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ABSTRACT

Purpose. Zinc homeostasis and zinc transporter (ZHT) have been closely associated
with the development of various cancers. Therefore, in this study, prognostic genes and
their mechanisms related to ZHT in breast cancer (BC) were explored.

Patients and methods. Differential expression analysis and weighted gene co-
expression network analysis (WGCNA) were utilized to identify genes associated with
Zinc homeostasis and Zinc transporter-related genes (ZHTGs) in BC. Subsequently,
independent prognostic factors and their correlations with clinical features were
examined to investigate their association with the prognosis of BC. Finally, we further
explored the pathways and immune cells associated with BC prognosis. We also verified
gene expression in tissues and cells by quantitative polymerase chain reaction (qQPCR).
Results. In this study, six prognostic genes were identified. Patients were subsequently
classified into high-risk and low-risk cohorts based on the median risk score, with
the low-risk group presenting superior survival outcomes. Subsequently, riskScore,
age, tumor/node/metastasis (T/N/M) stage showed significant associations with the
prognosis of BC, and the constructed nomogram demonstrated strong predictive
performance. Clinical analysis revealed differences in risk scores among sub-cohorts
with different clinical characteristics, such as race (white and others) and T-stage (T1
and T2, T1 and T3). Furthermore, significant disparities were noted in immune cells and
immune checkpoints across different risk cohorts. The results of reverse transcription
quantitative PCR were basically consistent with the prediction. In addition, the IHC
results from the Human Protein Atlas database further validated our prediction.
Conclusion. We screened six prognosis genes related to ZHT in BC, providing a
reference for the prognosis and personalized treatment of BC.

Subjects Bioinformatics, Molecular Biology, Oncology, Surgery and Surgical Specialties
Keywords Zinc homeostasis, Zinc transporter, Breast cancer, Prognostic genes
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INTRODUCTION

Breast cancer (BC) is the most common type of cancer in women worldwide (11.6% of
all cancers globally) and the leading cause of cancer-related death in women (Bray et al.,
2024). BC can be divided into four major subtypes based on the expression of molecular
markers (estrogen receptor (ER), progesterone receptor (PR) and human epidermal
growth factor 2 (HER2)) (Waks &> Winer, 2019). However, with standard clinical diag-
nosis and treatment, approximately one in five to one in three BC patients will develop
distant metastases, which are the leading cause of death in most (approximately 90%)
breast cancer patients (Britt, Cuzick & Phillips, 20205 Jabbarzadeh Kaboli et al., 2020).

In addition, BC is highly heterogeneous, which somewhat limits the broad applicability
of classification and standard care (Waks ¢» Winer, 2019). Therefore, it is important to
further explore the relevant characteristics of BC and potential new therapeutic targets.

Zinc is an essential trace element required for gene regulation, enzyme activity,
and protein structure. It also plays a crucial role as a cofactor in the metabolism and
cellular processes of over 300 enzymes in the human body. Zinc plays a crucial role
in maintaining the structural stability and DNA-binding activity of approximately
2,000 transcription factors in vivo (Chasapis et al., 2012; Skrajnowska & Bobrowska-
Korczak, 2019). In addition, zinc as a second messenger is widely involved in important
biological processes such as cell proliferation and differentiation, cell cycle regulation,
and cell apoptosis (Sharif et al., 2012; Yamasaki et al., 2007). Zinc transporters are the
key molecules regulating the homeostasis of zinc ions in cells and are involved in various
physiological processes by mediating the transmembrane transport of zinc ions (Kambe et
al., 2015). Tts family members such as ZIPs and ZnTs are respectively responsible for the
intake and excretion of zinc ions, and play important roles in growth and development,
signal transduction and gene expression (Myers et al., 2017; Yin et al., 2023). Studies have
shown that abnormal zinc transporters are associated with various diseases. For instance,
ZIP13 promotes the metastasis of human ovarian cancer cells by activating the steroid
receptor coactivator/focal adhesion kinase (Src/FAK) signaling pathway (Cheng et al.,
2021), while ZnT1 is related to the prognosis of patients with hepatocellular carcinoma
(Kakita et al., 2024). In addition, zinc transporters also play an important role in immune
regulation by regulating zinc homeostasis (Dwivedi et al., 2019; Wessels, Maywald ¢ Rink,
2017). However, the prognostic role of zinc homeostasis and zinc transporter-related
genes (ZHTGs) in BC and their impact on the tumor microenvironment are not yet clear
and require further investigation.

