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ABSTRACT

The structural properties of leaves play a crucial role in the attachment of lactic acid
bacteria (LAB) in forage corps. This study analyzed the effects of leaf morphological
properties, on LAB counts in different wild forage crops. The LAB counts and
morphologic features on adaxial or abaxial surfaces of leaves from twelve forage
species (maize (Zea mays), beggarticks (Bidens pilosa), white goosefoot (Chenopodium
album), common bean (Phaseolus vulgaris), morning glory (Ipomoea purpurea), perilla
(Perilla frutescens), tomato (Solanum lycopersicum), chili pepper (Capsicum), sweet
potato (Ipomoea batatas), peanut (Arachis hypogaea), potato (Solanum tuberosum),
and mallow (Malva verticillata)) were investigated. White goosefoot (5.22 log;y CFU
g~! FM) and beggarticks (4.83 log;o CFU g~! FM) had the highest LAB counts but
shortest leaf lengths (5.06 cm and 4.97 cm, respectively), whereas maize (3.37 logo
CFU g~! FM) and sweet potato (3.38 logjo CFU g~! FM) had lower LAB counts but
significantly greater leaf widths than the other crops except for mallow (P < 0.001).
Linear regression analysis revealed that the coefficients of determination (R?) between
LAB counts and contact angle of the adaxial and abaxial surfaces of leaf were 0.1424
and 0.175, respectively. Therefore, the morphological features of leaves have a relatively
weak influence on the LAB counts in different forage crops.

Subjects Agricultural Science, Microbiology

Keywords Forage crops, Contact angle, Lactic acid bacteria, Leaf morphological properties,
Stomata, Trichomes

INTRODUCTION

The demand for animal products in China has increased in recent years (Du et al., 2018);
however, the limited supply of high-quality forage has constrained the expansion of
ruminant production (Guo ¢ Qin, 2022). To reduce costs, producers have started utilizing
local forage resources, including wild forage, agricultural waste (Guo et al., 2017), and
dual-purpose (food and forage) crops (Xu et al., 2023). However, these forages often face
challenges, such as low soluble carbohydrate content, high buffering capacity, high fiber
content, and alkaloid contents, thus increasing the difficulty of producing high-quality
silage. However, lactic acid bacteria (LAB) attached to the surface of forage plants can help
address these issues.

How to cite this article Wu D, Tang G, Liu G, Sun T, Yang J, Tang G, Xu L. 2025. Influence of leaf morphological properties on epi-
phytic lactic acid bacteria counts in forage crops. Peer] 13:€20028 http://doi.org/10.7717/peer}.20028


https://peerj.com
mailto:tanguojian1988@163.com
mailto:tanguojian1988@163.com
mailto:331405719@qq.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.20028
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.20028

Peer

LAB is a type of gut probiotic that has gained widespread attention recently because of
its significant effects on promoting animal health, improving production performance, and
enhancing meat and milk quality (Da Costa et al., 2019; Du et al., 2023). However, despite
the important role of LAB in plant health management (Murindangabo et al., 2023) and
silage fermentation quality (high throughput sequencing technology) (Liu et al., 2024), the
count of LAB (tablet counting method) attached to the surface of forage grass is generally
low (Chen, Dong ¢ Zhang, 2021; Wu et al., 2023). This limits the efficiency of LAB in forage
fermentation and their potential as a probiotic supplement. Notably, current research on
LAB has primarily focused on their metabolic capabilities and diversity in silage (Gao ef al.,
2024; Yang et al., 2024), whereas studies on the attachment characteristics of LAB to forage
leaves are relatively insufficient. Thus, further in-depth research is needed to reveal the key
factors influencing the attachment of LAB to leaves.

The physiological and structural features of forage leaves play crucial roles in the
attachment of bacteria, with factors such as surface roughness (Crawford et al., 2012),
moisture content (Beattie, 2011), and stomatal density (Yang et al., 2022) directly
influencing the attachment efficiency of these bacteria. Generally, a higher moisture
content provides the necessary environment for LAB survival, thereby facilitating their
initial colonization. However, different LAB have different water requirements. For
example, Lactobacillus showed a higher positive correlation (r = 0.72) with water activity
than Lactococcus and Enterococcus (Minervini et al., 2015). The higher surface roughness of
the leaves provides more attachment sites, thus promoting a more stable attachment of LAB
through mechanical fixation (Sousa et al., 2011). Stomatal density is another important
factor that affects bacterial attachment. Stomata provide attachment sites and regulate
the leaf surface microenvironment by controlling their opening and closing, indirectly
promoting bacterial growth and reproduction (Chaudhry et al., 2021; Vorholt, 2012).
Previous studies have shown that leaves with high stomatal density improve hydration
(Bertolino, Caine ¢ Gray, 2019) and maintain an appropriate oxygen concentration
(Royer, 2001), leading to a higher count of attached bacteria on high-density stomatal
leaves than on low-density stomatal forage. In addition, a thinner epidermis can reduce
the physical barrier and thus facilitate LAB attachment, whereas a thicker epidermis barely
attachment (Underwood, 2012). Leaf thickness can also create mechanical barriers that
affect bacterial attachment (Yang ef al., 2022). In summary, the structure of forage leaves
directly determines the quantity and efficiency of LAB attachment, thereby influencing the
potential applications of forage in fermentation. However, limited information is available
on how leaf structure affects LAB counts.

