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ABSTRACT

Following decades of mining impacts, South America’s hypersaline wetlands (salars)
face increasing threats from lithium extraction to support global decarbonisation.

Although globally important, salars are understudied and information needed to

understand environmental impacts is lacking. Modern ecological studies on salars
have focused on microbial community composition and function but other taxa are
less studied, including resident and migratory reptiles and birds and their aquatic
invertebrate prey.

Given the scale and immediate nature of the threats associated with lithium
exploitation, we must deepen our understanding of salar biology, but this is impeded
by logistic/financial restrictions given the heightened costs of sampling in these often
remote, extreme environments. Given the pressing demand for information, we
collated/analysed information from the literature. We generated lists of invertebrate
taxa present in 63 hypersaline environments from Argentina, Bolivia, Chile and
Peru, and examined relationships between invertebrate community structure and
physicochemical factors. We recorded 46 different taxa, with the Centropagidae being
the most frequently recorded taxon across systems. Multivariate analyses of community
structure showed significant clustering among sites. Variation in community structure
was best explained by maximum salinity (18%). Geographical location or ecosystem
size had no obvious effect on community structure. We provide a useful broad view of
aquatic invertebrate diversity in the hypersaline salars but highlight the general lack of
information regarding the ecology of these ecosystems.
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INTRODUCTION

Salars—hypersaline ecosystems characterized by lakes, lagoons, wetlands, or a
combination—are found in Argentina, Bolivia, Chile, and Peru (Risacher, Alonso ¢ Salazar,
2003). Salars are usually found in endorheic basins associated with palaeo-lakes and have
salinities (>40 g/L) that can far exceed those of oceanic waters (Gutiérrez et al., 2022).
One of their most outstanding characteristics, in addition to their salt concentrations, is
their elemental brine composition, which can include large amounts of lithium and boron
(Godfrey et al., 2013; Alvarez-Amado et al., 2022). Although both elements are of industrial
concern, lithium is currently of elevated global interest reflecting the high demand from
the energy storage and automobile industries as a key tool to counter climate change. Fifty
percent of lithium brine reserves are concentrated in Argentina, Bolivia, and Chile, forming
an area known as the lithium triangle (USGS, 2024). Although Peru is not included in this
area, it has salars, with interest recently expressed in exploiting lithium in Puno, in the SE
of the country (Mares, 2022). Lithium exploitation in Argentina is currently carried out in
two main operations, in the Salar del Hombre Muerto and in the Salar de Olaroz. Bolivian
lithium production is currently limited to the Salar de Uyuni. In Chile, lithium production
is focussed on the Salar de Atacama, Chile largest salar. However, recent realisation of the
value of the resources have led to restructuring of the concessions regarding exploitation
between 2016 and 2018 (Cabrera-Valencia, 2023), and the Chilean national government
recently published a national lithium strategy (Gobierno de Chile, 2023), which includes a
list of 7 salars (Salar de Atacama, Salar de Maricunga, Salar de Pedernales, Salar Grande,
Salar de Infieles, Salar de La Isla and Salar de Aguilar) earmarked for lithium exploitation
and other 6 (Salar de Coipasa, Salar de Ascotén, Salar de Ollagiie, Laguna Verde, Salar de
Agua Amarga and Salar de Piedra Parada) under possible exploitation.

Thus, many of those inland hypersaline ecosystems face marked and increasing
threats to their conservation and long-term existence due to direct factors such as
extraction of water and other materials, e.g., minerals, and indirect factors including
climate change, which individually, and in concert accelerate the drying process of
these aquatic ecosystems (Gajardo ¢» Redon, 2019; Gutiérrez et al., 2022). Mineral and
water extraction affects the physicochemical properties of lakes, triggering changes
in their biogeochemical attributes, thus affecting the often-specialised taxa that
inhabit them (Acosta ¢ Custodio, 2008; Ribera, 2016), and their capacity to provide
ecosystem goods and services to human populations. The degradation of hypersaline
lakes has occurred across their global distribution (Wurtsbaugh et al., 2017), but is a
particular issue in the arid lithium triangle (Rentier, Hoorn & Seijmonsbergen, 2024).

Saline lakes provide various ecosystem services, including provision of water (for
industrial mining, agriculture and municipal usage), provision of organisms or compounds
for biotechnology and aquaculture, recreation, tourism, nature conservation and cultural
services (Gajardo & Reddn, 2019). Hypersaline lakes have also provided sensitive records
of ecological, evolutionary and geological shifts through the formation and long-term
retention of evaporites, which usually form in these ecosystems as a result of environmental
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processes (Ochlert et al., 2022). They also represent important dissolved inorganic carbon
reservoirs on the planet, capturing atmospheric CO, (Duarte et al., 2008).