Therefore, this study conducted bioinformatics analysis based on the BC transcriptome
dataset in the public database and ZHTGs. The aim is to identify the prognostic genes
related to ZHT in BC. Meanwhile, the prognostic model was constructed based on the
identified prognostic genes. In addition, the immune microenvironment in BC was also
explored. It provides a new direction for discovering new immunotherapy and targeted
therapy strategies for BC.

Li et al. (2025), PeerJ, DOI 10.7717/peerj.20031 2/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.20031

Peer

MATERIALS & METHODS

Data extraction

The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset, including
survival information, age, and tumor node metastasis (TNM) staging, was downloaded
from The Cancer Genome Atlas (TCGA) database (http:/cancergenome.nih.gov/).
Patients without survival information were excluded, resulting in tissue from 1,082

BC and 113 control specimens (Li ef al., 2022). The GSE20685 dataset was obtained
from the Gene Expression Omnibus (GEO) database (https:/www.ncbi.nlm.nih.gov/
geo/). It comprises 327 BC tumor tissue specimens with complete survival informa-
tion, sequenced on the GPL570 platform (Luo et al., 2022). A search was conducted

in Molecular Signatures Database (MSigDB, https:/ivww.gsea-msigdb.org/) for the
keywords “WP_ZINC_HOMEOSTASIS” (Human Gene Set, WP3529, 37 genes) and
“GOBP_ZINC_ION_TRANSPORT” (Human Gene Set, GO:0006829, 28 genes) to
retrieve ZHTGs. After removing duplicates, a total of 40 ZHTGs were retained (Table S1).

Differential expression analysis

The TCGA-BRCA dataset underwent analysis for differential gene expression employing
the DESeq2 package (v 1.34.0) (Love, Huber ¢ Anders, 2014) to evaluate the differen-
tially expressed genes (DEGs) between BC and control specimens (p.adjust <0.05 and
[log2FoldChange (FC)|>1).

Weighted gene co-expression network analysis

Weighted gene co-expression network analysis (WGCNA) is a bioinformatics approach
based on gene expression correlation to construct modular networks. It clusters genes
with similar expression patterns, analyzes the associations between modules and specitic
traits/phenotypes, and identifies key functional gene groups (Langfelder ¢ Horvath, 2008).
In this study, WGCNA was applied to analyze BC transcriptome data to identify co-
expression modules associated with ZHTGs, thereby screening their related genes. First,
univariate Cox regression analysis based on the expressions of 40 ZHTGs in the TCGA-
BC dataset was performed using the survival package (v 3.5-3) (Lei et al., 2023) (Hazard
Ratio (HR) # 1 & p value < 0.05) to screen ZHTGs linked to BC prognosis for subsequent
analysis. Following this, utilizing the ZHTGs, single-sample Gene Set Enrichment
Analysis (ssGSEA) was employed to compute ZHTGs scores for BC specimens. These

BC specimens were subsequently segregated into high and low score groups using the
ideal threshold value of the scores. The survminer package (v 0.4.9) (Liu et al., 2021)

was used to plot Kaplan—Meier (K—M) survival curves among high/low score cohorts (p
value < 0.05). Next, the WGCNA package (v 1.70.3) (Langfelder ¢ Horvath, 2008) was
employed to construct a co-expression network using ZHTGs scores as traits, aiming to
identify module genes most correlated with the traits. Particularly, all BC samples were
grouped to detect and eliminate anomalies. A soft threshold (f) with a connectivity close
to 0 and an R2 value great than 0.85 was selected. A scale-free network was built using
selected soft threshold, and a hybrid dynamic tree cutting algorithm with a cutting tree
parameter of 0.4 (the minimum gene number per module is 100, and the module merging
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parameter is 0.25) was used to identify the co-expression modules. Subsequently, the
correlation coefficients between these modules and the traits were calculated, and the top
two modules with the strongest positive and negative correlations were selected as key
modules. Finally, by setting the gene significance (GS) to 0.3 and module membership
(MM) to 0.3, key module genes were filtered and retained to select more important key
module genes.

Enrichment analyses

The obtained DEGs were intersected with more important key module genes to obtain
a set of candidate genes. To investigate the function in which the candidate genes were
involved, Gene Ontology (GO, p.adjust < 0.05) and Kyoto Encyclopedia of Genes

and Genomes (p value < 0.05, KEGG) enrichment analyses were performed using the
clusterProfiler package (v 4.2.2) (Wu et al., 2021).

