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ABSTRACT

Background. Intrauterine adhesions (IUA) are a leading cause of acquired female
infertility that predominantly arises following surgical intrauterine interventions.
Clinical strategies are available for managing IUA, however, the molecular pathogenesis
of IUA, particularly the role of immune dysregulation in endometrial repair processes,
has not been fully characterized, necessitating comprehensive mechanistic studies.
Methods. We used computational biology methods to determine the molecular
pathogenesis of IUA, the results of which were experimentally validated. (i) We
systematically reanalyzed GSE224093, a publicly available endometrial transcriptomic
dataset, using GEO2R. Differential gene expression was analyzed with stringent
statistical thresholds; the results were immunologically contextualized via intersection
with the ImmPort database. (ii) Multilayer functional annotation was conducted using
Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway topology analyses. (iii) Weighted gene co-expression network analysis
and scale-free topology optimization were used to identify conserved coexpression
modules. (iv) Seven hub genes underwent quantitative real-time polymerase chain
reaction (qPCR) validation in human and murine models, with four verified using
immunohistochemistry (IHC).

_ Results. Our integrated multiomics analysis identified seven hub genes associated with
igg:;tt;%d fg E?gulfs?zz(g? [UA pathogenesis through GO, KEGG, and GSEA enrichment analyses. The expression
Published 3 October 2025 levels TUBB3, WNT5A, GDF7, IGF1, and BIRC5 were downregulated, and those of
PTGDS and CCL14 were upregulated. The qPCR results confirmed these expression
patterns in human and murine endometria (p < 0.05), with TUBB3 and PTGDS species-
Academic editor specifically diverging from the computational predictions. The IHC results provided
Paula Soares the corresponding protein expression changes for IGF1, WNT5A, BIRC5, and GDF7
in IUA (p < 0.01). CCL14 could not be amplified in murine models due to technical
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advances our understanding of IUA pathogenesis. Single-cell transcriptomics should
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be examined in future studies to determine the cellular-subtype-specific contributions
to IUA.

Subjects Biochemistry, Bioinformatics, Cell Biology, Gynecology and Obstetrics, Immunology

Keywords Intrauterine adhesion, Differentially expressed genes, Immune-related genes,
Bioinformatics analysis, Integrative analysis

INTRODUCTION

Intrauterine adhesions (IUA) are pathological conditions, characterized by endometrial
fibrosis; IUA is commonly known as Asherman’s syndrome. IUA typically arises from
trauma to the basal layer of the endometrium caused by infection, curettage, or other
uterine manipulations, which disrupts the normal regenerative capacity of endometrial
stromal cells and triggers aberrant tissue repair (Khan, 2023; Torres-De La Roche, 2019).
The resulting fibrosis in IUA leads to partial or complete obliteration of the uterine
cavity, which is often accompanied by endometrial thinning or atrophy. IUA clinically
manifests as hypomenorrhea, infertility, and recurrent pregnancy loss, substantially
compromising reproductive health (Di Guardo et al., 2020). The current therapeutic
strategies for IUA primarily focus on surgical adhesiolysis to restore uterine anatomy,
involving adjuvant measures such as mechanical barriers (e.g., intrauterine devices or
balloons) and hormonal therapy to prevent readhesion (Dreisler ¢ Kjer, 2019). However,
the postoperative recurrence rates of IUA remain high (Salazar, Isaacson & Morris, 2017),
primarily due to persistent inflammation, impaired angiogenesis, and dysregulated immune
responses that promote fibrosis and hinder functional endometrial regeneration. The failure
of these therapies to address the underlying immune microenvironment dysregulation—
including aberrant macrophage polarization, excessive cytokine production (e.g., TGF-f3),
and disrupted cross-talk between immune and stromal cells—limits their long-term
efficacy. Targeting these immunological imbalances could mitigate fibrosis recurrence
and increase endometrial repair (Ong et al., 2021; Queckbirner et al., 20205 Liu et al., 2019).
Thus, the pathophysiological mechanisms underlying the immune dysregulation in ITUA
should be determined to guide the development of novel strategies to reduce recurrence
rates and restore reproductive function.

IUA results from the dysregulation of the local immune microenvironment
following uterine trauma, impairing endometrial repair processes (Lee et al., 2021).
This dysregulation involves aberrant immune activation after injury, dysregulated
interactions among inflammatory mediators, and the immune cells participating in
key pathological processes, such as epithelial-mesenchymal transition (EMT), abnormal
cellular proliferation, and fibrosis. We identified immune-related differentially expressed
genes (DEGs) associated with TUA from the Gene Expression Omnibus (GEO) database
using bioinformatic analysis. Weighted gene co-expression network analysis (WGCNA)
was used to identify the hub genes closely that are linked to TUA progression. The results of
the subsequent functional analysis revealed the critical molecular pathways and candidate
genes implicated in IUA pathogenesis. The results of our integrative approach offers insights
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into the mechanistic processes underlying TUA and may be used to guide the development
of targeted therapeutic strategies (Kulasingam ¢ Diamandis, 2008).