This study analyzed the effects of the structure of different forages on LAB counts
and explored approaches to promoting the proliferation of LAB on the surface of forage
species. These findings provide new theoretical insights and technical support for the
efficient utilization of forage resources and the application of LAB for disease prevention,
fermentation, and other processes.
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Table 1 Morphological features on leaf surfaces of different forage species.

Forage species Maturity stages Morphological features

Venation Leaf shape
Maize Milk stage Vertical parallel vein Needle shaped
Beggarticks Flowering stage Pinnate vein Pinnate leaf

White goosefoot

Common bean
Morning glory
Perilla

Tomato

Chili pepper
Sweet potato

Peanut

Flowering stage
Podding stage
Flowering stage
Flowering stage
Fruiting stage
Fruiting stage
Maturation stage

Maturation stage

Pinnate vein
Palmate vein
Palmate vein
Pinnate vein
Pinnate vein
Pinnate vein
Pinnate vein

Reticular vein

Lanceolate
Pinnate leaf
Heart shaped
Oval shaped
Pinnate leaf
Pinnate leaf
Heart shaped

Pinnate leaf

Potato Maturation stage Reticular vein Oval shaped

Malva verticillata Flowering stage Palmate vein Reniform

MATERIALS AND METHOD

Experimental site

The experimental materials were sampled from Zhaoyang District, Zhaotong City, Yunnan
Province (27°36'N, 103°74'E) in August 2024 (annual temperature and total rainfall were
22.1 °C and 184 mm, respectively). According to data from the Zhaotong Meteorological
Bureau, the average annual temperature over the past 20 years was 12.3 °C, and annual
total rainfall was 682 mm.

Forage species

This study focuses on 12 forage crops with potential feed value: maize (Zea mays),
beggarticks (Bidens pilosa), white goosefoot (Chenopodium album), common bean
(Phaseolus vulgaris), morning glory (Ipomoea purpurea), perilla (Perilla frutescens), tomato
(Solanum lycopersicum), chili pepper (Capsicum), sweet potato (Ipomoea batatas), peanut
(Arachis hypogaea), potato (Solanum tuberosum), and mallow (Malva verticillata). Among
these, beggarticks, white goosefoot, morning glory, perilla, and mallow are classified as wild
forage plants, whereas the others are cultivated as economic crops. Typically, the stems
and leaves of these economic crops, which are left after harvesting the grains, fruits, or
tubers, are either burned, mulched back into the soil, or used as animal feed. When used
as animal feed, producers often mix harvested wild forage with the residues of cultivated
crops to produce silage or directly feed it to livestock as fresh forage. The 12 crops were
at different growth stages, and pinnate veins were the predominant leaf venation. The
leaf shapes varied and included six types: reniform, pinnate, oval-shaped, needle-shaped,
lanceolate, and heart-shaped (Table 1).

Sample processing
On a sunny morning, mature and healthy leaves were collected under sterile conditions
from different individuals of the same crop as experimental materials, with each crop
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sampled 10 times. After collection, the materials were immediately transported in ice packs
and stored at 4 °C in a refrigerator for LAB count and structural analyses.

LAB counts and structural analyses

The LAB counts were determined using the dilution plate method. Initially, 10 g of finely
chopped leaves was placed in a sterile polyethylene bag, to which 90 mL of sterile distilled
water was added, and the mixture was shaken at 300 rpm for 5 min on a shaker. After
shaking, an appropriate volume of the solution was collected and evenly spread on de
Man, Rogosa, and Sharpe agar (Guangdong HuanKai Microbial Sci. & Tech. Co., Ltd.,
Guangzhou, China) plates to estimate the colony-forming units (CFU) of LAB attached
to the leaf surfaces. The plates were then incubated at 37 °C under anaerobic conditions
(the Petri dishes were placed in self-sealing bags, and a vacuum sealer was used to evacuate
the air) for 2 d. The LAB counts were expressed as log;g CFU g~! FM (fresh matter, FM),
repeated three times.

Among the leaf structural parameters, the length was determined by laying the leaves
flat on a horizontal workbench and measuring the straight distance from the leaf tip to the
leaf base along the longitudinal axis using a Vernier caliper. The leaf width was determined
by measuring the widest part perpendicular to the longitudinal axis. A video optical
contact angle meter (JC2000D1, Shanghai Zhongchen Digital Technology Equipment Co.,
Ltd., Shanghai) was used to measure the static contact angle of the water droplets on the
adaxial and abaxial surface of the same leaf. Leaf samples were sectioned to expose the
internal structure and then cut vertically at the widest part. A scanning electron microscope
(SEM300, tungsten filament, CIQTEK Co., Ltd., Hefei, China) was used to observe the
cross-section, and a built-in ruler function was utilized to accurately measure leaf thickness.
The sample was precisely excised into tissue blocks with dimensions of 0.5 cm x 0.5 cm x
0.5 cm. Subsequently, the samples were subjected to fixation using a 2.5% glutaraldehyde
solution at either room temperature or 4 °C. For the dehydration process, a graded series
of acetone solutions was employed, with concentrations sequentially increasing from 30%,
50%, 70%, 80%, 95% to 100%. Each dehydration step was maintained for a duration of
15-20 min. To achieve critical-point drying, the samples were first treated with isoamyl
acetate to replace the 100% ethanol. This replacement was conducted at room temperature
for a minimum of 20 min and repeated twice to ensure complete substitution. Following
this, the samples were placed in a chamber containing supercritical fluid (CO;). The
residual moisture within the samples was then removed by the supercritical fluid during
the critical-point drying procedure. The same equipment was used to measure stomatal
density, length, width, and trichome density, stem diameter, and length. All data were
obtained manually, with stomatal and trichome densities expressed as counts per square
millimeter (no. mm~2) and other parameters expressed in micrometers. Finally, the
SEM300 was used to image the microstructure of the adaxial and abaxial surface of the
same leaf within a 50 wm range, and the images were saved.

