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Background : Researchers in biology and bioinformatics are increasingly interested in
unraveling the complex mechanisms underlying phenotypic variations. A key challenge lies
in identifying perturbed biological pathways and understanding how these perturbations
propagate through intricate gene regulatory networks.

Results : To address this challenge, we developed ShinyDegSEM, an interactive R Shiny
application that leverages structural equation modeling (SEM) to facilitate pathway
perturbation analysis in gene expression studies. ShinyDegSEM streamlines identifying
differentially expressed genes (DEGs), generating pathway models based on biological
knowledge, and evaluating these models to uncover perturbed pathway modules. This
article is a tutorial to navigate users through the analysis workflow with detailed
explanations and examples. This feature ensures that even novice researchers can quickly
grasp the concepts and apply the tool to their datasets.

Conclusions : The application integrates multiple steps, including DEG detection using
significance analysis of microarray, perturbed pathway analysis with signaling pathway
impact analysis, and SEM-based model refinement and comparison between experimental
and control groups. The interactive interface of ShinyDegSEM allows researchers to easily
upload their gene expression data, select appropriate criteria for DEG detection and
pathway analysis, and visualize the results in intuitive graphs and tables. The tool provides
insights into deregulated genes and modified gene-gene relationships within perturbed
pathways.
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evaluating these models to uncover perturbed pathway modules. This article is a tutorial to
navigate users through the analysis workflow with detailed explanations and examples. This
feature ensures that even novice researchers can quickly grasp the concepts and apply the tool to
their datasets.

Conclusions: The application integrates multiple steps, including DEG detection using
significance analysis of microarray, perturbed pathway analysis with signaling pathway impact
analysis, and SEM-based model refinement and comparison between experimental and control
groups. The interactive interface of ShinyDegSEM allows researchers to easily upload their gene
expression data, select appropriate criteria for DEG detection and pathway analysis, and
visualize the results in intuitive graphs and tables. The tool provides insights into deregulated

genes and modified gene-gene relationships within perturbed pathways.

Keywords: Structural equation modeling, Shiny, differentially expressed genes, significance
analysis of microarray, perturbed pathway analysis

Introduction
Biological networks have been popular in recent years (Scardoni, Petterlini, & Laudanna,

2009; Chin et al., 2014; Omony, 2014; Liu et al., 2020; Wang et al., 2021), stemming from
recognizing that biological systems are inherently complex, with numerous interconnected
components operating in concert to maintain cellular homeostasis and adapt to environmental
stimuli (Goldstein, 2019; Liu et al., 2020). Network biology employs graph-theoretic approaches
to represent biological molecules, such as genes, proteins, and metabolites, as nodes in networks,
\_Vilere edges represent the interactions among these components (Alm & Arkin, 2003; Albert,
2007). This paradigm shift has not only enhanced our understanding of biological processes but
has also provided a new platform for various applications of analytical frameworks and tools
such as machine learning (Muzio, O’Bray, & Borgwardt, 2021], statistical modeling (Lee &
Tzou, 2009; Oates & Mukherjee, 2012; Epskamp, Rhemtulla, & Borsboom, 2017; Valdeolivas et

al., 2018], and pathway analysis (Isci et al., 2011; Rodchenkov et al., 2019). These tools enable
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researchers to unravel the complexities of biological networks, predict behaviors, and identify
potential intervention points (Lee & Tzou, 2009).
Structural Equation Modeling (SEM) Framework

Among the analytical frameworks, structural equation modeling (SEM; Kline, 2023)
stands out due to its unique capability to handle complex relationships in measurement models
and between latent variables. SEM is a statistical method that allows researchers to test complex
theories by examining the relationships between multiple variables (Anderson & Gerbing, 1988;
Ullman & Bentler, 2013; Kline, 2023). Specifically, SEM combines factor analysis, multiple
regression, and path analysis. SEM allows researchers to build and test models demonstrating
how different variables are connected and influence each other. The mathematical expressions
and notations (Pepe & Grassi, 2014; Kline, 2023) are in the Supplementary Materials [SM].
SEM in Biological Studies

Conventional SEM uses measurement and structural models to examine the relationships
between observed and latent variables. The SEM method in this paper focuses on relationships
between observed variables (e.g., gene expression) while accounting for unobserved factors and
using path diagrams to represent the models visually. This approach is well-suited for analyzing
gene expression data and uncovering the underlying mechanisms of biological pathways (Liu, de
la Fuente, & Hoeschele, 2008; Neto et al. 2010; Cai, Bazerque, & Giannakis; 2013; Romdhani et
al., 2015; Wang, Lu, & Miao, 2016; Igolkina et al., 2018).

Researchers have applied SEM in biological and health studies, especially with biological
network techniques (Liu, de la Fuente, & Hoeschele, 2008; Neto et al. 2010; Cai, Bazerque, &
Giannakis; 2013; Romdhani et al., 2015; Wang, Lu, & Miao, 2016; Igolkina et al., 2018). For

example, Liu, de la Fuente, and Hoeschele (2008) examined using linear SEM to identify sparse
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networks to validate genetic network inference through simulation and application to real genetic
datasets. The researchers found that SEM was promising for accurately identifying different
network edges.-Neto et al. (2010) developed a quantitative trait loci (QTL)-driven phenotype
network method called QTLnet to jointly infer causal networks and genetic architecture of sets of
phenotypes. They validated this framework through simulations and real data analysis. The
QTLnet method incorporates SEM features, using graphical models to illustrate causal
relationships between genes and phenotypes and within phenotypes. Likewise, Romdhani et al.
(2015) proposed a test to analyze the relationships between genetic variants of gene candidates
and correlated traits. They applied this method to real data to examine associations between genes
and cardiovascular disease-related traits. Their approach leverages SEM to model complex
relationships, providing a robust framework for understanding how genetic variants influence
multiple correlated traits simultaneously. Cai, Bazerque, and Giannakis (2013) contributed to
developing a sparsity-aware maximum likelihood (SML) algorithm for using sparse structural
equation models to model gene regulatory networks. Similarly, Wang, Lu, and Miao (2016)
proposed an efficient structural identifiability analysis algorithm for static linear SEM to help
examine graphical models of biological networks with latent variables. In addition, Igolkina et al.
(2018) examined the SEM to examine gene expression pathway coefficient differences between
gene network data from 144 schizophrenia (SCZ) patients and 111 control individuals (without
SCZ themselves and no family history of SCZ). They found that the SEM can identify the altered
relationships between gene interactions at different statistical significance levels (e.g., p < .01).
Moreover, various R packages that can apply SEM in biology studies have been developed, such
as GenomicSEM (Grotzinger et al., 2019), GW-SEM (Pritikin et al., 2021), SEMgraph (Grassi,

Palluzzi, & Tarantino, 2022), and SEMdeep (Grassi & Tarantino, 2025).
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Literature shows that although SEM has shown great promise in the biological and health
field, its full potential in applied research remains untapped, mainly due to the relatively low
collaboration between SEM methodologists and biological researchers. This gap can be
attributed to several factors, including the technical complexity of SEM, the distinct backgrounds
and terminologies used by researchers from different fields, and the limited exposure of
biological researchers to SEM methodologies.