SYSTEMS AND METHODS

Study design

We implemented four-phase analytical framework to study the pathogenesis of IUA. (1)
The results of primary screening identified [UA-associated DEGs using the GSE224093
database using the following criteria: |log; FC| > 1 and Benjamini-Hochberg (BH) false
discovery rate (FDR)-adjusted p < 0.05). We independently curated the immune-related
genes (IRGs) from ImmPort. (2) Functional convergence analysis was conducted using
Venn intersection to identify overlapping gene. This analysis was followed by characterizing
these genes through Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis, Sankey network visualization, and gene
set enrichment analysis (GSEA) using the KEGG gene sets. (3) We used weighted gene
co-expression network analysis WGCNA to identify the conserved IUA modules, the
results of which were confirmed through eigengene heatmaps and DEG-IRG correlation
bar plots. (4) The seven identified hub genes were experimentally verified through qPCR in
human and murine models, validating four genes (IGF1, WNT5A, BIRC5, and GDF7) that
showed complete transcriptional agreement (p < 0.05, Pearson’s v > 0.85). Protein-level
results were obtained with immunohistochemistry (IHC) (Fig. 1). This integrated approach
combined bioinformatic methods with experimental validation, providing comprehensive
molecular insights into the development of ITUA.

Data sources and DEG screening

(GSE224093, an IUA microarray dataset, was retrieved from the GEO database. The dataset
comprises endometrial samples from seven patients with severe IUA and seven normal
controls, profiling 33,944 genes. All data are publicly accessible.

We used the GEO2R optimized Limma pipeline to ensure robust and unbiased
differential gene expression analysis of the GSE224093 microarray dataset as well as address
the inherent data challenges, including the nonunique gene identifiers and Fragments Per
Kilobase of transcript per Million mapped reads (FPKM)-normalized values incompatible
with count-based methods. This platform-specific approach avoided the need for arbitrary
gene filtering with DESeq2, which requires unique gene symbols and integer counts, as well
as problematic data transformations for Limma-voom applications. We thus preserved
potentially significant biological signals. The analysis involved (1) automated probe-to-
gene annotation using platform-specific GEO Platform Library (GPL) files; (2) quantile
normalization with low-expression filtering, retaining features with log2 intensity >6 in
>50% of samples; and (3) linear modeling with empirical Bayes moderation (eBayes) to
assess group-wise differences and adjust for heteroscedasticity. Differential gene expression
was determined using two stringent thresholds, |[log2FC| > 1 with Benjamini-Hochberg
(BH) FDR-adjusted p < 0.05. The quality of the results was controlled using diagnostic
volcano plots. The top 100 significant DEGs were visualized via hierarchical clustering in
Multiexperiment Viewer (MeV).
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Figure 1 Flowchart of bioinformatics analysis and clinical validation for intrauterine adhesions.
Full-size Gal DOI: 10.7717/peer;j.20035/fig-1

Identifying IRGs and intersecting genes

We obtained a set of 1,794 IRGs from the ImmPort database to identify the IRGs associated
with ITUA. We used an online bioinformatics platform (http:/iwww.bioinformatics.com.cn/)
to intersect these IRGs with the DEGs identified from IUA samples. The results identified
22 overlapping genes as immune-related candidates involved in the pathogenesis of IUA.

Functional enrichment analysis of intersecting genes

We performed GO and KEGG pathway enrichment analyses to characterize the biological
functions and pathways associated with the DEGs. The GO (http:/www.geneontology.org/)
and KEGG pathway (http:/iwww.genome.jpkegg/pathway.html) analyses were conducted
using the Database for Annotation, Visualization, and Integrated Discovery (DAVID; https:
/davidbioinformatics.nih.gov) (Givant-Horwitz, Davidson & Reich, 2005). Terms with a
threshold of p < 0.05 were considered significantly enriched. Additionally, the Metascape
database (https:/metascape.org/) was used to annotate and functionally cluster the DEGs
and intersecting IRGs involved in IUA.
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Screening and verifying hub genes

We applied WGCNA on the GEO datasets to additionally validate the results. We first
preprocessed the data through calculating the median absolute deviation and removing
outliers using the WGCNA goodSamplesGenes method. We then constructed a scale-free
coexpression network by computing Pearson’s correlation matrices. We established a
weighted adjacency matrix (A<sub>mn</sub> = |C<sub>mn</sub>|<sup>p</sup>,
= 12), which we transformed into a topological overlap matrix (TOM). We identified
gene modules using TOM-based dissimilarity (1-TOM) with average linkage hierarchical
clustering (minimum module size = 30, sensitivity = 3). We merged the gene modules with
a dissimilarity of <0.25, identifying the significant saddlebrown module, containing 3,272
genes. The highly connected hub genes in this module were intersected with the DEGs
and IRGs (DEGs—IRGs-saddlebrown), from which we selected the seven most significantly
dysregulated genes (|log2FC| > 1, BH-FDR p < 0.05) whose expression patterns consistently
matched our preliminary DEG analysis. We thus confirmed their identification as hub
genes in ITUA pathogenesis.

