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Background : Researchers in biology and bioinformatics are increasingly interested in
unraveling the complex mechanisms underlying phenotypic variations. A key challenge lies
in identifying perturbed biological pathways and understanding how these perturbations
propagate through intricate gene regulatory networks.
Results : To address this challenge, we developed ShinyDegSEM, an interactive R Shiny
application that leverages structural equation modeling (SEM) to facilitate pathway
perturbation analysis in gene expression studies. ShinyDegSEM streamlines identifying
diûerentially expressed genes (DEGs), generating pathway models based on biological
knowledge, and evaluating these models to uncover perturbed pathway modules. This
article is a tutorial to navigate users through the analysis workûow with detailed
explanations and examples. This feature ensures that even novice researchers can quickly
grasp the concepts and apply the tool to their datasets.
Conclusions : The application integrates multiple steps, including DEG detection using
signiûcance analysis of microarray, perturbed pathway analysis with signaling pathway
impact analysis, and SEM-based model reûnement and comparison between experimental
and control groups. The interactive interface of ShinyDegSEM allows researchers to easily
upload their gene expression data, select appropriate criteria for DEG detection and
pathway analysis, and visualize the results in intuitive graphs and tables. The tool provides
insights into deregulated genes and modiûed gene-gene relationships within perturbed
pathways.
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30 Abstract

31 Background: Researchers in biology and bioinformatics are increasingly interested in 

32 unraveling the complex mechanisms underlying phenotypic variations. A key challenge lies in 

33 identifying perturbed biological pathways and understanding how these perturbations propagate 

34 through intricate gene regulatory networks. 

35 Results: To address this challenge, we developed ShinyDegSEM, an interactive R Shiny 

36 application that leverages structural equation modeling (SEM) to facilitate pathway perturbation 

37 analysis in gene expression studies. ShinyDegSEM streamlines identifying differentially 

38 expressed genes (DEGs), generating pathway models based on biological knowledge, and 
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39 evaluating these models to uncover perturbed pathway modules. This article is a tutorial to 

40 navigate users through the analysis workflow with detailed explanations and examples. This 

41 feature ensures that even novice researchers can quickly grasp the concepts and apply the tool to 

42 their datasets.

43 Conclusions: The application integrates multiple steps, including DEG detection using 

44 significance analysis of microarray, perturbed pathway analysis with signaling pathway impact 

45 analysis, and SEM-based model refinement and comparison between experimental and control 

46 groups. The interactive interface of ShinyDegSEM allows researchers to easily upload their gene 

47 expression data, select appropriate criteria for DEG detection and pathway analysis, and 

48 visualize the results in intuitive graphs and tables. The tool provides insights into deregulated 

49 genes and modified gene-gene relationships within perturbed pathways. 

50

51 Keywords: Structural equation modeling, Shiny, differentially expressed genes, significance 

52 analysis of microarray, perturbed pathway analysis

53

54 Introduction

55 Biological networks have been popular in recent years (Scardoni, Petterlini, & Laudanna, 

56 2009; Chin et al., 2014; Omony, 2014; Liu et al., 2020; Wang et al., 2021), stemming from 

57 recognizing that biological systems are inherently complex, with numerous interconnected 

58 components operating in concert to maintain cellular homeostasis and adapt to environmental 

59 stimuli (Goldstein, 2019; Liu et al., 2020). Network biology employs graph-theoretic approaches 

60 to represent biological molecules, such as genes, proteins, and metabolites, as nodes in networks, 

61 where edges represent the interactions among these components (Alm & Arkin, 2003; Albert, 

62 2007). This paradigm shift has not only enhanced our understanding of biological processes but 

63 has also provided a new platform for various applications of analytical frameworks and tools 

64 such as machine learning (Muzio, O�Bray, & Borgwardt, 2021], statistical modeling (Lee & 

65 Tzou, 2009; Oates & Mukherjee, 2012; Epskamp, Rhemtulla, & Borsboom, 2017; Valdeolivas et 

66 al., 2018], and pathway analysis (Isci et al., 2011; Rodchenkov et al., 2019). These tools enable 

Abstract

÷
÷

÷
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67 researchers to unravel the complexities of biological networks, predict behaviors, and identify 

68 potential intervention points (Lee & Tzou, 2009).

69 Structural Equation Modeling (SEM) Framework

70 Among the analytical frameworks, structural equation modeling (SEM; Kline, 2023) 

71 stands out due to its unique capability to handle complex relationships in measurement models 

72 and between latent variables. SEM is a statistical method that allows researchers to test complex 

73 theories by examining the relationships between multiple variables (Anderson & Gerbing, 1988; 

74 Ullman & Bentler, 2013; Kline, 2023). Specifically, SEM combines factor analysis, multiple 

75 regression, and path analysis. SEM allows researchers to build and test models demonstrating 

76 how different variables are connected and influence each other. The mathematical expressions 

77 and notations (Pepe & Grassi, 2014; Kline, 2023) are in the Supplementary Materials [SM]. 

