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ABSTRACT
The middle reaches of the Yellow River, with an exceeding amount of coarse sediment
compared to the stream flow and the lower reaches, with severe sediment deposition, are
key regions for sediment control in the Yellow River Basin. Recent years have witnessed
efforts to return farmland land to forest and grassland and the launch of the Three-
North Shelterbelt Forest Program, but the effectiveness of these measures remains to
be studied. Research on factors influencing runoff depth (RD) and sediment yield (SY)
sheds light on themechanism of soil erosion in the study area. The present study focuses
on the standard runoff fields in the Kuye River Basin, where ecological restoration
measures (arbor forest land, shrub grassland, natural grassland, artificial grassland,
cultivated land, Bare land) for various slope steepness (S) have been taken. Based on a
six-year observation of the SY and RD in these fields, we aim to identify the primary
factors influencing soil erosion, based on rainfall data and slope gradients. Using rainfall
data and slope steepness factors, we explored the dominant factors that influence runoff
and SY. The results showed that: (1) the rainfall events with short-duration, medium
rainfall, and medium rainfall intensity were the most frequent; (2) the rainfall events
with medium duration, heavy rainfall, and heavy rainfall intensity produced the most
serious runoff and sediment; (3) usingmachine learningmethods, the researchers found
that the gradient boosting decision tree (GBDT) model was the most suitable for the
study area, as it provided the best simulation of soil erosion. The structural equation
model reveals that there is a significant correlation between runoff depth (RD) and
soil erosion modulus (SEM). Time of precipitation (T), average precipitation intensity
(Iavg), maximum intensity of precipitation in thirty minutes (I30) and slope steepness
(S) are factors that indirectly influence runoff SY. The present study provides technical
guidance for the ecological restoration and improvement of different slope surfaces in
major sections of the middle reaches of the Yellow River.
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INTRODUCTION
Restoring the Yellow River Basin and managing its sustainable development is one of
China’s major development projects (Zuo et al., 2023). The frequent occurrence of soil
erosion disasters in the middle reaches of the Yellow River profoundly impacts the river’s
sediment discharge (Mbezele et al., 2022). Liu et al. (2024b) used analytical tools such as
the Mann–Kendall (M–K) trend test and double mass curve analysis to examine erosion
patterns in these rivers from 1950 to 2022, as well as the primary drivers of these changes.
Wang & Sun (2021) pointed out that the middle reaches contribute over 90% of the
sediment deposited in the lower reaches of the Yellow River and 30% of its annual river
discharge. Coarse sediment causes the uncoordinated relationship between runoff and
sediment in the Yellow River, which makes the local ecological environment fragile.
Therefore, it is important to study the relationship between runoff and sediment (Wang et
al., 2022). The Miaochuan Basin of the middle reaches of the Yellow River, located in the
Mu Us Sandy Land, is an arsenopyrite sandstone area that suffers from severe soil erosion
due to the soil type (Yuan et al., 2025). China is highly concerned about the ecological
and environmental issues in the middle reaches of the Yellow River. Since the 1980s, it
has launched a series of projects for ecological conservation, such as the Three-North
Shelterbelt Forest Program, the Project for Returning Farmland to Forests and Grassland
and the Project for Side Slope Protection. These initiatives have significantly contributed to
the prevention and control of soil erosion in the middle reaches of the Yellow River (Liu et
al., 2025). However, the mechanism of runoff and sediment yield under various vegetation
ecological restoration measures in this area remains unclear. Yin et al. (2024) showed
that runoff depth (RD) and sediment yield (SY) are mainly influenced by precipitation,
vegetation, landform and ecological restoration measures. The influence of rainfall on the
water erosion process has great spatial and temporal heterogeneity, which is related to
the characteristic factors such as rainfall, rainfall intensity, and rainfall duration (T) (Wu
et al., 2017). Wischmeier & Smith (1958) pointed out that the product of rainfall kinetic
energy (E) and maximum intensity of precipitation in thirty minutes (I30) serves as a
measure of precipitation erosivity. This erosivity index is used as an input parameter
in the development of the Universal Soil Loss Equation (USLE), a model for predicting
soil erosion caused by rainfall. According to Bochet, Poesen & Rubio (2018), there are
complex relations between precipitation and runoff and both runoff depth and sediment
yield are subject to precipitation intensity. Hamed et al. (2002) and Martinez-Murillo et al.
(2013) found that runoff depth and sediment yield change with precipitation intensity,
when other conditions remain relatively constant. Vegetation and topography have strong
regional characteristics. Vegetation has the effects of increasing surface coverage, reducing
flood peaks, and fixing soil (Li et al., 2016). Slope steepness (S) and slope length are two
factors related to the implications of landform on soil erosion (Liu, Zhang & Yun, 2002).
Slope length, slope steepness and slope aspect, which are three main features of a slope,
affect not only the manner but also the amount of erosion. Slope steepness has a complex
relationship with the process. It can increase the downward gravitational force of rainwater,
thus increasing the runoff velocity, reducing the cumulative infiltration, and increasing
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the runoff sediment (Li et al., 2016). The ecological restoration measures have notable
effects on soil erosion, which is greatly affected by human activities and has various degrees
of influence on erosion (Wei & Jiao, 2021). These factors increase the complexity of the
runoff and sediment yield mechanism and also increase the uncertainty of soil water
erosion process. Compared to traditional soil erosion models, the machine learning model
is able to predict erosion more promptly and efficiently (Liu et al., 2024c). Rahmati et
al. (2017) employed multiple models to predict the soil erosion across lands for different
purposes in Iran. Many Chinese researchers (e.g., Liu, Fan & Wang, 2024) have also studied
the sediment yield of soil erosion in different regions using the machine learning model.
Despite years of research, the Mu Us Sandy Land still lacks a machine learning-based
model capable of predicting sediment yield from erosion and validating the prediction.
Instead, remote sense imaging has been commonly used for simulation and prediction in
this region, but its accuracy needs to be improved.