Given the increasing threats to their conservation, there is a pressing need to deepen our
understanding of the ecology and functioning of salars. As such, it is necessary to gather
information on the complex ecological processes that occur in these systems to understand
interactions between a broad (and understudied) group of taxa including microorganisms,
vegetation, invertebrates and vertebrates. Most modern ecological studies conducted in
salars have focused on the structure and function of the microbial community. Beyond
revealing the existence of many extremophile taxa with adaptations to extreme conditions
and unusual metabolisms, microbes have been shown to play major roles in fixing organic
and inorganic compounds (e.g., carbon dioxide) and being key in the biogeochemical
interactions of hypersaline lakes (Oren, 2011). However, salars support a diversity of other
taxa, including aquatic invertebrates involved in key ecological processes in hypersaline
ecosystems, such as the regulation of the proliferation of micro-organisms, which in turn
regulates water turbidity and thus light penetration and stratification (Wurtsbaugh &
Berry, 1990; Barnes ¢ Wurtsbaugh, 2015). These organisms in turn are an important part
of the diet of migratory and resident vertebrates such as birds that feed on micro-crustacea
such as Artemia and insects e.g., Ephydridae larvae (Baxter, 2018). Looking more locally,
there is no collective view of what aquatic invertebrate taxa are present in the salars of the
lithium triangle, how they vary among systems, and if so, what factors are likely driving
this variation.

There is a growing number of proposed projects to extract lithium from salars
across the region to support global decarbonisation (Voskoboynik ¢ Andreucci, 2022).
Environmental Impact Assessments associated with such projects require reliable ecological
information to support informed decision making. There is some information available
on salar invertebrates from the lithium triangle, but most of it is dated (>20 years old)
and is potentially not relevant after several decades of over-exploitation of water and
climate change. Furthermore, to our understanding there have been no efforts to use a
community-based approach across salars, and approach needed to support ecosystem-
based management approaches. There is a common perception among many stakeholders
that these unique ecosystems are similar to the point that information from one is likely
relevant for the management of all. However, over 30 years of work have shown that
salars are not only widely different in regard to their physiochemical compositions but
also their microbial ecology (Aguilar et al., 2016). It is likely that this extends to their
macroinvertebrate community and their community structure and function. Although
understudied in salar ecosystems, invertebrates from inland waters are useful indicators
of the state of ecosystems, as they tend to be sensitive to anthropogenic changes (Collier,
Probert & Jeffries, 2016). Benthic macroinvertebrates are widely used as bioindicators to
assess riverine (Hawkes, 1998) or lacustrine water quality (Lindegaard, 1995). Aquatic
invertebrates thus also have the potential to reflect the relative ecological status of salar
ecosystems.

Given the current lack of information regarding the diversity and ecology of salar
aquatic invertebrates we ask the following questions: What taxa are present in the salars
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of the lithium triangle? Is community structure similar across different salars? If not, are
any physico-chemical factors associated with the presence or absence of some taxa? We
undertook a desk-based review to compile data on aquatic invertebrates from those salars
from those countries in South America potentially threatened by the lithium industry in
order to address the questions presented above.

MATERIAL AND METHODS

Data were collated from studies conducted in Argentina, Bolivia, Chile and Peru by
means of literature searches using Web of Science (https:/www.webofscience.com), using
the keywords “Saline Lakes” and the country of interest, as well as searching for the
name of specific ecosystems from each of the four countries together with the keyword
“invertebrates” (e.g., Salar de Atacama AND invertebrates). Searches were conducted in
English and in Spanish. We also used the reference lists of these articles to encounter
relevant studies.

This resulted in information gathered from 19 different articles and theses published
between 1986 and 2022, detailing the presence of aquatic invertebrate taxa from a total of
63 sites (salt lakes, lagoons, salars: Fig. 1) from Argentina (n = 6), Bolivia (n = 27), Chile
(n=21) and Peru (n=19). We generated a presence/absence matrix for invertebrate taxa
recorded from these 19 articles. We also included data from two sites in Chile (Laguna
Puilar and Salar de Tara) that we sampled by kick sampling in 2021. We also recorded
relevant information where available including salar location, altitude above sea level,
surface area, and maximum salinity. Where information was not provided in the article,
we used Google Earth Pro to estimate altitude and lagoon surface area. If information
on maximum salinity was not provided, we used data from Risacher ¢ Fritz (1991) and
Risacher, Alonso ¢ Salazar (1999). It should be noted that not all articles took into account
seasonal variability to study diversity at each sample site, and as such we did not consider
this factor in our analyses.