Advantages of SEM in Pathway Analysis

Hypothesized Causal relationships via SEM. Structural equation modeling enhances

pathway analysis by addressing the critical limitations of traditional correlation-based methods.

Unlike approaches that only identify correlated relationships, SEM evaluates hypothesized

causal structures, modeling both direct and indirect regulatory influences (e.g., gene A — gene B

— gene C). This allows researchers to test mechanistic explanations for observed gene

expression changes, such as cascading effects or feedback loops.

In genetic pathway analysis, SEM uses directed edges (—) to represent regulatory
relationships (e.g., transcription factor binding) and bidirected edges («») to account for
unmeasured confounders (e.g., environmental factors or latent proteins) that jointly affect
multiple genes. While initial pathway models (e.g., from the Kyoto Encyclopedia of Genes and
Genomes (KEGG; Kanehisa et al., 2002; 2004; 2017) are simplified abstractions of biological
networks, SEM provides a framework for validating and iteratively refining these models using
empirical data. For example, SEM can test whether adding a hypothesized interaction (e.g., a
post-translational modifier) improves model fit, thereby bridging gaps between static pathway

maps and dynamic biological reality.
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Comparative Analysis of Regulatory Network Dynamics Across Groups in SEM.
Multiple group analysis in SEM enables comparative evaluation of regulatory interactions
involving pre-identified differentially expressed genes (DEGs). By testing invariance in path
coefficients and network structures across groups, SEM reveals context-specific rewiring of
regulatory relationships, such as strengthened or weakened causal effects between DEGs in
disease conditions.

Structural equation modeling extends beyond transcriptomic correlations by testing
hypothesized directed relationships between genes, even when their RNA levels lack strong
pairwise correlations. By modeling pathways (e.g., Gene B; — Gene B, via latent mediators),
SEM can infer regulatory effects masked in simple correlation analyses. While SEM cannot
directly measure post-translational modifications (PTMs) or dynamic cascades, it can incorporate
latent variables to approximate such mechanisms if supported by auxiliary data. The strength of
SEM is evaluating how well a predefined network structure (including indirect or hierarchical
relationships) explains observed gene expression patterns, revealing path coefficients that reflect
hypothesized regulatory influences.

Multiple Data Sources and Comprehensive Analysis via SEM. The SEM pipeline
integrates multi-modal data sources, such as gene expression (microarrays), curated pathway
topologies (KEGG), and protein-protein interaction networks (e.g., STRING database
(Szklarczyk et al., 2015), to construct biologically plausible regulatory models. This integration
enhances robustness by cross-validating hypotheses against orthogonal data types. For example,
in a study of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), SEM
analysis of the glutamatergic synapse pathway identified PSD-95 as a hub gene and revealed

altered regulatory relationships involving SHANK?2 and glutamate receptors under progranulin
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mutation. The model further suggested context-specific activation or inhibition of connections
(e.g., strengthened PSD-95—-SHANK? interactions in mutant conditions). Similarly, in multiple
sclerosis (MS), SEM highlighted dysregulated genes (ARF6, CRKL, and PIP5K1C) within the Fc
gamma R-mediated phagocytosis pathway. These findings align with prior studies implicating
phagocytic dysfunction in MS pathogenesis (Pepe & Grasssi, 2014). SEM disentangles direct
regulatory effects from indirect associations, offering mechanistic insights into
neurodegenerative processes by combining pathway and interaction data.
Model Assessment via SEM

Structural equation modeling evaluates model fit using statistical tests and indices (Kline,
2023) such as the chi-square test, root mean square error of approximation (RMSEA), and
standardized root mean square residual (SRMR). Biological evidence from databases like
STRING can be incorporated to validate and include known interactions. A well-fitting model is
typically indicated by a non-significant y? test p value (though this test is sensitive to sample
size), RMSEA < .06 (Hu & Bentler, 1999), and SRMR < .05 or .10 (West, Taylor, & Wu,
2012; Grotzinger et al., 2021) for adequate or good fit, respectively. These indices evaluate how
closely the proposed model aligns with the observed data. To refine the model, modification
indices (MI) estimate the potential improvement in fit (quantified by the expected decrease in ¥?)
if a constrained parameter (e.g., a path or covariance) is freely estimated (Kline, 2023).
Statistical indices, such as Akaike information criterion (AIC) and Bayesian information
criterion (BIC), can also be used for SEM model comparisons and selections (Grassi, Palluzzi, &
Tarantino, 2022; Kline, 2023). However, modifications are only justified when they align with
substantive theory, domain knowledge, or plausible causal mechanisms. Nonsignificant paths

may be removed to enhance parsimony if such changes do not compromise theoretical
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expectations. Iterative adjustments balancing statistical guidance and substantive rationale are
critical to avoid overfitting and support generalizability. See the SM for detailed explanations.
Validation for SEM Results

Comparative analyses based on other methods, such as simple differential expression or
correlation-based network analysis, could be conducted to validate SEM results. Benchmark
datasets with known ground truth can validate the accuracy and reliability of SEM. Experimental
validation of key SEM findings through assays, such as testing the impact of perturbing specific
genes or connections, would confirm predicted changes in gene activity. Evaluating the
predictive accuracy of SEM models would also strengthen their assessment (e.g., predicting
disease progression or treatment response). Lastly, developing more intuitive visualizations that
highlight key findings and show network differences between experimental conditions would
enhance the understanding and communication of SEM results. We aim to contribute to the use
of SEM for pathway analysis by developing a Shiny application (app).

