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ABSTRACT
The general linear model (GLM) is the most frequently applied family of statistical
models in psychology. Within the GLM, the effects under study are estimated using the
ordinary least squares (OLS) estimation. In certain situations, OLS produces parameter
estimates that are unbiased and optimal (with least possible error) and hypothesis
tests that retain the expected rate of false positives (Type I errors). This happens
when (1) outliers and influential cases are absent, and (2) assumptions of linearity
and additivity, spherical errors, and normal errors are met. This paper first provides
a technical description of OLS and an overview of its statistical assumptions. We
then discuss the methods commonly employed to detect and address violations of
assumptions, and how the current application of these methods can compromise the
reproducibility of findings by allowing too many data-driven decisions to be made
as part of the data analytic pipeline. We briefly introduce several robust estimation
methods—namely bootstrapping, heteroscedasticity-consistent standard errors, M -
estimators, and trimming—that can improve the accuracy of parameter estimates and
the power of statistical tests. We provide guidance on how these methods can be used to
transparently preregister a sensitivity analysis, reducing the opportunity for problematic
researcher degrees of freedom to enter the analytic pipeline.

Subjects Psychiatry and Psychology, Statistics
Keywords Ordinary least squares estimation, Statistical assumptions, Sources of bias, Researcher
degrees of freedom, Credibility movement

INTRODUCTION
Even a brief scan of any research literature will reveal an array of commonly-used and
seemingly distinct statistical tests such as the t -test, analysis of variance (ANOVA), analysis
of covariance (ANCOVA), correlation, regression analysis, and a range of multivariate
methods.1 In fact, all of these statistical tests sit within the unifying framework of the general
linear model (GLM) (Cohen, 1968; Field, 2024). Reviews of statistical practice show that
this family of models accounts for a major proportion of analyses reported in psychology
and psychiatry journals over the years (Kashy et al., 2009; Bakker & Wicherts, 2011;Counsell
& Harlow Lisa, 2017; Nieminen & Kaur, 2019; also see Kieffer, Reese & Thompson, 2001 for
a historical overview of the use of the GLM in psychology). Within the GLM, the effects
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1This manuscript was published as a
preprint at Sladekova & Field (2024d).

under study are estimated using the ordinary least squares (OLS) method. The goal of OLS
estimation is to find an estimate that minimises the sum of squared errors between the
observed values and the values predicted by the model. OLS can do so successfully under
specific conditions, specifically when (1) outliers and influential cases are absent and (2)
assumptions of linearity and additivity, spherical errors, and normal errors are met (Field,
2024). We elaborate on what is meant by ‘‘successfully’’ in sections that follow.

Historically, the robustness of OLS models to violations of these assumption has been
debated. Early reviews suggested that the F-statistic (ANOVA models), the t -statistic, and
their associated significance tests are unbiased even under non-normality (Pearson, 1931;
Lindquist, 1953; Boneau, 1960; Hsu & Feldt, 1969) and non-spherical errors (Box, 1954;
Scheff’e, 1959; Pratt, 1964). However, more recent work shows that the statistical power of
OLS to detect existing effects can be substantially reduced under violations of assumptions,
while the parameter estimates can be inaccurate and not representative of a typical
individual in a population (Glass, Peckham & Sanders, 1972; Lix & Keselman, 1998; Long
& Ervin, 2000; Hayes & Cai, 2007a; Wilcox, 2010; Wilcox, 2017; Sladekova & Field, 2024a).

This paper is intended for applied researchers who routinely use OLS estimation in their
work and who wish to consolidate their analytic pipelines with recent developments in
statistical methodology and open science practices. We first provide a technical revision
of OLS models, explaining how some underlying features of OLS estimation relate to its
often misunderstood statistical assumptions. We review the impact violations of model
assumptions have on parameter estimation and hypothesis testing. We briefly outline
the methods commonly employed to detect and address violations of assumptions, and
discuss how current statistical practice can compromise the reproducibility of findings by
allowing too many data-driven decisions to be made as part of the data analytic pipeline.
We introduce several robust statistical methods as alternative and often more suitable
estimation procedures that can be used in conjunction with a transparently reported
sensitivity analysis to provide more credible account of the findings.

SEARCH METHODOLOGY
We present a case for the use of robust statistics in situations where researchers typically
select OLS models as the default option. This recommendation stems from the review
of three related areas answering the questions: (1) Do researchers attend to statistical
assumptions? (2) How common are violated assumptions in practice? (3) How do OLS
models perform in situations where assumptions are violated?

We searched the databases Scopus, Web of Science and PsycINFO. We applied no
limitations on publication date but requested work published in the area of Psychology and
relevant sub-disciplines within each database. We only included papers published in the
English language. We ran the search for each question separately with a set of search strings
and evaluated for inclusion based on separate criteria specified below. During the database
search, we manually screened the titles and the abstracts for relevance, followed by an
assessment of the full candidate texts. For each paper identified for inclusion via database
search, we conducted backward search through references cited in a given paper, and
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forward search through references citing the paper. We used Google Scholar for forward
search, as it provided the most comprehensive list of citing papers, including access to grey
literature like preprints and doctoral theses.

The search strings for each research questions were compiled prior to commencing the
literature search and not altered during the process other than by selecting relevant filters
within each database to apply some of the exclusion criteria (specified for each question
below). We kept the search strings purposely broad—this was done to keep the search
sensitive and less likely to miss potentially relevant papers while also minimising bias by
not prioritising papers reporting certain results over others. The drawback of this strategy
was lack of specificity which resulted in broad spectrum of papers exported from each
database that required screening. After exporting the list of results from each database, we
1. Manually screened all the titles. The majority of papers excluded at this stage were

applied empirical papers that mentioned assumptions checks or parameter estimation
methods in the abstract and these papers could be discernibly identified based on the
title alone.

2. Assessed the abstracts for papers with potentially relevant or ambiguous titles. Papers
were typically excluded on the basis of format (e.g., book chapters) or methodology
(see below for exclusions reasons specific to each research question)

3. Assessed any remaining full texts for inclusion based on the criteria below.
(1) Do researchers attend to statistical assumptions? We included studies empirically

assessing statistical practice relevant to OLS assumptions, either through primary data
collection or by evaluating practice as reported in published papers (meta-research). We
excluded simulations,methodological reviews, and book chapters.Weused the search string
assumption* AND (model* OR statistic* OR linear OR regress*) AND (check* OR test* OR
assess*), targeting phrases such as ‘‘checking model assumptions’’, ‘‘testing statistical
assumptions’’, or ‘‘assessing assumptions of linear models’’, or alternative permutations
of the search terms. We also looked at how researchers handle outliers and influential
cases using the string (outlier* OR influential AND case*) AND (psycholog* OR research*),
searching for evidence of either the statistical practice related to outlier handling, or their
prevalence in psychological research with respect to research question (2).

(2) How common are violated assumptions in practice?We included empirical studies
and literature reviews summarising the properties of statisticalmodels used in psychological
research, namely sample size, distributional characteristics of variables or model errors, and
the presence of outliers or influential cases. If a primary study was subsumed in a literature
review, it was not included as additional evidence on its own. We excluded simulations,
methodological reviews, and book chapters. We used the following search strings to
identify papers summarising typical sample sizes (sample AND size*) AND psycholog*,
distributions of variables or model errors (skew* OR kurt* OR normal* OR non-normal*
OR nonnormal*) AND (distribut* OR variable* OR data) AND NOT (simulat* OR model*)
and heterogeneity of variance or heteroscedasticity (heterogeneity AND of AND variance)
OR (heteroscedasticity) OR (variance AND ratio*), targeting phrases like ‘‘sample sizes
in psychology’’, ‘‘skewed variables’’, ‘‘non-normal distributions’’, or ‘‘heterogeneity of
variance’’.
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(3) How do OLSmodels perform in situations where assumptions are violated? We
included empirical simulations and literature reviews evaluating OLS performance in
conditions where statistical assumptions are violated. Similar to above, if a simulation
study was subsumed in a literature review, it was not included as additional evidence on
its own. We excluded tutorial papers, methodological papers discussing a method without
empirical evaluation, simulations evaluating specific general linear model forms like
repeated measures or designs with multiple-dependent variables, as these are not the focus
of the present paper, and simulations focusing on alternative estimation methodology
like maximum likelihood in generalised linear models. We used the following search
string: (anova OR ols OR regression) AND (robust* OR assum* OR *normal OR heteros*
OR heterog* OR violat*), allowing us to capture phrases ‘‘ANOVA robustness’’, ‘‘regression
assumptions’’, ‘‘performance of OLS under violated assumptions’’ and similar.

The following sections provide a technical description of OLS estimation and its
assumptions, followed by a review and a discussion of the research questions presented
above.