Statistical analysis
Data were analyzed by SPSS 26.0 (IBM Corp., Armonk, NY, USA). The normality and
homogeneity of variance of the data were tested via analysis of variance (ANOVA) to
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evaluate the effects of different forage species on the quantity of epiphytic LAB and surface
structure. An experimental model was constructed using the overall mean, treatment
factors, and residuals (Li et al., 2018). Data with a P-value of <0.05 were considered
significant. The systematic clustering analysis of different forage species was conducted on
SPSS 26.0. Graphing was performed using the Platform Personalbio Genscloud and Origin
2024.

RESULTS

Effects of forage species on leaf morphological properties and
epiphytic LAB counts

Significant differences were found among the different forage species in terms of the
epiphytic LAB counts, leaf length, leaf width, leaf thickness, and cell wall thickness

(P < 0.001) (Table 2). White goosefoot and beggarticks had the highest LAB counts
(5.22 log1o CFU g~! FM and 4.83 log;o CFU g~! FM, respectively) but shortest leaf lengths
(5.06 cm and 4.97 cm). Although maize and sweet potato had lower LAB counts (3.37 logo
CFU g~! FM and 3.38 log;o CFU g~! FM, respectively), their leaf widths were significantly
greater than those of the other crops except for mallow (P < 0.001). The difference in leaf
thickness among the 12 crops reached 781 wm, with chili pepper having the thickest leaves
(812 pm) and beggarticks (31.0 pm) and perilla (50.6 pm) having the thinnest leaves. In
terms of cell wall thickness, white goosefoot had significantly thinner cell walls, compared
to all other crops (P < 0.001) except for common bean.

Effects of forage species on the contact angle of leaves

The contact angles of the leaves from different forage species showed significant differences
on both the adaxial and abaxial surfaces (P < 0.001) (Table 3). Beggarticks, common
bean, and white goosefoot had significantly higher contact angles than the other crops
(P <0.001). On the adaxial surface, common bean had the highest contact angle (157°),
whereas mallow had the lowest (58.2°). The contact angles of chili pepper (92.3°), tomato
(83.4°), peanut (95.9°), and potato (77.3°) were within the medium range. On the abaxial
surface, common bean had the highest contact angle (159°), whereas morning glory had
the lowest (49.1°). Other crops, such as chili pepper (83.0°), tomato (91.0°), and potato
(83.3°), also had relatively high contact angles. Overall, the trends in contact angles on
both the adaxial and abaxial surfaces were similar for all crops.

Effects of forage species on stomata and trichomes on the surfaces
of leaves

The stomatal length, width, and density on the adaxial and abaxial surfaces of leaves in
different forage species differed significantly (P < 0.001) (Table 4). On the adaxial and
abaxial surfaces of leaves, the stomatal lengths of maize (48.4 pm and 50.6 j.m, respectively)
and potato (39.4 pm and 39.5 wm, respectively) were significantly greater than those of the
other crops (P < 0.001). In contrast, the stomatal length on the adaxial and abaxial surfaces
of morning glory (19.7 wm) and perilla (21.5 pm) was the shortest, respectively. In terms
of stomatal width, common bean (21.7 pum) and potato (20.0 um) had significantly wider
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Table 2 Measurements of leaf structure and epiphytic lactic acid bacteria of different forage species

(n=236).
Forage species Lactic acid Leaflength Leaf width Leaf thickness Cell wall
bacteria (cm) (cm) (uwm) thickness (ium)
(log;o CFUg™!
FM)
Maize 3.37£0.27d 59.0 + 3.09a 8.63 £0.08b 50.6+2.10gh  5.40 % 0.41bc
Beggarticks 4.83+0.12ab  4.97 £ 0.13f 3.02 £ 0.16f 87.4 +3.26thg 4.70 £ 0.36¢
White goosefoot  5.22 + 0.02a 5.06 £ 0.18f 4.72+£0.23de 1104 1.47efg  2.09 & 0.22f
Common bean 4.35 £ 0.05d 7.95+0.42cd  6.66 £0.44c 413+ 11.9¢ 3.00 £ 0.21ef
Morning glory 4.59 £0.07b 7.85+0.32cd  6.24 £0.27c 168 & 9.54de 6.55 + 0.49a
Perilla 3.85+0.32cd  8.44 + 0.46¢ 6.33+0.39c 31.0£3.77h  5.90 £ 0.32ab
Tomato 3.56 & 0.24d 8.53 £ 0.53¢ 5.44 £ 0.35cd 536 £ 38.4b 4.45 4+ 0.35cd
Chili pepper 3.57 £0.24d 6.97 £ 0.39cde  3.30 £0.20f 812 +62.5a 5.30 £ 0.43bc
Sweet potato 3.38 £0.27d 11.1 + 0.89b 9.20 + 0.97b 187 £ 8.74d 6.75 £ 0.25a
Peanut 3.76 £0.31cd 575+ 0.26ef  2.92 &+ 0.14f 129 £ 5.35def  5.25 % 0.34bc
Potato 3.86 £ 0.11cd  6.47 £ 0.27def 3.83 £ 0.21ef 51.8+2.21gh 3.70 £0.31de
Malva verticillata  3.61 & 0.12d 11.5 +0.78b 125+ 0.81a 110+ 2.8%fg  3.25 4 0.23¢
SEM 0.11 0.84 0.28 36.8 0.15
p <0.001 <0.001 <0.001 <0.001 <0.001
Notes.