Interactive biological web applications hosted on Shiny servers have been published
more recently due to the increasing awareness among researchers of their methodological
advances and practical ease. For example, Jia et al. (2022) systematically reviewed biological
web applications built with R or Shiny and their basic and advanced features. However,
applications specifically designated to handle SEM are less commonly seen; one of the most
well-known is power4SEM, which is used for power calculations (Jak et al., 2021). Our article
serves as a tutorial brief to address this gap by developing an R Shiny software application called
ShinyDegSEM, which connects bioinformatics with SEM. Although researchers had elegantly
applied SEM in gene expression and pathway analysis data (Pepe & Grassi, 2014), to our

knowledge, this is the first tool that adopts SEM to investigate perturbed pathway modules
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derived from gene expression data. We aim to demystify SEM for biologists by combining a
series of analyses with a user-friendly interface, allowing users to execute various computations
and functions through a point-and-click interface.

Materials & Methods

Understanding phenotypic variation requires studying perturbations in complex intracellular
networks rather than focusing solely on single-gene dysregulation. High-throughput gene
expression data enables investigation of changes in gene expression profiles across different
conditions. A comprehensive analysis of pathway perturbation via SEM integrates two key
components: genome-wide association studies (GWAS) with pathway extensions to identify
genetic associations, and SEM-based modeling, evaluation, and refinement to quantify network-
level effects. Building on the foundational workflow of Pepe and Grassi (2014), which spans
from identifying differentially expressed genes (DEGs) to validating and interpreting perturbed
pathway models, we enhance this approach by incorporating recent advancements in GWAS and
SEM into ShinyDegSEM. Our implementation offers improved flexibility, usability, and
analytical precision for pathway-centric studies. See the SM for detailed gene study
terminologies and methodologies. The following steps are needed to apply ShinyDegSEM for
conducting pathway analyses using SEM.

Step 1. In the initial step, users can collect and prepare data for analysis. Three primary
genomic data types can be included: (1) gene expression data (including microarray-based
transcript abundance quantification (Schena et al., 1995) and RNA-sequencing (RNA-seq) for
genome-wide expression profiling with single-nucleotide resolution (Wang, Gerstein, & Snyder,
2009; AlJanahi, Danielsen, & Dunbar, 2018), (2) genomic variation data (e.g., whole-genome or
exome sequencing data) capturing nucleotide-level polymorphisms and structural variants

DePristo et al., 2011 4), and (3) quantitative real-time PCR (qRT-PCR) data for precise
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228 expression validation (Hendriks-Balk, Michel, & Alewijnse, 2007). Public repositories such as
229 NCBI's Gene Expression Omnibus (GEO; National Center for Biotechnology Information, 2024)
230 and KEGG (Kanehisa et al., 2002; 2004; 2017) may serve as additional data sources. Prepared
231 data (e.g., .txt or .csv formats) are imported for follow-up analysis.

232 Step 2. In step 2, we identify DEGs to detect significant gene expression level changes
233 Dbetween two or more conditions. For microarray data, methods such as significance analysis of
234 microarrays (SAM; Tusher, Tibshirani, & Chu, 2001) are commonly employed. RNA-seq data
235 typically utilize count-based approaches, including normalization and statistical modeling via
236 negative binomial distributions (Rapaport et al., 2013). Alternative strategies combine fold-
237 change (FC) thresholds with non-stringent p-value cutoffs to balance sensitivity and specificity
238 (Shi et al., 2008). Emerging machine learning approaches, including deep learning frameworks,
239 offer additional tools for DEG detection (Tasaki et al., 2020), especially in complex datasets.
240 Step 3. In step 3, we identify perturbed pathways. Biologically perturbed pathways are
241 identified as functional modules enriched with DEGs, which are indicative of potential disease-
242  associated dysregulation (Pham et al., 2016). Established computational approaches include: (1)
243 enrichment analysis (e.g., over-representation or gene set enrichment; Rahmati et al., 2017), (2)
244  signaling pathway impact analysis (SPIA) that combines topological and statistical metrics

245 (Tarca et al., 2009), and (3) integration with curated pathway databases (e.g., KEGG; Kanehisa
246 etal., 2017). These pathways are subsequently modeled as directed graphs or gene networks,
247  where nodes represent molecular components and edges depict functional interactions, enabling
248 the visualization and topological analysis of perturbed systems (Goh et al., 2007).

249 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway graphs were converted

250 into directed graphs for SEM analysis. In this representation, nodes represent genes derived from
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microarray, RNA-seq data, or Protein Information Resource (PIR) superfamilies, which are
clusters of evolutionarily related proteins with shared functions. Edges represent directed
biochemical interactions between nodes, which are categorized into two primary types:
molecular interactions, including protein-protein binding and enzymatic reactions, and regulatory
relationships such as transcriptional activation or suppression (Pepe & Grassi, 2014; Grassi &
Tarantino, 2022). The directed graph structure encodes the causal dependencies between
molecular components, allowing SEM to quantify pathway-wide dysregulation across
comparison groups (or between diseased and normal controls). Main advantages of this approach
include: (1) maintaining biological interpretability through preservation of established pathway
architectures, (2) enabling quantitative assessment of both magnitude and directionality of
molecular interactions, and (3) supporting investigation of condition-specific pathway
dysregulation through group comparisons.
Edges can be further classified into two types by directionality (Pepe & Grassi, 2014;

Grassi & Tarantino, 2022). Directed edges (—) indicate a direct influence of one gene on
another. The direction of the arrow indicates which gene regulates the other. For example, if
gene Y, has a directed edge pointing to gene Y, (Y; — Y3), it means that gene Y; is an upstream
regulator that directly affects the activity of gene Y,. Bidirected edges (<) represent covariances
between two genes attributable to unmeasured common causes (e.g., latent upstream regulators
or shared environmental factors) influencing both genes.