The community matrix was based on the presence/absence of different aquatic
invertebrate families due to the varying levels of taxonomic resolution reported across
studies. We estimated family richness per salar and compared it to the different
environmental variables using Pearson’s correlation. We then used a multivariate approach
to examine patterns in aquatic invertebrate community structure across sites. First, a
Jaccard similarity matrix was constructed. We then used group average hierarchical cluster
analysis (where the new node takes the mean similarity of the individual nodes) to examine
evidence for structuring within the dataset. Salars were placed into groups based on theirs
proposed membership of different clusters. One-way permutational multivariate analysis
of variance (PERMANOVA) tests (Npermutations = 9999) were used to assess statistical
support for differences in community structure between country and between putative
clusters. A Similarity Percentages (SIMPER) test was used to highlight the taxa contributing
to similarity within and dissimilarity between groups. An non-metric multidimensional
scaling (nMDS) ordination was generated to visualize patterns in community structure
between salars. Vectors were added to the multidimensional scaling (MDS) depicting
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Figure 1 Study area map depicting the location of the n = 63 salars and lagoons included in the
current study.
Full-size & DOI: 10.7717/peer;j.20042/fig-1

the Pearson correlation between different taxa and the MDS axes, with the direction for
each family indicating the sign and strength of the correlation. Finally, we used a distance
based linear model (DistLM) to examine which environmental factors (altitude, maximum
salinity, surface area, latitude, longitude) best explained variation in aquatic invertebrate
community structure. Environmental data were normalised prior to their inclusion in the
model as predictors. We used the BEST selection procedure which searches all possible
combination of variables, and based our selection of best fit on the Akaike Information
Criterion (AIC). All analyses were conducted in PRIMER/PERMANOVA+ 7.0.24 (Clarke
& Gorley, 2015).

RESULTS

There were more reports from Bolivian salars (n =27), than Chile (n=21), Peru (n=9)
or Argentina (n =6). A total of 46 different aquatic invertebrate families were reported as
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Figure 2 Variation in taxon frequency across the different sites included in the current study.
Full-size Gal DOI: 10.7717/peer;j.20042/fig-2

being present in the 63 different salars (Tables 1, Table S1). The salars were distributed
over a total area of 401 752 km?. The study area extended across 13 degrees of latitude
and eight degrees of longitude. The most northerly salar was Parinacochas lagoon in Peru
and the most southerly was Santa Rosa lagoon in Chile. Altitude varied between 750 and
4,690 m asl (mean £ SD = 3824 + 823 m) and surface area ranged from <0.001 to 125 km?
(10.7 % 23.8 km?). Maximum total salinity varied between 0.12 and 336 g/L.

The number of families reported per salar varied between one and 21 families with
a mean (£SD) of 3.4 (44.0). There was no apparent relationship (Pearson r =0.04 to
0.16, P =0.21 to 0.85) between family richness reported from a given salar and any of the
different environmental variables (i.e., altitude, surface area, maximum salinity, longitude
or latitude.

Some patterns that can be observed in the data are that as salinity increases the number of
taxa is mostly reduced, with Artemiidae being the dominant group under these conditions.
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Table 1 Data of the study sites considering the name of the salar or lagoon, the country, altitude, location, area and maximum salinity.