Development and verification of risk models

Within the TCGA-BRCA dataset, candidate genes were subjected to univariate Cox re-
gression analysis via the survival package (Lei et al., 2023) to identify genes associated with
BC prognosis, with HR # 1 and p value < 0.01 as the screening criteria. Subsequently, a
least absolute shrinkage and selection operator (LASSO) regression analysis was executed
using the glmnet package (v 4.1-4) (Sasikumar et al., 2022) grounded on the findings of
the previous step to further refine prognostic genes. The risk score for each individual was
computed using the subsequent equation:

n
risk score = Zcoef(genei) * expr(genei).
i=1

Individuals were subsequently classified into high/low risk cohort according to the
median risk score. Subsequent Kaplan—Meier (K-M) survival analysis using the survminer
package (Liu et al., 2021) to plot K-M curves (p-value < 0.05). The survival receiver
operating characteristic (ROC) package (v 1.0.3) (Heagerty, Lumley ¢» Pepe, 2000) was
utilized to generate ROC curves for 1-, 3-, and 5-year periods to assess the prognostic
performance of BC patients. The external dataset GSE20685 for BC patients was employed
to validate the constructed risk model in this study.

Recognition of independent prognostic factors

To further investigate the prognostic implications of clinical pathological factors such as
Age, Race, T/N/M stage were included along with the risk score in the prognostic model
for univariate Cox regression analysis (HR # 1, p value < 0.05) in BC specimens from the
TCGA-BRCA dataset. Subsequently, a proportional hazards (PH) assumption test was
conducted to select genes (p value > 0.05). Factors fulfilling the PH presumption were
subsequently incorporated in multivariate Cox regression analysis, where factors with a

p value < 0.05 were defined as independent prognostic factors.

Construction of nomogram
In order to further investigate the prognostic implications of independent prognostic fac-
tors, a nomogram forecasting the longevity likelihood of BC specimens was constructed
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using the rms package (v 6.5-1) (Sachs, 2017). The anticipatory effectiveness of this model
was assessed via calibration curves and ROC.

Correlation analysis of clinical characteristics

In the TCGA-BRCA dataset, rank sum examinations were used to scrutinize the variations
in risk scores among subgroups with diverse clinical characteristics and the survival
disparities among two risk groups in the subgroups with diverse clinical characteristics.

Gene set enrichment analysis

In the TCGA-BRCA dataset, based on the two risk cohorts, differential analysis was car-
ried out via DESeq2 to calculate log2 fold change (log2FC). The log2FC values were then
sorted from largest to smallest, followed by gene set enrichment analysis (GSEA) were car-
ried out via clusterProfiler package (Yu et al., 2012), using the h.all.v2023.1.Hs.symbols.
gmt from MisgDB database as the background gene set (FDR < 0.05).

Gene set variation analysis

To delve deeper into the variations in KEGG pathways among two risk cohorts in TCGA-
BRCA, gene set variation analysis (GSVA) was executed utilizing the GSVA package

(v 1.42.0) (Hdnzelmann, Castelo ¢ Guinney, 2013) based on the background gene set
“c2.cp.kegg.v2023.1.Hs.symbols.gmt” to obtain enrichment scores for different pathways.
The limma package (v 3.54.0) (Love, Huber ¢ Anders, 2014) was then utilized to compare
the functional enrichment pathways among two risk cohorts, with a threshold of p

value < 0.05 to select key pathways.

Immune-related analysis

In the TCGA-BRCA dataset, the enrichment scores of 28 immune-infiltrating cells for all
samples among risk cohorts were computed using the ssGSEA technique. Subsequently,
differential immune infiltrating cells were compared among different risk cohorts.

Using the psych package (v 2.1.6) (Revelle, 2021), the Spearman correlation between
differential immune infiltrating cells and prognosis genes was calculated (|cor| > 0.3 &
p-value < 0.05). In the TCGA-BRCA dataset, we contrasted the levels of eight immune
checkpoint molecules (CD274, LAG3, CTLA4, TIMP3, PDCDI, PDCD1LG2, TJAPI,
LGALS9) among two risk cohorts. Additionally, the Tumor Immune Dysfunction and
Exclusion (TIDE) online database (http:/tide.dfci.harvard.edu/) was employed to acquire
TIDE score, dysfunction score, and exclusion score for the specimens in the TCGA-BRCA
dataset, and inter-cohort differences were compared. TIDE score is a computational
method for evaluating tumor immune microenvironment functionality, which reflects
the degree of tumor immune evasion. The dysfunction score is an indicator derived from
the expression patterns of T cell exhaustion-related genes, assessing whether tumor-
infiltrating T cells lose effector functions due to chronic antigen stimulation. The exclu-
sion score evaluates whether a tumor forms an “immune-excluded” microenvironment
by analyzing genes related to tumor stromal fibrosis, abnormal angiogenesis, and other
factors that inhibit immune cell infiltration. To evaluate the ratio of immune therapy
response in two cohorts, chi-square test was executed to examine the variations in
immune reaction.
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Cell culture and tissue samples collection