These edges in the directed graphs can have signs, which is a crucial aspect of how SEM is
used in this context. The strength and direction of the influence between two genes connected by
a directed edge (—) are quantified by path coefficients. These coefficients typically range from

- 1 to 1 if the data are standardized. Positive path coefficients indicate a net activation or
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positive control, meaning that an increase in the activity of the upstream gene is expected to
increase the activity of the downstream gene. Negative path coefficients represent net inhibition
or negative control, meaning that an increase in the activity of the upstream gene is expected to
decrease the activity of the downstream gene. On the other hand, bi-directed edges (<)
represents the covariance between two genes i and j due to unobserved factors, which is

quantified by ;-

Structural equation modeling (SEM) employs linear regression equations in which path
coefficients (B;;) quantify both the strength and direction (i.e., positive or negative) of
relationships between variables, serving as weights in the model equations. These signed
coefficients are essential for determining the nature of gene-gene interactions within pathways,
distinguishing between activating (positive), inhibitory (negative), or latent common-cause
relationships. The framework enables comparison of these signed effects across experimental or
different conditions through parameter contrasts between groups. During model refinement, MI,
z-tests, and external biological databases (e.g., STRING; Szklarczyk et al., 2015) can inform the
addition of directed or bidirected edges, with database-derived interaction signs directly
informing path coefficient directions.

Steps 4 & 5. In step 4, we integrate curated pathway topologies (e.g., from KEGG) with
data-driven network filtering using the algorithms proposed by Pepe and Grassi (2014).
Canonical pathways are first represented as directed graphs and then pruned using partial
correlations derived from gene expression data (e.g., Type I error rates < .05). In step 5, we apply
SEM to the refined pathways, where differential analysis of path coefficients identifies

statistically perturbed interactions across groups.
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The SEM analyses were conducted using a suite of specialized R packages chosen for
their complementary capabilities. Specifically, the lavaan package (Rosseel, 2012) served as the
primary platform for model specification, parameter estimation, and goodness-of-fit assessment,
which provides comprehensive functionality for diverse SEM applications. The lavaan package
uses maximum likelihood (ML) estimation by default for continuous and complete data (Rosseel,
2012). For network visualization and manipulation of model components, including latent
variable relationships, we employed the igraph package (Csardi & Nepusz, 2006), which
facilitates intuitive graphical representation and interpretation of complex model structures.
Additional analytical support was provided by the semTools package (Jorgensen et al., 2022),
which offered essential utilities for data diagnostics, model comparison, and advanced statistical
evaluations. This package enhanced our analytical workflow through its specialized functions,
complementing core SEM procedures. A distinctive aspect of our approach involved integrating
network analysis with SEM using the SEMgraph package (Grassi, Palluzzi, & Tarantino, 2022).
This specialized tool enabled network-based model exploration, including fitting SEM models,
pathway identification, detection of initial nodes, and robustness assessment through graph-
theoretic and statistical metrics. Combining traditional SEM with network analysis, SEMgraph
provided unique insights into model interconnectivity and dynamics.

After estimating the initial SEM model based on the perturbed pathways and gene
connections from examined data (e.g., microarray), we obtain the strength of gene-gene
connections, also known as path coefficients. The SEM models can be modified based on
additional information, such as goodness-of-fit indices (e.g., RMSEA and SRMR), which are
used to support the decision on whether to refine them iteratively. After the final structure of the

model is determined, the remaining analysis focuses on assessing the appropriateness of group
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comparison in SEM through invariance tests, examining whether the models differ significantly
between groups (e.g., diseased vs. healthy), and identifying genes and gene-gene interactions that
show significant differences in expression or regulation.

The remaining work is interpretation, where researchers should consider correlating the
perturbed genes and connections with known biological processes and disease mechanisms.
More importantly, like other biological analyses through statistical mining, it is critical to discuss
the implications of the findings to understand the phenotype of interest.

Shiny Walkthrough
The Layout of the ShinyDegSEM Application

We first describe the ShinyDegSEM application (app) layout and then explain how to
navigate the main screen. The initial screen of the app is displayed in Figure 1. The left panel (in
gray) includes five steps for user navigation, while the right panel (in white) shows the outputs of
each step. The five steps in the app are: (1) Step 1 Data Input, (2) Step 2 DEG Analysis, (3) Step
3 Enrichment Analysis, (4) Step 4 Network Analysis, and (5) Step 5 SEM Analysis. Specifically,
users can click the “Browse” button under step 1 to upload a .txt or .csv data file and start the
analysis.

Using the ShinyDegSEM Application

We used the same gene expression microarray data as Pepe and Grassi (2014) to
demonstrate the app’s use. The dataset pertains to MS. It includes genome-wide expression data
from peripheral blood mononuclear cells (PBMC) of 12 MS patients and 15 healthy controls,
contributed by Kemppinen et al. (2011). The dataset (Kemppinen et al., 2019) is stored in the
Gene Expression Omnibus (GEO; National Center for Biotechnology Information [NCBI], 2024)

database under ID GSE21942. Figure 2 shows a screen plot after uploading the dataset and the
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patient and control group memberships from the label file (in step 1). The right panel shows a
data preview with 21026 rows for genes and 27 columns for participant IDs. The application can
be downloaded from https://osf.io/kw8zf/. When run, it follows the regular Shiny app execution
method.
Procedures Before Conducting SEM

Let’s proceed to steps 2 through 4 before performing SEM. In step 2 for DEG analysis, the
default delta value (Tusher, Tibshirani, & Chu, 2001) in SAM analysis was set to 1 in the app,
and users can adjust it according to their study. For example, we used 0.95 as Pepe and Grassi
(2014) did. Step 3 involved enrichment analysis for identifying perturbed pathways. Step 4 is
network analysis. Specifically, steps 2 and 3 analyses will be performed automatically after
uploading the files. Users can click the “Run Network Analysis” button to initiate the analysis
related to step 4. After a short wait (depending on the dataset size), results from steps 2 to 4 will
gradually appear in the right panel. For example, clicking the “DEGs acquirement” button will
display the output of the SAM analysis for DEG analysis (see Figure 3). Similarly, clicking the
“Enrichment analysis — Get pathway” button will display the output of different perturbed
pathways. By clicking the “Network Analysis”, we can see model information and graphs for
identified pathways, such as the “B cell receptor signaling”, “Fc gamma R-mediated
phagocytosis”, and “Chagas disease” pathways. For example, Figure 4 shows the identified
differentially expressed genes (DEGs) and non-DEGs (NDEGs) within the context of the Fc
gamma R-mediated phagocytosis pathway, which is associated with autoimmune dysregulation
and inflammation. The DEGs (CRKL, ARF6, PLA2G4A, and ARPC4) were identified
(corresponding to Entrez IDs 1399, 382, 5321, and 10093, respectively) and matched those

shown in Pepe and Grassi’s (2014) study. Researchers can identify DEGs based on network
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analysis results and understand the direction of gene interactions within a pathway. These
findings can then be incorporated into SEM to investigate causal relationships among more
genes and their interactions, providing insights into the regulatory mechanisms underlying the
pathway.