The present study aims to reveal the sediment yield from erosion in a quantitative
approach with the machine learning model, according to the data collected by the soil and
water conservation monitoring station in Miaochuan Basin from 2018 to 2023. Based on
the basic features of runoff sediment, the researchers aim to achieve the following two
objectives: 1. to select suitable machine learning models for the study area to simulate
and validate the RD and SY under different ecological restoration measures; 2. to identify
factors that directly or indirectly affect RD and runoff SY. The results provide theoretical
guidance to the comprehensive prevention and control of soil erosion in the sand-covered
pisha sandstone area.

OVERVIEW OF THE STUDY AREA
The Kuye River Basin has the most serious sediment yield problem in the Yellow River
(Zhao et al., 2019). The upper reaches of the Kuye River Basin are characterized by a
landscape covered with sand dunes and shifting sands, while the lower reaches are located
in a loess hilly and gully region. The natural ecosystem of the basin is fragile and the soil
erosion is serious. It is also affected by human activities such as mineral exploitation and
urban construction, which leads to structural and functional issues in the basin ecosystem,
the obstruction of the hydrological cycle, and water environment and mine restoration
problems (Zhao et al., 2019). The most typical sediment yield in the Kuye River Basin
results from gravity erosion caused by rainstorm floods, and the maximum recorded
sediment concentration is 1,700 kg/m3. Since 1980, the maximum sediment concentration
of Wenjiachuan station is 1,420 kg m3, the maximum sediment discharge is 10.002 million
tons, and the maximum sediment transport modulus is 1,157 tons km2 (Wang et al., 2022).
The study area was located on the right bank of the upper reaches of the four-level tributary
of the Yellow River Basin, Ordos (109◦31′30.97′′E, 39◦39′2.89′′N) (Fig. 1). Situated at the
northern edge of the Mu Us Sandy Land, the area is characterized by sand-covered hills and
gullies. The topsoil of the region is loose and of no structure or a single-grain structure, with
low water and nutrient retention capacity. The main types of soil include calcaric cambisol,
aeolian sandy soil, pisha sandstone, and sand-covered pisha sandstone. Constructed in
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Figure 1 Overview of the study area.
Full-size DOI: 10.7717/peerj.20040/fig-1