MCF-10A, T47D, BT474, MDA-MB-231, SUM-149, SUM-159 and MCEF-7 were pur-
chased from American Type Culture Collection. Due to the different molecular types

of breast cancer and the existence of heterogeneity, we selected immortalized normal
epithelial cells MCF-10A as the control cell line; According to the different expression
statuses of ER, PR and HER-2, six breast cancer cell lines, namely T47D, BT474, MDA-
MB-231, SUM-149, SUM-159 and MCEF-7, were selected as the experimental groups to
analyze the expression of related genes in the breast cancer cell lines. MCF-10 A cells
were grown in DMEM/F12 medium supplemented with 5% horse serum and growth
supplements (Zhong Qiao Xin Zhou Biotechnology, Shanghai, China). T47D, BT474,
MDA-MB-231, SUM-149, SUM-159 and MCF-7 cells were cultured in DMEM (Gibco,
USA) supplemented with 10% fetal bovine serum (FBS; Gibco, Waltham, MA, USA). All
cell lines were cultured in 5% CO2 at 37 °C in a humidified atmosphere. We obtained

10 pairs of BC tissue and adjacent normal tissue from patients without preoperative
chemotherapy, endocrine therapy, or radiotherapy who had undergone tumor resection
at The Xijing Hospital of the Fourth Military Medical University. The study was approved
by the hospital’s ethics committee (KY20232266-C-1), and the content of the study
received written informed consent from patients. All methods were performed in
accordance with the relevant guidelines and regulations.

RNA isolation and reverse transcription quantitative PCR (RT-qPCR)
Total RNA was extracted from cells or tissues using SPARKeasy Improved Tissue/Cell
RNA Kit (Sparkjade, Shandong Sparkjade Biotechnology Co., Ltd., Shandong, China)
following the manufacturer’s instructions. cDNA was synthesized using SPARKscript

IT All-in-one RT SuperMix for qPCR (Sparkjade). The reverse transcriptional reaction
program lasted 15 min at 50 °C and 5 s at 80 °C. We performed qPCR using the Quant
Studio 7 Pro (Applied Biosystems). RT-qPCR was performed using 2x SYBR Green qPCR
Mix (Sparkjade). RT-qPCR reaction program: preincubation at 94 °C for 3 min, 40 cycles
of amplification with 10 s at 94 °C, 20 s at 55—60 °C, followed by an extension at 72 °C
for 30 s. The internal controls were B-actin. Gene expression levels were quantitatively
calculated by the 2- A ACt method. Table S2 provides sequences of primers used in this
research.

Immunohistochemistry
The Human Protein Atlas (HPA) (https:/svww.proteinatlas.org/) (Uhlen et al., 2017)
contains IHC profiles of normal and tumor tissues.

Statistical analysis

In R software (v 4.1.0; R Core Team, 2021), the data was processed and analyzed. Dif-
ferences among cohorts were assessed using the Wilcoxon rank-sum test or chi-square
test, with a significance threshold of p value < 0.05 indicating statistical significance.
Continuous variable data were analyzed using Student’s ¢-test or Wilcoxon test, and
categorical data were analyzed using chi-square test. Survival differences were compared
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using Kaplan—Meier analysis and log-rank test. *P < 0.05, **P < 0.01, ***P < 0.001,
P < 0.0001.