78 SEM in Biological Studies

79 Conventional SEM uses measurement and structural models to examine the relationships 

80 between observed and latent variables. The SEM method in this paper focuses on relationships 

81 between observed variables (e.g., gene expression) while accounting for unobserved factors and 

82 using path diagrams to represent the models visually. This approach is well-suited for analyzing 

83 gene expression data and uncovering the underlying mechanisms of biological pathways (Liu, de 

84 la Fuente, & Hoeschele, 2008; Neto et al. 2010; Cai, Bazerque, & Giannakis; 2013; Romdhani et 

85 al., 2015; Wang, Lu, & Miao, 2016; Igolkina et al., 2018).

86 Researchers have applied SEM in biological and health studies, especially with biological 

87 network techniques (Liu, de la Fuente, & Hoeschele, 2008; Neto et al. 2010; Cai, Bazerque, & 

88 Giannakis; 2013; Romdhani et al., 2015; Wang, Lu, & Miao, 2016; Igolkina et al., 2018). For 

89 example, Liu, de la Fuente, and Hoeschele (2008) examined using linear SEM to identify sparse 
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90 networks to validate genetic network inference through simulation and application to real genetic 

91 datasets. The researchers found that SEM was promising for accurately identifying different 

92 network edges. Neto et al. (2010) developed a quantitative trait loci (QTL)-driven phenotype 

93 network method called QTLnet to jointly infer causal networks and genetic architecture of sets of 

94 phenotypes. They validated this framework through simulations and real data analysis. The 

95 QTLnet method incorporates SEM features, using graphical models to illustrate causal 

96 relationships between genes and phenotypes and within phenotypes. Likewise, Romdhani et al. 

97 (2015) proposed a test to analyze the relationships between genetic variants of gene candidates 

98 and correlated traits. They applied this method to real data to examine associations between genes 

99 and cardiovascular disease-related traits. Their approach leverages SEM to model complex 

100 relationships, providing a robust framework for understanding how genetic variants influence 

101 multiple correlated traits simultaneously. Cai, Bazerque, and Giannakis (2013) contributed to 

102 developing a sparsity-aware maximum likelihood (SML) algorithm for using sparse structural 

103 equation models to model gene regulatory networks. Similarly, Wang, Lu, and Miao (2016) 

104 proposed an efficient structural identifiability analysis algorithm for static linear SEM to help 

105 examine graphical models of biological networks with latent variables. In addition, Igolkina et al. 

106 (2018) examined the SEM to examine gene expression pathway coefficient differences between 

107 gene network data from 144 schizophrenia (SCZ) patients and 111 control individuals (without 

108 SCZ themselves and no family history of SCZ). They found that the SEM can identify the altered 

109 relationships between gene interactions at different statistical significance levels (e.g., p < .01). 

110 Moreover, various R packages that can apply SEM in biology studies have been developed, such 

111 as GenomicSEM (Grotzinger et al., 2019), GW-SEM (Pritikin  et al., 2021), SEMgraph (Grassi, 

112 Palluzzi, & Tarantino, 2022), and SEMdeep (Grassi & Tarantino, 2025). 
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113 Literature shows that although SEM has shown great promise in the biological and health 

114 field, its full potential in applied research remains untapped, mainly due to the relatively low 

115 collaboration between SEM methodologists and biological researchers. This gap can be 

116 attributed to several factors, including the technical complexity of SEM, the distinct backgrounds 

117 and terminologies used by researchers from different fields, and the limited exposure of 

118 biological researchers to SEM methodologies.

119 Advantages of SEM in Pathway Analysis

120 Hypothesized Causal relationships via SEM. Structural equation modeling enhances 

121 pathway analysis by addressing the critical limitations of traditional correlation-based methods. 

122 Unlike approaches that only identify correlated relationships, SEM evaluates hypothesized 

123 causal structures, modeling both direct and indirect regulatory influences (e.g., gene A ³ gene B 

124 ³ gene C). This allows researchers to test mechanistic explanations for observed gene 

125 expression changes, such as cascading effects or feedback loops.

126 In genetic pathway analysis, SEM uses directed edges (³) to represent regulatory 

127 relationships (e.g., transcription factor binding) and bidirected edges (µ) to account for 

128 unmeasured confounders (e.g., environmental factors or latent proteins) that jointly affect 

129 multiple genes. While initial pathway models (e.g., from the Kyoto Encyclopedia of Genes and 

130 Genomes (KEGG; Kanehisa et al., 2002; 2004; 2017) are simplified abstractions of biological 

131 networks, SEM provides a framework for validating and iteratively refining these models using 

132 empirical data. For example, SEM can test whether adding a hypothesized interaction (e.g., a 

133 post-translational modifier) improves model fit, thereby bridging gaps between static pathway 

134 maps and dynamic biological reality. 
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135 Comparative Analysis of Regulatory Network Dynamics Across Groups in SEM. 

136 Multiple group analysis in SEM enables comparative evaluation of regulatory interactions 

137 involving pre-identified differentially expressed genes (DEGs). By testing invariance in path 

138 coefficients and network structures across groups, SEM reveals context-specific rewiring of 

139 regulatory relationships, such as strengthened or weakened causal effects between DEGs in 

140 disease conditions. 