2016, Hetongmiao Soil andWater Conservation Monitoring Station (see Fig. 2), Ejin Horo
Banner, Ordos, was selected as the study area. The Miaochuan Basin located within the
study area belongs to an arid and semiarid temperate continental climate. The average,
maximum, and minimum annual rainfall are 358.2 mm, 642.7 mm, and 100.8 mm,
respectively, and the average annual sunshine hours are 2,900. The effective accumulated
temperature of≥10 ◦C is 2,751.3 ◦C, and the average annual evaporation is 2,563 mm. The
northwest wind dominates the area. The wind force is 5–8, the average annual wind speed
is 3.6 m/s, and the maximum instantaneous wind speed is 24 m/s.

MATERIALS & METHODS
Three groups of standard runoff plots (5◦, 10◦, and 15◦) were set up for runoff and sediment
monitoring in the comprehensive monitoring station of soil and water conservation. The
slope length of the runoff plot was 20 m, and the width was 5 m. Each group of plots
was set up with Pinus sylvestris, Hippophae rhamnoides, artificial grassland, crops, natural
grassland, and bare land. These plots of various surface forms basically represent the
surface conditions of aeolian sandy soil, Pisha sandstone, and the hilly region of the Loess
Plateau, and have a wide range of representative significance. The basic overview of runoff
field ecological restoration measures (arbor forest land, shrub grassland, natural grassland,
artificial grassland, cultivated-land, bare land) is shown in Table 1.
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Figure 2 Overviewmap of various treatment measures after rainfall.
Full-size DOI: 10.7717/peerj.20040/fig-2

Table 1 Basic overview of runoff field treatment measures.

Configuration
mode

Arbor forest
land

Shrub grass
land

Natural
grassland

Artificial
grassland

Cultivated-
land

Bare
land

major vegetation Pinus sylvestris Hippophae rhamnoides – Medicago sativa maize –
sowing method Fish-scale pit Hole seeding – Broadcast

sowing technique
Drill seeding –

distance between plants (m×m) 2×3 1×1 – – – –
vegetation coverage% 46.33± 1.25 34± 1.63 43.67± 2.62 13.33± 1.25 – –
Plot size (m×m) 20×5 20×5 20×5 20×5 20×5 20×5

(1) Observation of rainfall characteristics.
The rainfall process was recorded by the weather station and observed every 5 min. The

rainfall was accurate to 0.1 mm and the rainfall intensity was unit mm/min, combined
with runoff and sediment yield (SY) on S under natural rainfall conditions in this area.
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Table 2 Characteristics of various rainfall types.

Rainfall
pattern

P/mm T/h I30max/(mm h-1) Iavg/(mm h-1) Frequency

Max Min Average Max Min Average Max Min Average Max Min Average

I 72.4 0.2 6.97 510 5 153.08 67.04 0.41 8.26 17.36 0.02 1.58 199
II 69.4 0.8 16.55 1,560 545 893.26 59.62 0.41 10.09 15.61 0.08 2.57 46
III 8.4 3.8 6.1 3,000 2,530 2,765 0.82 0.41 0.61 0.87 0.39 0.63 2

Notes.
I: Short duration, moderate rainfall, moderate rainfall intensity.
II: Medium duration, heavy rainfall, heavy rainfall intensity.
III: Long duration, small rainfall, small rainfall intensity.

For each rainfall event, the rainfall (P), rainfall duration (T), maximum 30-min rainfall
intensity (I30), and average rainfall intensity (Iavg) were selected, and the rainfall types in
the study area were divided using the system clustering method. The characteristics of
rainfall in the study area in 2018-2023 is shown in Table 2.
(2) Runoff sediment observation.

