VV	microbiota composition, the presence of potentially novel species, and distinctive compositional
2V8	changes during the overwintering period. The biochemical properties of the genera that increased
2V9	during overwintering period (i.e., genera Bifidobacterium, Bombilactobacillus, and
280	Lactobacillus) suggest that these changes supply energy for thermogenesis and activate the host
281	immune system. Further surveys in other regions with different dietary environments and studies
282	focusing on elucidating the functional roles of hindgut microbiota during overwintering and their
283	symbiotic relationship with host health are warranted.

284	References
285	Abou-Shaara H, Owayss AA, Ibrahim Y, and Basuny N. 2017. A review of impacts of temperature
286	and relative humidity on various activities of honey bees. <i>Insectes Sociaux</i> 64 :455-463.
28V	https://doi.org/10.1007/s00040-017-0573-8.
288	Akimoto T . 2000. Winter temperature in the exposed nest of Japanese honey bee, <i>Apis cerana japonica</i> .
289	Honeybee Science 21:31-34 (In Japanese with English Abstract).
290	Bates D, Mächler M, Bolker B, and Walker S. 2015. Fitting linear mixed-effects models using lme4.
291	Journal of Statistical Software 67:1-48. 10.18637/jss.v067.i01.
292	Bleau N, Bouslama S, Giovenazzo P, and Derome N. 2020. Dynamics of the honeybee (Apis mellifera)
293	gut microbiota throughout the overwintering period in Canada. <i>Microorganisms</i> 8:1146.
294	https://doi.org/10.3390/microorganisms8081146.
295	Brar G, Ngor L, McFrederick QS, Torson AS, Rajamohan A, Rinehart J, Singh P, and Bowsher
296	JH . 2025. High abundance of lactobacilli in the gut microbiome of honey bees during winter.
29V	Scientific Reports 15:7409. https://doi.org/10.1038/s41598-025-90763-0.
298	Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, and Holmes SP. 2016. DADA2:
299	High-resolution sample inference from Illumina amplicon data. <i>Nature Methods</i> 13 :581-583.
300	https://doi.org/10.1038/nmeth.3869.

301	Castelli L, Branchiccela B, Romero H, Zunino P, and Antúnez K. 2022. Seasonal dynamics of the
302	honey bee gut microbiota in colonies under subtropical climate: Seasonal dynamics of honey bee
303	gut microbiota. <i>Microbial Ecology</i> 83 :492-500. https://doi.org/10.1007/s00248-021-01756-1.
304	Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu X-W,
305	and De Meyer S. 2018. Proposed minimal standards for the use of genome data for the taxonomy
306	of prokaryotes. International Journal of Systematic and Evolutionary Microbiology 68 :461-466.
30V	https://doi.org/10.1099/ijsem.0.002516.
308	Daisley BA, Pitek AP, Chmiel JA, Gibbons S, Chernyshova AM, Al KF, Faragalla KM, Burton JP,
309	Thompson GJ, and Reid G. 2020. Lactobacillus spp. attenuate antibiotic-induced immune and
310	microbiota dysregulation in honey bees. Communications Biology 3:534.
311	https://doi.org/10.1038/s42003-020-01259-8.
312	Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud D-J, and Bakker BM. 2013. The
313	role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy
314	metabolism. <i>Journal of Lipid Research</i> 54 :2325-2340. 10.1194/jlr.R036012.
315	Doeke MA, Frazier M, and Grozinger CM . 2015. Overwintering honey bees: biology and management.
316	Current opinion in insect science 10:185-193. https://doi.org/10.1016/j.cois.2015.05.014.
31V	Dong Z-X, Li H-Y, Chen Y-F, Wang F, Deng X-Y, Lin L-B, Zhang Q-L, Li J-L, and Guo J. 2020.
318	Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different