HOW MODEL PERFORMANCE IS EVALUATED
A pre-requisite for any successful modelling is ensuring the model is correctly specified.
That is, the variables and interactions explaining the outcome are accounted for as the
predictors in the model, while irrelevant variables are omitted. Correct model specification
should be driven theoretically rather than statistically and is often formulated prior to
data collection. This review focuses on aspects of the analysis that can go wrong after data
collection, and any statements and advice within this paper are therefore made under the
principal assumption that the model has been correctly specified to begin with.

When modelling a relationship between variables, we need to choose the most
appropriate estimator. An estimator, like the OLS estimator or the maximum likelihood
(ML) estimator, is a tool used in the estimation process. The exact way in which an
estimator works is typically described by an equation—we will explain the inner workings
of the OLS estimator in the next section. The resulting value produced by an estimator
during the estimation process is called the estimate.

Within the frequentist framework, we generally care about three aspects of a model when
evaluating whether it is ‘‘doing its job’’—the estimates of the population parameter, the
standard errors, and the p-values. The term bias is often used with reference to statistical
assumptions. That is, if assumptions are violated, the analysis may become ‘‘biased’’. While
some aspects of the analysis do indeed become biased, others are affected in different
ways that will impact the conclusions we can draw from our models. ‘‘Bias’’ refers to a
situation where a value produced by a model systematically deviates from some expected
value. A significance test is biased if its observed rate of false positive findings (Type I
error rate) differs from a theoretical alpha level. For example, if the theoretical alpha is set
at the conventional 0.05, we would expect the significance test to produce a statistically
significant result only in 5% of cases under the null hypothesis.

Conversely, an estimator (such as the OLS) is considered biased if it systematically over-
or underestimates the population parameter. When we estimate a parameter, our sample
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produces a single value from a sampling distribution of many possible values. The estimate
from our sample will not always have the exact value as the population parameter, but a
sampling distribution produced by an unbiased estimator will be centred on the population
value. This will not be the case if the estimator is biased.

What also matters is the width of the sampling distribution—that is, how far from
the population parameter do the possible values produced by our estimator spread out.
An estimator that produces the narrowest sampling distribution will have the smallest
variance, while an estimator with a wide sampling distribution will have a large variance.
An estimator with the smallest variance can be considered optimal.

Formally, these two qualities can be thought of as the components of the Mean Squared
Error (MSE) associated with an parameter, which is often used as a benchmark when
evaluatingmodel performance. For example for a parameterβ, theMSE can be decomposed
as the sum of the variance and squared bias associated with the parameter:

MSE =Var(β)+Bias(β)2.

OLS will always try to find the smallest possible value forMSE, regardless of whether bias
is absent (Bias(β)2= 0) or present (Bias(β)2 > 0). A non-optimal estimate with a large
variance is therefore not necessarily biased—it just means that more samples are needed
for the sampling distribution to converge on the population parameter when sampling
randomly. Likewise, there are situations where an estimator can be biased, but remain
optimal. In statistical terms, when an estimator is both unbiased, and simultaneously yields
the smallest variance, it is often said to be BLUE—Best Linear Unbiased Estimator. For the
purposes of this paper, we’ll use the terms unbiased and optimal when referring to such
scenario.

Finally, the accuracy of an estimator can also be called into question. Throughout this
paper, we use this term generally to describe a situationwhere an estimator produces sample
estimates that are not a realistic reflection of the processes in the population. A common
cause of this is an incorrectly assumed error structure, which can affect various types of
estimates. For example, in OLS context, the formula for estimating the standard errors
takes certain shortcuts by assuming that the model errors are structured in a certain way. If
we take these shortcuts where we shouldn’t, the resulting standard error will be inaccurate.
What’s worse, this will also have knock on effects on confidence intervals and p-values
which rely on the accuracy of standard errors. Similarly, the parameter estimates may be
inaccurate if the estimator expects a symmetrical error distribution while, in reality, the
population errors are skewed with asymmetrical tails. In this case, the parameter estimate
is still statistically sound, but it may not be practically as useful as an estimate produced by
an alternative estimator. We elaborate on these situations with reference to OLS estimation
in the sections that follow.

ORDINARY LEAST SQUARES ESTIMATION
The goal of OLS estimation is to produce parameter estimates that result in the smallest
possible sum of squared errors in the model. Under specific conditions, the OLS estimates
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will be optimal and the statistical significance tests associated with these estimates will be
unbiased. The OLS estimates will also align with maximum likelihood estimates.

The conditions under which bias is minimised and the estimates are optimal include
(1) satisfied statistical assumptions, specifically linearity and additivity, spherical errors,
normal errors, and normal sampling distribution of the parameter, and (2) absence of
outliers and influential cases. Here we briefly describe these conditions and summarises
the effects that violated assumptions can have on estimation and inference—for a more
detailed account, see Field (2024),Wilcox (2017) or Wilcox (2010).

Linearity and additivity
Broadly speaking, assumptions made by OLS models can be divided into two categories.
The first one includes assumptions that OLS shares with other statistical models regardless
of the method used to estimate the parameters, like linearity and additivity. The second
category concerns assumptions related to the error distribution and structure where,
unlike alternative estimation methods, OLS fails to offer any modelling flexibility should
violations occur.

OLS models assume that the true, or population, relationship between predictor(s) and
the outcome is linear. As an equation, this is expressed as

Yi=β0+β1X1i+εi

εi∼N (0,σ 2)

where Yi is the outcome value for an individual i, β0 is the unknown value of the outcome
when all predictors are 0, and β1 is the unknown parameter associated with the predictor
X1i. This parameter represents the change in the outcome variable associated with a unit
change in the predictor (Fig. 1A), which for dummy-coded categorical predictors represents
the difference in the mean level of the outcome between one category of the predictor and
a reference category (Fig. 1B). The error terms for each i (εi), are unobservable but are
assumed to be random variables that are normally distributed with amean of 0 and constant
variance of σ 2. This assumption is made explicit in the second line of the equation. The
parameters (β0 and β1) are also unobservable but can be estimated from data observed in
a sample. The resulting values are known as parameter estimates and are typically denoted
with hats to remind us that they are estimates based on a sample. The resulting model for
a sample is, therefore, expressed as

Yi= β̂0+ β̂1X1i+ei

in which ei is the observed residual (the difference between the observed value of the
outcome and the value predicted by the model) for entity i (Fig. 2A). When there are
several predictors in the model, their combined effect is assumed to be additive, i.e.:

Yi=β0+β1X1i+β2X2i+ ...+βnXni+εi

εi∼N (0,σ 2).

The parameter estimate associated with each predictor represents the change in the
outcome variable associated with a unit change in the predictor when other predictors are
held constant.
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Figure 1 Examples of the interpretation of β̂s in linear models with (A) continuous and (B) categori-
cal predictors. For continuous predictors, β̂0 represents the value of the outcome when the predictor is 0,
and β̂1 is the change in the outcome associated with one unit change in the predictor. For categorical pre-
dictors, β̂0 is the value of the outcome for the baseline category, while β̂1 is the difference between the re-
spective group and the baseline.
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Figure 2 Effects of influential cases and outliers on estimation. (A) Vertical distance of each point from
the model line represents the residual. Going from left to right, the highlighted points represent cases with
large residual and large influence, large residual and small influence, and small residual and large influ-
ence. (B) A comparison of the model fitted using OLS estimation (labelled as ‘OLS model’) and MM-
estimation (labelled as ‘Robust model’).

Full-size DOI: 10.7717/peerj.20043/fig-2

Linearity and additivity are crucial prerequisites for modelling linear relationships.
This assumption is not unique to OLS models but generalises across estimation methods.
Whether researchers apply OLS or opt for alternative methods like Maximum Likelihood
Estimation or Bayesian Estimation instead, the primary consideration should be whether
the linear and additive form of the model adequately reflects the relationship between
the variables of interest. When the relationship being modelled is not, in reality, linear or
additive the model is not fit for purpose and any estimation or inference based on it is
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invalid (Gelman & Hill, 2007). In this sense, linearity and additivity are the most important
conditions for a useful model.

Spherical errors
The Gauss-Markov (GM) theorem states that under certain conditions the OLS estimator
for an additive linear model will have lowest sampling variance compared to other unbiased
estimators. These conditions are:
1. Errors are, on average, zero. More formally, the expected value of model errors is zero,

E[εi] = 0.
2. Homoscedastic errors: the variance of errors is a constant, finite, value (V (εi)=
σ 2<∞). We have already mentioned that model errors are assumed to be normally
distributed with constant variance and this condition (referred to as homoscedasticity)
reflects the constant variance.