System name Altitude Longitude Latitude Country Surface Maximum N taxa Reference
area salinity
(km?) (g/L)
Salar Pastos Grandes 4,440 —21.64 —67.80 Bolivia 125.00 5.70 6 Williams et al. (1995)
Laguna Ramaditas 4,117 —21.63 —68.08 Bolivia 4.00 47.30 5 Dejoux (1993); Hurlbert, Lopez & Keith (1984); Williams et al. (1995)
Laguna Hedionda 4,121 —21.57 —68.05 Bolivia 4.40 60.00 8 Dejoux (1993); Williams et al. (1995)
Laguna Cafiapa 4,140 —21.51 —68.01 Bolivia 1.50 85.80 5 Dejoux (1993); Williams et al. (1995)
Laguna Colorada 4,278 —22.20 —67.78 Bolivia 52.00 156.40 2 Williams et al. (1995)
Laguna Chiar Khota 4,110 —21.58 —68.07 Bolivia 2.10 120.00 1 Dejoux (1993)
Laguna Honda 4,110 —21.62 —68.07 Bolivia 0.30 35.00 1 Dejoux (1993)
Laguna Pujio 4,110 —21.62 —68.07 Bolivia 0.07 45.00 1 Dejoux (1993)
Laguna Ballivian 4,130 —21.63 —68.08 Bolivia 0.02 36.00 2 Dejoux (1993)
Laguna Caliente 4,440 —21.64 —67.80 Bolivia 0.34 38.00 8 Dejoux (1993)
Laguna Cachi 4,495 —21.72 —67.95 Bolivia 1.10 12.40 3 Dejoux (1993)
Polques 4,394 —22.53 —67.62 Bolivia 13.40 15.00 13 Bayly (1993); Dejoux (1993)
Laguna Verde 4,310 —22.80 —67.80 Bolivia 16.00 58.10 7 Bayly (1993); Dejoux (1993)
Aguas calientes I 4,280 —23.13 —67.40 Chile 2.50 122.89 1 Bayly (1993)
Aguas calientes IT 4,200 —23.52 —67.57 Chile 9.00 13.66 1 Bayly (1993)
Aguas calientes IIT 3,950 —25.00 —68.63 Chile 2.50 25.15 1 Bayly (1993)
Hombre muerto 3,973 —25.50 —66.85 Argentina 13.00 21.00 1 Bayly (1993)
Guacha 4,406 —22.55 —67.52 Bolivia 2.10 36.00 1 Bayly (1993)
Collpacocha 3,825 —15.25 —70.05 Peru 1.40 38.60 2 Hurlbert, Loayza & Moreno (1986); Bayly (1993)
Este 4,407 —22.52 —67.48 Bolivia 0.52 86.00 1 Bayly (1993)
Chojllas 4,545 —22.37 —67.10 Bolivia 5.50 11.10 1 Bayly (1993)
Soledad 3,722 —17.73 —67.37 Bolivia 91.00 11.00 1 Bayly (1993)
Loriscota 4,562 —16.87 —70.03 Peru 33.00 10.40 2 Bayly (1993); Hurlbert, Loayza ¢& Moreno (1986)
Khara 4,509 —21.90 —67.87 Bolivia 13.00 8.70 1 Bayly (1993)
Puripica chico 4,393 —22.52 —67.50 Bolivia 0.70 8.20 1 Bayly (1993)
Catalcito 4,545 —23.52 —67.25 Bolivia 2.10 8.10 2 Bayly (1993)
Pozuelos 3,663 —22.33 —66.00 Argentina 87.80 6.20 1 Bayly (1993)
Parinacochas 3,273 —15.28 —73.70 Peru 67.00 5.60 3 Bayly (1993); Hurlbert, Loayza ¢ Moreno (1986)
Pelada 4,590 —22.75 —67.17 Bolivia 1.90 4.10 2 Bayly (1993)
Penitas blancas 4,530 —22.43 —67.37 Bolivia 0.10 3.70 1 Bayly (1993)
Huancaroma 3,722 —17.67 —67.50 Bolivia 1.76 3.50 1 Bayly (1993)
Campo Grande 4,553 —22.55 —67.20 Bolivia 2.10 3.40 1 Bayly (1993)
Pampamarca 3,788 —14.13 —71.48 Peru 6.70 0.80 1 Bayly (1993)
Viscacha 4,575 —16.88 —70.23 Peru 8.40 0.90 1 Bayly (1993); Hurlbert, Loayza ¢& Moreno (1986)
Conchostraca 4,690 —22.30 —67.23 Bolivia 0.13 0.69 1 Bayly (1993)
Totoral 4,559 —22.53 —67.23 Bolivia 1.00 0.65 1 Bayly (1993)
Loripongo 4,555 —16.83 —70.08 Peru 0.60 0.62 2 Bayly (1993); Hurlbert, Loayza & Moreno (1986)
Llamara 754 —21.30 —69.62 Chile 0.02 160.00 1 De Los Rios-Escalante (2005); Ziifiiga et al. (1999)
Cejas 1 2,343 —23.03 —68.22 Chile 0.03 129.30 1 De Los Rios-Escalante (2005); Zifiiga et al. (1999); Ziiiiga et al. (1994)

(continued on next page)
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Table 1 (continued)

System name Altitude Longitude Latitude Country Surface Maximum N taxa Reference
area salinity
(km?) (g/L)