319	developmental stages. Microbiological Research 231:126370.
320	https://doi.org/10.1016/j.micres.2019.126370.
321	Duong BTT, Lien NTK, Thu HT, Hoa NT, Lanh PT, Yun B-R, Yoo M-S, Cho YS, and Van Quyen
322	D . 2020. Investigation of the gut microbiome of <i>Apis cerana</i> honeybees from Vietnam.
323	Biotechnology Letters 42:2309-2317. https://doi.org/10.1007/s10529-020-02948-4.
324	Ellegaard KM, Suenami S, Miyazaki R, and Engel P. 2020. Vast differences in strain-level diversity in
325	the gut microbiota of two closely related honey bee species. Current Biology 30:2520-2531.
326	10.1016/j.cub.2020.04.070.
32V	Engel P, Martinson VG, and Moran NA. 2012. Functional diversity within the simple gut microbiota of
328	the honey bee. Proceedings of the National Academy of Sciences 109:11002-11007.
329	https://doi.org/10.1073/pnas.1202970109.
330	Japan Meteorological Agency. 2025. Past weather data for Tsukuba city, Ibaraki, Japan. Available at
331	https://www.data.jma.go.jp/stats/etrn/index.php?prec_no=40█_no=47646&year=&month
332	= &day = &view = (accessed 2024-12-14).
333	Ji Y . 2021. The geographical origin, refugia, and diversification of honey bees (<i>Apis</i> spp.) based on
334	biogeography and niche modeling. Apidologie 52:367-377. https://doi.org/10.1007/s13592-020-
335	00826-6.
336	Joshi NC, and Joshi P . 2010. Foraging behaviour of <i>Apis</i> spp. on apple flowers in a subtropical

33V	environment. New York Science Journal 3:71-76.
338	Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, and Engel P. 2020. Gut microbiota structure
339	differs between honeybees in winter and summer. <i>The ISME journal</i> 14 :801-814.
340	https://doi.org/10.1038/s41396-019-0568-8.
341	Kešnerová L, Mars RA, Ellegaard KM, Troilo M, Sauer U, and Engel P. 2017. Disentangling
342	metabolic functions of bacteria in the honey bee gut. <i>PLoS Biology</i> 15 :e2003467.
343	https://doi.org/10.1371/journal.pbio.2003467.
344	Khan KA, Ganeshprasad D, Sachin H, Shouche YS, Ghramh HA, and Sneharani A. 2023. Gut
345	microbial diversity in Apis cerana indica and Apis florea colonies: a comparative study. Frontiers
346	in Veterinary Science 10:1149876. https://doi.org/10.3389/fvets.2023.1149876.
34V	Kwong WK, Mancenido AL, and Moran NA. 2017. Immune system stimulation by the native gut
348	microbiota of honey bees. Royal Society open science 4:170003.
349	https://doi.org/10.1098/rsos.170003.
350	Kwong WK, Medina LA, Koch H, Sing K-W, Soh EJY, Ascher JS, Jaffé R, and Moran NA. 2017.
351	Dynamic microbiome evolution in social bees. <i>Science advances</i> 3 :e1600513.
352	10.1126/sciadv.1600513.
353	Kwong WK, and Moran NA. 2016. Gut microbial communities of social bees. <i>Nature Reviews</i>
354	Microbiology 14:374-384. https://doi.org/10.1038/nrmicro.2016.43.

355	Li C, Tang M, Li X, and Zhou X. 2022. Community dynamics in structure and function of honey bee
356	gut bacteria in response to winter dietary shift. mBio 13:e01131-01122.
35V	https://doi.org/10.1128/mbio.01131-22.
358	Li J, Qin H, Wu J, Sadd BM, Wang X, Evans JD, Peng W, and Chen Y. 2012. The prevalence of
359	parasites and pathogens in Asian honeybees <i>Apis cerana</i> in China. <i>PloS one</i> 7 :e47955.
360	https://doi.org/10.1371/journal.pone.0047955.
361	Liu P, Zhu Y, Ye L, Shi T, Li L, Cao H, and Yu L. 2021. Overwintering honeybees maintained
362	dynamic and stable intestinal bacteria. Scientific Reports 11:22233.
363	https://doi.org/10.1038/s41598-021-01204-7.
364	Ludvigsen J, Rangberg A, Avershina E, Sekelja M, Kreibich C, Amdam G, and Rudi K. 2015.
365	Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a
366	season. Microbes and Environments 30:235-244. https://doi.org/10.1264/jsme2.ME15019.
36V	Maes PW, Rodrigues PA, Oliver R, Mott BM, and Anderson KE. 2016. Diet0related gut bacterial
368	dysbiosis correlates with impaired development, increased mortality and Nosema disease in the
369	honeybee (<i>Apis mellifera</i>). <i>Molecular Ecology</i> 25 :5439-5450. https://doi.org/10.1111/mec.13862.
3V0	Marcon E, and Hérault B. 2015. entropart: An R package to measure and partition diversity. <i>Journal of</i>
3V1	Statistical Software 67:1-26. 10.18637/jss.v067.i08.
3V2	Martinez A, P. 2020. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version