3. Errors are uncorrelated. More formally, Cov(εi,εj)= 0, i 6= j.
The last two of these conditions are often referred to as the population having ‘spherical

errors’, that is, errors are both independent and homoscedastic (have a constant variance).
Non-spherical errors (where either independence or homoscedasticity is not met) do not
bias the parameter estimate, however this estimate will not be optimal—it will produce a
larger amount of error than if the assumption was met, or if an alternative more robust
estimator was applied. Additionally, the standard error will be inaccurate because the
formulas for computing standard errors assume independence and constant spread of
errors across the levels of the predictors. This in turn affects the confidence intervals and
biases the significance tests (Field, 2024).

Assumptions of spherical errors and normal errors (see below) are not limited to
OLS models, but they can pose a greater logistical challenge for OLS compared to other
estimators. Although models using e.g., maximum likelihood estimation or Bayesian
estimation often require these conditions to be met, they also allow researchers to select an
alternative distribution family for modelling or to define more complex error structures
if spherical or normal errors cannot be assumed. For ease of expression, we refer to all
the assumptions as ‘‘OLS assumptions’’, however it’s worth keeping in mind that other
estimators are not immune to their violations.

Normal errors
Model errors are assumed to be normally distributed with constant variance, but as we shall
see this assumption has little bearing on estimating model parameters. However, when
model errors are normally distributed it can be shown that the parameter estimates have a
normal sampling distribution:

β̂ ∼N
(
β,σ 2(XTX)−1

)
in which X is an n× p matrix containing a number of rows equal to the number of
observations in the sample (n), and p columns corresponding to a column of 1s (the
intercept) and remaining columns represent values of each predictor variable. Aside from
the observation that the sampling distribution is normal when the model errors are normal,
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note that the variance of the distribution of β̂ is a function of the variance of errors (σ 2).
The variance of errors is unobservable and must be estimated from the observed data
(σ 2
= s2), giving us the following estimate of the variance of the parameter estimates:

V̂ar
(
β̂
)
= s2(XTX)−1.

The standard error of the parameter estimates is the square root of this estimate

ŜE
(
β̂
)
=

√
s2(XTX)−1.

It turns out that s2 follows a scaled chi-square distribution, meaning that the standard
error of parameter estimates also follows this distribution. Two important statistics related
to the parameter estimates depend on their standard error: (1) test statistics; and (2)
confidence intervals. To test whether β is equal to a particular expected value (typically
βExpected= 0) we use a test statistic that is the ratio of the difference between the parameter
estimate and the expected value to the sampling variation (signal to noise ratio):

T =
β̂− β̂Expected

ŜE
(
β̂
) .

As noted earlier, when errors are normally distributed parameter estimates have a
normal sampling distribution. Because of the central limit theorem parameter estimates
also have a normal sampling distribution when sample sizes are large (more formally, as
n→∞). In these two scenarios, the test statistic above is the result of dividing a normally
distributed variable by one that has a scaled chi-square distribution (see above). Dividing a
normal distribution by a scaled chi-square distribution results in a t -distribution when the
null hypothesis is true, and a non-central t -distribution when it is not. Therefore, under
the aforementioned conditions the test-statistic follows some form of t -distribution. This
fact is used to construct confidence intervals around the parameter estimate

β̂CI boundary= β̂± t1−(α/2)× ŜE
(
β̂
)
.

where the critical t value for given alpha level is multiplied by the standard error estimate
of of the parameter estimate β̂ and then subtracted or added to β̂ to create the interval.

To summarise, the assumption of ‘‘normality’’ refers to the requirement of OLS for a
normal sampling distribution of β̂ . If the errors in the population model are normally
distributed, this requirement will be met. If the errors are not normally distributed, normal
sampling distribution of β̂ can only be assumed in samples that are sufficiently large
to invoke the Central Limit Theorem. If the parameter estimate does not come from a
normal sampling distribution, the standard errors cannot be estimated accurately and
the hypothesis tests will be biased. Additionally, if the population errors are not normally
distributed, the OLS estimator is not optimal. Note that under the violations of both the
spherical errors and normality, the parameter estimates remain unbiased.

Absence of outliers and influential cases
Outliers are typically defined as extreme cases with a large residual (Darlington & Hayes,
2017). The term ‘residual’ is equivalent to model error when we’re talking about a sample
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model rather than a population model. Simply put, it is the distance between the outcome
value predicted by the model and the actual outcome value observed in a sample. Because
the goal of the OLS estimator is to always minimise the amount of error in the model,
the estimates produced by a model containing outliers will still be optimal, however
they will be biased in the direction of the outlier. Influential cases are cases that have
substantial influence on the parameter estimates. Influential cases can often be less obvious
than outliers, especially if they have enough influence to bias the estimate to the point
where their residual is minimised (Fig. 2A) and would not be detected as an outlier using
conventional methods.

OVERVIEW OF CURRENT PRACTICE
OLS assumptions are often misunderstood and overlooked in statistical analyses. Studies
looking at reporting practices show that vastmajority of papers don’t report any assumption
checks (Counsell & Harlow Lisa, 2017). Reports of outlier detecting practices are also rare,
where only between 7–9% show evidence of outlier handling (Bakker & Wicherts, 2014;
Zanin, Lóczi & Zanin, 2024), although bothMatthes et al. (2015) andValentine et al. (2021)
note an increase in the likelihood of reporting overtime. In the rare instances where assump-
tions are reported, there’s evidence of misconceptions about them (Ernst & Albers, 2017).

Granted, lack of reporting is not necessarily indicative of insufficient attendance to
the problem, given that the decision to include assumption checks in the final manuscript
write-up can be down to external factors, like word count limitations or editorial guidelines.
Additional evidence comes from primary studies that either ask researchers about their
practice directly or presents them with an analysis exercise to see whether assumption
checks are carried out as part of the analytic pipeline. The most optimistic picture is
painted by Dickwelle Vidanage (2022) who showed that about half of the participants
mentioned assumption checks when analysing data, however majority of them failed to
detect violations in an analysis exercise. In a sample of PhD researchers, Hoekstra, Kiers &
Johnson (2012) found that only about 1/3rd of participants attend to assumptions; similar
findings have been reported for a broader sample including post-doctoral researchers
and members of the faculty (Sladekova, Poupa & Field, 2024). Self-reports of researchers
corroborate these findings, while also highlighting some fundamental misunderstandings
about the nature of the assumptions (Sladekova & Field, 2024b).Outliers tend to be attended
tomore often compared to statistical assumptions—in Sladekova & Field (2024b), we found
that up to 50% of researchers report checking for the presence of outliers, while only about
∼30% attend to normality or homoscedasticity. However, 2/3rds of researchers neglect
diagnosing influential cases which would not necessarily be dected using conventional
outlier-detection methods based on how extreme a case is compared to the rest of the data
(Sladekova & Field, 2024b).

The minority of researchers who do attend to the assumptions either focus on incorrect
parts of the model—for example they will check the distributions of the predictor or the
outcome variables, even though the assumptions refer to the population model errors—or
they tend to use methods that perform poorly in applied settings (Sladekova & Field, 2024b;
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Sladekova, Poupa & Field, 2024). For example, significance tests—like the Shapiro–Wilk
test (Shapiro & Wilk, 1965), the Kolmogorov–Smirnov test (Massey, 1951; Lilliefors, 1967)
or the Levene’s test (Levene, 1960)—are a popular method for detecting the presence of
non-normality or heterogeneity of variance. In this framework, a statistically significant
assumption test is indicative of a violation. A common strategy in this scenario is to then
apply a non-paremetric method to test the hypothesis, like the Wilcoxon-Mann-Whitney
test (Mann &Whitney, 1947) or the Kruskal-Wallis test (Kruskal & Wallis, 1952). This
strategy comes with a handful of pitfalls. Like any hypothesis tests that rely on p-values,
assumption tests lack power in small samples and are overly sensitive in large sample where
violated assumptions are less of a concern (Wilcox, 1996; Field, 2024). Given large enough
sample, a frequentist hypothesis test will always be statistically significant as no effect is
truly zero and no distribution is perfectly normal or homoscedastic (Rochon, Gondan &
Kieser, 2012). What’s more, using null hypothesis significance testing in this way creates
the inverse probability fallacy—a non-significant p-value cannot provide evidence for the
absence of an effect, yet it is routinely used to indicate absence of assumption violations.
If the decision making about the absence or presence of an effect is conditional on the
result of an assumption test, the rate of false-positive findings becomes inflated in the long
run (Gans, 1981; Long & Ervin, 2000; Zimmerman, 2004;Hayes & Cai, 2007b;Ng &Wilcox,
2011). Further, transforming scores into ranks (as is the case for classic non-parametric
tests) changes the hypothesis being tested into one that no longer maps onto the data that
were originally collected, and distorts the ability of the analyst to meaningfully interpret the
results. Similar challenge arises if variables are transformed prior to being included in an
OLS model, for example using log-transformation (Osborne, 2002; Grayson, 2004; Schmidt
& Finan, 2018). Finally, classic rank-based tests are only available for a limited range of
designs, often forcing researchers to either simplify their factorial designs into one-way
models, or ignore violations and rely on a biased hypothesis test.