RESULTS

ZHTGs were associated with survival of BC

In the TCGA-BRCA dataset, there were 4,948 DEGs, consisting of 2,986 genes that were
up-regulated and 1,962 genes that were down-regulated (Fig. 1A). Through univariate
Cox regression analysis, three ZHTGs associated with BC prognosis were selected, with
SLC30A5 identified as a high-risk gene (HR > 1), while SLC1A1 and TMEM163 as low-
risk genes (HR < 1) (Fig. 1B). Subsequently, based on the optimal cutoff value of three
genes scores, the BC specimens in the TCGA-BRCA dataset were split into two score
cohorts. It was found that patients in the high ZHTGs score cohort had significantly
higher survival rates than those in the low ZHTGs score cohort (p value = 0.01), sug-
gesting that ZHTGs may impact the outcome of BC patients (Fig. 1C). Then, the ZHTGs
score was used as a trait to further screen its related genes through WGCNA. Initially, no
obvious outlier specimens were observed in the dataset, hence no specimens needed to
be excluded (Fig. S1A). By setting the B value to 6, we achieved an R? approaching 0.85
and a connectivity close to 0 (Fig. 1D). Then, 16 co-expression modules were identified
using the mixed dynamic tree-cutting algorithm, excluding the grey module (Fig. S1B).
Correlation analysis revealed that the brown module (R = 0.41) and the black module
(R=—0.36) had the strongest correlations with trait, with the brown module containing
1,496 genes and the black module containing 766 genes (Fig. 1L). Finally, by setting the
GS and MM thresholds to 0.3, a total of 443 more important key module genes were
obtained, with 313 genes retained in the brown module and 130 genes retained in the
black module (Figs. SIC-S1D).

There were six prognosis genes were screened in BC

There were 134 candidate genes were acquired by intersecting 4,948 DEGs with 443

key module genes (Fig. 2A). Subsequently, these candidate genes were further explored
for potential enrichment of functions through GO and KEGG analyses. In the GO
analysis, these candidate genes were found to be primarily associated with cell cycle

and chromosome-related functions, such as mitotic cell cycle phase transition and
chromosomal region (Fig. 2B). In the KEGG term, the candidate genes were also involved
in pathways related to cell cycle, prostate cancer, and BC (Fig. 2C). Then, a total of

six prognosis-related genes (CLIC6, EIF4E3, TFF1, TPRG1, RSPH1, PCSK6) were
identified through univariate Cox regression analysis (p-value < 0.01 & HR < 1) (Fig. 2D).
Furthermore, these six genes were further confirmed as prognostic genes using the LASSO
algorithm (Fig. 2E).

The risk model in TCGA-BRCA and GSE20685 datasets has strong
predictive performance

Based on the median of the risk score (Risk score = CLIC6 * (—0.0591) + EIF4E3 *
(—0.1226) + TFF1 * (—0.0145) + TPRG1 * (—0.017) + RSPH1 * (—0.0272) + PCSK6 *
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(—0.0796)), BC specimen of TCGA-BRCA dataset were stratified into two risk cohorts.
It was noticed that as the risk scores rose in the BC specimens, the number of deaths
notably increased (Fig. 3A). Subsequently, from the K-M curves, it was evident that the
survival rate of individuals in the high-risk cohort was lesser in comparison to those in
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left inner circle is a bar chart, the height of the bar chart represents the significance of the Term, the higher
the higher the significance; The color of the bar represents the z-score, and the darker the color, the larger
the z-score. The z-score is not a standard statistic, but can indicate whether a biological function is more
likely to be up-regulated or down-regulated. The outer circle shows a scatter plot of the expression levels
of each gene in each Term, with red and blue representing up-regulated and down-regulated genes, re-
spectively. On the right is the GO enrichment entry description. (C) KEGG enrichment analysis revealed
significant top 10 pathways, with the color of the gene band on the left representing log2FC of the gene,
and different color bands on the right representing different pathways. (D) Forest plot of univariate Cox
regression analysis shows six prognosis-related genes. (E) The LASSO coefficient profile of six prognostic-
related genes and the tenfold cross-validation for variable selection in the LASSO model.
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the low-risk cohort (Fig. 3B). Furthermore, ROC curves were plotted at 1, 3, and 5 years
as survival time nodes, demonstrating that the AUC values at all three time points were
higher than 0.6, suggesting good forecasting ability of the model (Fig. 3C). Finally, the
universality of the risk model was further validated in the GSE20685 dataset. The results
indicated that similar to TCGA-BRCA, this risk model of this dataset could effectively
predict patient survival (Figs. 3D-3F). Additionally, the GSE20685 dataset showed more
distinct separation of survival groups than the TCGA-BRCA dataset, which further
supported the validity of the model.

There were five independent prognostic factors

Within the univariate Cox regression analysis, the p-values of risk score, age, T/N/M stage
were all less than 0.05 and passed the PH assumption (Fig. 4A). Subsequently, riskScore,
age, T/N/M stage were screened as independent prognostic factors via multivariate

Cox regression analysis (Fig. 4B). To extend the analysis of survival prediction in BC
patients by these factors, a nomogram was developed (Fig. 4C). Calibration curve results
indicated that the slope of the curve closely approximated the diagonal line, suggesting
high prediction accuracy (Fig. 4D). Moreover, with AUC values consistently exceeding
0.7, this suggested that the model possessed robust predictive capability (Fig. 4F).