3V3	0.4. Available at https://github.com/pmartinezarbizu/pairwiseAdonis.
3V4	Moeller F. 1977. Overwintering of honey bee colonies. Production Research Report, United States
3V5	Department of Agriculture:16 pp.
3V6	Motta EV, Gage A, Smith TE, Blake KJ, Kwong WK, Riddington IM, and Moran N. 2022. Host-
3VV	microbiome metabolism of a plant toxin in bees. Elife 11:e82595.
3V8	https://doi.org/10.7554/eLife.82595.
3V9	Motta EV, and Moran NA. 2024. The honeybee microbiota and its impact on health and disease. <i>Nature</i>
380	Reviews Microbiology 22:122-137. https://doi.org/10.1038/s41579-023-00990-3.
381	Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'hara R, Solymos P, Stevens
382	M, and Szoecs E. 2023. vegan: Community Ecology Package. R package version 2.6-4. 2022.
383	Github.
384	Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, and Glöckner FO. 2013.
385	The SILVA ribosomal RNA gene database project: improved data processing and web-based
386	tools. Nucleic Acids Research 41:590-596. https://doi.org/10.1093/nar/gks1219.
38V	Raymann K, and Moran NA. 2018. The role of the gut microbiome in health and disease of adult honey
388	bee workers. Current opinion in insect science 26:97-104.
389	https://doi.org/10.1016/j.cois.2018.02.012.
390	Raymann K, Shaffer Z, and Moran NA. 2017. Antibiotic exposure perturbs the gut microbiota and

391	elevates mortality in honeybees. <i>PLoS Biology</i> 15 :e2001861.
392	https://doi.org/10.1371/journal.pbio.2001861.
393	Wickham H. 2016. Programming with ggplot2. Ggplot2: elegant graphics for data analysis: Springer,
394	241-253.
395	Wu M, Sugimura Y, Iwata K, Takaya N, Takamatsu D, Kobayashi M, Taylor D, Kimura K, and
396	Yoshiyama M. 2014. Inhibitory effect of gut bacteria from the Japanese honey bee, Apis cerana
39V	japonica, against Melissococcus plutonius, the causal agent of European foulbrood disease.
398	Journal of Insect Science 14:129. https://doi.org/10.1093/jis/14.1.129.
399	Wu M, Sugimura Y, Takaya N, Takamatsu D, Kobayashi M, Taylor D, and Yoshiyama M. 2013.
100	Characterization of bifidobacteria in the digestive tract of the Japanese honeybee, Apis cerana
101	japonica. Journal of Invertebrate Pathology 112:88-93. https://doi.org/10.1016/j.jip.2012.09.005.
102	Xu K, Niu Q, Zhao H, Du Y, and Jiang Y. 2017. Transcriptomic analysis to uncover genes affecting
103	cold resistance in the Chinese honey bee (Apis cerana cerana). PloS one 12:e0179922.
104	https://doi.org/10.1371/journal.pone.0179922.
105	Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, and Chun J. 2017. Introducing EzBioCloud: a
106	taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies.
10V	International Journal of Systematic and Evolutionary Microbiology 67:1613-1617.
108	https://doi.org/10.1099/ijsem.0.001755.