141 Structural equation modeling extends beyond transcriptomic correlations by testing 

142 hypothesized directed relationships between genes, even when their RNA levels lack strong 

143 pairwise correlations. By modeling pathways (e.g., Gene B1 ³ Gene B2 via latent mediators), 

144 SEM can infer regulatory effects masked in simple correlation analyses. While SEM cannot 

145 directly measure post-translational modifications (PTMs) or dynamic cascades, it can incorporate 

146 latent variables to approximate such mechanisms if supported by auxiliary data. The strength of 

147 SEM is evaluating how well a predefined network structure (including indirect or hierarchical 

148 relationships) explains observed gene expression patterns, revealing path coefficients that reflect 

149 hypothesized regulatory influences. 

150 Multiple Data Sources and Comprehensive Analysis via SEM. The SEM pipeline 

151 integrates multi-modal data sources, such as gene expression (microarrays), curated pathway 

152 topologies (KEGG), and protein-protein interaction networks (e.g., STRING database 

153 (Szklarczyk et al., 2015), to construct biologically plausible regulatory models. This integration 

154 enhances robustness by cross-validating hypotheses against orthogonal data types. For example, 

155 in a study of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), SEM 

156 analysis of the glutamatergic synapse pathway identified PSD-95 as a hub gene and revealed 

157 altered regulatory relationships involving SHANK2 and glutamate receptors under progranulin 
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158 mutation. The model further suggested context-specific activation or inhibition of connections 

159 (e.g., strengthened PSD-95 SHANK2 interactions in mutant conditions). Similarly, in multiple ³
160 sclerosis (MS), SEM highlighted dysregulated genes (ARF6, CRKL, and PIP5K1C) within the Fc 

161 gamma R-mediated phagocytosis pathway. These findings align with prior studies implicating 

162 phagocytic dysfunction in MS pathogenesis (Pepe & Grasssi, 2014). SEM disentangles direct 

163 regulatory effects from indirect associations, offering mechanistic insights into 

164 neurodegenerative processes by combining pathway and interaction data.

165 Model Assessment via SEM 

166 Structural equation modeling evaluates model fit using statistical tests and indices (Kline, 

167 2023) such as the chi-square test, root mean square error of approximation (RMSEA), and 

168 standardized root mean square residual (SRMR). Biological evidence from databases like 

169 STRING can be incorporated to validate and include known interactions. A well-fitting model is 

170 typically indicated by a non-significant Ç² test p value (though this test is sensitive to sample 

171 size), RMSEA .06 (Hu & Bentler, 1999), and SRMR  .05 or .10 (West, Taylor, & Wu, f  f
172 2012; Grotzinger et al., 2021) for adequate or good fit, respectively. These indices evaluate how 

173 closely the proposed model aligns with the observed data. To refine the model, modification 

174 indices (MI) estimate the potential improvement in fit (quantified by the expected decrease in Ç²) 

175 if a constrained parameter (e.g., a path or covariance) is freely estimated (Kline, 2023). 

176 Statistical indices, such as Akaike information criterion (AIC) and Bayesian information 

177 criterion (BIC), can also be used for SEM model comparisons and selections (Grassi, Palluzzi, & 

178 Tarantino, 2022; Kline, 2023). However, modifications are only justified when they align with 

179 substantive theory, domain knowledge, or plausible causal mechanisms. Nonsignificant paths 

180 may be removed to enhance parsimony if such changes do not compromise theoretical 
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181 expectations. Iterative adjustments balancing statistical guidance and substantive rationale are 

182 critical to avoid overfitting and support generalizability. See the SM for detailed explanations.

183 Validation for SEM Results

184 Comparative analyses based on other methods, such as simple differential expression or 

185 correlation-based network analysis, could be conducted to validate SEM results. Benchmark 

186 datasets with known ground truth can validate the accuracy and reliability of SEM. Experimental 

187 validation of key SEM findings through assays, such as testing the impact of perturbing specific 

188 genes or connections, would confirm predicted changes in gene activity. Evaluating the 

189 predictive accuracy of SEM models would also strengthen their assessment (e.g., predicting 

190 disease progression or treatment response). Lastly, developing more intuitive visualizations that 

191 highlight key findings and show network differences between experimental conditions would 

192 enhance the understanding and communication of SEM results. We aim to contribute to the use 

193 of SEM for pathway analysis by developing a Shiny application (app).

194 Interactive biological web applications hosted on Shiny servers have been published 

195 more recently due to the increasing awareness among researchers of their methodological 

196 advances and practical ease. For example, Jia et al. (2022) systematically reviewed biological 

197 web applications built with R or Shiny and their basic and advanced features. However, 

198 applications specifically designated to handle SEM are less commonly seen; one of the most 

199 well-known is power4SEM, which is used for power calculations (Jak et al., 2021). Our article 

200 serves as a tutorial brief to address this gap by developing an R Shiny software application called 

201 ShinyDegSEM, which connects bioinformatics with SEM. Although researchers had elegantly 

202 applied SEM in gene expression and pathway analysis data (Pepe & Grassi, 2014), to our 

203 knowledge, this is the first tool that adopts SEM to investigate perturbed pathway modules 
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204 derived from gene expression data. We aim to demystify SEM for biologists by combining a 

205 series of analyses with a user-friendly interface, allowing users to execute various computations 

206 and functions through a point-and-click interface.