A potential way of overcoming difficulties with violated assumptions while retaining
the interpretability of parameter estimates is to use Bayesian estimation. As previously
highlighted, models that use Bayesian estimation are still affected by non-normal and
non-spherical errors, however this requirement can be relaxed by selecting an alternative
distributional family and error structure for modelling the relationship of interest. For
example, researchers could select distributions from the exponential family tomodel skewed
outcomes—similar benefit can be obtained by applying maximum likelihood estimation
in place of OLS. In addition, Bayesian models provide a probabilistic representation
of the parameter estimates drawn from posterior distributions. This means that the
parameter estimate itself represents themost likely value (given the data), while the intervals
constructed around the estimate tell us where the population parameter is likely to fall with
a specified probability allowing for a more intuitive way of handling uncertainty (Morey et
al., 2016). This is in stark contrast with frequentist confidence intervals which are not only
directly affected by violated assumptions, but are also often subject to misinterpretation
by the researchers who use them (Hoekstra et al., 2014). The drawback is that the use of
Bayesian models does not merely entail switching to a different estimation method, but
also requires a philosophical shift in approach to hypothesis testing which comes with its
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own set of challenges (Lakens, 2021). Therefore, Bayesian estimation is not beneficial to
researchers who are committed to testing hypotheses using frequentist tools.

Are violations of assumptions common in practice?
This lackluster image of statistical practice could be justifiable if violations of assumptions
were not something occurring in practice, or if the OLS estimation method remained
robust despite violated assumptions. Unfortunately, the evidence suggests to the contrary
on both fronts. Initial studies of distributional characteristics focused on a set of educational
achievement scores, demonstrating that high skewness and kurtosis are a common feature
of these variables (Lord, 1955; Cook, 1959; Burt, 1963). In a landmark early meta-research,
Micceri (1989) followed-up this work by studying the distributions of 440 educational and
psychometric measures. Micceri (1989) found that almost all measures were significantly
non-normal due to heavy tails, exponential levels of skewness, or multi-modality.

In the decades that followed, non-normal distributions have been recorded across
different areas of psychological research. Skewness is now a well-documented characteristic
in various time-dependent outcomes like reaction times (Kranzler, 1992; Mewhort, Braun
& Heathcote, 1992; Juhel, 1993; Reber, Alvarez & Squire, 1997; Leclaire, Osmon & Driscoll,
2020), visual search and recognition tasks (Hockley, 1984; Miyaoka, Iwamori & Miyaoka,
2018), or eye-tracking responses (Unsworth et al., 2011), with exacerbated distribution
tail in clinical populations (Leth-Steensen, Elbaz & Douglas, 2000; Waschbusch, Sparkes
& Northern Partners in Action for Child and Youth Services, 2003; Reckess et al., 2014).
A mixture of exponential and normal distribution is often reported as the most fitting
distributional family for these measures (Hockley, 1984; Juhel, 1993; Reber, Alvarez &
Squire, 1997; Leclaire, Osmon & Driscoll, 2020). Additionally, Haslbeck, Ryan & Dablander
(2023) found that multi-modality and high levels of skewness are common in emotion
time-series, whileHo & Yu (2015) confirmed the presence of non-normality in educational
scale scores in a conceptual replication ofMicceri’s work. Focusing on broader psychological
measures, Blanca et al. (2013) found that skewness and kurtosis are common, although
they are not as extreme as originally reported by Micceri (1989). Cain, Zhang & Yuan
(2017) extends this work to multivariate designs. These studies have a key limitation, in
that they focus on the distribution of raw variables. As noted above, the assumption of
normality refers to the distribution of the model errors, not the variables included in the
model. However, when studying the residuals extracted from OLS models, Sladekova &
Field (2024c) found similar levels of skewness and kurtosis as those reported by Blanca
et al. (2013). In scenarios where distributions are non-normal, the distributional families
researchers should expect to find most often are gamma, negative binomial, multinomial,
binomial, log-normal, exponential, and Poisson, respectively (Bono et al., 2017). The only
case where the normal distribution is a reasonable expectation seem to be the within-person
T-scores of cognitive measures in non-clinical populations, which tend to be symmetrical
with only some measures showing high kurtosis (Buchholz et al., 2024). Outside of this
context, assuming normal distribution is, at best, wishful thinking. It could be argued that
the non-normal distributions are not really a cause for concern—as we outlined above, we
can often assume normal sampling distributions due to the central limit theorem, as long
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as the sample size is large enough. While some psychological fields report average sample
sizes in studies to be over 100 (Fraley & Vazire, 2014; Reardon et al., 2019; Sassenberg &
Ditrich, 2019; Fraley et al., 2022), others lag behind (Holmes, 1983; Marszalek et al., 2011;
Hussey, 2023), with samples sizes in some areas being as low as 10 (Schrimp et al., 2022).
We elaborate this discussion below with reference to statistical power.

Likewise, non-constant variance is common in published research. Grissom (2000)
reviews a range of clinical outcomes and illustrates how heteroscedastic variance can be
a direct by-product of study design in psychological research. In a review of published
reports, Wilcox (1987) identified group variance ratios as large as 16—that is, the largest
variance among the groups being compared was 16 times that of the smallest variance. In a
more recent research investigating heterogeneity of variance in a range of factorial designs,
Ruscio & Roche (2012) found that variance ratio at the 50th percentile of the samples was
2.74, going up to 5.10 in the 90th percentile for all samples, and up to 9.43 for designs with
at least four groups. Reviewing both published and unpublished work, Sladekova & Field
(2024c) reports similar findings for residual variances while also noting heteroscedasticity
in designs with continuous predictors.

Are OLS models robust to violated assumptions?
Researchers therefore routinely neglect assumption checks even though they should
realistically expect their violations in practice. This discrepancy is not entirely surprising—
if our goal is to answer the question ‘‘Are OLS-based models robust to violations of
assumptions?’’ with a simple yes or no, the messaging scattered in the past five decades of
the robustness literature can appear mixed. If, however, we consider the effects violations
of different assumptions on specific metrics of robustness, the general message is more
consistent.

Perhaps the most influential work on the effects of violated assumptions on the
ANOVA F-test is a review by Glass, Peckham & Sanders (1972). In the rare instances
where researchers report violated assumptions, Glass et al.’s work is often cited in support
of researchers’ decision not to take any remedial action. One of the conclusions presented
in the review was the following: the rate of false positives of the F-test is unaffected
by skewness. This conclusion has been consistently supported in further reviews and
simulation studies—as long as skewness is the only concern, false positives will remain
close to nominal 5% error rate (Harwell et al., 1992; Schminder et al., 2010; Liu, 2015;Blanca
et al., 2017; Yang, Tu & Chen, 2019; Delacre et al., 2019). False positives will, however, be
inflated in the presence of heteroscedasticity (Glass, Peckham & Sanders, 1972; Rogan &
Keselman, 1977; Harwell et al., 1992; Hsiung & Olejnik, 1996; Moder, 2010; Blanca et al.,
2018; Nguyen et al., 2019; Yang, Tu & Chen, 2019) and the effects on the analysis can
compound when heteroscedasticity is combined with non-normal errors (Delacre et
al., 2019; Sladekova & Field, 2024a). In factorial designs, the detrimental effects on false
positives are further exacerbated when the group sample sizes are unequal (Lantz, 2013;
Delacre et al., 2019)—a situation that often occurs in practice (Sladekova & Field, 2024c).