Different lowercase letters in the same column represent significant difference among forage species (P < 0.05), with detailed

information on which species differ significantly provided in the main text. SEM, standard error of the means, it measured the
degree of difference between the sample mean and the population mean.

Table 3 Measurements of leaf contact angle of different forage species (n = 36).

Forage species

Adaxial leaf surfaces (°)

Abacxial leaf surfaces (°)

Maize 82.4 £ 2.43ef 67.7 £ 1.25f
Beggarticks 145 +2.73b 136 4 2.28b
White goosefoot 104 £ 1.63¢ 102 +1.28¢
Common bean 157 £ 2.01a 159 £ 1.11a
Morning glory 59.2+1.58h 49.1+1.64h
Perilla 721+1.89¢g 71.4 £+ 1.53f
Tomato 83.4 £ 2.16e 91.0 +1.29d
Chili pepper 92.3+2.11d 83.0 + 1.65¢
Sweet potato 80.4 £ 1.50ef 79.3 + 1.95e
Peanut 95.9 +0.54d 81.7 + 1.50e
Potato 77.3 £ 1.90f 83.3 £ 1.08e
Malva verticillata 582+ 1.23h 59.8+2.19¢g
SEM 2.75 2.77
P <0.001 <0.001

Notes.

Different lowercase letters in the same column represent significant difference among forage species (P < 0.05), with detailed
information on which species differ significantly provided in the main text. SEM, standard error of the means, it measured the
degree of difference between the sample mean and the population mean.
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Table 4 Measurements of leaf stomatal of different forage species (n = 36).

Forage species

Stomatal on adaxial leaf surfaces

Stomatal on abaxial leaf surfaces

Length Width Density Length Width Density

(um) (um) (no. mm~?) (wm) (um) (no. mm~?)
Maize 48.4 £0.80a 11.7 £ 0.55e 51.9 + 2.45¢ 50.6 = 0.89a 9.88 +0.28d 63.1 +9.54d
Beggarticks 28.2 £ 1.58ef 17.0 + 1.84b 50.3 & 3.54¢ 32.6 £ 0.44c 16.7 £ 0.62¢ 68.6 +4.23cd
White goosefoot 274+ 0.4lefg 13.9 £ 0.61de 17.3 £ 1.35¢ 31.0 £ 0.80c 16.5 £ 0.68¢ 67.4 £ 3.97cd
Common bean 36.8 £ 1.37¢ 21.7 £0.99a 66.3 + 16.9b 22.1 £ 0.88fg 15.4 + 1.28¢ 150 £ 8.19b
Morning glory 19.7 £ 0.30j 13.6 £ 0.63de 105 £ 3.59a 243 £0.57e 16.1 £ 0.67c 179+ 12.7a
Perilla 21.2 £ 0.45jj 14.5 £ 0.59¢d 33.6 £5.31d 21.54+030g 15.9 + 0.24c 179 £ 8.98a
Tomato 32.7 £ 0.60d 17.1 £0.38b 27.7 £ 3.32de 27.7 £0.37d 16.6 £ 0.25¢ 24.8 £4091e
Chili pepper 29.3 £0.67e 16.7 £ 0.54bc 25.1 £ 1.78de 32.3£0.35¢ 21.9 £ 0.40b 93.7 + 1.80c
Sweet potato 26.3 £ 0.57fg 17.0 £ 0.38b 29.8 £ 1.14de 32.8 £0.47c 21.0 £ 0.58b 91.6 £ 5.83c
Peanut 23.5 4 0.56hi 12.8 + 0.56de 103 +2.99a 23.8 £ 0.47¢f 15.7 £ 0.73c 73.9 £ 4.77cd
Potato 39.4+£0.72b 20.0 £ 0.98a 152 +2.18e 39.5+1.03b 23.9 £0.80a 55.2 + 3.68d
Malva verticillata 25.4 £ 1.18gh 16.8 £ 0.40bc 50.3 &+ 8.02¢ 23.7 £ 0.68ef 15.8 £0.73¢ 82.5 + 4.06cd
SEM 0.76 0.34 3.12 0.77 0.37 5.76
P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Notes.

Different lowercase letters in the same column represent significant difference among forage species (P < 0.05), with detailed information on which species differ significantly

provided in the main text. SEM, standard error of the means, it measured the degree of difference between the sample mean and the population mean.
stomata on the adaxial surfaces compared to the other crops (P < 0.001), while maize had
the smallest stomata at 11.7 pwm. On the abaxial surfaces, potato had the widest stomata
(23.9 wm) while maize (9.88 um) had the smallest stomata (P < 0.001). Moreover, morning
glory (105 no. mm~2) and peanut (103 no. mm~2) had the highest stomatal density on
the adaxial surfaces (P < 0.001), while morning glory (179 no. mm~2) and perilla (179 no.
mm~2) had the highest stomatal density on the abaxial surfaces (P < 0.001).