Using automatic water and sediment monitoring equipment (Beijing Tianhang Jiade,
Beijing, China), the runoff volume was recorded once a minute, and the runoff volume
was accurate to 0.001 L. The sediment yield was accurate to 0.001 kg/m3, supplemented
by full-section samplers for manual field sampling. Runoff depth and sediment yield were
calculated using the following formulas:

Runoff depth (RD) (mm) = Runoff volume (L)/Plot area (m2)
SY (t/hm2) = Total sediment (t)/Plot area (hm2).

(3) Vegetation observation.
The plant diversity, vegetation coverage, and height and quantity of 1 m × 1 m grass

grid quadrats in each vegetation type plot were measured using the photographic method
and visual estimation method from April to October, once every 15 days. The plant height,
crown width, diameter at breast height, coverage, and spacing of trees and shrubs were
measured by ruler from April to October. After the runoff of the plot, the canopy density
of trees, coverage of shrub and grass crops, and ground coverage were measured.
(4) The machine learning model is employed.

The present study attempts to predict soil erosion with the neural network (NN),
support vector regression (SVR), gradient boosting decision tree (GBDT), and K-nearest
neighbors (KNN) and compare the performance of these models. The neural network is a
representative of connectionist algorithms, the neuron being its smallest functioning unit.
After the weighting of information X input into a neuron from the previous neuron, it is
turned into information Y by a response function (e.g., sigmoid function). The foundation
of the tree model is the decision tree. This method imitates the way humansmake decisions,
with the binary tree structure, such as yes/no and true/false (Breiman, 2001). Through data
examination and evaluation, the scope of the answer is narrowed down. The support vector
machine is a machine learning method based on the statistical learning theory. This model,
characterized by high generalizability, strikes a balance between model complexity and
learning ability with limited sample information.
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Figure 3 The 12-month rainfall distributionmap of the study area.
Full-size DOI: 10.7717/peerj.20040/fig-3

(5) Statistical analysis.
The experimental data were collated and counted using Excel and plotted by Origin2018.

SPASS26.0 was used for two-way analysis of variance (ANOVA), cluster analysis, and
correlation analysis to study the connection between water and sediment under various
ecological restoration measures. SPSS26.0 was used for path analysis, and the structural
equation model was used for regression analysis. The machine learning model utilizes R
software for simulation and validation.

RESULTS AND ANALYSIS
Rainfall characteristics
A total of 247 rainfall events were observed in the study area from 2018 to 2023. According
to the monthly rainfall distribution characteristics, we found that the rainfall in this area
is mainly concentrated in July–September (Fig. 3). The rainfall types were further divided
by cluster analysis of rainfall characteristics (Table 2). The observed rainfall can be divided
into three categories. Type I rainfall occurred 199 times, and was characterized by short
duration, moderate rainfall, and moderate rainfall intensity. Type II rainfall occurred
46 times and was characterized by medium duration, heavy rainfall, and heavy rainfall
intensity. Type III was characterized by long duration, small rainfall, and small rainfall
intensity. The percentages of type I, type II, and type III rainfalls were 80.6%, 18.6%, and
0.8%, respectively. Table 2 indicates that the maximum Iavg decreased in the order: type
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Table 3 Basic situation of rainfall in the study area from 2018 to 2023.

Year Annual
rainfall/mm

Duration of
annual rainfall/h

Maximum
rainfall/mm

Maximum
I30/(mm h−1)

Maximum rainfall
erosivity (MJ m hm−2 h−1)

(I + II)/%

2018 388 8,145 58.5 26 136.94 27
2019 208.6 23,460 27.6 13.49 56.16 47
2020 363.2 12,810 44.6 62.55 766.91 49
2021 367.2 11,470 69.4 67.04 819.27 40
2022 456 10,090 72.4 55.24 929.81 38
2023 438.6 11,107 59 59.62 1,092.75 46

Notes.
(I + II) represents the total proportion of type I and type II rainfall times.

I > type II > type III. The study also found that the rainfall in 2019 was the least (208.6
mm), but the T was the longest and the I30 was the smallest (Table 3). The T in 2018 was
noticeably less than that in 2019, while the rainfall and I30 were higher than those in 2019,
indicating that the rainfall was mainly affected by rainfall intensity.