109	Zheng H, Perreau J, Powell JE, Han B, Zhang Z, Kwong WK, Tringe SG, and Moran NA. 2019.
110	Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proceedings of
111	the National Academy of Sciences 116:25909-25916. https://doi.org/10.1073/pnas.1916224116.
112	Zheng H, Powell JE, Steele MI, Dietrich C, and Moran NA. 2017. Honeybee gut microbiota promotes
113	host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy
114	of Sciences 114:4775-4780. https://doi.org/10.1073/pnas.1701819114.

Manuscript to be reviewed

415 A	ACKNOWI	LEDGEN	MENTS
-------	---------	--------	-------

416 We thank the three beekeepers who provided honey bees for conducting this study.

41V

418 Author Contributions

419

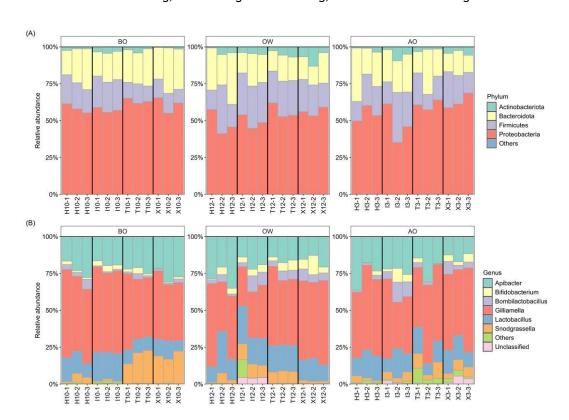
- 420 Akihiko Suzuki: Conceived and designed the experiments; performed the experiments; analyzed
- 421 the data; acquired funding; prepared figures and/or tables; authored or reviewed drafts of the
- 422 paper; approved the final draft.
- 423 Shumpei Hisamoto: Analyzed the data; reviewed and edited the manuscript; approved the final
- 424 draft.
- 425 Yoshiko Sakamoto: Conceived and designed the experiments; supervised the project; reviewed
- and edited the manuscript; approved the final draft.

42V	Table legends
428	Table 1. Detailed information on sampling in this study.
429	Table 2. List of BLAST results against the EzBioCloud 16S rRNA database of ASVs assigned to the six
430	core bacteria genera in the hindgut of the Japanese honey bees (Apis cerana japonica)
431	
432	
433	
434	Figure legends
757	i gare regenus
435	Figure 1. Hindgut microbiota composition of the Japanese honey bees (<i>Apis cerana japonica</i>) sampled for
436	each period at the (A) phylum and (B) genus levels. BO: before overwintering, OW: during overwintering,
43V	AO: after overwintering.
438	
439	Figure 2. Nonmetric multidimensional scaling (NMDS) ordination plots of hindgut microbiota of the
440	Japanese honey bees (Apis cerana japonica) at three sampling periods. The plot was generated with the
441	Bray-Curtis dissimilarity index based on the ASVs obtained from each sample. BO: before overwintering,
442	OW: during overwintering, and AO: after overwintering.
443	

444	Supporting information
445	Table S1. Number of reads obtained after filtering and trimming each sample using DADA2.
446	Table S2. Number of coverages after rarefaction at the minimum lead (21,808) for each sample.
44V	Table S3. Relative abundance of bacterial phyla in the hindgut microbiota of the Japanese honey bees (<i>Apis</i>
448	cerana japonica) in all samples.
449	Table S4. Relative abundance of bacterial phyla in the hindgut microbiota of the Japanese honey bees (<i>Apis</i>
450	cerana japonica) at each of the three sampling periods.
451	Table S5. Relative abundance of bacterial genera in the hindgut microbiota of the Japanese honey bees (<i>Apis</i>
452	cerana japonica) in all samples.
453	Table S6. Relative abundance of bacterial genera in the hindgut microbiota of the Japanese honey bees (<i>Apis</i>
454	cerana japonica) at each of the three sampling periods.
455	Table S7. Results of pairwise permutational multivariate analysis of variance of the hindgut microbiota in the
456	Japanese honey bees (Apis cerana japonica) from four colonies during three sampling periods.
45V	Table S8. Generalized linear mixed model analysis. The number of reads of the six core bacterial genera in the
458	hindgut microbiota of the Japanese honey bees (Apis cerana japonica) was used as the objective variable, the
459	three time periods as explanatory variables, and the colony as a random effect. BO group is set as a reference
460	group.