On the adaxial surfaces of the leaves (Table 5), maize had significantly longer trichomes

(1,589 pm) than the other crops, while chili pepper had significantly shorter trichomes
(13.9 wm) and stem diameter (8.30 pm) (P < 0.001). Maize had the lowest trichome density
(0.44 no. mm~2). On the abaxial surfaces, perilla (29.6 pm), chili pepper (49.1 um), and
maize (59.1 pm) had shorter trichomes and exhibited similar trends in stem diameter.
White goosefoot (0.85 no. mm™~2) and sweet potato (0.23 no. mm~2) had lower trichome
density on the abaxial surfaces. On both the adaxial and abaxial surfaces, tomatoes (34.4
no. mm~2 and61.3 no. mm ™2, respectively) had the highest trichome density among all
crops (P < 0.001).

Effects of leaf sides on the morphological structure of leaves

The contact angles on the adaxial (92.3°) and abaxial (88.6°) surfaces of leaves showed
minimal differences (P > 0.05). Although the leaf surfaces had no significant effect on
stomatal length (P > 0.05), stomatal width and density on the adaxial surfaces were
significantly higher than those on the abaxial surfaces of the same leaves (P < 0.05).
Regarding trichome properties, trichome length, stem diameter, and density on the adaxial
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Table 5 Measurements of leaf trichomes of different forage species (n = 36).

Forage species

Trichomes on adaxial leaf surfaces

Trichomes on abaxial leaf surfaces

Length Stem diameter Density Length Stem diameter Density

(wm) (um) (no. mm?) (um) (wm) (no. mm~?)
Maize 1589 & 114a 45.5 4+ 3.66d 0.44 £+ 0.05¢ 59.1 £ 1.89ef 9.41 +0.30d 13.3 £ 1.01b
Beggarticks 202 £ 10.0d 27.7 £ 2.06e 2.26 +0.43c 188 £ 32.1cd 49.2 + 18.0b 1.1540.27e
White goosefoot 193 £71.3d 9.18 & 2.60f 10.3 + 2.49b 180 £ 44.9cd 19.8 + 6.14cd 0.85 = 0.19¢
Common bean 323 +47.7¢c 87.1 £5.93a 0.77 £ 0.06¢ 66.1 = 4.12¢f 21.5 £ 2.34cd 14.8 £ 0.99b
Morning glory 364 £ 22.0c 47.9 +1.43d 1.29 £ 0.14c 307 £ 37.2b 49.1 + 3.88b 2.17 £ 0.13e
Perilla 168 £ 17.9d 60.9 £ 3.36cd 2.17 £0.17¢ 29.6 & 2.98f 19.3 &+ 3.13cd 3.23 £ 0.60de
Tomato 100 £ 6.69de 24.9 + 1.36e 344+ 1.87a 114 £ 8.71de 22.9 +0.74cd 61.3 + 2.88a
Chili pepper 13.9 £2.17e 8.30 £+ 1.01f 14.0 +2.97b 49.1 & 3.25¢f 20.2 £ 1.24cd 3.04 £ 0.35de
Sweet potato 668 £ 59.0b 70.0 £ 6.52bc 0.57 £ 0.04c 319 +93.2b 25.3 +5.50cd 0.23 £ 0.03e
Peanut 432 +2.31e 17.3 £ 0.87ef 4.15 4+ 0.23¢ 161 +9.79¢d 17.8 £ 1.06¢cd 5.99 £ 0.65cd
Potato 344 4 68.3c 82.6 £ 10.4ab 0.50 £ 0.06¢ 197 4+ 10.3¢ 40.8 +2.17bc 6.63 £ 0.33¢
Malva verticillata 372 £ 32.4c 98.0 + 6.89a 0.71 £ 0.13¢ 436 £ 37.0a 89.3 + 1.12a 1.09 £ 0.09¢
SEM 31.9 3.14 0.98 13.7 2.83 1.56
P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Notes.

Different lowercase letters in the same column represent significant difference among forage species (P < 0.05), with detailed information on which species differ significantly
provided in the main text. SEM, standard error of the means, i t measured the degree of difference between the sample mean and the population mean.
surfaces were 140 pm and 15.9 wm higher and 36.2% lower (P < 0.05), respectively, than
those on the abaxial surfaces of the same leaves.