Runoff and sediment yield response to rainfall patterns under various
ecological restoration measures
Across various rainfall types, there was a small variety of responses of RD or SY to S (Fig. 4).
The RD and SY of bare land on each slope steepness were noticeably greater than other
ecological restoration measures except for crop land. Overall, the steeper the slope, the
greater the runoff depth and soil loss. On a 15-degree slope, which is considered steep,
the erosive power of runoff increases. Accordingly, the effectiveness of soil and water
conservation measures varies significantly. The Type III precipitation causes the shallowest
runoff and lowest soil loss. Through correlation analysis of rainfall process, we found a
correlation between RD, SY, T, P, Iavg, I30,figS (Table 4). There was a noticeable (p <0.05)
positive correlation between P, RD, and SY of various ecological restoration measures. The
effects of T, I30, and Iavg on runoff and sediment were not strongly correlated under various
ecological restoration measures. S showed a noticeable (p< 0.05) or extremely noticeable
(p < 0.01) positive correlation with RD in arbor forest land, natural grassland, cultivated
land, and bare land. Table 5 reveals that there is a significant correlation between the RD
and SY under various ecological restoration measures.

Validation of predictions of RD and SY on lands of different uses
based on the machine learning model
The RD model
The data are randomly split into a training set (75%) and a test set (25%), and NN,
SVR, GBDT and KNN are trained on RD. Then, the hyperparameters of these models are
adjusted using grid search and the accuracy of each model is validated based on the test set
(Table 6). R2 can reflect a model’s accuracy of prediction. The higher this value, the higher
the accuracy of prediction. GBDT outperforms other models in terms of accuracy. The R2s
of forest land, shrubland, artificial grassland, natural grassland, farmland, and bare land
are 0.92, 0.90, 0.92, 0.91, 0.96 and 0.97 respectively. The R2s of other models are mostly
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Figure 4 Characteristics of runoff depth and sediment yield under various slope gradients and various
control measures.

Full-size DOI: 10.7717/peerj.20040/fig-4

0.32 or above. KNN has the lowest R2. The lower the mean squared error (MSE)—the
average of the squared residuals—the smaller the prediction error. The MSEs of forest
land, shrubland, artificial grassland, natural grassland, farmland, and bare land under the
GBDTmodel are 0.09, 0.01, 1.94, 1.94, 3.88 and 3.15, respectively. The prediction accuracy
of the remaining models is below 16.754. KNN has the lowest MSE. Therefore, KNN is not
suitable for the study zone, and GBDT is the most accurate in predicting RD among the
four models.

The SY model
The data are randomly split into a training set (75%) and a test set (25%), and NN, SVR,
GBDT and KNN are trained on SY. Then, the hyperparameters of these models are adjusted
using grid search and the accuracy of each model is validated based on the test set. Finally,
average test results are obtained using the optimal set of hyper parameters (Table 7). In
terms of accuracy, GBDT outperforms other models in the simulation of SY. The R2s
of forest land, shrub grassland, artificial grassland, natural grassland, farmland, and bare
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Table 4 Correlation analysis of influencing factors of runoff and sediment yield under various control
measures.

Control measures Parameter P T I30 Iavg S

RD .538* 0.169 0.144 0.212 0.999**
Arbor forest land

SY .750** 0.013 0.406 0.217 0.504*

RD .762** 0.192 0.367 0.052 0.281
Shrub grassland

SY .611** 0.033 0.357 0.151 0.294
RD .510* 0.125 0.115 0.123 .576*

Natural grassland
SY 0.449* 0.017 0.243 0.118 0.315
RD .575* 0.392 0.143 0.141 0.362

Artificial grassland
SY .652** 0.038 0.35 0.16 0.342
RD 0.494* 0.086 0.164 0.093 .717**

Cultivated-land
SY 0.557* 0.018 0.263 0.163 0.426*

RD .530* 0.092 0.145 0.118 .498*
Bare land

SY .588* 0.008 0.325 0.211 0.816**

Notes.
Asterisks indicate whether there is a significant difference between factors. One asterisk indicates P < 0.05, and two asterisks
indicate P < 0.01.