Results

Running SEM Based on Network Analysis Results

In this paragraph, we describe how to work on SEM based on results from the network
analysis and explore gene relationships in step 5 of the app. First, select one or more pathway(s)
of interest from the panel, such as the “Chagas disease” pathway. Second, choose the SEM
estimator, which is set to ML by default (Rosseel, 2012), and click “Run Initial SEM”’. The initial
model output will appear in the right panel, displaying the model summary and model fit indices
(see Figure 5), such as the SRMR (Kline, 2023) and the RMSEA (Anderson & Gerbing, 1988).
The initial model related to the “Chagas disease ” pathway did not fit the data well, with chi-
square statistic )(2(36) = 118.92 and p <.001, RMSEA = .292, and SRMR = .308. In addition,
we can modify the initial model by selecting an additional path and clicking “Add the path and
run the model again”. Adding six paths, we improved the model fit substantially (see Figure 6),
with model 6 having chi-square statistic )(2(30) = 36.71 and p = .186, RMSEA = .091, and
SRMR = .120.

Invariance Evaluation. Additionally, we can evaluate model invariance on edge and node
concerning group membership in MS disease, which is like evaluating measurement invariance
(Meredith, 1993; Vandenberg & Lance, 2000) on factor loadings and intercepts in a
measurement model, respectively. We can evaluate the invariance based on model 6 by clicking

“Run Model Invariance”. First, the output (see Figure 7) showed model fit indices for the base
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model (e.g., model 6, which did not consider group effects and assumed edge or node
invariance), “group effects on edges” model (i.e., a two-group model which examines group
effects on edges), and “group effects on node” model (i.e., a common model which examines
group effects on nodes). For example, the RMSEA for the three models was .091, .105, and .285,
respectively. Second, the analysis of variance (ANOVA) output comparing the “group effects on
edge” model and the base model (see Figure 7) showed that edge invariance was not supported
for model 6 between the two groups, indicating that the weights for the gene-gene interactions
between the two groups are not equal. Third, the chi-square goodness of fit test on “group effects
on node” model showed that node invariance was supported for this model (p > .05), meaning
that the baseline gene expression levels for genes in the Chagas pathway were equal between the
two groups, when all upstream regulators in the model were zero. If model invariance is violated,
it is recommended that users run the SEM model related to group membership separately. By
clicking “Run Node Analysis” and “Run Edge Analysis”, we can evaluate the strengths and
directions of gene-gene interactions and the impact of group membership (see part of the results
in Figures 8 and 9).
Discussion
Model Validation and Causal Interpretation

When performing SEM, we should consider the accuracy of research and the validity of
results. We can examine configural, edge, and node invariances before performing group
comparisons. For example, suppose an initial model for a specific pathway does not fit the data
well and cannot be improved by adding paths, we may explore the consistency of the SEM
structure regarding gene interactions across groups. Specifically, we can examine whether the

same relationship patterns (e.g., expressed genes or gene-gene interactions) hold across groups.
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We note that edge invariance is stricter and requires equal strength of relationships (e.g., path
coefficients or edge weights) across groups (Vandenberg & Lance, 2000). We can also examine
node invariance to understand whether the baseline expression of genes is equal across groups.
To control inflated Type I error from multiple comparisons, in the app, we used Brown’s
combined goodness of fit test (Moskvina et al., 2011; Cinar & Viechtbauer, 2022) implemented
in SEMgraph to evaluate whether nested SEM models (e.g., base and “group effects on edge”
models) fit the data equally well across groups. This approach complemented traditional
likelihood ratio tests (LRTs) by aggregating evidence from multiple nested comparisons into a
single statistical assessment (Cinar & Viechtbauer, 2022).

In addition, we can assess whether the coefficients of a specific pathway between groups
differ statistically (e.g., MS and “Chagas disease”) or investigate the relationships between
different pathways. The evaluation enables researchers to examine gene regulation and
expression differences between disease and control groups, facilitating our understanding of
pathophysiology and treatment.

We clarify that the core purpose of SEM is to infer causal relationships rather than merely
correlations. While correlation can indicate a relationship, SEM models how the activity of one
gene directly influences the activity of another. The model uses path coefficients to quantify the
strength and direction of these influences. A directed edge (A — B) indicates that gene A is an
upstream regulator that directly affects the activity of gene B. The path coefficient quantifies the
expected change in B’s activity resulting from a change in A’s activity. This influence does not
have to be a direct and positive correlation at the transcript level.

Considerations for SEM Data in Biological Applications
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The SEM in this paper can use data from gene expression microarrays and incorporate
information from other sources to build and refine the initial model. The initial model in the
demonstration uses curated biological pathways from databases such as KEGG, which provide
information about various gene relationships, including regulatory relationships, protein-protein
interactions, and metabolic pathways. According to Pepe and Grassi (2014), the model is further
refined by identifying the shortest paths between differentially expressed genes (DEGs), which
tailors a model specific to the observed changes in the gene expression data. Genes not
differentially expressed but part of the shortest path are grouped into Protein Information
Resource (PIR) superfamilies based on evolutionary relationships (2014), potentially
highlighting standard functions or regulatory mechanisms.

Databases like STRING can provide information on known and predicted protein-protein
interactions and functional associations. That information can be applied to inform model
modification by adding new directed or bi-directed edges based on biological evidence.
Phosphorylation and Causal Inference in Structural Equation Modeling of Transcriptomic
Data

Phosphorylation-mediated regulation presents a unique challenge in transcriptomic
analyses, as the causal influence of gene 4 on gene B's activity may not correlate strongly with
their respective RNA levels. Structural equation modeling addresses this limitation by detecting
consistent directional relationships between genes, even when their transcript abundances are
uncoupled.

When gene 4 phosphorylates gene B's protein product, increased transcription of 4 may
lead to elevated A protein levels and subsequent changes in B's functional state without necessarily

altering B's mRNA abundance. SEM captures this relationship through path coefficients that
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reflect the net directional effect of 4 on B, incorporating both direct and indirect regulatory
influences. The model evaluates whether systematic covariation exists between changes in A4's
expression and downstream consequences on B's activity, whether measured through functional
assays or proxy gene expression patterns.