- Figure S1. Rarefaction curves of the microbiota in the hindgut of the Japanese honey bees (Apis cerana
- 462 japonica) before (A) and after (B) setting the minimal sequence read (21,808) from the raw read dataset. The
- 463 black dotted line in panel (B) shows 21,808 leads as the rarefaction point. The letter in each sample indicates
- the colony ID, and the number indicates the month of sample collection.

Manuscript to be reviewed


465

466

Figure 1

Hindgut microbiota composition of the Japanese honey bees (*Apis cerana japonica*) sampled for each period at the (A) phylum and (B) genus levels.

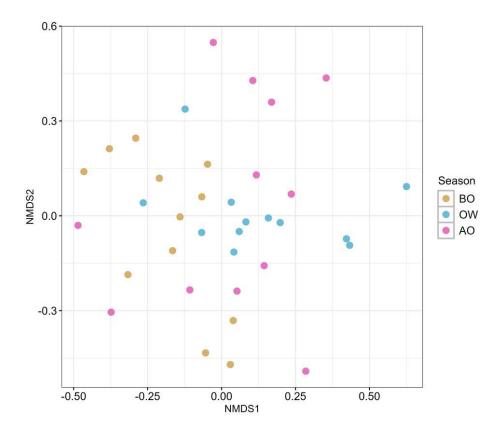

BO: before overwintering, OW: during overwintering, AO: after overwintering.

Figure 2

Nonmetric multidimensional scaling (NMDS) ordination plots of hindgut microbiota of the Japanese honey bees (*Apis cerana japonica*) at three sampling periods.

The plot was generated with the Bray3Curtis dissimilarity index based on the ASVs obtained from each sample. BO: before overwintering, OW: during overwintering, and AO: after overwintering.

Manuscript to be reviewed

Table 1(on next page)

Detailed information on sampling in this study.

1 **Table 1.** Detailed information on sampling in this study.

Period 1)	Sampling date	Colony ID	Location ²⁾	DNA sample ID
ВО	10/19/2022	Н	Tsukuba city, Ibaraki, Japan	H10-1, H10-2, H10-3
	10/27/2022	I	Inashiki district, Ibaraki, Japan	I10-1, I10-2, I10-3
	10/20/2022	T	NIES	T10-1, T10-2, T10-3
	10/20/2022	X	NIES	X10-1, X10-2, X10-3
OW	12/19/2022	Н	Tsukuba city, Ibaraki, Japan	H12-1, H12-2. H12-3
	12/18/2022	I	Inashiki district, Ibaraki, Japan	I12-1, I12-2. I12-3
	12/19/2022	T	NIES	T12-1, T12-2. T12-3
	12/19/2022	X	NIES	X12-1, X12-2. X12-3
AO	3/15/2023	Н	Tsukuba city, Ibaraki, Japan	H3-1, H3-2, H3-3
	3/16/2023	I	Inashiki district, Ibaraki, Japan	I3-1, I3-2, I3-3
	3/7/2023	T	NIES	T3-1, T3-2, T3-3
	3/7/2023	X	NIES	X3-1, X3-2, X3-3

^{2 &}lt;sup>1)</sup> Before overwintering: BO, during overwintering: OW, after overwintering: AO.

4

³ NIES: National Institute for Environmental Studies (Tsukuba, Ibaraki, Japan).

Manuscript to be reviewed

Table 2(on next page)

List of BLAST results against the EzBioCloud 16S rRNA database of ASVs assigned to the six core bacteria genera in the hindgut of the Japanese honey bees (*Apis cerana japonica*).