Clinical feature was associated with risk score and survival rate

By comparing the differences in risk scores between different clinical feature sub-cohorts
to explore their relationships, significant differences were observed in the risk scores
between the race (white and others) and T stage (T1 and T2, T1 and T3) sub-cohorts
(Fig. 5A). Subsequently, the K-M survival differences between the high- and low-risk
groups under different clinical characteristics were compared. The results revealed
significant survival differences between the high-risk and low-risk groups across various
clinicopathological characteristics, including age <60, T stage 1-2, N stage 1-3, and M
stage 0. Notably, the survival rate of the high-risk group was consistently lower across all
these characteristics (Fig. 5B).

The pathways with differences between the high- and low-risk groups
To explore the significantly enriched pathways between the high- and low-risk groups,
GSEA and GSVA analyses were performed. The results revealed that DEGs among two
risk cohorts were mainly involved in E2F TARGETS, G2M CHECKPOINT, and KRAS
SIGNALING DN pathways (Fig. 6A). Subsequently, to further explore the differences

in KEGG pathways between the high- and low-risk groups, GSVA was conducted.

The results showed that there were 29 differential KEGG pathways between the two
cohorts, including JAK-STAT signaling pathway, 8-alanine metabolism, ribosome, drug
metabolism-cytochrome P450, etc. (Figs. 6B—6C).

Patients in different risk cohorts had different effects on the immune
response

For additional investigation into the variances in the immune microenvironment among
two risk cohorts, a series of immune-linked analyses were performed. A heatmap was
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Figure 3 Evaluation and validation of prognostic model. (A) Risk scores, survival status, and heat

map of gene expression of prognostic genes between high and low risk groups in the training set (TCGA-

BRCA). (B) K-M survival curves of OS for patients between low-risk and high-risk groups in the training
set. Red represents the high-risk group and blue represents the low-risk group. The x-axis represents time
in days, while the y-axis shows the OS survival probability. (C) ROC curves for predictive performance of
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Figure 3 (...continued)

the risk model in the training set. (D—F) The same approach was used to evaluate the prognostic value of
the prognostic model in the external validation set GSE20685. The gradient bar in the heatmap represents
the expression levels of genes, where red indicates high expression and blue indicates low expression.

employed to exhibit the spread of 28 immune infiltrating cell enrichment scores among
two cohorts in the TCGA-BRCA dataset (Fig. 7A). Following this, differential analysis
uncovered substantial differences in the enrichment scores of 24 immune cells among the
two risk cohorts. Specifically, central memory CD8 T cell, eosinophil, mature dendritic
cell, mast cell, memory B cell, natural killer cells (NK cells), neutrophil, plasmacytoid
dendritic cell had higher scores in the low-risk cohort, while other cells were opposite
(Fig. 7B). Further correlation analysis revealed significant correlations between six
prognostic genes and various differentially expressed immune infiltrating cells. Among
them, the strongest negative correlation was observed among RSPH1 and activated

CD4 T cell (cor = —0.46) (Fig. 7C, Tables S3-54). Additionally, we found obvious
variances in the expression of seven immune checkpoints (LAG3, CTLA4, TIMP3,
PDCD1, PDCD1LG2, TJAP1, LGALS9) between high and low-risk cohorts, with all six
immune checkpoints, except TIMP3, displaying elevated expression in the high-risk
cohort (Fig. 7D). Furthermore, significant differences were observed in TIDE score and
Dysfunction score among two cohorts, with higher scores in the low-risk cohort (Fig. 7E).
Furthermore, notable variations were observed in immune treatment responses among
two cohorts (Fig. 7F). The results indicated that there might be implications for the
effectiveness of immunotherapy in different risk cohorts.

External and experimental validation of the six model related genes
Compared with the paired adjacent tissues, the expression levels of CLIC6, TFF1, TPRGI,
RSPH1 and PCSK6 were up-regulated. The expression levels of EIF4E3 were down-
regulated in BC specimens (Figs. 8A—8F). In addition, we also investigated the expression
of prognostic genes in BC cell lines (including T47D, BT474, MDA-MB-231, SUM-149,
SUM-159, and MCF-7), using MCF-10A as the control cell line. Compared with the
MCF10A cell line, the gene expression level in most cell lines was overall consistent with
the tissue verification results (Figs. 9A-9F). Finally, in order to verify the expression of the
six genes involved in building the prognosis model, we downloaded immunohistochem-
ical staining images from the HPA database. CLIC6, TFF1, TPRG1, RSPH1 and PCSK6
were expressed at notably different levels between BC and normal breast tissues. There
was no notable difference in the expression of EIF4E3 (Figs. 10A—10F). This may be due
to the low consistency between antibody staining and RNA expression data. These results
supported our hypothesis and provided evidence for the rationality of selecting these six
genes to build the prognosis model.