Correlation analysis between gene expression and immune cell
infiltration

We conducted computational immunogenomic analysis to characterize the immune
microenvironment in IUA and investigate the relationship of this microenvironment with
gene expression patterns. The normalized gene expression matrix from all training cohort
samples was analyzed using CIBERSORTx (version 1.0) with the LM22 signature matrix
and 1,000 permutations, disabling quantile normalization to accurately deconvolute the
relative proportions of 22 functionally distinct immune cell subsets. We controlled data
quality by excluding samples with CIBERSORTx p-values > 0.05. Correlation analysis was
performed using Spearman’s rank correlation coefficient, with multiple testing correction
via the BH method (FDR < 0.05 considered significant). We used deconvolution algorithms
(xCell and Microenvironment Cell Populations (MCP)-counter) for comparative analysis
to validate the robustness of our findings. This multialgorithm approach allowed us to
comprehensively assess immune cell infiltration patterns and their potential associations
with gene expression profiles in the pathogenesis of IUA.

qRT-PCR

RNA extraction and quality control

All procedures were performed on ice to prevent RNA degradation. The total RNA was
extracted from 40-50 mg tissue samples from the normal and IUA groups using TRIzol
reagent following the protocol provided by the manufacturer. The RNA concentration and
purity were assessed using NanoDrop spectrophotometry, with triplicate measurements
averaged for accuracy. Only samples with A260/A280 ratios between 1.8 and 2.2 were
considered for downstream analysis. Purified RNA aliquots were stored at —80 °C until
use.
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Genomic DNA elimination

A total of one pg of total RNA from each sample was treated in a 10 wL reaction volume
containing 2.0 pL of 5x gDNA Eraser Buffer, 1.0 nL of gDNA Eraser, and RNase-free
dH20. The sample was incubated at 42 °C for 2 min, which was followed by immediate
cooling to 4 °C to ensure the genomic DNA was completely removed and RNA integrity

was preserved.

Complementary DNA (cDNA) synthesis

Reverse transcription was performed in 20 pL reactions comprising 1.0 pL of PrimeScript
RT Enzyme Mix I, 5.1 pL of RT Primer Mix, 4.0 wL of PrimeScript Buffer 2, and 4.0 nL
of RNase-free (dH,O), using the following thermal program: 37 °C for 15 min (reverse
transcription), 85 °C for 5 s (enzyme inactivation), and a 4 °C hold. The synthesized cDNA
products were aliquoted and stored at —40 °C until downstream application.

qPCR amplification

The key hub genes (TUBB3, WNT5A, GDF7, IGF1, BIRC5, PTGDS, and CCLI14) were
amplified using Primer3-designed primers (Table 1) in 20 pL reactions containing 10 nL
of TB Green Premix Ex Taq II, 0.8 wL each of the forward and reverse primers (10 uM), two
L of cDNA template, and 6.4 pL of RNase-free dH20. Amplification was conducted with
a QTOWER3/G system (Analytik Jena) and the following protocol: initial denaturation at
95 °C for 30 s (one cycle), which followed by 40 cycles of amplification (95 °C for 5 s,
60 °C for 34 s), and melt curve analysis (95— 60 —95 °C, 15 s per step). Each 96-well
plate contained quadruplicate samples from the TUA and control groups for three target
genes using Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) as the reference, with
a minimum of three technical replicates per biological sample.

qPCR data analysis and quality control

The reaction specificity was confirmed via melt curve analysis. The data were normalized
using the 2A-A ACt method using GAPDH as the reference. Samples were excluded based
on predefined criteria: multiple melt curve peaks, asynchronous peaks versus reference,
Ct values <18 or >32, or intrasample Ct variation >0.5. The ACt was calculated as
Ct(target)—Ct(reference). AACt was calculated as ACt(experimental)-ACt(control). The
relative expression was calculated using the 2A-A ACt method.

IHC

The IUA and normal endometrial tissue samples were fixed in 10% neutral buffered
formalin, embedded in paraffin, and sectioned into four pm thick slices. The samples were
deparaffinized and rehydrated. Then, antigens were retrieved using citrate buffer (pH 6.0).
Nonspecific binding sites were blocked with 5% bovine serum albumin solution.

The primary antibodies were incubated using a rabbit monoclonal antibody specific
to the target protein. The optimal antibody concentration was determined through
preliminary experiments on human and mouse endometrial tissues, including the IUA
and control groups, in accordance with the manufacturer’s protocol. This predetermined
concentration was then applied to all study samples.
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Table 1 Gene accession numbers and primer sequences for qPCR analysis.

Target  Species  Targetgene Primer  primer sequence Number of
gene sequence (5'to 3') bases
accession
number
. ~ F GCTCTGCTTGCTCACCTTCACC 22
Mice NMO010512
IGF1 R CGGTCCACACACGAACTGAAGAG 23
F TGTCCTCCTCGCATCTCTTCTACC 24
Human NMO000618
R CCTGTCTCCACACACGAACTGAAG 24
. F AAGGATTTCGTGGACGCTAGAG 22
Mice MO R GCCTGCATTGTTGTGTAAGTTC 22
WNT5A
F GACTTCCGCAAGGTGGGTGATG 22
Human NMO003392
R GTCTTGTGTGGTGGGCGAGTTG 22
. F TCATCCACTGCCCTACCGAGAAC 23
Mice NMO009689
BIRCS R CGGGTTCCCAGCCTTCCAATTC 22
F TCTCAAGGACCACCGCATCTCTAC 24
Human NMO001168
R CCAAGTCTGGCTCGTTCTCAGTG 23
. F GCCACACCACTTCATGATGT 20
Mice NMO008117
GDE7 R TGAAGCCGGTGATTGTGTCC 20
F GCCGCACCACTTCATGATGTC 21
Human NM182828
R CTGTGAAGCCGGTGATCGTGT 21
. F GAAGCCCTCTACGACATCTG 20
Mice NMO023279
TUBB3 R TTGAGCTGACCAGGGAATCG 20
F TGCGGAAGGAGTGTGAAAAC 20
Human NMO006086
R GATACTCCTCACGCACCTTG 20
. F TTTGGTCCTCCTGGGTCTCTTGG 23
Mice NMO008963
PDGDS R CTTGTTGAAAGTTGGGCTGCACTG 24
F GGAGAAGAAGGCGGCGTTGTC 21
Human NMO000954
R TGAGGAAGGTGGAGGTCAGGTTG 23
Mi - F ACCTACATTACCCACGAGCT" 21
ice
CCL14 R GAAGACAATCCCAGGCTTG 20
_F CCTTACCACCCCTCAGAGTG 20
Human NMO001001445
R TGGAGCACTGGCTGTTGGTC 20
Notes.
~Dashes (-) indicate data not explicitly provided in the original text.