1 Table 2. List of BLAST results against the EzBioCloud 16S rRNA database of ASVs assigned to the six

core bacteria genera in the hindgut of the Japanese honey bees (Apis cerana japonica)

			1 1	<i>0</i> 1	
Assigned genus	ASV ID 1)	Length	Top-hit taxon (strain level) 2)	Accession ID	Similarity
		(bp)			(%)
Apibacter	ASV1	423	Apibacter sp. B3924	WINM01000002	100
	ASV16	423	Apibacter mensalis R-53146 ^T	LIVM01000008	99.5
			Apibacter sp. B3924	WINM01000002	99.5
	ASV9	423	Apibacter mensalis R-53146 ^T	LIVM01000008	99.8
			Apibacter sp. B3924	WINM01000002	99.8
	ASV32	423	Apibacter sp. B3924	WINM01000002	99.8
	ASV33	423	Apibacter mensalis R-53146 ^T	LIVM01000008	100
	ASV118	423	Apibacter sp. B3924	WINM01000002	96.2
	ASV76	426	Apibacter sp. B3924	WINM01000002	97.9
	ASV133	409	Apibacter mensalis R-53146 ^T	LIVM01000008	91.0
			Apibacter sp. B3924	WINM01000002	91.0
	ASV151	425	Apibacter sp. B3924	WINM01000002	97.6
	ASV254	423	Apibacter sp. B3924	WINM01000002	90.6
	ASV280	423	Apibacter sp. B3924	WINM01000002	91.0
	ASV174	431	Apibacter mensalis R-53146 ^T	LIVM01000008	90.5
	ASV279	422	Apibacter sp. B3924	WINM01000002	99.6
Bifidobacterium	ASV51	408	Bifidobacterium indicum JCM 1302^{T}	LC071807	100
	ASV11	410	Bifidobacterium sp. 7101	AWUN01000009	100
Bombilactobacillus	ASV34	432	$Bombilac to bacillus\ mellifer\ Bin 4N^T$	JX099543	99.8
	ASV47	431	Uncultured Firmicutes bacterium	HM215046	98.1
			D08062C1		
	ASV169	430	Uncultured Firmicutes bacterium	HM215046	89.4
			D08062C1		
	ASV12	429	Bombilactobacillus mellis Hon2 ^T	KQ033880	100
	ASV23	431	Uncultured Firmicutes bacterium	HM215046	98.4
			D08062C1		
Lactobacillus	ASV6	428	Lactobacillus panisapium Bb 2-3 ^T	KX447147	100

Gilliamella

ASV10	430	Lactobacillus panisapium Bb 2-3 ^T	KX447147	99.8
ASV15	428	Lactobacillus panisapium Bb 2-3 ^T	KX447147	99.5
ASV24	429	${\it Lactobacillus melliventris Hma8N^T}$	JX099551	99.5
ASV90	429	Lactobacillus panisapium Bb 2-3 ^T	KX447147	98.4
ASV135	427	Lactobacillus panisapium Bb 2-3 ^T	KX447147	99.5
ASV164	428	Lactobacillus panisapium Bb 2-3 ^T	KX447147	95.6
ASV129	430	Lactobacillus huangpiensis F306-1 ^T	LC597580	99.8
ASV267	429	Lactobacillus panisapium Bb 2-3 ^T	KX447147	99.3
ASV271	427	Lactobacillus panisapium Bb 2-3 ^T	KX447147	96.7
ASV292	428	Lactobacillus panisapium Bb 2-3 ^T	KX447147	93.7
ASV185	428	Lactobacillus panisapium Bb 2-3 ^T	KX447147	97.9
ASV2	428	Gilliamella apicola wkB11	JFON01000004	97.4
ASV3	428	Gilliamella apis NO3 ^T	NASD01000045	100
ASV4	428	Gilliamella apicola wkB7	CM004509	98.6
ASV5	428	Gilliamella apis NO3 ^T	NASD01000045	96.7
ASV8	428	Gilliamella apicola wkB11	JFON01000004	97.7
ASV13	430	Gilliamella apis NO3 ^T	NASD01000045	99.8
ASV14	428	Gilliamella apicola wkB7	CM004509	98.4
ASV22	429	Gilliamella apicola wkB7	CM004509	98.4
ASV28	429	Gilliamella apicola wkB7	CM004509	98.4
ASV30	431	Gilliamella apicola wkB11	JFON01000004	97.5
ASV39	429	Gilliamella apicola wkB11	JFON01000004	97.4
ASV41	427	Gilliamella apicola wkB7	CM004509	98.4
ASV58	427	Gilliamella apicola App2-1	LZGR01000055	99.5
ASV71	428	Gilliamella apicola wkB7	CM004509	98.4
ASV73	429	Gilliamella apicola wkB11	JFON01000004	95.3
ASV96	428	Gilliamella apicola wkB11	JFON01000004	94.0
ASV100	432	Gilliamella bombi LMG 29879 ^T	FMWS01000047	95.4
ASV102	431	Gilliamella apicola wkB7	CM004509	96.5
ASV104	432	Gilliamella apis NO3 ^T	NASD01000045	97.7
ASV109	428	Gilliamella apicola wkB11	JFON01000004	96.5