DISCUSSION

BC is closely associated with ZHT. Studies have shown that zinc plays an important role in
the occurrence and development of BC, closely related to key biological processes such
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Figure 4 Independent prognostic analysis and nomogram construction. (A-B) Univariate and multi-
variate Cox analyses of clinical factors and risk score with OS in training set. Risk Score, age, T/N/M.stage
were screened as independent prognostic factors. (C) Nomogram predicting 1, 3 and 5-year survival rate
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Figure 4 (...continued)

probabilities. (D) The calibration curves for 1, 3 and 5-year OS in training set. The slopes of the calibra-
tion curves were all close to 1, indicating that the nomogram had a good predictive performance. (E) ROC
curves for predictive performance of the nomogram model in training set.

as cell proliferation, metastasis, and apoptosis (Qu et al., 2023). Regulating the levels

of zinc inside and outside BC cells may affect tumor growth and prognosis (Takatani-
Nakase, 2018). The recurrence and metastasis of BC are currently the biggest challenges
encountered in the treatment process. Therefore, further exploration of the relationship
between BC and zinc homeostasis, zinc transport, and their regulatory mechanisms

is of great significance. This study found that SLC30A5 might be a risk factor for BC.
SLC30A5, also known as ZnT5, is a member of the zinc transporter SLC30 family

(Liu et al., 2024b). The zinc transporters of the SLC30A family are mainly responsible

for transporting zinc ions out of the cytoplasm or transferring them to intracellular
organelles, thereby regulating intracellular zinc homeostasis. Studies have shown that

the expression patterns of the SLC30A family genes in gastric cancer are diverse and may
have different prognostic significance (Guo ¢ He, 2020). In addition, SLC30A5 and ZnT6
involved in the formation of dimers, may affect the BC of epithelial mesenchymal cell
transformation (EMT), will affect the progress of the BC. In conclusion, SLC30A5 may
affect the occurrence and development of BC by regulating zinc homeostasis and the EMT
process, and may become a potential therapeutic target. The prognostic model established
in this study mainly includes the following six prognostic genes: CLIC6, EIF4E3, TFF1,
TPRG1, RSPH1 and PCSK6. Chloride intracellular channel 6 (CLIC6) is one of the family
members of chloride intracellular channels. Microarray studies have identified changes in
CLICS6 expression in BC tissues. Eukaryotic translation initiation factor 4E family member
3 (EIF4E3) is a member of the EIF4E family of proteins that bind to the 5’-cap structure of
messenger RNA (Osborne et al., 2013). Studies have shown that high expression of EIF4E3
gene is more conducive to patient survival (Li ef al., 2024). Trefoil Factor 1 (TFF1) is an
estrogen-inducible protein, expressed in BC and some digestive tumors. The regulation
of tumor protein P63 regulated 1 (TPRG1) in tumor tissues is closely related to early
tumor recurrence (Hong ef al., 2022). Radial spoke head component 1 (RSPH1) encodes
an acidic protein associated with chromosomes during the metaphase of male meiosis. BC
patients with high expression of RSPH1 gene have a better prognosis (Yu, He & Xu, 2022).
Proprotein convertase subtilisin/kexin type 6 (PCSK®6) is a serine protease, and patients
with high expression of PCSK6 have a longer overall survival (OS) (Sethi et al., 2023). The
expression level of PCSK6 is positively correlated with the good prognosis of BC patients
(Yietal, 2024). In our risk score model, all six prognostic genes associated with ZHT had
HR less than 1, indicating a positive association with better OS in BC.