*Asterisks (*) indicate CCL14 was included in primer design but yielded no quantifiable gPCR results.

We incubated the samples with a horseradish peroxidase (HRP)-conjugated antirabbit

IgG secondary antibody, which was followed by chromogenic development with 3,3’-

diaminobenzidine. The sections were counterstained, dehydrated, and mounted with

neutral resin for microscopy evaluation.

All immunohistochemical slides were independently reviewed by a board-certified

pathologist. The staining intensity was quantitatively analyzed using Image]J software. The

results are expressed as the percentage positive area (% Area) for statistical comparison.
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Sample sources and primary reagents

We confirmed the hub gene differential expression in clinical and mice cohorts. The
sample sizes across all validation platforms (qPCR: humans, 4-8/group; mice, 4—6/group.
IHC: humans, 5-8 IUA vs. five controls; mice, five IUA vs. five controls) were determined
considering the statistical requirements and practical constraints. We incorporated (1)
prospective power calculations (G*Power 3.1), anticipating large effect sizes (Cohen’s

d > 1.2 from preliminary bioinformatics analyses), which confirmed 72-85% power in
detecting significant differences (d > 1.0, a. = 0.05 two-tailed) after BH correction; (2)
quality control thresholds (RNA Integrity Number (RIN) >7 for qPCR) that inherently
limited specimen inclusion; (3) alignment with established methodological standards
for nonparametric analyses (Wittwer et al., 2009); (4) ethical and logistical limitations in
clinical specimen acquisition. These sample sizes enabled the robust detection of large-effect
biomarkers as evidenced by the consistent confirmation of the hub genes; however, we
acknowledge the low sensitivity in identifying moderate effects (d = 0.5—0.8), a limitation
mitigated through our multiplatform validation approach. As such, larger cohorts should
be included in future studies to comprehensively characterize subtle regulatory differences.

Human samples

This study was approved by the Ethics Review Committee of the General Hospital of
Ningxia Medical University (approval No. KYLL-2024-1527). All participants provided
written informed consent prior to sample collection.

Study population

We enrolled 24 patients with moderate-to-severe IUA and 13 control subjects with a
normal endometrium. IUA severity was classified according to the American Fertility
Society scoring system (AAGL Advancing Minimally Invasive Gynecology Worldwide, 2010).
Participants were recruited from the Department of Gynecology at our institution between
January 1 and September 1, 2024, aged 24-42 years.

Endometrial sample collection

Endometrial specimens were concurrently obtained with postoperative pathological
specimens during diagnostic hysteroscopy procedures, excluding patients aged >43 years
or with histopathological evidence of endometrial malignancy to ensure sample quality
and homogeneity.

Sample processing and allocating

All samples collected between January 1 and September 1, 2024, were processed following
standard analytical protocols. qPCR samples (12 IUA and 8 control samples) were
immediately snap-frozen and stored at —80 °C to preserve RNA integrity. The IHC
samples (12 TUA and five controls) underwent 24-hour fixation in 10% neutral buffered
formalin followed by standard paraffin embedding for histological analysis.

Quality control
Four TUA specimens were excluded during qPCR processing based on inadequate nucleic
acid quality metrics (purity and concentration thresholds). All IUA samples were stained
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with hematoxylin—eosin (HE) staining for verification of quality prior to IHC. Four samples
failing to meet the moderate/severe IUA criteria were excluded.

Final sample

This study included two experimental cohorts: (1) a qPCR analysis cohort comprising eight
IUA cases and eight controls and (2) an IHC validation cohort consisting of eight [UA
cases and five controls. All samples met our strict quality control criteria prior to analysis.

Animal experiment

Ethical approval and animal housing. All experimental procedures were conducted in
accordance with protocols approved by the Institutional Animal Care and Use Committee
(IACUC) of the General Hospital of Ningxia Medical University (approval No. IACUC-
NYLAC-2023-136). Specific-pathogen-free-grade female C57BL/6] mice (6—8 weeks old,
17-20 g) were obtained from the Laboratory Animal Center of Ningxia Medical University.
The mice were maintained under controlled conditions: 20-26 °C, 50-60% humidity,
12-hour light/dark cycle, and housed in independent ventilation cages (<5 mice per cage)
with same-age female cohorts. The cages were changed weekly.

Experimental group allocation. The mice were randomly assigned to either (1) a control
(CON) group (n=1>5), receiving no surgical intervention, or (2) an [UA model group
(n=38), in which endometrial lesions were surgically induced.