The microstructures of leaf surfaces (50 pm scale) showed significant differences
among forage species, primarily in the morphology and arrangement of epidermal cells
and properties of surface appendages. Maize exhibited a relatively smooth trait on the
adaxial surfaces of leaves (Fig. 1A), whereas beggarticks displayed a rough surfaces covered
with numerous small protrusions (Fig. 1B). Additionally, structural differences between
the adaxial and abaxial surfaces of the same leaves were prominent. For instance, the
adaxial surfaces of white goosefoot appeared smooth with nearly no visible trichomes
(Fig. 1C), whereas the abaxial surfaces of this leaf had dense and longer trichomes,
indicating well-developed structures (Fig. 2). For morning glory, the adaxial surfaces had a
thicker wax layer and presented a smooth texture and higher reflectivity (Fig. 1E), whereas
the abaxial surfaces had a thinner wax layer, increased roughness, and more complex
structures (Fig. 2E). Perilla exhibited high roughness on both the adaxial and abaxial
surfaces of the same leaves (Figs. 1F and 2F). The adaxial surfaces of the chili pepper
were relatively smooth (Fig. 1H), whereas the abaxial surfaces were densely covered with
glandular trichomes (Fig. 2H). In summary, different crops exhibited significant variations
in stomatal density, epidermal appendage distribution, and epidermal roughness, with the
most pronounced structural differences observed in white goosefoot and morning glory.
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Figure 1 Scanning electron microscopy images on adaxial leaf surfaces of different forage species.
Note: (A) Maize; (B) beggarticks; (C) white goosefoot; (D) common bean; (E) morning glory; (F) perilla;
(G) tomato; (G) chili pepper; (I) sweet potato; (J) peanut; (K) potato; (L) malva verticillata.

Full-size & DOLI: 10.7717/peerj.20028/fig-1

Figure 2 Scanning electron microscopy images on abaxial leaf surfaces of different forage species.
Note: (A) Maize; (B) beggarticks; (C) white goosefoot; (D) common bean; (E) morning glory; (F) perilla;
(G) tomato; (H) chili pepper; (I) sweet potato; (J) peanut; (K) potato; (L) malva verticillata.

Full-size Gl DOI: 10.7717/peer;j.20028/fig-2
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Figure 3 Correlation plot of Pearson among leaf surface structure and lactic acid bacteria counts.
Note: Asterisks indicate significant differences at P < 0.05 (*), P < 0.01 (**),and P < 0.001 (***),
respectively. LAB, lactic acid bacteria; LL, leaf length; LW, leaf width; LT, leaf thickness; CWT, cell wall
thickness; AACA, contact angle on adaxial leaf surfaces; AbCA, contact angle on abaxial leaf surfaces; AdL,
stomatal length on adaxial leaf surfaces; AdW, stomatal width on adaxial leaf surfaces; AdD, stomatal den-
sity on adaxial leaf surfaces; AbL, stomatal length on abaxial leaf surfaces; AbW, stomatal width on abaxial
leaf surfaces; AbD, stomatal density on abaxial leaf surfaces; AdTL, trichomes length on adaxial leaf sur-
faces; AdTS, trichomes stem diameter on adaxial leaf surfaces; AdTD, trichomes density on adaxial leaf
surfaces; AbTL, trichomes length on abaxial leaf surfaces; AbTS, trichomes stem diameter on abaxial leaf
surfaces; AbTD, trichomes density on abaxial leaf surfaces.

Full-size Gl DOI: 10.7717/peerj.20028/fig-3

Correlation and clustering analyses of leaf morphological structures

and LAB in forage crops

The LAB counts was significantly positively correlated with the contact angle of the adaxial

and abaxial surfaces of leaves (P < 0.05) and significantly negatively correlated with the leaf

length (P < 0.05). No significant correlations were observed between LAB counts and other

structural factors (P > 0.05) (Fig. 3). Further linear regression analysis revealed that the

coefficients of determination (R?) between LAB counts and contact angles on the adaxial

and abaxial surfaces of leaves were 0.1424 (Fig. 4A) and 0.175 (Fig. 4D), respectively,

whereas the R? values between stomatal and trichome densities on both surfaces were all

below 0.07, indicating a weaker explanatory power for these factors (Fig. 4). Cluster analysis

based on the LAB counts and leaf morphological structural properties grouped morning
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glory and common bean into a single cluster, tomato, and chili pepper into another cluster,
and the remaining eight crops into a third cluster (Fig. 5).

DISCUSSION

Effects of leaf morphological features on the epiphytic LAB counts
Morphological features of plant leaves, such as the leaf vein arrangement and leaf shape,
directly influence the LAB distribution. Different vein patterns (e.g., parallel, pinnate, and
palmate) and leaf shapes (e.g., needle, heart, and oval shapes) alter the microenvironment
on the leaf surfaces (Doan et al., 2020), thus affecting the attachment and growth of
LAB. Pinnate and palmate veins typically promote LAB attachment by providing a larger
leaf area and a more complex venation structure (Sack ¢ Scoffoni, 2013). Additionally,
leaves with pinnate and palmate veins present higher surface roughness and thus are
more effective at capturing airborne moisture, which further promotes LAB growth and
reproduction. In addition, the relatively high rainfall during the sampling time (August)
further provided moisture conditions conducive to the proliferation of LAB in this study.
However, parallel veins may lead to rapid moisture loss from the leaf surfaces, increasing the
risk of inadequate water availability for LAB colonization. Previous studies have confirmed
that complex leaf epidermal structures promote the attachment and growth of LAB on leaf
surfaces (Tang et al., 2023). Moreover, needle-shaped leaves, which have a smaller surface
area and lower roughness of leaves, may be less conducive to bacterial attachment, whereas
heart- and oval-shaped leaves, which present a larger leaf surface area and more complex
morphological structure on the surfaces of leaves, can more effectively adsorb LAB.
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Figure 5 Systematic clustering analysis of different forage species. Note: The same color indicates
that forage species were classified into one category. Ma, maize; Be, beggarticks; WG, white goosefoot;
CB, common bean; MG, morning glory; Per, perilla; To, tomato; CP, chili pepper; SP, sweet potato; Pea,
peanut; Po, potato; MV, malva verticillata.
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In this study, both beggarticks and white goosefoot had pinnate venation, with white
goosefoot presenting lanceolate leaves and beggarticks presenting pinnate leaves, and both
showed a higher LAB counts on the surfaces of the leaves. The higher LAB counts on
the surfaces of leaves in white goosefoot may have been related to their thinner leaves.
Typically, thinner leaves can better absorb external water and nutrients, providing ample
growth resources for LAB (Boanares et al., 2018). Furthermore, thinner leaves have a higher
surface-area-to-volume ratio, which facilitates gas exchange, particularly that of oxygen
and carbon dioxide (Harrison et al., 2019), thus providing an ideal environment for the
growth of aerobic LAB (Tang et al., 2023). Unfortunately, this study did not analyze the
nutrient and enzyme activity on the surfaces or inside of the leaves in these forage species.