207 Materials & Methods

208 Understanding phenotypic variation requires studying perturbations in complex intracellular 

209 networks rather than focusing solely on single-gene dysregulation. High-throughput gene 

210 expression data enables investigation of changes in gene expression profiles across different 

211 conditions. A comprehensive analysis of pathway perturbation via SEM integrates two key 

212 components: genome-wide association studies (GWAS) with pathway extensions to identify 

213 genetic associations, and SEM-based modeling, evaluation, and refinement to quantify network-

214 level effects. Building on the foundational workflow of Pepe and Grassi (2014), which spans 

215 from identifying differentially expressed genes (DEGs) to validating and interpreting perturbed 

216 pathway models, we enhance this approach by incorporating recent advancements in GWAS and 

217 SEM into ShinyDegSEM. Our implementation offers improved flexibility, usability, and 

218 analytical precision for pathway-centric studies. See the SM for detailed gene study 

219 terminologies and methodologies. The following steps are needed to apply ShinyDegSEM for 

220 conducting pathway analyses using SEM.

221 Step 1. In the initial step, users can collect and prepare data for analysis. Three primary 

222 genomic data types can be included: (1) gene expression data (including microarray-based 

223 transcript abundance quantification (Schena et al., 1995) and RNA-sequencing (RNA-seq) for 

224 genome-wide expression profiling with single-nucleotide resolution (Wang, Gerstein, & Snyder, 

225 2009; AlJanahi, Danielsen, & Dunbar, 2018), (2) genomic variation data (e.g., whole-genome or 

226 exome sequencing data) capturing nucleotide-level polymorphisms and structural variants 

227 DePristo et al., 2011 4), and (3) quantitative real-time PCR (qRT-PCR) data for precise 

PeerJ reviewing PDF | (2025:05:118650:0:1:NEW 19 May 2025)

Manuscript to be reviewed



228 expression validation (Hendriks-Balk, Michel, & Alewijnse, 2007). Public repositories such as 

229 NCBI's Gene Expression Omnibus (GEO; National Center for Biotechnology Information, 2024) 

230 and KEGG (Kanehisa et al., 2002; 2004; 2017) may serve as additional data sources. Prepared 

231 data (e.g., .txt or .csv formats) are imported for follow-up analysis.

232 Step 2. In step 2, we identify DEGs to detect significant gene expression level changes 

233 between two or more conditions. For microarray data, methods such as significance analysis of 

234 microarrays (SAM; Tusher, Tibshirani, & Chu, 2001) are commonly employed. RNA-seq data 

235 typically utilize count-based approaches, including normalization and statistical modeling via 

236 negative binomial distributions (Rapaport et al., 2013). Alternative strategies combine fold-

237 change (FC) thresholds with non-stringent p-value cutoffs to balance sensitivity and specificity 

238 (Shi et al., 2008). Emerging machine learning approaches, including deep learning frameworks, 

239 offer additional tools for DEG detection (Tasaki et al., 2020), especially in complex datasets.

240 Step 3. In step 3, we identify perturbed pathways. Biologically perturbed pathways are 

241 identified as functional modules enriched with DEGs, which are indicative of potential disease-

242 associated dysregulation (Pham et al., 2016). Established computational approaches include: (1) 

243 enrichment analysis (e.g., over-representation or gene set enrichment; Rahmati et al., 2017), (2) 

244 signaling pathway impact analysis (SPIA) that combines topological and statistical metrics 

245 (Tarca et al., 2009), and (3) integration with curated pathway databases (e.g., KEGG; Kanehisa 

246 et al., 2017). These pathways are subsequently modeled as directed graphs or gene networks, 

247 where nodes represent molecular components and edges depict functional interactions, enabling 

248 the visualization and topological analysis of perturbed systems (Goh et al., 2007).

249 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway graphs were converted 

250 into directed graphs for SEM analysis. In this representation, nodes represent genes derived from 
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251 microarray, RNA-seq data, or Protein Information Resource (PIR) superfamilies, which are 

252 clusters of evolutionarily related proteins with shared functions. Edges represent directed 

253 biochemical interactions between nodes, which are categorized into two primary types: 

254 molecular interactions, including protein-protein binding and enzymatic reactions, and regulatory 

255 relationships such as transcriptional activation or suppression (Pepe & Grassi, 2014; Grassi & 

256 Tarantino, 2022). The directed graph structure encodes the causal dependencies between 

257 molecular components, allowing SEM to quantify pathway-wide dysregulation across 

258 comparison groups (or between diseased and normal controls). Main advantages of this approach 

259 include: (1) maintaining biological interpretability through preservation of established pathway 

260 architectures, (2) enabling quantitative assessment of both magnitude and directionality of 

261 molecular interactions, and (3) supporting investigation of condition-specific pathway 

262 dysregulation through group comparisons. 

263 Edges can be further classified into two types by directionality (Pepe & Grassi, 2014; 

264 Grassi & Tarantino, 2022). Directed edges (³) indicate a direct influence of one gene on 

265 another. The direction of the arrow indicates which gene regulates the other. For example, if 

266 gene Y1 has a directed edge pointing to gene Y2 (Y1 ³ Y2), it means that gene Y1 is an upstream 

267 regulator that directly affects the activity of gene Y2. Bidirected edges (µ) represent covariances 

268 between two genes attributable to unmeasured common causes (e.g., latent upstream regulators 

269 or shared environmental factors) influencing both genes.