In a frequentist framework, an estimator’s ability to control the rate of false positives
is instrumental and should be the starting point in evaluating robustness if the goal is to
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test the null hypothesis. Other metrics of robustness which have come to the forefront of
considerations for statistical analyses only in the past couple of decades, include statistical
power, estimation accuracy, and the coverage of confidence intervals (Cumming, 2014).
Power is the probability of correctly rejecting a false null hypothesis. Informally, it is
the probability of detecting an effect of a specified magnitude as statistically significant
at a given alpha level (Cohen, 2013), and it is a crucial aspect of the robustness of OLS
models. Both skewness and high kurtosis can reduce statistical power of OLS models
below the recommended threshold of 80% (Glass, Peckham & Sanders, 1972; Delacre et al.,
2019; Nwobi & Akanno, 2021; Kim & Li, 2023; Sladekova & Field, 2024a)—this fact is also
highlighted in Glass, Peckham & Sanders (1972) but is often overlooked by researchers.
Kurtosis produces distributions with heavier than normal tails—sampling from these
distributions also reduces the coverage of confidence intervals (Kim & Li, 2023), and
increases the probability of encountering outliers and influential cases, which can bias the
parameter estimates (Kim & Li, 2023; Sladekova & Field, 2024a). Power plays an important
role in the recent efforts to improve the credibility of psychology as a science (Open Science
Collaboration, 2015; Chambers, 2017; Vazire, 2018), because inadequate power combined
with poor control over false positives can alter the landscape of the available research
findings. Studies with low power are less likely to reach statistical significance and are
therefore less likely to be published (Rosenthal, 1979; Sterling, Rosenbaum &Weinkam,
1995; Fanelli, 2010a). Conversely, underpowered research that does reach statistical
significance is more likely to reflect a ‘lucky sample’ and is less likely to replicate, but
will stand a greater chance of becoming part of the published record (Sterne, Gavaghan &
Egger, 2000). Attempts to synthesise or reproduce the effects found in published literature
are seriously undermined by this kind of publication bias.

Thus far, discussions around power analyses have focused on the process of specifying
the right sample size for a given effect size in order to reach sufficient statistical power for a
hypothesis test (Cohen, 2013). Historically, sample sizes collected in psychological research
have been low. In a series of investigations, Holmes (1979), Holmes, Holmes & Fanning
(1981) and Holmes (1983) reported no changes in sample sizes between 1950 and 1970,
with median samples of 55 across four areas of psychology (Abnormal Psychology, Applied
Psychology, Developmental Psychology, and Experimental Psychology), while Marszalek
et al. (2011) found the median sample size across these areas to be even lower (n= 40)
when replicating Holmes’s (1983) study three decades later. Since then, sample sizes have
improved in some areas of psychology. Sassenberg & Ditrich (2019) reports doubling of
sample sizes between 2009 and 2018, with the lowest increase being from 122 to 185.
Clinical research has seen the largest increase, with average sample size around 180 and
statistical power to detect a moderate effect just below 90% in 2019 (Reardon et al., 2019).
Doubling of sample sizes has also been observed in social and personality psychology
between 2011 and 2019 (Fraley et al., 2022), with average sample size of 104 reported in
2014 (Fraley & Vazire, 2014). Other areas are still lagging on improvements—in applied
and experimental behavioral research, most studies report samples up to 10 (Schrimp et
al., 2022), while Hussey (2023) reports an average sample of n = 64 in Implicit Relational
Assessment Procedure research, translating into statistical power of about 34%.
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Sample sizes have therefore been at the forefront of focus in response to wide-spread
replicability failures (Open Science Collaboration, 2015). Issues that can further affect
statistical power, like violated assumptions, have not been given much spotlight because
when assumptions are considered, it is usually as an afterthought rather than something
that is accounted for in advance.

Violated assumptions as a source of analytic flexibility
The possibility of violated assumptions or the presence of outliers and influential cases
should be accounted for during the preparation of an analytic plan. This can prove to be
challenging in practice.Methods that rely on pre-defined cut-off points for decisionmaking
(like significance tests) are easy to plan for in advance, but, as highlighted above, they are
often not an appropriate tool for the job. Other methods—like for example diagnostic plots
of residuals and fitted values—might provide a more nuanced picture of the problems, but
they also rely on the subjective judgement of the researcher and often highlight only the
most blatant violations (Hayes & Cai, 2007a; Darlington & Hayes, 2017). Decisions based
on these methods can only be made after the data have been observed, and are inevitably
subject to bias (Fanelli, 2009; Steegen et al., 2016).

While data-driven decision making is not problematic in its own right and is often
utilised, for example, as part of Bayesian estimation and hypothesis testing (Kruschke &
Liddell, 2018; McElreath, 2020), it is at odds with null hypothesis significance testing and
the use of p-values as long run probabilities. Any analytic decisions made after the data have
been observed can invalidate the p-value associated with test statistic for the hypothesis.
The p-value is conditional on the decisions made about the study design and the analytic
strategy. If these decisions are made before the data are observed, the p-value remains valid
as a long run probability and the finding is potentially replicable, as long as the steps of the
original study are being reproduced. If the analytic decisions are made after observing the
data, the p-value becomes conditional on those decisions. In such situations, the meaning
of the p-value changes to the probability of detecting the effect of the observed or greater
magnitude if the null hypothesis is true given a specific set of decisions following a specific
line of reasoning based on specific characteristics of the sample (Greenland et al., 2016).
Replicating a finding based on a p-value conditional on one researcher’s reasoning might
be an impossible undertaking. On the one hand, there is great amount of flexibility when
it comes to performing statistical analyses even in the simplest scenarios. Studies of the
researchers’ analytic degrees of freedom (Steegen et al., 2016) show thatmultiple researchers
will come to divergent conclusions when faced with the same data and the same hypothesis
(Silberzahn et al., 2018; Botvinik-Nezer, 2020; Bastiaansen et al., 2020; Breznau et al., 2022).
The present paper alone has so far outlined only a small number of methods that could
be combined and applied in a variety of ways, leading to divergent analytic paths. On the
other hand, there is no guarantee that the same type of assumption violation or the same
degree of violation will be detected in the sample of the replication study, in which case a
new set of sample-based decisions needs to be made.

Flexible analytic decisionmaking based on sample characteristics is therefore problematic
in its own right, and it has recently received increased attention as a factor potentially
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contributing to the publication of spurious unreplicable effects (Simmons, Nelson &
Simonsohn, 2011; Wagenmakers et al., 2011). The existence of publication bias favouring
statistically significant results (Ferguson & Heene, 2012) coupled with the incentive
structures in academia and the ‘publish or perish’ culture (Fanelli, 2010b) puts researchers
under a great amount of pressure to produce ‘publishable’ results. As such their decision
making during the analytic process after observing the data may become biased towards
obtaining a statistically significant result, even in the absence of deliberate attempts to
manipulate the data. The efforts to improve the credibility of psychology have resulted
in a number of proposed methodological reforms to address this. One such reform was
the introduction of preregistration (Nosek et al., 2018), where researchers submit their
analytic plans into a time-stamped online repository prior to collecting or accessing the
data, and follow through with this plan when performing the analysis. Registered reports
as publication format take this idea further—researchers submit a detailed study protocol,
including the analysis plan, for peer-review and acceptance in principle is granted before
the results are known, as long as the protocol is followed (Chambers et al., 2015).

There’s growing evidence that registered reports are successful at combating publication
bias (Scheel, Schijen & Lakens, 2021), however, preregistering a realistic plan can prove
challenging when we consider the complications arising with violations of OLS conditions.
As discussed, current methods for detecting violations require data inspection and post
hoc decision making, while the most commonly applied ‘remedies’ (rank-based methods
and data transformations) transform the data into a form that no longer maps onto the
original hypotheses, introducing unnecessary degrees of freedom into the analytic process.

An ideal solution would be to preregister an alternative estimator with consistent
performance across a variety of error distributions which also retains interpretation of
parameter estimates comparable to OLS estimates. While no single method that meets
these conditions outperforms all possible alternatives in all situations, a class of methods
known as robust statistical methods offers a range of estimators that outperform OLS in a
vast majority of scenarios in terms of statistical power and accuracy of estimates, and can
therefore complement the efforts to improve the credibility of findings in psychology.

ROBUST STATISTICAL METHODS
What are robust methods?
A statistical method can be considered robust if (1) it has adequate control over the rate of
false positive findings, (2) it retains adequate power to detect a true effect under a variety
of scenarios, (3) the point estimates produced by the method are not overly sensitive
to outliers—i.e., they remain unbiased (4) the estimates accurately describe the typical
individual in the sample, and (5) the previous points hold true regardless of whether or
not the assumptions of OLS are violated.

‘‘Robust methods’’ is an umbrella term encompassing a wide variety of methods that
meet these conditions. This section will focus on some examples of robust methods that can
be split into two general categories—methods improving the estimation of standard errors
and confidence intervals constructed around the original OLS point estimates, andmethods
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improving the estimation of point estimates as well as the estimates of standard errors and
confidence intervals. The first category includes bootstrapping (Efron & Tibshirani, 1993)
and heteroscedasticity-consistent standard errors (Hayes & Cai, 2007a), while the second
category includes M -estimators (Huber, 1964), and robust trimming (Yuen, 1974; Wilcox,
1998b). These fourmethods represent only small selection of all available robustmethods. In
an ideal world, the researcher would select a method that is known for optimal performance
given the problem at hand. In the real world, it is unreasonable to expect the researchers to
have an in depth knowledge about the performance and application of every single method
there is, and statisticians or methodologists who would be able to advise on the issue while
also understanding the research context may not be readily available in most psychology
departments (Golinski & Cribbie, 2009). We focus on the methods outlined above because
they are fairly intuitive extensions of the standard methods, easily applied to common
research designs in psychology, and guidance already exists for their application (Hayes
& Cai, 2007a; Wilcox, 2017; Field & Wilcox, 2017). The following section provides an
introduction to these methods, followed by a discussion of the benefits of their application.