Surgical modeling (IUA Group). The mice were anesthetized via the intraperitoneal
injection of 1.25% tribromoethanol (two mL/100 g body weight), which was followed
by aseptic surgical preparation. Midline laparotomy was performed to expose the uterine
horns, and a 0.1 cm transverse incision was cut 0.5 cm proximal to the uterine bifurcation.
Endometrial mechanical injury was induced using a sterile curette until visual confirmation
of tissue congestion and edema. The uterus was carefully repositioned following the
procedure, and the abdominal cavity irrigated with sterile saline. The surgical site closed
in layers with absorbable sutures.

Euthanasia and tissue collection. The mice were euthanized seven days after modeling via
an intraperitoneal injection of 1.25% tribromoethanol (six mL/100 g body weight). Death
confirmed by the absence of vital signs (cessation of chest movement, eyelid blanching,
and corneal reflex) and verified through another assessment 30 min after the procedure.
Uterine tissues were bilaterally harvested, with one horn snap-frozen in liquid nitrogen
until the subsequent qPCR analysis and the contralateral horn fixed in 10% neutral buffered
formalin for ITHC studies.

Model validation and quality control. We established success criteria involving evaluating
macroscopic uterine morphology and histopathology by measuring endometrial thickness
and quantifying glandular parameters via HE staining, referencing established standards
(Zhang et al., 2017). Two IUA specimens were excluded due to not meeting the nucleic
acid quality and/or concentration thresholds. The three IUA samples that failed to meet the
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moderate/severe adhesion criteria during HE screening were excluded from the subsequent
analyses to ensure model fidelity.

We used two independent sample sets for analysis: a gPCR cohort consisting of six [UA
and five CON specimens as well as an IHC cohort comprising five IUA and five CON
samples for protein-level validation.

Primary reagents

qPCR and Reverse Transcription. cDNA was synthesized using a PrimeScript'” RT reagent
kit (TaKaRa, Cat# RR047A). This was followed by qPCR amplification with TB Green™
Premix Ex Taq™ II (TaKaRa, Cat# RR820A) according to the manufacturer’s protocols.

tTM

IHC reagents. The primary antibodies included IGFI (Proteintech, #28530-1-AP; human
1:300, mouse 1:800), WNT5A (Proteintech, #55184-1-AP; human 1:800, mouse 1:1200),
BIRC5 (ABclonal, #A1551; human 1:800, mouse 1:50), and GDF7 (Abcam, #ab189928,
Clone EPR16000; human/mouse 1:1500). Immunodetection was performed using HRP-
conjugated antirabbit IgG secondary antibody (ZSGB-BIO, #PV-8000-1).

Statistical methods

All statistical analyses were performed using GraphPad Prism 10 (GraphPad Software,
USA). The data distribution was assessed through Shapiro—Wilk normality testing.
Continuous variables were analyzed using either Student’s t-test for normally distributed
data or the Mann—Whitney U test for non-normally distributed data, with a two-tailed
p-value < 0.05 considered statistically significant. The limited sample sizes (all # < 10) and
non-normal distribution (according to the Shapiro—Wilk test results) necessitated the use
of the Mann—Whitney U test in this study.

RESULTS

DEGs in IUA

The GSE224093 dataset was downloaded from the GEO website, comprising 33,944 genes.
[log, FC| > 1 and p < 0.05 were used as the filters to identify the DEGs. A total of 311 DEGs
were obtained: 190 down- and 121 upregulated genes, respectively, and 33,633 genes that
did not significantly differ in expression between the groups (Fig. 2A). The expression
levels of the top 100 significant DEGs were analyzed (Fig. 2B). We then downloaded 1794
IRGs from Immport (http:/www.immport.orghome). We used the intersection with DEGs
in IUA, identifying 22 intersecting genes (Fig. 2C). We identified six downregulated genes
through analyzing the expressions of the intersecting genes in the GSE224093 dataset
(Figs. 2D, 2E): BIRC5, LGR5, TUBB3, IGF1, GDF7, and WNT5A. We also identified 16
upregulated genes: ANGPTLI1, ACKRI, EDNRB, NPR3, PTGDS, CCL14, PTGFR, APOD,
CCL21, LYZ, CXCL10, PTGER3, PI15, FGF7, C3, and DES.

DEG functions and pathway enrichment

The genes overlapping among the IUA-associated DEGs and IRGs were functionally
annotated and clustered using the Metascape database (https:/metascape.org/). GO,
KEGG pathway enrichment, and Sankey diagram analyses were performed via an
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online bioinformatics platform (http:/www.bioinformatics.com.cn/). The results of GO
enrichment analysis revealed that the overlapping genes in the biological process category
were predominantly associated with inflammatory response, chemotaxis, and protein
phosphorylation. These results suggest a strong link between dysregulated immune
processes and TUA pathogenesis (Fig. 3A). The results of KEGG pathway analysis
demonstrated substantial enrichment of the DEGs in the Wnt signaling pathway, indicating
a role in IUA progression (Fig. 3B). The Sankey diagram illustrated the gene—pathway
relationships, showing that each gene mapped to 1-10 pathways, and each pathway
contained one-six associated genes (Fig. 3C). GSEA was then conducted on the [log, FC|-
ranked gene list, using KEGG gene sets to identify broader pathway-level alterations. The
GSEA results highlighted considerable enrichment in cell cycle regulation, oocyte meiosis,
and spliceosome activity, with consistent activation and inhibition trends across these
pathways (Fig. 3D).