Wu et al. (2025), PeerdJ, DOI 10.7717/peerj.20028 12/20


https://peerj.com
https://doi.org/10.7717/peerj.20028/fig-5
http://dx.doi.org/10.7717/peerj.20028

Peer

Effects of contact angle on the LAB counts

Contact angle is a critical physical parameter for evaluating the hydrophilic or hydrophobic
nature of forage surfaces (Miller et al., 2019). This parameter significantly impacts the
initial adhesion, proliferation, and metabolic activity of microorganisms. A smaller contact
angle (<90°) indicates stronger hydrophilicity of the surfaces, which favors the adhesion
of hydrophilic microorganisms. In contrast, a larger contact angle (>90°) suggests a
more hydrophobic environment suitable for the adhesion and growth of hydrophobic
microorganisms. This selective adhesion plays a pivotal role in shaping the structure
and functional dynamics of the microbial communities. In this study, the leaves of
beggarticks, white goosefoot, and common beans exhibited larger contact angles (Table 3),
supporting a higher LAB counts (Table 2). LAB on leaf surfaces generally exhibits high
carbon-to-nitrogen ratios, leading to pronounced hydrophobicity (Chasoy, Chairez ¢
Durdn-Pdramo, 2020). Furthermore, LAB often faces environmental stresses such as low
nutrient availability, limited water resources, UV radiation, oxidative stress, and dramatic
temperature fluctuations under natural conditions (Lindow ¢ Brandl, 2003). To adapt
to these extreme conditions, LAB enhances extracellular polysaccharide synthesis and
forms protective biofilms that increase their environmental adaptability and survival rates
(Nwodo, Green ¢ Okoh, 2012). Consequently, LAB populations on leaf surfaces can remain
high, even with larger contact angles.

However, when the contact angle was small (<30°), the adhesion efficiency of LAB
could increase by 40% to 50% (Xiong et al., 2018). This effect was crucial for optimizing
the silage fermentation process (Tan et al., 2022) because smaller contact angles promote
LAB colonization on leaf surfaces and significantly suppress competition from harmful
microorganisms, such as yeast and Clostridium (Lin et al., 2022). Additionally, previous
studies have demonstrated that leaf surfaces exhibit typical superhydrophobicity when
the contact angle exceeds 150°, owing to the synergistic effects of micro-scale papillary
structures and wax layers. Such surfaces cause water droplets to roll off in bead-like forms,
thereby achieving self-cleaning effects that effectively remove dust and bacterial particles
(Shi, Wang & Li, 2011). This superhydrophobicity further restricts bacterial adhesion to
the leaf surfaces.

In summary, the contact angle of the leaf surfaces regulates water film formation
and distribution, directly influencing LAB adhesion, dispersal behavior, and community
structure. Variations in the contact angle determine the preferential attachment of specific
microorganisms, thereby significantly affecting the dynamic balance of LAB communities
on plant leaves and the spread of plant diseases. This finding provides a theoretical basis

for optimizing the microecological environment of plant leaves.

Effects of stomatal and trichome characteristics on the LAB counts
The population of LAB attached to forage is generally below 5.0 log;o CFU g~! FM

(Cai et al., 20205 Chen, Dong ¢ Zhang, 2021), while the population on the leaf surfaces
typically does not exceed 4.20 log;o CFU g=! FM (Wu et al., 2023). These findings are
consistent with the results of the present study, indicating that LAB on forage surfaces
primarily colonize the leaf surfaces. Furthermore, the stomata and trichomes on plant
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surfaces significantly influence the attachment, growth, and community structure of LAB
by modulating the microenvironment, including moisture content, nutrient availability,
and gas exchange. Specifically, larger stomata provide convenient entry pathways for
bacterial colonization (Koch ¢ Barthlott, 2009). Previous studies have shown that when
the stomatal length exceeds 15 pm, the bacterial infection rate can increase by 20% to
30% (Chen et al., 2023). In this study, the stomatal length of all forage samples exceeded
15 pwm, providing ideal conditions for LAB attachment and facilitating their entry into plant
tissues. Additionally, higher stomatal density offers more attachment sites and promotes
a micro-moist environment, further promoting the colonization and proliferation of
LAB. Under high humidity conditions, densely distributed stomata more readily form
stable water films, which are crucial for LAB growth (Guan et al., 2018). These findings
highlighted the critical regulatory roles of stomatal structure and distribution in shaping
the dynamic growth patterns of LAB.