Robust standard errors and confidence intervals
Bootstrapping
Bootstrapping is a re-sampling procedure that allows for the empirical estimation of
standard errors (Efron & Tibshirani, 1986; Efron & Tibshirani, 1993). A bootstrap sample
is collected by sampling with replacement from the current sample. For example, if we
have a sample containing the values 1, 4, 3, 1, 8, we could, by a random selection, create
a bootstrap sample of 1, 8, 1, 1, 4 or 3, 4, 3, 4, 1. Each bootstrap sample is the size of the
original sample. Once we have a bootstrap sample, we can compute the the parameter
estimate for this sample of this sample. This process is typically repeated about 1,000 times,
resulting in an empirical distribution of sample estimates. We can then use this empirical
sampling distribution to estimate the standard error and to construct a bootstrapped
confidence interval by looking at the lower and upper limits of the middle percentage
(typically 95%) of the sample means. This is called a percentile bootstrap.

Bootstrapping can be helpful for obtaining more accurate confidence intervals in
small samples, or samples with heavy tails. In extremely small samples (n < 20) the
performance of the bootstrap can deteriorate (Canty, Davison & Hinkley, 1996), however
the confidence intervals will still be more accurate than intervals based on OLS standard
errors (Wilcox, 2010; Wilcox, 2017). The percentile bootstrap described above is only one
of many bootstrapping methods. There are other types with more optimal performance
that extends to a wider variety of situations. The bias corrected and accelerated (BCa)
bootstrap outperforms other bootstrap methods in a number of respects. Overall, BCa

tends to reach more accurate confidence intervals coverage probability (i.e., the proportion
of the simulated intervals that contain the true population value is close to the intended
95%) than the percentile bootstrap and the bias correction can account for skewness as
well as heavy-tails (Hall, 1988; Efron & Tibshirani, 1993;DiCiccio & Efron, 1996). The main
critique of the BCa bootstrap used to be that it is computationally intensive and does
not offer advantage to simpler bootstrap methods when the variables are transformed for
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normality prior to applying the bootstrap (Canty, Davison & Hinkley, 1996). However,
modern computing power means that the BCa can be applied with relative ease to most
situations and, as discussed, transforming the data can often do more harm than good
(Osborne, 2002; Grayson, 2004; Schmidt & Finan, 2018).

Heteroscedasticity-consistent standard errors
There are also robust estimators of standard errors known as heteroscedasticity-consistent
standard errors (HCSE) estimators. This class of estimators work on the principle of
estimating the covariance matrix based on the sample residuals in a way that does not
assume homoscedasticity, allowing for valid inferences when the assumption is violated.
Hayes & Cai (2007a) provide an introduction to the theory and application of HCSE
estimators. As with bootstrap, several HCSE estimators are available, namely HC0 (Eicker,
1967; Huber, 1967; White, 1980), HC1 (Hinkley, 1977), HC2 (MacKinnon & White, 1985),
HC3 (Davidson & MacKinnon, 1993), and HC4 (Cribari-Neto & Lima, 2009). The HC1–
HC4 estimators represent the developments in the computational strategies of the original
HC0 estimator to improve performance under a wider variety of scenarios. Overall, HC3
outperforms its predecessors when it comes to the accuracy of the confidence interval
coverage probability (Long & Ervin, 2000; Cribari-Neto & Zarkos, 2001; Cai & Hayes,
2008), where the coverage of HC0-HC2 tends to be too small. HC4 is an extension of
HC3 that also accounts for the presence of influential cases in the sample, and retains
good coverage even when heavy-tailedness is combined with heteroscedasticity (Cribari-
Neto & Lima, 2009). Conversely, none of these estimators have good coverage when
heteroscedasticity is coupled with exponential levels of skewness (Cribari-Neto & Lima,
2009). Another drawback of these estimators is that their performance can be suboptimal in
small sample sizes (∼25), especially in situations where homoscedasticity is met, resulting
in a loss of power to detect a real effect (Godfrey, 2006; Cribari-Neto & Lima, 2009). With
larger samples however (n > 60), there is no evidence that HC4 is negatively affected in
the presence of homoscedasticity, unlike the previous versions of the HCSE estimators
(Godfrey, 2006).

To sum up, the bootstrap is most beneficial in small sample sizes, particularly when the
main concerns are skewness or heavy tails, whereas the HC4 estimator is useful in moderate
to large sample sizes, and is able to account for heteroscedasticity, influential cases, as well
as heavy-tails. A special situation worth noting is one where the form of heteroscedasticity
is unknown—that is, the error distribution is not a function of the fitted values, but it
is still not constant, and therefore not homoscedastic. This can happen when the model
is misspecified and there are predictors missing from the model that are generating the
heteroscedasticity (Hayes & Cai, 2007a). In such situations, bootstrapping as described
above is not appropriate as the unknown pattern, by its definition, cannot be replicated
by the bootstrapping re-sampling process (Wu, 1986). In such cases, the HC4 estimator
coupled with so called wild bootstrap (Liu, 1988) shows the best performance compared
to the its HC counterparts, alternative bootstraps, and the OLS error estimator (Godfrey,
2006; Davidson & Flachaire, 2008).
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Robust point estimates
A point estimate for the relationship between variables that we are studying should
represent a typical individual in a given population as accurately as possible and produce
standard error of size that is not detrimental to statistical power. No estimator beats OLS
when sampling from a normal distribution. However as we have seen, such distributions
are an exception rather than the rule in applied settings. OLS can be especially volatile in
heavy-tailed distributions that are likely to contain outliers. The variance computed using
OLS will be too large and therefore the power to detect a real statistically significant effect
will be low. Additionally, OLS becomes biased when outliers are present. This is related
to its low finite sample breakdown point, which is the proportion of extreme values in
the sample that can cause the estimate to be biased in the direction of these values. Each
estimator has its own breakdown point, and for OLS this value is 1/n, n being the sample
size. In proportional terms, the value gets smaller as the sample size increases, therefore
large sample sizes are not protected from the effects of outliers.

M-estimators
Among the robust methods that show substantially better performance than the mean
(which is an OLS estimator) are the trimmed mean and M -estimators. M -estimators are
among the robust methods that show substantially better performance in situations where
OLS becomes biased or produces non-optimal estimates. During M -estimation, extreme
observations are weighted down to lessen their impact on the point estimate. Which
observations are weighted down and to what extent is determined algorithmically by the
computer based on the properties of the model in question. The researcher can however
select a function according to which the down-weighting should be applied.

One example of a weight function is Huber’s ψ (Huber, 1964), which applies smaller
weights to observations with large residuals, where the residuals that are beyond a specific
point are given a weight of zero—this the equivalent of the scores being trimmed off and
not weighing in on the computation of the point estimate. Figure 3A illustrates one form
Huber’s ψ can take. Observations with residuals between −1.2 and +1.2 are assigned
the same weights as they would have in and OLS estimation, whereas the observations
with the residuals outside of this boundary are given a weight of zero—this is represented
by the horizontal lines at the tails of the weight function. As such, M -estimation is
always completed in two or more steps. First, an OLS model is fitted and the weights
are determined based on the residuals in this model, then an M -estimate is computed.
The process is iteratively repeated until the model converges (Susanti et al., 2014). The
breakdown point ofM -estimators is 0.5, meaning that 50% of scores can be at the extreme
ends of the curve and the point estimate will remain at the same location. This is amaximum
possible breakdown point an estimator can have. As a result of the weighting procedure,
the standard errors in the model that usesM -estimation are smaller than they would be in
an OLS model when sampling from heavy tailed distribution, thus increasing the power of
the associated statistical significance tests (Wilcox, 2010).