Cejas IT 2,343 —23.03 —68.22 Chile 0.02 150.00 1 De los Rios-Escalante & Amarouayache (2016)
Cejas 11T 2,343 —23.03 —68.22 Chile 0.07 189.00 1 De los Rios-Escalante & Amarouayache (2016)
Tebenquiche 2,317 —23.12 —68.27 Chile 2.00 300.00 2 De Los Rios-Escalante (2005); Zifiga et al. (1999); Zifiiga et al. (1994)
Chaxas 2,302 —23.29 —68.18 Chile 0.20 120.00 1 De Los Rios-Escalante (2005)
Gemela Este 2,400 —23.23 —68.23 Chile 1.00 41.00 1 De Los Rios-Escalante (2005); De Los Rios-Escalante, Fransen & Klein (2010)
Gemela Oeste 2,400 —23.23 —68.23 Chile 1.00 51.00 1 De Los Rios-Escalante (2005); De Los Rios-Escalante, Fransen & Klein (2010)
Miscanti 4,120 —23.72 —67.80 Chile 13.40 8.98 4 De Los Rios-Escalante (2005); De Los Rios-Escalante, Fransen & Klein (2010)
Mifiiques 4,120 —23.72 —67.80 Chile 1.60 9.79 4 De Los Rios-Escalante (2005); De Los Rios-Escalante, Fransen ¢ Klein (2010)
Capur 3,950 —23.90 —67.80 Chile 0.90 3.40 3 De Los Rios-Escalante (2005); De Los Rios-Escalante, Fransen & Klein (2010)
Santa Rosa 3,766 —27.08 —69.17 Chile 0.64 8.00 2 Bayly (1993); De Los Rios-Escalante (2005);

De Los Rios-Escalante, Fransen ¢ Klein (2010)
Tilopozo 2,314 —23.78 —68.24 Chile 0.20 3.00 6 Collado, Valladares & Méndez (2013); Ziiiiga et al. (1991)
Puilar 2,306 —23.31 —68.15 Chile 0.12 16.98 6 (Dorador et al., 2018; G. Salazar, 2025, unpublished data)
Tara 4,322 —23.02 —67.30 Chile 14.00 70.00 12 (Garcia-Sanz et al., 2021; G. Salazar, 2025, unpublished data)
Ascotan 3,716 —21.49 —68.26 Chile 18.00 119.85 21 Collado & Méndez (2012); Lagomarsino-Pizarro (2016);

Sobarzo-Opazo (2014)
Carcote 3,690 —21.27 —68.32 Chile 3.50 335.54 11 Cdrcamo-Téjer (2017); Collado & Méndez (2013)
Laguna Verde (Argentina) 3334 —25.48 —67.55 Argentina 0.01 176.26 5 Colla, Lencina & Farias (2022)
Pozo Bravo 3,327 —25.52 —67.58 Argentina 0.02 140.69 5 Colla, Lencina & Farias (2022)
Ojo de campo azul 3,331 —25.61 —67.67 Argentina 0.002 27.90 11 Colla, Lencina & Farias (2022)
Ojo de campo naranja 3,332 —25.61 —67.67 Argentina 0.001 149.60 2 Colla, Lencina & Farias (2022)
Salar de Surire 4,260 —18.84 —69.05 Chile 9.50 102.00 16 Scheihing et al. (2010); Zuniga et al. (1999)
Lago Salinas 3,840 —14.98 —70.12 Peru 9.70 251.00 1 Hurlbert, Loayza & Moreno (1986)
Saytococha 4,225 —15.90 —70.53 Peru 1.00 0.12 5 Hurlbert, Loayza & Moreno (1986)
Laguna las Salinas 4,295 —16.37 —71.15 Peru 24.00 8.50 2 Hurlbert, Loayza & Moreno (1986)
Laguna Chulluncani 4,450 —21.55 —67.88 Bolivia 0.80 69.00 2 Hurlbert, Lopez & Keith (1984)

Also, the copepod family Centropagidae (present in 39 sites) was the most frequent group
present across sites, represented by the genus Boeckella (Fig. 2).