Plant trichomes are critical as physical barriers and microenvironment regulators in
plant-microbe interactions. Typically, trichomes enhance the roughness of leaf surfaces,
facilitating the initial attachment and colonization of microorganisms. When trichome
lengths range between 50-100 pm, the attachment of Bacillus species increases significantly
by 25%—30%; when trichome lengths are below 50 um, the attachment efficiency decreases
(Zhang et al., 2022). Although the trichome length of the forage species did not significantly
influence the abundance of LAB in this study (Fig. 3), its contribution to the surface
roughness of forage leaves was undeniable (Figs. | and 2). Previous studies have shown that
trichomes may positively affect the abundance of other bacteria and yeast species (Tang
et al., 2021), which may be related to the plant species and the specificity of LAB strains.
The surface structures of different forage species exhibit significant variation and play a
selective role in microbial attachment and community composition. LAB isolated from
forage surfaces primarily include genera such as Enterococcus, Lactococcus, Lactobacillus,
Pediococcus, Leuconostoc, and Weissella (Yu, Leveau ¢~ Marco, 2020). These LAB strains
generally display strong aerotolerance, a trait primarily mediated through mechanisms
such as the production of cytochrome d oxidase or non-enzymatic dismutation of
hydrogen peroxide via Mn?T ions, thus mitigating oxidative stress (Papadimitriou et
al., 2016). This characteristic explains the high abundance and structural diversity of LAB
communities on forage leaf surfaces. LAB species exhibit varying nutritional requirements,
while available nutrients on the leaf surface are relatively limited (Chen, Dong ¢» Zhang,
2021). Furthermore, trichome density and structure significantly influence the degree of
surface moisture retention. High-density trichomes (>500 hairs no. mm™2) can extend
surface moisture retention times by 2 to 3 fold, creating favorable conditions for water-
dependent microorganisms, such as Pseudomonas (Koch ¢ Ensikat, 2008). Simultaneously,
trichomes contribute to the formation of micro-humid environments on leaf surfaces,
thereby promoting the proliferation and metabolic activity of LAB (Yuan et al., 2017).

The results of this study showed that the adaxial surfaces of the leaves exhibited smoother
characteristics and a relatively thicker wax layer (Fig. 1), whereas the abaxial surfaces of the
leaves displayed a greater stomatal distribution and more epidermal hairs (Table 6). These
morphological differences may lead to a reduced number of LAB on the adaxial surfaces
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Table 6 Measurements of leaf contact angle, stomatal, and trichomes of different area (n = 72).

Area Contact angle (°) Stomatal Trichomes
Length (um) Width (um) Density Length (um) Stem diameter Density

(no. mm~2) pm) (no.mm™?%)

Adaxial 92.3 +£2.75 29.9 +0.76 16.1 £ 0.34b 47.1 £3.12b 308 £31.9a 49.4 + 3.14a 6.17 £ 0.98b

Abaxial 88.6 £2.77 30.2 £0.77 17.1 £ 0.37a 101 & 5.76a 168 + 13.7b 33.5+2.83b 9.67 £ 1.56a

SEM 1.95 0.54 0.25 3.63 18 2.17 0.93

p 0.337 0.775 0.039 <0.001 <0.001 <0.001 0.049

Notes.

Different lowercase letters in the same column represent significant difference between area (P < 0.05), with detailed information on which area differ significantly provided in
the main text. SEM, standard error of the means, it measured the degree of difference between the sample mean and the population mean.
compared to the abaxial surfaces. Previous studies have also confirmed that the abaxial
surfaces of the leaves provides more favorable environmental conditions for the survival
of LAB owing to its rich nutrient reserves and relatively rough structure on the surfaces of
leaves (Tang et al., 2023).

In conclusion, plant trichomes regulate microbial attachment, survival, and colonization
by increasing surface roughness, creating humid microenvironments, and blocking
ultraviolet radiation. Additionally, leaf morphological structures on the surfaces of leaves
modulate water availability, gas exchange, and nutrient accessibility, thus playing a pivotal
role in shaping the composition and dynamic balance of microbial communities on plant
surfaces. These attributes provide a theoretical foundation for understanding plant-microbe
interaction mechanisms and optimizing forage silage fermentation processes and improve
the fermentation quality of silage. However, given the limitations of the linear regression
model in this study, future research may need to employ data analysis methods such as
principal component analysis or multivariate regression to further explore the correlations
between the quantity and structure of LAB. In addition, this study has not conducted an
in-depth analysis of the species and genera of lactic acid bacteria, which, to a certain extent,
has indirectly affected our understanding of their fermentation potential in silage.

CONCLUSION

Leaf morphological properties play important roles in regulating LAB abundance. Leaves
with pinnate and palmate venation presented more complex vein structures and larger leaf
areas, thus providing more micro-scale attachment points, promoting LAB colonization.
Complex and rough leaf morphological structures effectively capture airborne moisture,
forming a micro-humid environment that further optimizes the regulation of water
flow, gas exchange, and ultraviolet radiation. Collectively, these factors create a favorable
environment for the attachment, colonization, and proliferation of LAB. Therefore, plant
leaves, such as those of white goosefoot, beggarticks, and morning glory, have a higher LAB
population.
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