Table 5 Correlation analysis of runoff and sediment under various control measures.

Parameter RD

Arbor forest
land

Shrub grass
land

Natural
grassland

Artificial
grassland

Cultivated-
land

Bare
land

SY .841** .788** .787** .722** .894** .666**

Notes.
Asterisks indicate whether there is a significant difference between factors. Two asterisks indicate P < 0.01.

Table 6 Validation of the predicted results from the RDmodels of different control measures.

NNmodel SVRmodel GBDTmodel KNNmodel

R2 MSE R2 MSE R2 MSE R2 MSE

Arbor forest land 0.81 1.08 0.83 1.01 0.92 0.09 0.64 0.28
Shrub grass land 0.89 0.02 0.71 1.94 0.90 3.88 0.60 0.30
Natural grassland 0.56 8.26 0.79 4.31 0.88 2.09 0.47 11.54
Artificial grassland 0.48 9.71 0.89 2.13 0.92 1.94 0.32 12.35
Cultivated land 0.95 6.6 0.89 10.53 0.96 3.88 0.87 12.48
Bare land 0.90 4.96 0.82 8.78 0.97 3.15 0.64 16.75

land are 0.89, 0.93, 0.98, 0.96, 0.96 and 0.89, respectively. The R2s of KNN are the lowest
among the four models and its R2 of bare land is the lowest across all the land types. The
prediction accuracy of the remaining models is at least 0.64. The MSEs of forest land, shrub
grassland, artificial grassland, natural grassland, farmland, and bare land under the GBDT
model are 0.12, 0.13, 2.63, 2.63, 22.34 and 30.19, respectively. The prediction accuracy of
the remaining models is all lower than that of GBDT. KNN has the lowest MSE among
the for models. Therefore, KNN is not suitable for simulating the sediment content in the
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Table 7 Validation of the predicted outcomes from the SYmodels of different control measures.

NNmodel SVRmodel GBDTmodel KNNmodel

R2 MSE R2 MSE R2 MSE R2 MSE

Arbor forest land 0.91 0.95 0.71 0.10 0.89 0.72 0.84 2.76
Shrub grass land 0.76 2.09 0.85 2.14 0.93 0.13 0.91 1.66
Natural grassland 0.89 9.45 0.82 12.65 0.91 7.44 0.56 42.86
Artificial grassland 0.93 8.51 0.77 21.76 0.98 2.63 0.54 44.12
Cultivated land 0.94 65.45 0.96 25.01 0.96 22.34 0.77 134.45
Bare land 0.20 205.83 0.50 142.04 0.89 30.19 0.24 225.17

study zone and GBDT is the most accurate in predicting the sediment content among the
four models.

The structural equation model of influencing factors of RD and SY
Figure 5 is derived from the structural equation constructed based on factors affecting
RD and the structural equation model (SEM). It was found that RD and soil erosion
modulus increased as P, T, Iavg, I30, and S increased. The influencing factors were positively
correlated with RD and soil erosion modulus. Among them, P reached a noticeable level of
P <0.01 for RD and soil erosion modulus. T and Iavg had a noticeable level of P <0.05 for
RD. There is also a noticeable connection between RD and SY. In summary, the structural
equation models reveal that T, Iavg, I30 and S are factors directly influencing RD, which has
direct implications on SY. Therefore, T, Iavg, I30 and S are factors that indirectly affect SY.