Model evaluation involves rigorous testing of proposed relationships. A poorly fitting edge
(A — B) indicates a mismatch between the modeled relationship and the underlying biological
mechanisms. Researchers may refine the model by adding or removing edges based on
modification indices and biological plausibility. In addition, multiple-group analysis enables the
comparison of model parameters across experimental conditions, revealing context-specific
differences in regulatory strength and direction that may reflect condition-dependent
phosphorylation states or other post-translational modifications.

This approach provides particular value in cases where post-translational regulation decouples
protein activity from transcript abundance. By focusing on systematic patterns of covariation
across multiple measurements, SEM can infer causal relationships that would be obscured by
examining RNA correlations alone. However, the validity of such inferences depends critically on
iterative model refinement and integration of complementary biological evidence.

Conclusion

This study presents ShinyDegSEM, an interactive application that implements a pathway-
constrained SEM framework to analyze gene regulatory networks. By incorporating prior
pathway knowledge (e.g., KEGG pathways) to guide model structure, the app enables
researchers to estimate direct regulatory effects between observed gene expression levels and
compare these relationships across experimental or clinical conditions. The tool’s user-friendly

interface democratizes advanced statistical modeling, eliminating the need for specialized coding
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expertise and bridging the gap between computational biology and experimental, clinical, or
population research.

We have currently demonstrated the use of ShinyDegSEM modeling to investigate gene
interactions within individual pathways, providing a biologically interpretable framework for
generating and validating hypotheses. Future study can expand the application’s functionality to
investigate longitudinal gene data or integrate multi-omics data, further enhancing its utility for
dynamic changes or systems-level analyses. By combining accessibility with rigorous statistical
methods, ShinyDegSEM has the potential to accelerate discoveries in gene regulatory research

and foster interdisciplinary collaboration.
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List of Abbreviations

App Application

DEGs Differentially Expressed Genes

FC Fold-change

FTLD-U Frontotemporal Lobar Degeneration with Ubiquitinated Inclusions
GEO Gene Expression Omnibus

GOF Goodness of Fit

GWAS Genome-wide Association Studies

KEGG Kyoto Encyclopedia of Genes and Genomes

LRTs Likelihood Ratio Tests

MI Modification Indices

ML Maximum Likelihood

MS Multiple Sclerosis

NCBI National Center for Biotechnology Information

NDEGs Not Differentially Expressed Genes

PBMC Peripheral Blood Mononuclear Cells

PIR Protein Information Resource

PTMs Post-translational modifications

QRT-PCR Quantitative Real-time Polymerase Chain Reaction
QTL Quantitative Trait Loci

QTLnet Quantitative Trait Loci (QTL)-driven Phenotype Network Method
RMSEA Root Mean Square Error of Approximation
RNA-seq RNA-sequencing

SAM Significance Analysis of Microarrays

SCZ Schizophrenia

SEM Structural Equation Modeling

SM Supplementary Materials

SML Sparsity-aware Maximum Likelihood
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Availability and Requirements
Project name: ShinyDegSEM application project

Project home page: https://osf.io/kw8zf/

Operating system(s): Platform independent
Programming language: R

Other requirements: Not applicable.
License: Correct citation is needed.

Any restrictions to use by non-academics: Correct citation is needed.
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Figure 1

Layout of the ShinyDegSEM application

shinyDegSEM
Data Input DEGs acquirement Envichment analysis - Gel pathway Network Analysis Structural Equation Modeding
Step1 : Data |nput Preview of the uploaded data is shown below.
Choose species choose species: hsaplens
choose data file:
hsapiens - choose label: from file
label file:
Upload the data file (in .txt format, row represents gene and
Calni ropreacits caee) Data preview
Browse... | No fils selected oW number:

column number;
Sequence data: Upload file or number sequence?
@ file
J text

Upload the sequence file (in .txt format, with only number 1 and
2, using space to seperate each number)

Step2: DEG Analysis
SAM analysis or Uploading the DEGs Tabla?
@ SAM
J table
deltafin SAM analysis):

& DEGs Result

Step3: Enrichment Analysis

Enri Is or S ing the

@ enrich
) tab

& Graph-type Result
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Figure 2

ShinyDegSEM app screen view after uploading data and group membership files

shinyDegSEM
DEGs acquirement Enrichmant analysis - Gt pathway Network Analysis Structural Equation Modeling
Step1 : Data Input Preview of the uploaded data is shown below.
Choose species choose species: hsapiens
choose data file: MS_entrez_id_alidata.txt
hzapiens - choose label: from file
Upload the data file (in .txt format, row represents gene and
ol rsprasenty case) Data preview
Browse... MS_entrez_id_alidata.txt row number: 21026
columm umber:27

data.GSM545818  data.GSM545819  data.GSM545820 data.GSM545821  dota.GSMS545822  data.GSMS545823  data.GSMS545824 dat
Sequence data: Upload file or number sequence?

@ fle 599 B8.07 6.40 5.80 6.19 6.22 5.69
) text 028 035 028 0.27 0.39 029 0.33
Upload the sequence file (in .txt format, with only number 1 and 0.85 082 0.64 054 0.50 059 0.56
2, using space to seperate each number) 0.48 0.49 048 0.47 0.48 0.48 0.47
Browse...  inbel.txt 0.76 077 077 0.74 o7 077 0.73
0.8 088 001 080 091 089 089
Step2: DEG Analysis 1.35 1.29 1.37 1.32 1.34 1.34 132
SAM analysis o Uploading the DEGs Table? 2.06 2.08 2am 214 2,00 2.04 208
@ SAM 1.38 1.20 1.29 1.30 1.4 144 1.3
) table 2.1 2,04 214 2.04 2,09 2.08 229
deltafin SAM analysis): 1.86 1.87 1.79 1.96 1.83 1.89 1.82
1 223 209 2.20 219 219 225 2.19
412 4,00 3.89 3.96 3.90 4.00 4.12
& DEGs Result

4.74 6.00 5.66 478 5.44 5.22 4.94
. i H 2.60 2.96 2,67 255 284 269 272

Step3: Enrichment Analysis
ysis or g the p 3.25 3.75 339 423 3.4 329 323
® onrich 3.70 323 350 377 342 3.64 3.36
O tab a.21 8.81 8.82 9.04 B.70 896 9.15
4 Graph-type Result 343 3.49 3z 329 323 3.38 325