270 These edges in the directed graphs can have signs, which is a crucial aspect of how SEM is 

271 used in this context. The strength and direction of the influence between two genes connected by 

272 a directed edge (³) are quantified by path coefficients. These coefficients typically range from 

273 1 to 1 if the data are standardized. Positive path coefficients indicate a net activation or 2
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274 positive control, meaning that an increase in the activity of the upstream gene is expected to 

275 increase the activity of the downstream gene. Negative path coefficients represent net inhibition 

276 or negative control, meaning that an increase in the activity of the upstream gene is expected to 

277 decrease the activity of the downstream gene. On the other hand, bi-directed edges (µ) 

278 represents the covariance between two genes i and j due to unobserved factors, which is 

279 quantified by .Ëij

280 Structural equation modeling (SEM) employs linear regression equations in which path 

281 coefficients (³ij) quantify both the strength and direction (i.e., positive or negative) of 

282 relationships between variables, serving as weights in the model equations. These signed 

283 coefficients are essential for determining the nature of gene-gene interactions within pathways, 

284 distinguishing between activating (positive), inhibitory (negative), or latent common-cause 

285 relationships. The framework enables comparison of these signed effects across experimental or 

286 different conditions through parameter contrasts between groups. During model refinement, MI, 

287 z-tests, and external biological databases (e.g., STRING; Szklarczyk et al., 2015) can inform the 

288 addition of directed or bidirected edges, with database-derived interaction signs directly 

289 informing path coefficient directions.

290 Steps 4 & 5. In step 4, we integrate curated pathway topologies (e.g., from KEGG) with 

291 data-driven network filtering using the algorithms proposed by Pepe and Grassi (2014). 

292 Canonical pathways are first represented as directed graphs and then pruned using partial 

293 correlations derived from gene expression data (e.g., Type I error rates < .05). In step 5, we apply 

294 SEM to the refined pathways, where differential analysis of path coefficients identifies 

295 statistically perturbed interactions across groups. 
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296 The SEM analyses were conducted using a suite of specialized R packages chosen for 

297 their complementary capabilities. Specifically, the lavaan package (Rosseel, 2012) served as the 

298 primary platform for model specification, parameter estimation, and goodness-of-fit assessment, 

299 which provides comprehensive functionality for diverse SEM applications. The lavaan package 

300 uses maximum likelihood (ML) estimation by default for continuous and complete data (Rosseel, 

301 2012). For network visualization and manipulation of model components, including latent 

302 variable relationships, we employed the igraph package (Csardi & Nepusz, 2006), which 

303 facilitates intuitive graphical representation and interpretation of complex model structures. 

304 Additional analytical support was provided by the semTools package (Jorgensen et al., 2022), 

305 which offered essential utilities for data diagnostics, model comparison, and advanced statistical 

306 evaluations. This package enhanced our analytical workflow through its specialized functions, 

307 complementing core SEM procedures. A distinctive aspect of our approach involved integrating 

308 network analysis with SEM using the SEMgraph package (Grassi, Palluzzi, & Tarantino, 2022). 

309 This specialized tool enabled network-based model exploration, including fitting SEM models, 

310 pathway identification, detection of initial nodes, and robustness assessment through graph-

311 theoretic and statistical metrics. Combining traditional SEM with network analysis, SEMgraph 

312 provided unique insights into model interconnectivity and dynamics.

313 After estimating the initial SEM model based on the perturbed pathways and gene 

314 connections from examined data (e.g., microarray), we obtain the strength of gene-gene 

315 connections, also known as path coefficients. The SEM models can be modified based on 

316 additional information, such as goodness-of-fit indices (e.g., RMSEA and SRMR), which are 

317 used to support the decision on whether to refine them iteratively. After the final structure of the 

318 model is determined, the remaining analysis focuses on assessing the appropriateness of group 
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319 comparison in SEM through invariance tests, examining whether the models differ significantly 

320 between groups (e.g., diseased vs. healthy), and identifying genes and gene-gene interactions that 

321 show significant differences in expression or regulation. 

322 The remaining work is interpretation, where researchers should consider correlating the 

323 perturbed genes and connections with known biological processes and disease mechanisms. 

324 More importantly, like other biological analyses through statistical mining, it is critical to discuss 

325 the implications of the findings to understand the phenotype of interest. 

326 Shiny Walkthrough

327 The Layout of the ShinyDegSEM Application

328 We first describe the ShinyDegSEM application (app) layout and then explain how to 

329 navigate the main screen. The initial screen of the app is displayed in Figure 1. The left panel (in 

330 gray) includes five steps for user navigation, while the right panel (in white) shows the outputs of 

331 each step. The five steps in the app are: (1) Step 1 Data Input, (2) Step 2 DEG Analysis, (3) Step 

332 3 Enrichment Analysis, (4) Step 4 Network Analysis, and (5) Step 5 SEM Analysis. Specifically, 

333 users can click the �Browse� button under step 1 to upload a .txt or .csv data file and start the 

334 analysis. 