A one-way PERMANOVA provided some evidence (PseudoF3 5o =2.17, P = 0.009)
that aquatic invertebrate community structure differed in the salars in the four countries.
Pairwise comparisons showed that only in Bolivia and Chile (¢-test: P = 0.02) and Argentina
and Peru (P = 0.04) were differences in community structure significantly different. Group
average hierarchical cluster analysis provided strong evidence that the aquatic invertebrate
community structure differed between individual salars and that they could be reliably
clustered into eight groups (Fig. 3). A PERMANOVA analysis provided strong statistical
support for the cluster analysis (Psuedo-F; 55 =22.12, P = 0.001). The geographical
location of salars belonging to the different clusters was not based on political boundaries
(Fig. 3). The nMDS ordination (Fig. 4) provided more support for the separation of the
salars into groups (Stress 0.06). The first MDS axis was positively associated with the
Centropagidae and negatively with the Artemiidae (Fig. 4), while the second MDS axis was
positively associated with a range of different families.

The results of the SIMPER test allowed a deeper understanding of the invertebrate
families associated with the different clusters. Group A was characterised by Centropagidae

Salazar et al. (2025), PeerdJ, DOI 10.7717/peerj.20042

8/20


https://peerj.com
http://dx.doi.org/10.7717/peerj.20042

Peer

Capur @ —=---=mm=nmmmmmmmmmemem oo 4
Catalcito@

Pelada@*
Chulluncani @
Santa Rosa @
Loripongo @
Loriscota @

Khara @

Puripica chico @
Pozuelos @

Penitas blancas @
Huancaroma @
Campo Grande @
Pampamarca®
Viscacha @
Conchostraca @
Totoral @

Gemela Este @
Gemela Oeste @
Aguas calientes | @
Aguas calientes Il @
Aguas calientes Ill @
Hombre muerto @
Guacha @

Este ®

Chojillas @
Soledad ®

o N

Sites

Colorada @
Ojo de campo naranja@ ¥
Las Salinas @
Tebenquiche @
Lago Salinas @
Chiar Khota @
Llamara @
Cejas| @

Cejas |l @

Cejas Il @ -
Chaxas @
Tilopozo O
Cachi O
Puilar©
Polques 0
Laguna Verde O
Hedionda O
Caliente O
Ascotan ©

g =

Carcote O
Ramaditas O

Tara©

Surire ©

BallivianO

Honda O

Pujio O

Cafapa®

Laguna Verde (Arg) ©@
Pozo Bravo @

Cluster

ABCDETFGH
0000000

Pastos Grandes @
Ojo de campo azul @

r T T T T
100 80 60 40 20 0

Jaccard similarity

Figure 3 Dendogram (Ward’s cluster analysis based on a Jaccard similarity matrix) showing variation
in aquatic invertebrate community structure across n = 63 salars and lagoons. There was no obvious
geographical pattern in the distribution of the different clusters.

Full-size Gl DOI: 10.7717/peer;j.20042/fig-3

and Cyclopidae (both 37%); Group B by Centropagidae (99%); Group C, Artemiidae
(98%); Group E, Hyalellidae (30%) and Ephydridae (21%); Group F, Hyalellidae (21%)
and Chironomidae (12%); Group G, Chironomidae (100%); Group H, Chironomidae
(33%) and Ephydridae (33%). Group D was based on a single site so was not considered
for the analysis but was most similar to Group F.

The DistLM test indicated that the best model (AIC = 507) accounting for the variation
in aquatic invertebrate community structure across the 63 different salars included in
our analysis was based on two variables: maximum salinity and altitude, which combined
explained 18.7% of the variation (Fig. 5). The bulk of the exploratory power was associated
with maximum salinity (15.9%).
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DISCUSSION

Reflecting the ongoing threats to salar ecosystems across South America, and the limited
understanding of key components of their ecology, this study used a literature-based
approach to examine several questions concerning the aquatic invertebrate communities
found in salars and lagoons throughout the lithium triangle.