The GSEA analysis results between the two groups showed that the high-risk group was
significantly associated with E2F TARGETS, G2M CHECKPOINT, and KRAS SIGNAL-
ING DN pathways. Previous studies have shown that DANCR/miR-34c-5p/E2F transcrip-
tion factor 1 (E2F1) feedback loop enhances the proliferation, migration and invasion of
BC cells (Yan et al., 2024). The G2/M checkpoint and E2F targets can also inhibit TNBC
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Figure 5 Correlation analysis of clinical features. (A) Correlation between the risk score and clinical
characteristics. The number of samples in different clinical subgroups was as follows: age >60: n = 474, age
<60 n = 608; race (others): n = 240, race (white) n = 757; T1 stage: n = 281, T2 stage: n = 627, T3 stage:
n = 133, T4 stage: n = 38; NO stage: n = 506, N1 stage: n = 364, N2 stage: n = 120, N3 stage: n = 75; MO
stage: n =900, M1 stage: n = 22. (B) Survival analysis of clinical characteristics (age; race (others); T stage;
N stage; M stage). The x-axis represents time in days, while the y-axis shows the OS survival probability.
*P < 0.05,**P < 0.01, ***P < 0.001, ***P < 0.0001.
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Figure 7 Analysis of immune infiltration and immunotherapy. (A) Heat map shows the enrichment
scores of immune infiltrating cells based on the high and low risk groups. The gradient bar represents the
levels of the ssGSEA scores of immune cells. The redder the color, the higher the score; the bluer the color,
the lower the score. (B) Boxplot shows the abundance of immune infiltrating cells based on the high and
low risk groups. (C) Heat map shows the correlation between gene and prognosis of immune cells. Red
indicates positive correlation, and blue indicates negative correlation. The darker the color, the stronger
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Figure 7 (...continued)

the correlation. (D) Boxplot of differences in immune checkpoint molecules between high and low risk
groups. (E) Violin plot of TIDE score differences between high and low risk groups. (F) Bar graph of the
immune response in the high and low risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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cell growth through endoplasmic reticulum stress-dependent tumor suppressor signaling
(Yang et al., 2024). Additionally, GSVA also revealed that pathways with differences
among two cohorts included OTHER GLYCAN DEGRADATION. Subsequently, we
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explored the relationship between risk scores and tumor immune microenvironment. We
found that eight types of immune infiltrating cells, including NK cells, had higher scores
in the low-risk cohort. NK cells possess potent cytotoxicity against infected and cancerous
cells and hold promise in the development of new immunotherapies (Lamn ¢ Souza-
Fonseca-Guimaraes, 2024). In addition, NK cells also play an important role in tumor
eradication in TME (Liu et al., 2024a). Further correlation analysis showed the strongest
negative correlation between RSPH1 and activated CD4 T cells. Studies have shown that
CD4 T cells mediate direct cytotoxicity to tumor cells through increased production of
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interferon gamma (IFN-y) and tumor necrosis factor (TNF) (Subbannayya et al., 2020).
The possible reasons for the influence of tumor microenvironment on tumor biological
behavior should be attributed to the comprehensive result of the interaction of multiple
immune cells. The underlying mechanism of ZHTGs on BC TME needs to be further
investigated. In addition, numerous studies have shown that LAG-3 is the third targeted
checkpoint in the clinic (Ruffo et al., 2019). Consistent with most previous studies, in our
study, the expression levels of many immune checkpoints in high-risk groups were higher,
including LAG3, CTLA4, PDCD1, PDCD1LG2, TJAP1, LGALS9, etc.

Finally, we verified the expression of six prognostic genes in tumor tissues and normal
adjacent tissues, as well as normal breast epithelial cells and BC cell lines by RT-qPCR.
This was further confirmed by immunohistochemical results from HPA.

However, this study still has certain limitations. First of all, the clinical information
and gene expression data of this prediction model come from a public database, and the
validation method is relatively simple, which requires more clinical data to further verify
the validity of the model.

Secondly, how prognostic genes regulate zinc homeostasis and the occurrence and
development of BC still requires further verification. Therefore, we plan to collect more
clinical sample data in the future to verify the effectiveness of the existing model in a
broader clinical setting and explore the application potential of the model. In addition,
through cell and animal experiments, we will further explore how prognostic genes
regulate zinc homeostasis and their roles in the occurrence and development of BC,
especially whether these genes function through zinc finger domains or zinc-dependent
pathways.

CONCLUSIONS

We constructed a BC prognosis model related to ZHTGs through a series of bioinformat-
ics methods, analyzed the molecular mechanisms of prognosis genes affecting BC, further
explored the role of ZHTGs in the immune microenvironment and immune therapy
effects of BC, providing new directions for exploring new immune therapy and targeted
treatment strategies. However, the more specific relationship between the prognosis genes
and BC requires more experimental data support, and the relevant mechanisms still need
further exploration.
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