M -estimators using Huber’s ψ for weighting can however be inefficient under
heteroscedasticity and when there are influential cases in the sample (Croux, Dhaene &
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2 if |xi|< k and as φ(xi)= 0 if |xi| ≥ k, for k = 1.2, x being the value of the residual. These functions
are used to determine the weights inM -estimation, while the value of k is selected using an iterative algo-
rithm.
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Hoorelbeke, 2003; Toka & Cetın, 2011). Extensions of this estimator have been derived over
the years to deal with these issues. We focus on the S-estimator,MM -estimator, and DAS-
estimator, although other versions of the M -estimator exist (Wilcox, 2017). Each of these
estimators builds on the previous version by iterating through the original steps and then
applying a unique adjustment. The S-estimator affects the variance and aims tominimise the
dispersion of the residuals around theM -estimate (Rousseuw & Yohai, 1984; Toka & Cetın,
2011). TheMM -estimator (Yohai, 1987) applies an alternative redescending function (often
Tukey’s biweight function, Fig. 3B) to weigh the residuals and re-estimate the point estimate
originally produced by M -estimation and the variance estimate produced by S-estimation
in the previous steps. The weakness of the MM -estimator is that it becomes inefficient in
designs with small samples (below 20), but also in larger samples if the ratio of the number
of predictors in the model to the number of observations (p/n ratio) is greater than 1/10.
In other words, if there are less than 10 observations for each predictor in the model,
the estimate suffers. High p/n ratio also causes bias in the estimation of variance (Croux,
Dhaene & Hoorelbeke, 2003). The Design Adaptive Scale estimator (DAS; Koller & Stahel,
2011) was developed to correct this bias and lack of efficiency, and can do so successfully
for ratios of up to p/n = 1/3. The function applied by this estimator is also less steep than
the typical the biweight function typically applied in MM -estimation, which accounts for
overly aggressive down-weighting of observations as outliers in heteroscedastic models.

Trimming
Trimming can be thought of as a specific case of M -estimation developed for GLM
designs that compare group means. Given that the(arithmetic) mean is itself a least square
estimator, same limitations as outlined above for more general forms of OLS apply. Most
researchers are likely familiar with the concept of trimming and the trimmedmean, but not
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necessarily with the benefits to estimation this procedure provides. In essence, trimming
is cutting away a proportion of data points at the tails of the sample distribution. A 5%
trimmed mean is a mean computed for a sample where lower and upper 5% of the scores
are not included in the computation. A trim of about 50% results in a median. While the
median is resistant to the presence of outliers, it can be very inefficient when it comes to
estimates of variance, and comparisons based on this measure can have low power (Wilcox,
1998a;Wilcox, 1998b). Researchers might be uncomfortable with the idea of trimming away
fairly large proportions of data, and this intuition is not entirely misguided. The crucial
point here is that the process of obtaining a trimmed mean and conducting statistical
comparisons based on the trimmed mean is not simply discarding 20% of the data on each
end of the distribution and then applying OLS estimation to obtain the standard errors and
conduct statistical significance tests. Computing a trimmed mean involves ordering the
observations from largest to smallest. As such, the observations are no longer independent,
and the estimates of variance become inaccurate.Wilcox (2010) andWilcox (1998b) discuss
this issue in more detail. Note that manual al of outliers faces the same problem, and
an OLS model fitted to a sample after the outlier removal will also produce inaccurate
standard errors (Field & Wilcox, 2017).

Statistical procedures for computing accurate variance and comparing the point
estimates have been derived (Yuen, 1974; Wilcox, 1998b; Wilcox, 2010; Wilcox, 2017), and
these methods are known to perform well under non-normality and heteroscedasticity.
Determining the right amount of trimming can vary depending on the situation, however
20% trimmed mean outperforms least-squares mean in terms of power and accuracy in
a wide variety of situations (Rosenberger & Gasko, 1983; Lix & Keselman, 1998; Wilcox,
2017). Rosenberger & Gasko (1983) note that for small sample below 20 with heavy tails,
25% trim is recommended, whereas a 20% trim will suffice in samples larger than that.
Under exact normality, the trimmed mean can suffer a small loss of power, however show
great advantage when normality cannot be assumed (Yuen, 1974; Wilcox, 1998b; Lix &
Keselman, 1998; Keselman et al., 2002). Wilcox (2010) notes that trimmed means might
be more suitable in small samples when comparing differences between groups, whereas
M -estimators have more utility in regression designs with larger samples (however note
that coefficients in dummy-coded regression designs can also represent the differences
between groups, as both designs are part of the GLM framework (Cohen, 1968; Field, 2024).

IMPROVING TRANSPARENCY AND CREDIBILITY OF
FINDINGS WITH ROBUST METHODS AND SENSITIVITY
ANALYSIS
As highlighted above, violations of OLS conditions are common in applied settings. In such
scenarios, the parameter estimates or the hypothesis tests produced by OLS may encourage
misleading conclusions. Despite this, OLS is often applied uncritically as the default
option. This may be due to researchers’ unfamiliarity with robust methods (Sladekova
& Field, 2024b) or simply the result of a contagion effect—researchers fall back to the
familiar OSF because (a) it’s what they’ve always done (b) it’s what their peers, mentors or
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2In most conventional scenarios, this will be
the case, however see Ng & Cribbie (2017)
who makes the case for characterising the
whole distribution using generalised linear
models instead of minimizing the effects of
tails using robust models.

supervisors have always done and thus recommend doing again or (c) it’s what they keep
finding in journals in which they wish to publish their work.

It is therefore somewhat understandable that OLS is often perceived as the ‘‘safe’’
option that may lessen potential tensions between the authors and their collaborators,
supervisors, or peer-reviewers. However, if the purpose of running a statistical analysis is
to further the discipline’s knowledge with scientific discovery, planning and preregistering
analyses that can deal with skewed and heteroscedastic error distributions with outliers
should be a priority rather than an afterthought. The robust methods outlined above have
been evaluated under a wide variety of conditions. One conclusion that remains evident
across studies is that in most situations researchers are likely to encounter in practice,
robust methods are the superior choice to OLS, providing more accurate parameter
estimates, unbiased significance tests and better statistical power (Yuen, 1974; Rosenberger
& Gasko, 1983; Wu, 1986; Liu, 1988; Wilcox, 1998a; Croux, Dhaene & Hoorelbeke, 2003;
e.g., Toka & Cetın, 2011; Koller & Stahel, 2011; Sladekova & Field, 2024a). Unlike classic
non-parametric tests, robust methods are adaptable to a range of designs commonly used
in psychological research. This means that they can adequately supplement or indeed
replace any model that was originally designed for OLS-based hypothesis testing. In a
recent review, robust methods were highlighted as a tool that can aid replication due
to their consistent performance in models with heavy-tailed error distributions (Yuan
& Gome, 2021). Nevertheless, robust methods remain under-utilised (Sladekova & Field,
2024b; Sladekova, Poupa & Field, 2024).

Although robustmethods consistently outperformOLS, they differ in performance when
compared to each other. Therefore, the choice of best-suited robust method is important
to maximise the benefits of their application. Some circumstances that affect performance
are under the researcher’s control and can be planned for in advance. These include the
sample size, the ratio of sample sizes between groups, and aspects of model design such as
type and number of predictors.

Some methods will, however, produce parameter estimates that describe the
typical individual from the population with more accuracy compared to others if the
error distributions in the population model are asymmetrical due to skewness and
heteroscedasticity. Consider the case of a population mean calculated for a skewed
distribution as shown on Fig. 4. When sampling randomly from this population, the
means of individual samples would eventually converge on the population mean in a
sampling distribution. The mean would therefore not be biased—there’s no systematic
over- or under-estimation of the population mean—but it also wouldn’t be the most
accurate representation of a typical individual from that population. If finding a value for
such an individual is our goal2 then a robust estimator less affected by asymmetry (like the
trimmed mean or theMM -estimator) is a better choice. We summarised the performance
of the methods introduced above in detail in a related simulation study (Sladekova &
Field, 2024a). Here we provide some practical guidance on how researchers can use robust
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Figure 4 Estimation accuracy of robust estimators compared to the mean in a skewed population dis-
tribution (illustrative example).
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methods in a sensitivity analysis while also preregistering their plan ahead of the analysis
and reducing problematic degrees of freedom.

Sensitivity analysis is the process of determining how sensitive our results are to the
choice of our model and the assumptions we are making about the population or the
data-generating process. At the extreme end, it can take the form of a multiverse analysis,
where a multitude of analytic paths are explored and variability or stability of estimates
from the different paths is considered when the results are being interpreted (Steegen et al.,
2016; Girardi et al., 2024). In Bayesian estimation, parameter estimates and Bayes factors
are often examined under different prior distributions to examine the effects that priors
have on the conclusions drawn from the data (McElreath, 2020). An important feature of
a sensitivity analysis is transparency—that is, the results of all different analyses are made
available for inspection and the authors discuss the implications of any diverging results.