	ASV138	428	Gilliamella apicola wkB7	CM004509	96.0
	ASV149	428	Gilliamella apicola wkB7	CM004509	96.0
	ASV162	427	Gilliamella apicola wkB7	CM004509	98.1
	ASV170	432	Gilliamella apicola wkB11	JFON01000004	95.4
	ASV177	429	Gilliamella apicola wkB11	JFON01000004	97.2
	ASV190	428	Gilliamella apicola wkB11	JFON01000004	93.7
	ASV207	428	Gilliamella apicola wkB7	CM004509	96.3
	ASV231	428	Gilliamella apicola wkB7	CM004509	96.3
	ASV275	427	Gilliamella apicola wkB7	CM004509	97.7
	ASV298	427	Gilliamella apicola wkB7	CM004509	96.5
Snodgrassella	ASV7	428	Snodgrassella alvi wkB298	MEIK01000026	100
	ASV17	428	Snodgrassella alvi wkB298	MEIK01000026	99.8
	ASV18	428	Snodgrassella alvi wkB298	MEIK01000026	98.6
	ASV21	429	Snodgrassella alvi wkB298	MEIK01000026	99.0
	ASV25	429	Snodgrassella alvi wkB298	MEIK01000026	98.8
	ASV27	430	Snodgrassella alvi WF3-3	MEIO01000062	98.6
	ASV31	428	Snodgrassella alvi wkB298	MEIK01000026	98.8
	ASV35	428	Snodgrassella alvi wkB298	MEIK01000026	98.4
	ASV40	428	Snodgrassella gandavensis LMG	OU943324	98.6
			30236^{T}		
	ASV45	428	Snodgrassella gandavensis LMG	OU943324	98.8
			30236 ^T		
	ASV60	428	Snodgrassella alvi wkB298	MEIK01000026	98.6
	ASV66	430	Snodgrassella alvi WF3-3	MEIO01000062	98.8
	ASV111	431	Snodgrassella alvi wkB298	MEIK01000026	98.4
	ASV143	429	Snodgrassella alvi wkB298	MEIK01000026	96.5
	ASV234	431	Snodgrassella alvi wkB298	MEIK01000026	98.1
	ASV235	429	Snodgrassella alvi wkB298	MEIK01000026	96.3
	ASV276	433	Snodgrassella alvi wkB298	MEIK01000026	93.5
	ASV278	430	Snodgrassella alvi wkB298	MEIK01000026	95.6
	ASV307	432	Snodgrassella alvi wkB2 ^T	CP007446	93.1

ASV310	431	Snodgrassella alvi wkB298	ME1K01000026	93.7

 $^{^{3}}$ $^{1)}$ The ASVs showing < 98.7% homology against the top-hit taxon are bold. $^{2)}$ The superscript T means type strains of the bacteria species.