Regarding our first question (what aquatic invertebrate taxa were present in the salars
of the lithium triangle) we provided information that the taxa present are depauperate:
only 46 families of aquatic invertebrates were recorded from 63 salars and lagoons. Our
second question (is community structure similar across different sites?) was answered
in the negative, with clear evidence of clustering across the different sites. Several
families dominated records including the Centropagidae followed by the Chironomidae,
Artemiidae, Cyclopidae, Ephydridae, Hyalellidae, Canthocamptidae and Elmidae. In
terms of their likely role in the ecosystem, zooplanktonic organisms such as Artemiidae,
Centropagidae and Cyclopidae consume microalgae and microorganisms in the water
column, that affect water turbidity and depth light penetration (Sacco et al., 2021). In the
case of benthic organisms such as the larvae of Chironomidae, Ephydridae, Hyalellidae,
Canthocamptidae and Elmidae, they play a crucial role in the degradation of organic matter
present on the bottom (Covich, Palmer ¢ Crowl, 1999; Schratzberger ¢ Ingels, 2018), which
can be used by smaller organisms such as bacteria, and in turn these invertebrates represent a
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food source for migratory or resident birds in these ecosystems. Artemiidae and Ephydridae
were associated with higher salinities, and can be found in systems with salinities >200
g/L (Herbst, Conte & Brookes, 1988; De Vos et al., 2019) respectively. Some taxa, such as the
Centropagidae represented by the species Boeckella poopoensis, are able to tolerate salinities
up to 90 g/L (De Los Rios ¢ Crespo, 2004). An interesting aspect of this species is their
capacity to vary their reproductive strategy throughout the hydroperiod, thriving when
salinity increases and preventing the presence of less tolerant species (Vignatti, Cecilia
¢ Echaniz, 2016). However, the other species in this family tend to be found at much
lower salinities of around 1 g/L (De Los Rios-Escalante & Contreras, 2005). Chironomidae
have been found at salinities of up to 150170 g/L, with high abundances reported from
Crimea, although several species are usually found at lower salinities (Belyakov et al., 2018).
The family Canthocamptidae is a very poorly studied family with respect to the habitats
of the lithium triangle, the only species described being Cletocamptus cecsurirensis from
the Salar de Surire in Chile (Gdémez, Scheihing ¢» Labarca, 2007). However, as a group the
harpacticoid copepods have representatives capable of tolerating high salinities (100 g/L)
as is the case of Tigriopus brevicornis (McAllen, Taylor ¢ Davenport, 1998). Hyalellidae and
Elmidae are usually found at lower salinities, with both families being associated with fresh
and brackish water (Dominguez & Ferndndez, 2009).

Although we only included a limited set of environmental variables, regarding the third
question of this study, we found that there were indeed factors that were associated with the

Salazar et al. (2025), PeerJ, DOI 10.7717/peerj.20042 11/20


https://peerj.com
https://doi.org/10.7717/peerj.20042/fig-5
http://dx.doi.org/10.7717/peerj.20042

Peer

community structure variation of aquatic invertebrates in the salars, the most important
factor being salinity, due to the stronger association (ca. 15%) shown by the distance-based
linear model. Altitude contributed significantly but provided far less («\~3%) explanatory
power. The role of maximum salinity reflects its importance as a key driver of aquatic
invertebrate community structure at the global level (Anufriieva ¢ Shadrin, 2018; Sacco et
al,, 2021).

Salar area, latitude or longitude had no measurable influence on macroinvertebrate
community structure. This is quite striking, as it has been reported that species richness
tends to increase with increasing lake area (Arnott, 2009). However, it is also relevant to
note that this effect of species richness in relation to area has a direct effect with the size
of the study organism, with this effect being more marked in larger aquatic organisms
(Dawson et al., 2016). Conversely marine lakes, which are isolated systems that are fed by
seawater through crevices and rainwater, have shown a direct relationship with lake area
and species richness. Although the salars of the South American Altiplano are isolated on
the surface, some basins have underground water connections reflecting their previous
common origin as paleo-lakes (Risacher, Alonso & Salazar, 2003; Pfeiffer et al., 2018). The
inclusion of zooplanktonic taxa may also have affected our results given their superior
dispersal capacity relative to other invertebrate taxa (Arnott, 2009). In addition to this, there
are also relevant factors to consider including temporal variation within sites. For example,
zooplankton community structure can vary across seasons (Arnott et al., 1999). Given the
limited information available, we could not include within-system variation but there is a
clear need to examine how invertebrate community composition varies within different
salars in order to allow fully robust comparisons. Our data show that although the salars
include some common taxa, they are individually ecologically distinct. These differences
are likely to be due to differences in the physicochemical and chemical characteristics
present but also reflect differences in the functioning of the salars and lagoons. We showed
that salars and lagoons belonging to similar geographic locations belonged to different
clusters. Conversely, salars belonging to similar clusters were often found in quite different
areas across the >400,000 km? study area. These results highlight the importance of
considering each salar on its own merits when considering its management, conservation
or exploitation. Subject to the differences in sampling methods and reporting approach
described above, it is quite likely that different salars in the same general geographic area
will have markedly different invertebrate community structures.