If researchers wish to avoid or minimise data-driven decisions in a frequentist analysis,
a sensitivity analysis with an appropriate robust method or methods can be preregistered.
Researchers would need to identify a set of error distributions that can be plausibly expected
for the effect they are studying. As discussed, distributions associated with some variables
are well documented. For example, reaction times often generate right skewed error
distributions (Whelan, 2008), while some clinical measures can create heteroscedasticity
(Grissom, 2000). For researchers in fields with less thoroughly documented distributional
characteristics, we provide an overview of most common values for skewness, kurtosis,
heteroscedasticity, as well as other relevant metrics in a study examining over 500 models
reported in both published and unpublished psychology papers (Sladekova & Field, 2024c).
These values can be used as a proxy for preregistering a sensitivity analysis of estimators
that can deal with the ‘‘typical’’, ‘‘worst’’ and ‘‘best’’ case scenarios. We evaluated the robust
methods introduced here under these scenarios in a recent simulation study (Sladekova &
Field, 2024a), based on which we can make the following recommendations:
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• If the normal errors with constant variance can be assumed, or if light-tailed symmetrical
and homoscedastic distributions free of outliers are expected, OLS remains the best
choice.
• In scenarios where skewed and heteroscedastic error distributions or outliers are
expected, OLS, bootstrapping, and HCSE should be avoided if the goal is to estimate
the population value accurately. HCSEs do not affect the parameter estimates, while the
repeated bootstrap sampling from a population with a skewed distribution will result in
the empirical sampling distribution converging on an inaccurate value.
• For between-subjects or cross-sectional designs with skewed and heteroscedastic
distributions researchers can preregister either theMM -estimator or theDAS-estimator.
Both estimators perform well in designs with categorical or continuous predictors.
The MM -estimator may fail to converge in up to 6% of cases if the sample size is
insufficient relative to the number of predictors in the model—the DAS- estimator can
be preregistered as a contingency plan for this possibility. The DAS-estimator, on the
other hand, should be avoided if the group sample sizes are too imbalanced (ratio of the
largest group to the smallest is more than 2:1)
• For repeated-measures designs, 20% robust trimming can be beneficial for skewed and
heteroscedastic error distributions, while 20% trimming combined with the t -bootstrap
for the estimation of confidence intervals is more useful with mixed designs if the group
sample sizes are unbalanced.
• HCSE and either bootstrapping method remain a valid option if the error distribution is
symmetrical. They are especially advantageous in designs with heteroscedastic categorical
predictors with heteroscedasticity. Bootstrapping should be prioritised in small samples
with balanced sample sizes across groups, while HCSE are better at handling unbalanced
designs, as well as extreme levels of heteroscedasticity (variance ratios above 4).

Once the estimates from the different models are obtained researchers can interrogate
them in the context of the assumptions that can be made about the error distribution.
For example, if we pre-registered an OLS model, a BCa bootstrap, and an MM -estimator,
the OLS estimates will be most accurate if we assume normal and homoscedastic errors
with no outliers. If we only managed to collected a relatively small sample (∼70) and we
assume symmetric errors with heteroscedasticity, the OLS estimate and the bootstrapped
estimate will likely converge, however the bootstrapped statistical tests will be better
powered and we could therefore observe a discrepancy in significance tests. If we assume
skewed heteroscedastic errors, the most accurate parameter estimates will be provided by
the MM -estimator. Researchers should especially pay attention if the parameter estimates
for the MM -estimator and the other two estimators diverge, as this could indicate that
the model errors are asymmetrical or that there are outliers in the sample. Field & Wilcox
(2017) suggests that in such scenarios, theMM -estimate should be interpreted instead.

For some researchers, this approach might seem (understandably) unsatisfactory—
instead of a single result they would typically obtain, they are now left with three or
more potentially contradicting estimates and significance tests. However, uncertainty
is a key component of statistical research and this is especially true with frequentist
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concepts like p-values and confidence intervals. It is important to express this uncertainty
transparently, especially when it arises as a result of factors beyond the researcher’s control,
such characteristics of the population that is being studied. This further highlights the
need for replication, open data sharing and cumulative approach to science, so that the
variables psychology researchers work with and their impacts on error distributions are
systematically documented in a way that allows researchers to make realistic analytic plans
instead of assuming normal distributions and hoping for the best.

In this paper, we presented an approach that combines recently introduced open science
tools like pre-registration with robust methods to allow researchers to estimate values that
accurately describe the typical individual in the population. Notably, other approaches exist
and researchers should be aware that robust estimators are not suitable if the researcher
wishes to be able to make predictions about the individuals at the tails of the distribution.
In such situations, generalised or generalizable linear models are a more appropriate tool.
Ng & Cribbie (2017) provide an accessible introduction to this issue.

Finally, researchers should note that the application of robust methods is not a substitute
for thorough data checks that could uncover issues going beyond the violations of OLS
conditions. Among other things, this could include data entry and processing errors,
careless responding, or extreme cases not well predicted by the model that warrant
further investigation. Additionally, while robust methods can adequately deal with violated
assumptions, they do not address estimation problems that could arise from other sources
of bias, like missing data, model misspecification due to omitted variables, confounding,
or sampling bias.

LIMITATIONS
We aimed to provide a synthesised overview of the literature available across several
research areas however this endeavour has had several challenges. Studies reviewing
statistical practice often rely on the information available in published papers, however
this remains, by and large, at the discretion of the researchers producing those papers.
An absence of assumptions checks in a published report does not guarantee that an
assumption check has not been carried out. Conversely, a report of ‘‘satisfied’’ statistical
assumptions does not guarantee the assumption were realistically met in practice or
checked with appropriate methods. Although many journals now put more emphasis on
open science and adherence to standard reporting guidelines, this does not guarantee
sufficient transparency (Wicherts, Bakker & Molenaar, 2011) necessary to fully understand
statistical practice and its effects on the credibility of findings in the field. We supplemented
this gap by including empirical papers examining researchers’ practice in self-reports or
experiments, however the literature of this kind remains sparse in the context of OLS
assumptions.

In general, simulation studies suffer from a lack of methodological consistency.
The conditions simulated for evaluating model performance—like levels of skewness,
kurtosis, or heteroscedasticity—can range widely from one study to another, often
without satisfactory justification for how and why specific distributions had been selected.
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Simulations that draw directly on conditions found in real data are an exception rather
than the rule, and even then methodologists are limited to the kind of data researchers are
willing to share in the first place. Luijken et al. (2024) also notes that simulation studies
frequently lack sufficient detail to enable reproducibility. This is means that each new
simulation study evaluating the performance of an estimator not only implements changes
to simulated conditions suitable for answering the research questions, but might also
need to re-invent the wheel and implement an entirely different algorithm from scratch
for generating random samples. This creates a challenge for comparing the performance
of various estimators unless they are evaluated in a single study. Incidentally, this is
why the conclusion that OLS is an inferior choice compared to robust estimators when
assumptions are violated is rarely up for a debate—a single study will typically pit one or
more robust estimators against the OLS and can therefore reliably compare the estimators’
performance in their simulated ecosystem of distributions. However, a study evaluating
the performance of bootstrapping will not necessarily also evaluate the performance of
HC4 or M -estimators, which makes the comparison of different robust methods to each
other challenging and prevents us from definitively recommending one robust method
over others. Any conclusions and guidelines presented in this paper were made with these
limitations in mind.

CONCLUSION
We introduced several robust methods and highlighted the issues that current practice
associated with OLS estimation can have for broader replicability and credibility of
psychological findings. Of all the methods discussed, OLS is the least equipped to deal with
data typically found in psychology research, yet it remains the most frequently applied
method. When the assumptions of OLS are violated, the estimator loses efficiency and
statistical power, and can become biased with a single extreme observation present in the
sample. Robust methods remain unbiased and accurate in the presence of outliers, and
retain statistical power in common applied settings where the OLS models fail. Unlike tests
on transformed variables or the classic non-parametric tests (Wilcoxon-Mann-Whitney or
Kruskal-Wallis test), robust methods keep the model properties interpretable and can be
flexibly applied to more complex designs.

Wehave argued that a pre-specified sensitivity analysis using robustmethods is preferable
to a post-hoc application of countermeasures after the violations of assumptions are
detected. Not only can decision-making based on statistical tests of assumptions increase
the rate of false positive findings, but it can also introduce bias into the analytic process
and render the findings impossible to replicate. The use of robust methods reduces the
need for post-hoc decision making, allows the researchers to preregister and carry out
more realistic analysis plans, while remaining transparent about the impact that unknown
error distributions can have on their conclusions. Robust methods are not a quick-fix
solution to inadequate sampling or poor methodological choices, and no single method
outperforms others in all possible situations. However in situations that the researchers are
likely to encounter in applied settings, robust methods offer an advantage in the accuracy
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of estimates and the power of statistical tests when compared to OLS estimation. Routine
application of robust methods could contribute to improving the credibility of psychology
as a science by increasing the robustness of statistical findings as well as enabling more
transparent and reproducible practice.
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