335 Using the ShinyDegSEM Application

336 We used the same gene expression microarray data as Pepe and Grassi (2014) to 

337 demonstrate the app�s use. The dataset pertains to MS. It includes genome-wide expression data 

338 from peripheral blood mononuclear cells (PBMC) of 12 MS patients and 15 healthy controls, 

339 contributed by Kemppinen et al. (2011). The dataset (Kemppinen et al., 2019) is stored in the 

340 Gene Expression Omnibus (GEO; National Center for Biotechnology Information [NCBI], 2024) 

341 database under ID GSE21942. Figure 2 shows a screen plot after uploading the dataset and the 
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342 patient and control group memberships from the label file (in step 1). The right panel shows a 

343 data preview with 21026 rows for genes and 27 columns for participant IDs. The application can 

344 be downloaded from https://osf.io/kw8zf/. When run, it follows the regular Shiny app execution 

345 method. 

346 Procedures Before Conducting SEM

347 Let�s proceed to steps 2 through 4 before performing SEM. In step 2 for DEG analysis, the 

348 default delta value (Tusher, Tibshirani, & Chu, 2001) in SAM analysis was set to 1 in the app, 

349 and users can adjust it according to their study. For example, we used 0.95 as Pepe and Grassi 

350 (2014) did. Step 3 involved enrichment analysis for identifying perturbed pathways. Step 4 is 

351 network analysis. Specifically, steps 2 and 3 analyses will be performed automatically after 

352 uploading the files. Users can click the �Run Network Analysis� button to initiate the analysis 

353 related to step 4. After a short wait (depending on the dataset size), results from steps 2 to 4 will 

354 gradually appear in the right panel. For example, clicking the �DEGs acquirement� button will 

355 display the output of the SAM analysis for DEG analysis (see Figure 3). Similarly, clicking the 

356 �Enrichment analysis � Get pathway� button will display the output of different perturbed 

357 pathways. By clicking the �Network Analysis�, we can see model information and graphs for 

358 identified pathways, such as the �B cell receptor signaling�, �Fc gamma R-mediated 

359 phagocytosis�, and �Chagas disease� pathways. For example, Figure 4 shows the identified 

360 differentially expressed genes (DEGs) and non-DEGs (NDEGs) within the context of the Fc 

361 gamma R-mediated phagocytosis pathway, which is associated with autoimmune dysregulation 

362 and inflammation. The DEGs (CRKL, ARF6, PLA2G4A, and ARPC4) were identified 

363 (corresponding to Entrez IDs 1399, 382, 5321, and 10093, respectively) and matched those 

364 shown in Pepe and Grassi�s (2014) study. Researchers can identify DEGs based on network 
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365 analysis results and understand the direction of gene interactions within a pathway. These 

366 findings can then be incorporated into SEM to investigate causal relationships among more 

367 genes and their interactions, providing insights into the regulatory mechanisms underlying the 

368 pathway.

369 Results

370 Running SEM Based on Network Analysis Results

371 In this paragraph, we describe how to work on SEM based on results from the network 

372 analysis and explore gene relationships in step 5 of the app. First, select one or more pathway(s) 

373 of interest from the panel, such as the �Chagas disease� pathway. Second, choose the SEM 

374 estimator, which is set to ML by default (Rosseel, 2012), and click �Run Initial SEM�. The initial 

375 model output will appear in the right panel, displaying the model summary and model fit indices 

376 (see Figure 5), such as the SRMR (Kline, 2023) and the RMSEA (Anderson & Gerbing, 1988). 

377 The initial model related to the �Chagas disease � pathway did not fit the data well, with chi-

378 square statistic 118.92 and p < .001, RMSEA = .292, and SRMR = .308. In addition, ÿ2
(36) =

379 we can modify the initial model by selecting an additional path and clicking �Add the path and 

380 run the model again�. Adding six paths, we improved the model fit substantially (see Figure 6), 

381 with model 6 having chi-square statistic 36.71 and p = .186, RMSEA = .091, and ÿ2
(30) =  

382 SRMR = .120.

383 Invariance Evaluation. Additionally, we can evaluate model invariance on edge and node 

384 concerning group membership in MS disease, which is like evaluating measurement invariance 

385 (Meredith, 1993; Vandenberg & Lance, 2000) on factor loadings and intercepts in a 

386 measurement model, respectively. We can evaluate the invariance based on model 6 by clicking 

387 �Run Model Invariance�. First, the output (see Figure 7) showed model fit indices for the base 
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388 model (e.g., model 6, which did not consider group effects and assumed edge or node 

389 invariance), �group effects on edges� model (i.e., a two-group model which examines group 

390 effects on edges), and �group effects on node� model (i.e., a common model which examines 

391 group effects on nodes). For example, the RMSEA for the three models was .091, .105, and .285, 

392 respectively. Second, the analysis of variance (ANOVA) output comparing the �group effects on 

393 edge� model and the base model (see Figure 7) showed that edge invariance was not supported 

394 for model 6 between the two groups, indicating that the weights for the gene-gene interactions 

395 between the two groups are not equal. Third, the chi-square goodness of fit test on �group effects 

396 on node� model showed that node invariance was supported for this model (p  .05), meaning >

397 that the baseline gene expression levels for genes in the Chagas pathway were equal between the 

398 two groups, when all upstream regulators in the model were zero. If model invariance is violated, 

399 it is recommended that users run the SEM model related to group membership separately. By 

400 clicking �Run Node Analysis� and �Run Edge Analysis�, we can evaluate the strengths and 

401 directions of gene-gene interactions and the impact of group membership (see part of the results 

402 in Figures 8 and 9).