DISCUSSION
Effect of rainfall on RD and SY
Different prevention and ecological restoration measures are applied to areas with varying
vegetation coverage, where different types of precipitation have varying impacts on water
and soil loss. S is the key factor that leads to water and soil loss and it has complex
relations with RD and SY (Morbidelli et al., 2018). According to Wischmeier & Smith
(1978), precipitation higher than 12.7 mm is erosive. Jia et al. (2021) analyzed the data
of the runoff on the Loess Plateau and found that erosion happened in this region when
the P is beyond 12 mm. Zhang et al. (2022) studied the erosive precipitation on the Loess
Plateau based on the data of runoff in this region. They found that erosive precipitation
was often had an I30 of over 0.25 mm/min. The present study indicates that, under type I
precipitation, the study area, where a variety of ecological restoration measures have been
taken, undergoes the highest RD and amount of erosion. The section of the Kuyehe River
has relatively frequent type I and II rainfalls, which of which are erosive precipitations and
contribute significantly to the water and soil loss on the slopes in the region. This finding
is consistent with the results of Xu et al. (2017). This indicates that precipitation types
characterized by short duration, high intensity and a large amount are more likely to to
erosive.Wei et al. (2025) studied rainfall erosion of the Loess Plateau in Guizhou Province
and found that frequent rainfall with small amounts was least erosive. The present study
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Figure 5 The structural equationmodel of influencing factors of runoff depth and sediment yield.
Note: Figure 5 shows the structural equation model. The relationship between runoff depth, soil loss and
their influencing factors is graphically displayed. The green arrows illustrate the influences of precipita-
tion (P), T, Iavg and I30 and S on RD and SEM. The blue ones show the pairwise interaction among P, T,
Iavg and I30. The black ones represent the interaction between RD and soil loss. (Asterisks indicate whether
there is a significant difference between factors. One asterisk indicates P < 0.05, and two asterisks indicate
P < 0.01.).

Full-size DOI: 10.7717/peerj.20040/fig-5

discovers that the erosion of the type III precipitation leads to the lowest RD and SY
and best recharges the underground water of the study area. Under different ecological
restoration measures, the three types of precipitation can be ranked as I > II > III in terms
of RD and SY.

Effects of ecological restoration measures on RD and SY
The study area is a sand-covered Pisha sandstone area. The sandstone is loose (Morbidelli
et al., 2018) and is thus prone to erosion by surface runoff (Fan, Qin & Che, 2024). As
a result, this area is characterized by sparse vegetation, exposed bedrock, thousands of
gullies, and scattered sand dunes (Zhu et al., 2024). Pierfranco et al. (2024) studied the
rainfall erosion on the Iberian Peninsula and pointed out that the eroding capacity of
rainfall might vary significantly depending on the soil type and land use. Due to regular
weeding, fertilization, and other agricultural activities, the surface has been exposed for a
period of time. Human activities have destroyed the vegetation cover and the structure of
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soil, whose particales became loose. This reduces the land’s resistence to rainfall, and thus
lowers its capacity in retaining water and soil. The rainfall and runoff have caused rills on
the land surface. With the traceable development and continuous expansion of rills, RD
and SY increase sharply, making the SY greater than that of bare land (Luo et al., 2022).
Compared with bare land and cultivated land, grassland, shrub grassland, and arbor forest
land have higher vegetation coverage, hence higher water and soil retaining capacity and
seepage reduction effects (Wang et al., 2022; Shi et al., 2024). Compared with a single-layer
community, a multi-layer community is more resistant to water erosion (Liu et al., 2023).
This is similar to the findings of Zhu et al. (2024), who studied the soil erosion effects
of various ecological restoration measures in the loess hilly and gully region of China.
Compared to grasslands, arbor and shrub forests not only provide canopy interception
and buffering effects on rainfall (Casermeiro et al., 2004), but also enhance soil stabilization
through the root systems of their vegetation (Zhu et al., 2024;Wang et al., 2024). Therefore,
the SY on the slope covered by trees and shrubs is less than that of grassland.

Effects of slope gradient on RD and SY
As an important factor influencing the erosion of slope surface, S is commonly incorporated
into equations used to predict erosion (Liu et al., 2024a). Renard & United S Agricultural
Research Service (1997) pointed out that there is a positive correlation between S and the
volume of soil erosion. S affects the hydrodynamic forces of water, the stability of the slope
surface, and consequently the effectiveness of water and soil conservation measures (Chen
et al., 2022). S also affects water and soil conservation under different precipitation types
on lands used for different purposes. When the S and precipitation are low, bare land do
not differ much in water retention capacity from lands for other uses. When the S reaches
15◦, however, the runoff on bare land are significantly deeper than that in grassland, arbor
forest land and shrub grassland. Grasslands are characterized by good infiltration, while
proper cultivation and management of forests and lands with shrubs and grass can lead to
the shrub cluster effect, which stabilizes the soil and promotes infiltration, thereby reducing
RD. Therefore, we can observe that S directly affects the erosivity of runoff, and soil erosion
deteriorate as S increases.