Gene validation

We performed WGCNA on the GEO database again to further screen the target genes.
We analyzed the GEO database using a soft sign-independent threshold (Fig. 4A), an
average continuity soft threshold (Fig. 4B), sample clustering (Fig. 4C), gene coexpression
(Fig. 4D), a module feature vector (Fig. 4E), module phenotypic correlation (Fig. 4F), and
a differentially expressed module (Fig. 4G). We obtained 3,272 differential module genes.
We obtained the genes that intersected among the WGCNA differential module and DEGs,
and IRGs (DEGs-IRGs—saddlebrow) (Fig. 4H). Seven significant genes were obtained, of
which TUBB3, WNT5A, GDF7, IGF1, and BIRC5 were downregulated and PTGDS and
CCL14 were upregulated (Figs. 41, 4]).

Clinical relevance of key genes
We identified seven key hub genes using bioinformatics methods and explored the
molecular mechanisms underlying IUA: TUBB3, WNT5A, GDF7, IGF1, BIRC5, PTGDS,
and CCL14. We conducted functional enrichment and pathway analyses to determine the
roles of these genes in IUA. These genes are significantly enriched in biological processes
related to inflammatory responses, chemotaxis, and the regulation of cytokine production,
among other immune-related processes. These genes are implicated in several key signaling
pathways, such as cytokine—cytokine receptor interactions, the PI3K/Akt signaling pathway,
and the TGF-f signaling pathway, all of which may play roles in the development of IUA.
We performed GSEA to validate the involvement of these genes in TUA. These hub genes
were found to be enriched in biological processes, such as the cell cycle, oocyte meiosis, and
RNA splicing, suggesting that these genes influence the pathological mechanisms of IUA
through affecting cell proliferation, differentiation, and RNA processing. We constructed
a network map of the hub genes and their related signaling pathways, illustrating their
complex interactions and their crucial roles in the inflammatory response and fibrosis.
Among these genes, TUBB3 is involved in the maturation of anatomical structures and
is closely linked to cell cycle regulation, indicating its importance in the remodeling of
IUA. The aberrant expression of TUBB3 may contribute to the overproliferation and
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fibrosis of uterine tissues (Puri, Barry ¢ Engle, 2023). WNT5A was found to be enriched
in the Wnt signaling pathway and inflammatory response-related GO terms, indicating

roles in regulating inflammation and fibrosis (Kikuchi et al., 2011; Pashirzad et al., 2017).

GDF7 was found to be enriched in the TGF-f signaling pathway, suggesting involvement

in tissue fibrosis (Morikawa, Derynck ¢ Miyazono, 2016). IGF1 primarily participates in
regulating growth factor activity and the PI3K/Akt signaling pathway, implying a role
in IUA formation and progression through promoting cell proliferation and inhibiting
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apoptosis (Werner, 2023). BIRC5 was significantly enriched in anti-apoptosis-related GO
terms, indicating a role in protecting IUA tissue through inhibiting apoptosis (Sanhueza
et al., 2015; Zhang et al., 2021). PTGDS was found to be mainly associated with GO terms
related to prostaglandin metabolic processes and inflammatory responses, suggesting
involvement in the inflammation regulation (Crookenden et al., 2023; Chandrasekaran,
Weiskirchen ¢» Weiskirchen, 2024). Finally, CCL14 plays a role in regulating chemokine
activity regulation and recruiting immune cells, which was found to be enriched in GO
terms related to the immune response and KEGG pathways, underscoring roles in the
inflammatory response and immune regulation within the uterine cavity (Allen et al., 2009;
Zhu et al., 2019).

The results of the GO, KEGG, and GSEA analyses together identified the potential roles
of TUBB3, WNT5A, GDF7, IGF1, BIRC5, PTGDS, and CCL14 in IUA. These hub genes may
be integral to the pathological processes associated with IUA, influencing cell proliferation,
inflammatory responses, fibrosis, and immune evasion.

qPCR results

The results of qPCR validation revealed distinct expression profiles of the hub genes in
the human and murine endometrial specimens (Fig. 5). IGF1, WNT5A, BIRC5 and GDF7
expression levels were significantly downregulated in the human IUA groups compared
with the controls, whereas the expression levels of TUBB3, PTGDS, and CCL14 were
upregulated. The TUBB3 expression level did not agree with the bioinformatic predictions.
The expression levels of IGF1, WNT5A, BIRC5, GDF7, TUBB3, and PTGDS were similarly
downregulated in the murine specimens. The measured PTGDS expression level in the
murine specimens did not agree with the results of computational analysis. Technical
limitations prevented the validation of CCL14 expression levels in the murine models
due to primer unavailability and the potential gene absence in mouse endometrium. All
statistical details are presented in Table 2.

IHC results

The THC results confirmed substantial differences in the IGF1, WNT5A, BIRC5, and GDF7
protein expression patterns between the normal and IUA groups in the human endometrial
and murine tissues. The observed protein expression profiles completely agreed with the
transcriptomic patterns identified through our biosignature analysis (Fig. 6). All statistical
details are presented in Table 3.

DISCUSSION

Importance of immune microenvironment in formation of IUA

IUA is common gynecological disorder with complex pathomechanisms that are difficult
to treat. We identified an important role of the immune microenvironment in the
development of ITUA. Immune imbalance impacts the endometrial fibrosis process (Niu
et al., 2023), whereas Chen et al. (2022) further identified that CD4+ T-cell-mediated
macrophage polarization plays a critical role in the formation of fibrosis. Our results
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support these findings and demonstrate the changes in the expression of specific immune-
related genes in IUA, which may be associated with immune cell activation, inflammatory

factor release, and tissue repair processes (Torres-De La Roche, 2019).
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Table 2 Quantitative PCR analysis of target gene expression in human and murine endometrial tis-
sues.