403 Discussion

404 Model Validation and Causal Interpretation

405 When performing SEM, we should consider the accuracy of research and the validity of 

406 results. We can examine configural, edge, and node invariances before performing group 

407 comparisons. For example, suppose an initial model for a specific pathway does not fit the data 

408 well and cannot be improved by adding paths, we may explore the consistency of the SEM 

409 structure regarding gene interactions across groups. Specifically, we can examine whether the 

410 same relationship patterns (e.g., expressed genes or gene-gene interactions) hold across groups. 
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411 We note that edge invariance is stricter and requires equal strength of relationships (e.g., path 

412 coefficients or edge weights) across groups (Vandenberg & Lance, 2000). We can also examine 

413 node invariance to understand whether the baseline expression of genes is equal across groups. 

414 To control inflated Type I error from multiple comparisons, in the app, we used Brown�s 

415 combined goodness of fit test (Moskvina et al., 2011; Cinar & Viechtbauer, 2022) implemented 

416 in SEMgraph to evaluate whether nested SEM models (e.g., base and �group effects on edge� 

417 models) fit the data equally well across groups. This approach complemented traditional 

418 likelihood ratio tests (LRTs) by aggregating evidence from multiple nested comparisons into a 

419 single statistical assessment (Cinar & Viechtbauer, 2022). 

420 In addition, we can assess whether the coefficients of a specific pathway between groups 

421 differ statistically (e.g., MS and �Chagas disease�) or investigate the relationships between 

422 different pathways. The evaluation enables researchers to examine gene regulation and 

423 expression differences between disease and control groups, facilitating our understanding of 

424 pathophysiology and treatment. 

425 We clarify that the core purpose of SEM is to infer causal relationships rather than merely 

426 correlations. While correlation can indicate a relationship, SEM models how the activity of one 

427 gene directly influences the activity of another. The model uses path coefficients to quantify the 

428 strength and direction of these influences. A directed edge (A ³ B) indicates that gene A is an 

429 upstream regulator that directly affects the activity of gene B. The path coefficient quantifies the 

430 expected change in B�s activity resulting from a change in A�s activity. This influence does not 

431 have to be a direct and positive correlation at the transcript level. 

432 Considerations for SEM Data in Biological Applications
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433 The SEM in this paper can use data from gene expression microarrays and incorporate 

434 information from other sources to build and refine the initial model. The initial model in the 

435 demonstration uses curated biological pathways from databases such as KEGG, which provide 

436 information about various gene relationships, including regulatory relationships, protein-protein 

437 interactions, and metabolic pathways. According to Pepe and Grassi (2014), the model is further 

438 refined by identifying the shortest paths between differentially expressed genes (DEGs), which 

439 tailors a model specific to the observed changes in the gene expression data. Genes not 

440 differentially expressed but part of the shortest path are grouped into Protein Information 

441 Resource (PIR) superfamilies based on evolutionary relationships (2014), potentially 

442 highlighting standard functions or regulatory mechanisms.

443 Databases like STRING can provide information on known and predicted protein-protein 

444 interactions and functional associations. That information can be applied to inform model 

445 modification by adding new directed or bi-directed edges based on biological evidence.

446 Phosphorylation and Causal Inference in Structural Equation Modeling of Transcriptomic 

447 Data

448 Phosphorylation-mediated regulation presents a unique challenge in transcriptomic 

449 analyses, as the causal influence of gene A on gene B's activity may not correlate strongly with 

450 their respective RNA levels. Structural equation modeling addresses this limitation by detecting 

451 consistent directional relationships between genes, even when their transcript abundances are 

452 uncoupled.

453 When gene A phosphorylates gene B's protein product, increased transcription of A may 

454 lead to elevated A protein levels and subsequent changes in B's functional state without necessarily 

455 altering B's mRNA abundance. SEM captures this relationship through path coefficients that 
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456 reflect the net directional effect of A on B, incorporating both direct and indirect regulatory 

457 influences. The model evaluates whether systematic covariation exists between changes in A's 

458 expression and downstream consequences on B's activity, whether measured through functional 

459 assays or proxy gene expression patterns.

460 Model evaluation involves rigorous testing of proposed relationships. A poorly fitting edge 

461 (A ³ B) indicates a mismatch between the modeled relationship and the underlying biological 

462 mechanisms. Researchers may refine the model by adding or removing edges based on 

463 modification indices and biological plausibility. In addition, multiple-group analysis enables the 

464 comparison of model parameters across experimental conditions, revealing context-specific 

465 differences in regulatory strength and direction that may reflect condition-dependent 

466 phosphorylation states or other post-translational modifications.

467 This approach provides particular value in cases where post-translational regulation decouples 

468 protein activity from transcript abundance. By focusing on systematic patterns of covariation 

469 across multiple measurements, SEM can infer causal relationships that would be obscured by 

470 examining RNA correlations alone. However, the validity of such inferences depends critically on 

471 iterative model refinement and integration of complementary biological evidence.