Peer] reviewing PDF | (2025:05:118650:0:1:NEW 19 May 2025)



highlight group differences, using for instance distinct colours


PeerJ

Figure 3
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Output of significance analysis of microarrays (SAM) for Multiple Sclerosis (MS) data

shinyDegSEM

Drata Input DEGs acquirement Enrichment analysis - Gatl pathway Natwork Analysis Structural Equation Modeling

Step1: Data Input The analysis isn't run yet.
Choose species
SAM plot
hsapiens =
Upload the data file {in .txt formal, row represents gene and
column represents case) o |
Browse... MS_entrez id_alldatatxt
"
Sequence data: Upload file or number sequence? E
@ file o
O text %
Upload the sequence file (in .txt format, with only number 1 and w
2, using space to seperate each number)
Browse,., labeltxt o
e ]
4 2 o 2
Step2: DEG Analysis expected store
SAM analysis or Uploading the DEGs Table?
& SAM SAM Table
Gene Gena
delta(in SAM analysis): Row ID Name ) ) 0) Fold Change q-value(%)
0.85 etz gren 7871 9.92012786847322  2.74006951666667  0.27621312476977  6.68102527475459 0
5552 5551 5551 9.6080595012528  3.95392038333333  0.411522141189155  15.407132450398 0O
& DEGs Result
19373 g1ear2 19372 B.S3264747098181  1.50653171666667  0.176560876538043  2.84126169360816 0O
Stepa; Enrichment Anawsis 8820  g8813 6819 8.40093216203173  2.28520716666667  0.272018285898645  4.87434094514085 0
t Analysis or Selecting the path (s)? 12057 12056 12056 8.16653410893793  2.7854016 0.341075119854271  6.89428815917628 0
@ enrich 7892 g7891 7891 7.77606026748971  2.31081836B66667  0.207170840654075  4.96164448727986 0O
O fab 20046 20045 20045 7.73451377605914  1.70870171666667  0.2200 a, 0
& Graph-type Result 2826 2825 2825 7.64532779279277 2 33333 0.3765655 7.35623125206275 0
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Figure 4

The Fc gamma R-mediated phagocytosis pathway

The green nodes are DEGs. The yellow nodes are not DEGs (i.e., NDEGS).
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Figure 5

Initial structural equation modeling (SEM) output from network analysis for Chagas
Disease pathway

shinyDegSEM

Data Input DEGs acquiremant Enrichment analysis - Get pathway Network Analysis Structural Equation Modeling
.
Step1 Ak Data Inpm Stepi :Onglnat Modei Step2:Modification Indices and Final Model Step3:Model Invariance Stepd:Node Analysis
Choose species
Step5 Edge Analysis
hsapians -

Index Fit_Index Added_Pathway
Upload the data file (in .txt format, row represents gene and
column represents case)

Browsa... || Wa5antraz, ko, dlfdata b Edge List of the Latest Model

Model0  rmsea: 0.292; rmsea.pvalue: 0; srmr: 0.308  NA

Ihs op rhs est 58 z pvalue cilower ciupper
E__':"I Sciou data: Uplamd Ik ar pumbar ssquance? G3576 -~  G3IT25 067 009 937 000 0569 1.06
@ file
Ot G3654 -~  GSSI5 024 018 129 0.20 013 061
Garas - G5595 022 018 147 024 -0.15 0.59
Upload the sequence file {in .txt format, with only number 1 and
2, using space to seperate each number) G4ATE0 - GaTez 067 0.4 4.64 0.00 0.38 0.85
Browse..  labeltxt G4792 -~  GB41 D24 019 129 0.20 -0.61 0.13
Gss1s - Qa0 025 019 434 0 081 02
; G5595 -~  GT1B8 010 019 054 0.59 -0.48 027
Step2: DEG Analysis
G718~  G3E54 032 018 177 0.08 -0.03 0.68
SAM analysis or Uploading the DEGs Table?
® SAM G841 -~ GEIT D24 019 127 0.21 -0.60 0.13
) table G3576 -~ G3ST6 023 006 367 0.00 011 035
delta(in SAM analysis): G3654 -~ G3654 091 026 367 0.00 0.42 139
0.95 G3725 -~ G375 092 025 367 0.00 0.43 141
G4790 -~ G470 054 015 367 0.00 0.25 0.82
& DEGS Aasult G4792 -~ G4792 091 025 367 000 0.42 138
2 : 65515 -~ GS515 080 025 367 0.00 .42 138
Step3: Enrichment Analysis
G5595 ~- G5S95 095 026 367 0.00 0.44 146
lysis or the
@ anvich G7189 -~ G189 086 023 367 0.00 0.40 132
0 tab G841 -~ G841 081 025 367 0.00 0.42 139
G917 -~ GEIT 086 000  NA A 0.96 0.96

& Graph-type Result
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Figure 6

Final structural equation modeling (SEM) output from network analysis for Chagas

Disease pathway

Step5: SEM Analysis

Select a pathway of interest (Note: click the 'Run Initial SEM'
button to clean up your previous models.):

Chagas disease »

Run Initial SEM

Select your modification indices to improve your model:

G3725 ~ G4792 »:

Add the path and run the model again

Select your final model (Note: Only effective/refreshed after
selecting your final model; If node/edge analysis fail, choose
previous model with worst model fit):

Model 6 -

Run Model Invariance Run Mode Analysis

Run Edge Analysis

& Final SEM Result & Node Analysis Result

& Edge Analysis Result
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G5515 B G5515 0.95 0.28 3.44 0.00 0.41
G5595 ~~  (G5595 1.57 098 1.61 0.1 -0.34
G7189 ~~ G7189 048 0.14 3.39 0.00 0.20
G841 arice G841 0.91 0.25 3.67 0.00 0.42
G917 ~~  Go17 0.35 0.09 3.67 0.00 0.16
Latest Model Final Model (refreshed after selecting your final model)

rmsea rmsea.pvalue srmr

08.0891 8.265 8.120

lavaan 0.6-18 ended normally after 35 iterations

Estimator

Optimization method

Number of model parameters

Mumber of observations
Model Test User Model:

Test statistic

Degrees of freedom

P-value (Chi-square)

Parameter Estimates:

Standard errors
Information

Observed information based on

Regressions:

Estimate Std.

z63576 ~
zG3725 1.088 @

2G3654 ~
2G3576 =1.971 )
2G5515 -0.979 4}

z2G3725 ~
265515 -0.616 ]
zG5595 1.415 @

2G4790 ~
264792 0.661 ]

2G4792 ~
263725 0.539 8.
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Figure 7