Identifying suitable machine learning models
The models of RD and SY are developed based on the data of subsequent rainfall under
different ecological restoration measures. GBDT has higher accuracy in predicting RD than
the remaining three models with similar complexity and is thus the most suitable for the
study area. The MSE ranges from 0.09 to 3.88, indicating that its accuracy in predicting RD
is relatively stable. When it comes to the prediction of SY, GBDT is also the most suitable
model, the MSE ranging from 0.12 to 30.19. According toWang, Qin & Yu (2007), despite
the significant positive correlation between them, RD and SY might be affected differently
by the same factor. The variation can be attributed to the model’s inability to process
certain figure in the data set, which leads to the prediction error. The present study finds
that GBDT has the highest prediction accuracy, compared to the other three models. This
finding coincides with Arabameri et al. (2020). Liu, Fan & Wang (2024) studied the runoff
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erosion in China’s northeast using the models of Random Forest (RF), Convolutional
Neural Network (CNN) and Transformer and pointed out that Transformer was the most
applicable among the three. This may be due to the variation in performance metrics
between the training and validation sets, which indicates overfitting. Bag et al. (2022)
studied Sobha Basin in West Bengal, India, with a combination of geographic information
system (GIS) spatial analysis techniques and machine learning models and found that RF
was significantly more accurate than other models in predicting soil erosion (Area Under
the Curve (AUC)= 0.97). This indicates that the selection of models is dependent on study
areas, training sets and validation sets.

Main factors influencing runoff depth (RD) and sediment yield (SY)
The structural equationmodel indicates that RD is a factor directly influencing soil loss and
that there is a strong correlation between the RD and soil loss (Chen et al., 2022). Among
the factors in discussion, P, T, Iavg and S have significant impacts on RD, while P and S
have significant influences on soil loss. Ran, Wang & Gao (2019) points out that rainfall
patterns and characteristics are controlling factors in runoff and soil erosion processes.
This study found that for short-duration rainfall events, the flow erosivity and erosion
amounts exhibit a trend which first increases with slope gradient, and then decreases. Wu
et al. (2017) also found in his study that rainfall intensity has great influence on the slope
effect trends. Thereby, we can see that P and S directly influence RD and soil loss.

CONCLUSIONS
The present study is conducted on the data collected from long-term observations in
standardized runoff plots where a variety of water and soil conservation and vegetation
restoration have been taken. The results showed that the rainfall of the temple soil and
water conservation monitoring station was mainly concentrated from July to September.
Among them, the rainfall events with short duration, medium rainfall, andmedium rainfall
intensity were the most frequent. All the ecological restoration measures pointed out that
the rainfall events with medium duration, heavy rainfall, and heavy rainfall intensity had
the most serious runoff and sediment.

Compared with the control plot (bare land), ecological restoration measures can
noticeably reduce runoff and SY. The influence of ecological restoration measures on RD
and SY varied with ecological restoration measures. Among them, arbor forest and shrub
grassland were the best ecological restoration measures for controlling soil loss because of
their canopy structure. Tree- and shrub-forests are effective in preventing and control soil
erosion. Using machine learning models, the researchers found that GBDT performed best
in simulating soil erosion in the study area. The structural equation model showed that
there is a significant correlation between RD and SEM. T, Iavg, I30 and S are factors that
directly affect SY. Since RD directly impacts SY, it can be said that T, Iavg, I30 and S indirectly
influence SY. Our research findings can provide theoretical guidance and technical support
for the prevention and control of soil erosion under different slope management measures
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in the sand-covered soft rock area of the middle reaches of the Yellow River, thereby
contributing substantially to the ecological restoration in the Yellow River Basin.
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