472 Conclusion

473 This study presents ShinyDegSEM, an interactive application that implements a pathway-

474 constrained SEM framework to analyze gene regulatory networks. By incorporating prior 

475 pathway knowledge (e.g., KEGG pathways) to guide model structure, the app enables 

476 researchers to estimate direct regulatory effects between observed gene expression levels and 

477 compare these relationships across experimental or clinical conditions. The tool�s user-friendly 

478 interface democratizes advanced statistical modeling, eliminating the need for specialized coding 
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479 expertise and bridging the gap between computational biology and experimental, clinical, or 

480 population research. 

481 We have currently demonstrated the use of ShinyDegSEM modeling to investigate gene 

482 interactions within individual pathways, providing a biologically interpretable framework for 

483 generating and validating hypotheses. Future study can expand the application�s functionality to 

484 investigate longitudinal gene data or integrate multi-omics data, further enhancing its utility for 

485 dynamic changes or systems-level analyses. By combining accessibility with rigorous statistical 

486 methods, ShinyDegSEM has the potential to accelerate discoveries in gene regulatory research 

487 and foster interdisciplinary collaboration. 
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667 RMSEA Root Mean Square Error of Approximation

668 RNA-seq RNA-sequencing

669 SAM Significance Analysis of Microarrays

670 SCZ Schizophrenia

671 SEM Structural Equation Modeling

672 SM Supplementary Materials

673 SML Sparsity-aware Maximum Likelihood
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674 SPIA Signaling Pathway Impact Analysis

675 SRMR Standardized Root Mean Square Residual

676 STRING Search Tool for the Retrieval of Interacting Genes/Proteins Database

677

678

679 Availability and Requirements

680 Project name: ShinyDegSEM application project

681 Project home page: https://osf.io/kw8zf/

682 Operating system(s): Platform independent

683 Programming language: R

684 Other requirements: Not applicable.

685 License: Correct citation is needed.

686 Any restrictions to use by non-academics: Correct citation is needed.
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Figure 1
Layout of the ShinyDegSEM application
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Figure 2
ShinyDegSEM app screen view after uploading data and group membership ûles
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Figure 3
Output of signiûcance analysis of microarrays (SAM) for Multiple Sclerosis (MS) data
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Figure 4
The Fc gamma R-mediated phagocytosis pathway

The green nodes are DEGs. The yellow nodes are not DEGs (i.e., NDEGs).
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Figure 5
Initial structural equation modeling (SEM) output from network analysis for Chagas
Disease pathway
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Figure 6
Final structural equation modeling (SEM) output from network analysis for Chagas
Disease pathway
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Figure 7
Model invariance result between two groups for the ûnal model on Chagas Disease

The two groups were multiple sclerosis (MS) patients and healthy controls. <ût_base= refers
to a model which does not consider group eûects and assumes same patterns of
relationships (e.g., nodes, edges, and pathways) across groups. <ût_node= refers to a
common model which assumes the node baselines (e.g., baseline expression of genes or
intercepts when all upstream regulators in the model are 0) are equal across groups.
ût_edge= refers to a two-group model which assumes the strength or direction of
relationships (e.g., path coeûcients and gene-gene interaction or edge weights) are equal
across groups. npar = number of model parameters, chisq = chi-square goodness of ût test,
df = degrees of freedom, pvalue = p value for chi-square goodness of ût test, <cû= =
comparative ût index, <aic= = Akaike information criterion, <bic= = Bayesian information
criterion, <rmsea= = root mean square error of approximation, <srmr= = standardized root
mean square residual, ANOVA = analysis of variance.
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Figure 8
Node analysis result for the ûnal model on Chagas disease pathway

<lhs= (left-hand side) denotes the dependent variable in the model. <op= = operator, <rhs=
(right-hand side) represents the predictor variable. <est= represents estimated regression
coeûcient of the predictor variable on the dependent variable (i.e., each gene9s expression
or activity level). se = standard error of the estimated regression coeûcient, z =
standardized test statistic (i.e., z score) for the estimated regression coeûcient. ci.lower =
lower bound of the 95% conûdence interval for the estimated regression coeûcient, ci.upper
= upper bound of the 95% conûdence interval for the estimated regression coeûcient. The
symbol <~= means <is regressed on=. group = 1 for patients with Multiple Sclerosis (MS),
group = 0 for healthy controls.
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Figure 9
Part of the edge analysis result for the ûnal model on Chagas Disease pathway

<lhs= (left-hand side) denotes the dependent variable in the model. <op= = operator, <rhs=
(right-hand side) represents the predictor variable. d_est = path coeûcient between two
genes, quantifying the strength and direction of the gene inûuence. d_se = standard error of
the path coeûcients, d_z = standardized z-scoreof the estimated path coeûcient. d_lower =
lower bound of the 95% conûdence interval for the path coeûcient, d_upper = upper bound
of the 95% conûdence interval for the path coeûcient. The symbol <~= means <is regressed
on=.
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No p-value? Notably, what's the relevance of edges whose 95% CIs include negative and positive values -> in my opinion, this would be cues of non-significant interactions between predicted and dependent variables