Model invariance result between two groups for the final model on Chagas Disease

The two groups were multiple sclerosis (MS) patients and healthy controls. “fit base” refers
to a model which does not consider group effects and assumes same patterns of
relationships (e.g., nodes, edges, and pathways) across groups. “fit_ node” refers to a
common model which assumes the node baselines (e.g., baseline expression of genes or
intercepts when all upstream regulators in the model are 0) are equal across groups.

fit edge” refers to a two-group model which assumes the strength or direction of
relationships (e.g., path coefficients and gene-gene interaction or edge weights) are equal
across groups. npar = number of model parameters, chisq = chi-square goodness of fit test,
df = degrees of freedom, pvalue = p value for chi-square goodness of fit test, “cfi” =
comparative fit index, “aic” = Akaike information criterion, “bic” = Bayesian information
criterion, “rmsea” = root mean square error of approximation, “srmr” = standardized root

mean square residual, ANOVA = analysis of variance.
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Model Invariance

Model Fit Indices

Model Fit Indices of the Base, Group Effects on Node, and Group Effects on Edge Models
npar chisq df pvalue cfi aic bic rmsea srmr
fit_base 25 36.70964 30 1.857558e-01 0.9520594 657.7890 690.1850 0.0910138 09.1198040
fit_node 35 38.97399 30 1.263125e-01 0.9489827 634.1102 679.4645 0.1052568 0.1100210
fit_edge 5@ 125.69341 60 1.474240e-06 0.5481113 735.7547 800.5466 0.2847858 0.2241065

Nested Model Comparison (ANOVA)
ANOVA (Base vs. Edge Models)
Chi-Squared Difference Test
Df AIC BIC Chisq Chisq diff  RMSEA Df diff Pr(>Chisq)

fit_base 3@ 657.79 690.18 36.71
fit_edge 60 735.75 800.55 125.69 88.984 @.26985 30 9.356e-08 xkx

Signif. codes: @ ‘skx’ 0.001 ‘xx’ 0.01 ‘x’ 0,05 ‘.’ 0.1 ‘' ' 1

Group Effects on Node Model

Chi-square Goodness-of-Fit Test (for Group Effects on Node Model, i.e., fit_node model)
lavaan 0.6-18 ended normally after 24 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 35
Number of observations 27

Model Test User Model:

Test statistic 38.974
Degrees of freedom 30
P-value (Chi-square) 0.126
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Figure 8

Node analysis result for the final model on Chagas disease pathway

n

“Ihs” (left-hand side) denotes the dependent variable in the model. “op” = operator, “rhs
(right-hand side) represents the predictor variable. “est” represents estimated regression
coefficient of the predictor variable on the dependent variable (i.e., each gene’s expression
or activity level). se = standard error of the estimated regression coefficient, z =
standardized test statistic (i.e., z score) for the estimated regression coefficient. ci.lower =
lower bound of the 95% confidence interval for the estimated regression coefficient, ci.upper
= upper bound of the 95% confidence interval for the estimated regression coefficient. The
symbol “~"” means “is regressed on”. group = 1 for patients with Multiple Sclerosis (MS),

group = 0 for healthy controls.

lhs op rhs est se z pvalue ci.lower ci.upper
1 G3576 ~ group @.308 0.108 2.867 0.004 0.097 0.519
2 G3654 ~ group 0.134 0.375 0.356 0.722 -0.602 0.869
3 G3725 ~ group 0.306 0.252 1.216 0.224 -0.187 0.800
4 G4790 ~ group -0.189 0.191 -0.992 0.321 -0.563 0.184
5 G4792 ~ group ©.510 0.183 2.793 0.005 0.152 0.868
6 G5515 ~ group -0.731 0.144 -5.091 0.000 -1.012 -0.449
7 G5595 ~ group 0.371 0.223 1.662 0.097 -0.066 0.807
8 G7189 ~ group -0.241 0.191 -1.261 ©.207 -0.616 0.134
9 G841 ~ group -0.355 0.257 -1.381 0.167 -0.859 0.149
10 G917 ~ group 0.284 0.157 1.807 0.071 -0.024 0.591
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Figure 9

Part of the edge analysis result for the final model on Chagas Disease pathway

n

“Ihs” (left-hand side) denotes the dependent variable in the model. “op” = operator, “rhs
(right-hand side) represents the predictor variable. d_est = path coefficient between two
genes, quantifying the strength and direction of the gene influence. d_se = standard error of
the path coefficients, d z = standardized z-scoreof the estimated path coefficient. d_lower =
lower bound of the 95% confidence interval for the path coefficient, d_upper = upper bound
of the 95% confidence interval for the path coefficient. The symbol “~" means “is regressed

n

on".

lhs op rhs d_est d_se d_z pvalue d_lower d_upper
1 G3576 ~ G3725 2.521 3.858 0.653 0.514 -5.042 10.083
2 G3654 ~ G3576 -6.252 13.900 -0.450 0.653 -33.496 20.992
3 63654 ~ G5515 -6.430 10.132 -0.635 0.526 -26.289 13.429
4 63725 ~ G5515 -1.199 ©.850 -1.410 0.159 -2.866 0.468
5 G3725 ~ G5595 -0.982 2.964 -0.331 0.740 -6.792 4.828
6 G4790 ~ G4792 -0.141 0.292 -0.483 0.629 -0.714 0.431
7 64792 ~ G3725 0.264 ©.384 0.686 0.492 -0.489 1.016
8 G4792 ~ G841 0.238 @.381 0.625 0.532 -0.509 0.985
9 65515 ~ G4790 -0.342 ©.388 -0.881 0.378 -1.103 0.419
10 G5595 ~ G3654 0.068 0.761 0.089 ©0.929 -1.423 1.559
11 G5595 ~ G7189 0.845 @.658 1.285 0.199 -0.444 2.134
12 67189 ~ G3654 ©0.690 ©.497 1.387 0.165 -0.285 1.665
13 G7189 ~ G5515 0.349 @.336 1.038 0.299 -0.310 1.009
14 G841 ~ G917 0.536 0.368 1.454 0.146 -0.186 12257
15 G917 ~ G5515 -0.821 @.303 -2.710 0.007 -1.415 -0.227
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No p-value? Notably, what's the relevance of edges whose 95% CIs include negative and positive values -> in my opinion, this would be cues of non-significant interactions between predicted and dependent variables