Genes Species Sample size P-value Cliff’s delta [95% CI]
(n; vsny)
IGF1 Human 8vs8 0.0002 —1[—0.95, —0.24]
Mice 6vs6 0.0022 —17-0.89, —0.36]
Human 6vs6 0.0022 —1[—0.85, —0.23]
WNT5A .
Mice 6vs6 0.0022 —1[—1.00, —0.41]
Human 6vs6 0.0022 —1[—0.77, —0.24]
BIRC5 .
Mice 6vs6 0.0022 —1[—1.00, —0.58]
Human 4ys4 0.0286 —1[—1.34, —0.06]
GDF7 , A
Mice 5vs5 0.0079 —1[—0.97, —0.09]
Human 6vs6 0.0022 —1[0.08, 1.91]
PTGDS
Mice 4vs4 0.0286 —1[—1.01, —0.48]
Human 7vs7 0.0006 —1[0.06, 0.25]
TUBB3 .
Mice 4vs4 0.0286 —1[—0.73, —0.23]
CCLi4 thlman 4ys4 0.0286 —1[0.06, 4.27]
Mice - - -
Notes.

™ Normal control group.
™ Intrauterine adhesion (IUA) group.

“Dashes (-) indicate data not explicitly provided in the original text.
*Dashes (*) indicates 97% confidence interval (CI) (non-standard 95% CI).

Role of hub genes in IUA

We identified key hub genes, such as IGFI, WNT5A, BIRC5, and GDF7, through
bioinformatics analysis, which may play roles in regulating inflammation, immune
activation, tissue repair, and fibrosis. IGF1I is crucial for tissue repair, fibrosis, and immune
responses. IGF1 is involved in regulating tissue repair and fibrosis through the PI3K/Akt
and TGF-p signaling pathways, promoting cell proliferation and matrix deposition in
hepatic and cardiac fibrosis (Wang et al., 2023). IGFI downregulation is associated with
aberrant fibrosis and impaired tissue repair, highlighting its potential as a therapeutic target
(Wang et al., 2018). The roles of WNT5A in immune regulation, cell migration, and tissue
remodeling are being increasingly supported. WNT5A is involved in pathological processes
such as lung fibrosis and skin scarring via the nonclassical Wnt/Ca? ™ pathway (Singla et al.,
2023; Trinh-Minh et al., 2024). Notably, the downregulation of WNT5A expression levels
may hinder fibrosis progression through diminishing local immune responses following
trauma (Xue et al., 2022), indicating potential as a diagnostic and prognostic marker of
IUA. BIRCS5 functions as an antiapoptotic protein that enhances cell survival through
inhibiting apoptosis as well as promotes tissue repair by sustaining fibroblasts during the
fibrotic process (Horowitz et al., 2012). The downregulation of BIRC5 expression levels
leads to reduced fibrosis and compromised tissue repair. GDF7 is a member of the TGF-§
family that is primarily involved in neural and muscular differentiation. Although GDF7
has received less attention in fibrotic diseases, GDF7 may play a crucial role in tissue
fibrosis through influencing fibroblast differentiation (Kong et al., 2023). Furthermore,
GDF7 downregulation may adversely affect tissue repair and fibrosis progression.
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Figure 6 Immunohistochemical validation of hub protein expression in intrauterine adhesion. (A)
Representative IHC images showing protein expression levels of IGF1, WNT5A, BIRC5, and GDF7 in hu-
man endometrial tissues from IUA patients versus healthy controls (scale bar: 100 jum). (B) Correspond-
ing THC results in a mouse IUA model. (C) Quantitative analysis of IHC staining intensity in human tis-
sues. (D) Quantitative analysis of IHC staining intensity in mouse tissues. Statistical significance was de-

termined by Mann—Whitney U test (*P < 0.05, **P < 0.01).
Full-size &l DOI: 10.7717/peer;j.20035/fig-6
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Table 3 Statistical analysis of immunohistochemical staining intensity for IGF1, WNT5A, BIRC5, and
GDF7 in human and murine endometrial tissues.

Genes Species Sample size P-value Cliff’s delta
(n; vsny) [95% CI]
IGF1 Human 5vs8 0.0109 —0.85 [—28.829, —3.274]
Mice 5vs5 0.0317 —0.77 [—6.877, —0.305]
Human 5vs5 0.0159 —0.92 [—20.789, —2.919]
WNT5A .
Mice 5vs5 0.0079 —1[—20.407, —6.677]
Human 5vs8 0.0295 —0.75 [—20.680, —2.802]
BIRC5 .
Mice 5vs5 0.0079 —1[—5.844, —2.554]
Human 5vs7 0.0303 —0.75 [—20.680, —2.802]
GDF7 ,
Mice 5vs5 0.0079 —1[—12.035, —0.884]
Notes.

n;, Normal control(CON) group; n,, Intrauterine adhesion (IUA) group.

In conclusion, these genes play roles in fibrosis, cellular repair, and immune regulation.
These genes may be suitable as biomarkers and therapeutic targets for [UA and thus warrant
further investigation.