Other salt lakes in the world, such as those found in Tibet, share some characteristics with
South American salars, such as being at high altitude (>4,000 m asl) and having lithium-
rich brines which are currently being exploited (Ding et al., 2023). Articles describing the
diversity of aquatic invertebrates from Tibetan salt lakes, have highlighted Artemia species as
the dominant group of invertebrates in hypersaline conditions. Other halotolerant (>200
g/L) invertebrates recorded from Tibetan salt lakes include Eucypris inflata, Keratella
quadrata, Brachionus plicatilis and Ephydra, with the highest diversity being recorded in
brackish and moderate salinities with representatives of Rotifera (Brachionus, Conquiloides,
Keratella, Lecane, Lepadella, Notholca, Polyarthra and Philodina), Copepoda (Cletocamptus,
Arctodiaptomus and Eucyclops), Cladocera (Daphnia, Daphniopsis, Alona and Chydorus),
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Ostracoda (Cypris), Nematoda, Amphipoda (Gammarus sp.) and Mollusca (Radix and
Hippeutis) (Williams, 19915 Mianping et al., 1993; Wen et al., 2005). Studies from Tibet
include greater taxonomic resolution compared to the work conducted and summarised
here from the lithium triangle, but some taxa have a certain similarity across the two
distinct geographical areas. Conversely, there is little available information regarding the
biodiversity impacts of lithium brine extraction in the Tibetan salt lakes, however, it is
expected that these will be similar to those already mentioned for the South American
salars.

Despite finding marked variation in aquatic invertebrate community structure in salar
systems located throughout Argentina, Bolivia, Chile and Peru, it is important to note some
limitations that potentially affect our results and conclusions. First, our data largely come
from different published studies, generated by different researchers, over different years
(from the 1980s to the present), with different methods and different questions (study of
a single group of taxa or study of the entire invertebrate community). However, these data
and our analyses are useful and have revealed key gaps in our understanding.

Future studies of salar ecology need to use standardised monitoring methods to estimate
taxonomy and abundance/biomass in invertebrates and need to include the statistical power
required to identify trends in abundance. They also need to include seasonal variation,
which is likely crucial in determining invertebrate community structure, especially
for zooplankton. This study has focused on studies using traditional morphological
identification of salar taxa, but there is clear scope to use molecular approaches such as
eDNA metabarcoding in conjunction with these traditional methods. The use of eDNA
in salar ecosystems has great potential, but a lack of local taxa in DNA libraries results in
misidentification and the approach may even not record taxa that are present (Sacco et al.,
2025). Before eDNA will be fully useful in the study of salar ecosystems, there is a need to
develop updated and local taxonomic keys to identify the species present in salars as well
as sampling and sequencing of salar taxa across the four countries.

This study has highlighted how little we know about the diversity and ecology of aquatic
invertebrates in the salars of the lithium triangle. A key knowledge gap exists regarding
the sensitivity of these taxa to future physico-chemical changes in the salars. Published
information on the impacts of direct extraction of brine from the salars in conjunction
with climate change will likely bring irreversible changes. Open water areas will shrink,
and salinities will increase (Gajardo ¢» Reddn, 2019) to levels that many invertebrate taxa
will not be able to tolerate. Given that South American salars do not have a high diversity
of halotolerant invertebrates compared to other hypersaline lakes like Australia (Lawrie,
Chaplin & Pinder, 2021), this could be a clear sign that those invertebrates that are associated
with freshwater and brackish waters (which comprises the majority of the taxa recorded for
this study) will be the first to disappear as salinity increases due to indiscriminate lithium
mining.

Understanding that salars support different invertebrate communities across the wide
diversity of salars present, it is important that developers do not consider all salars to be
the same, especially because aquatic invertebrates are a group of metazoans sensitive to
anthropogenic disturbances. Considering the functional importance of invertebrates in
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biogeochemical cycles, and their role as a key food source for consumers including birds of
critical conservation status, they are a valuable object of study in a scenario of ecosystem
loss due to the direct action of man in water extraction and climate change.

CONCLUSION

This first region-wide analysis of salar aquatic invertebrate community structure across
the lithium triangle shows that taxon richness and community structure vary considerably
across sites. Salars cannot be regarded as homogeneous and will need to be considered
individually (i.e., during environmental impact assessments associated with lithium
exploitation). Variation in community structure was not associated with location within
the region or surface area, and appears to be largely driven by maximum salinity (and to
a lesser degree, altitude). Artemiidae are typically assumed to dominate saline lakes in the
region, but results reveal that Centropagidae are most common taxon recorded. Despite
these limitations, this study provides a useful analysis of the information available and
opens many areas for future research. Developers must assess each salar individually prior
to lithium exploitation.
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