Role of bioinformatics methods in exploring pathogenesis of IUA
Bioinformatics methods can be used to integrate and analyze multiomics data, providing
tools for comprehensively understanding the molecular mechanisms of TUA. These
approaches may aid in elucidating the molecular mechanisms underpinning IUA,
facilitating the discovery of biomarkers and the development of personalized therapies
(Liang et al., 2024). We identified the genes closely associated with the pathological
processes of IUA using GSEA. The results of GO and KEGG pathway enrichment analyses
identified the biological functions of these genes and the signaling pathways involved. We
used WGCNA to identify the key hub genes in IUA through constructing gene coexpression
networks, through which we determined their potential roles in pathological processes
and established regulatory networks. Integrating these methodologies identified potentially
suitable molecular targets for diagnosing and treating IUA. These methods are powerful
tools that could be used in future mechanistic studies.

Experimental validation

Although the results of bioinformatic analysis produced a large number of candidate
genes, experimental validation was a step in ensuring the reliability of our findings. Our
gPCR and IHC experiments validated the changes in the expression levels of some key
genes in IUA, enhancing our confidence in the determined roles of these genes in IUA.
However, the inconsistency between the experimental results and raw confidence analyses
suggests that more samples and in-depth mechanistic studies are needed to explain these
discrepancies. Further study will increase our understanding of the effects of the differences
in the samples, species, and experimental conditions and technical errors on the results.
Additional single- and multi-center studies may contribute to our understanding of the
changes in the immune microenvironment during the pathogenesis of [UA.
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The observed discrepancies between bioinformatic predictions and experimental
validation, particularly for TUBB3 and PTGDS, warrant careful consideration of
species-specific biological and technical factors. TUBB3 expression was upregulated and
downregulated in the human and muring IUA endometrial specimens compared with the
controls, respectively. However, the PTGDS expression level was up- and down-regulated
in the human and murine IUA samples compared with the controls, respectively. These
divergent trends may reflect (1) the fundamental differences in endometrial physiology
between species, as murine models incompletely mimic human IUA pathophysiology;
(2) technical limitations in cross-species primer design, exemplified by CCL14 being
undetectable in mice due to potential gene absence or primer incompatibility; and (3)
microenvironmental variations, where human samples represent chronic IUA states
versus acute murine injury responses. Such disparities underscore the need for species-
matched validation when translating computational findings. The consistent validation of
IGF1, WNT5A, BIRC5, and GDF7 between the gPCR and IHC (human/mice p < 0.05)
results reinforces their roles in IUA; however, the inconsistency in the genes highlights
methodological challenges. The failure to amplify murine CCL14 suggests gaps in murine
genome annotation or expression sparsity, urging caution in assuming gene ortholog
conservation. Researchers should (1) integrate multiomics methods (e.g., single-cell RNA-
seq) to clarify species-specific expression patterns, (2) optimize species-specific primer
validation using long-read sequencing, and (3) incorporate patient-derived organoids
to bridge translational gaps and address these issues. These strategies could mitigate the
limitations posed by interspecies variability and technical artifacts, enabling further IUA
biomarker discovery.

Study limitations and future directions

This study has three principal limitations. (1) The restricted sample size of the GSE224093
< 1.5),
although this limitation was mitigated using FDR correction (p < 0.05) and external

dataset (n = 14) limited the statistical power for moderate-effect genes (|log2FC

validation; (2) The modest validation cohort sizes (human: n = 5-8; mice: n = 5—

8) provided adequate power (72-80%) for detecting large-effect biomarkers (Cohen’s

d > 1.0) but limited the sensitivity to moderate-effect targets (d =0.5-0.8), as evidenced
by the wider confidence intervals in the effect-size estimates. The core findings (e.g.,
IGF1/WNT5A) demonstrated cross-species consistency; however, the small sample sizes
precluded meaningful subgroup analyses and impact the generalizability of our findings
to heterogeneous clinical populations. (3) Interspecies divergences—such as undetectable
murine CCL14, opposing TUBB3/PTGDS regulation, and distinct inflammatory/fibrotic
timelines—highlight the fundamental differences between surgical murine models and
human IUA pathophysiology.

A tiered validation strategy is proposed to address these limitations. (1) Expanded
multicenter cohorts (target n>30/group) should be included, incorporating laser-capture
microdissected endometrial compartments to enhance spatial resolution. (2) Humanized
mouse models should be developed through the xenotransplantation of patient-derived
endometrial stromal cells to bridge species gaps. (3) Single-cell multiomics (scRNA-seq +
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spatial proteomics) should be used with paired human/murine samples to determine the

cell-type-specific expression patterns confounding bulk analyses. The CCL14 discrepancy
should be addressed through long-read sequencing to confirm murine gene absence versus
technical detection failure. These approaches will help with systematically addressing the

current limitations and identifying clinically actionable biomarkers and targeted therapies
for IUA.

CONCLUSIONS

We screened and validated the DEGs associated with IUA using network bioinformatics
analysis. We determined the key roles of genes such as IGF1, WNT5A, BIRC5, and GDF7
in the occurrence and development of IUA. These genes play important roles in fibrosis,
immunomodulation, and tissue repair, indicating potential biomarkers for diagnosing and
treating IUA. Future studies will be devoted to the clinical translation of these findings and
developing new therapeutic strategies to improve the prognosis of patients with IUA.
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