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ABSTRACT

Background: CYP2CI19 polymorphisms are correlated with individual variability in
response to citalopram treatment. The pharmacogenomic testing of CYP2C19 has
been shown to optimize the safety and efficacy of citalopram medication. Exploration
of the effect of novel CYP2C19 variants on citalopram could further enhance the
potential for personalized citalopram treatment.

Objectives: The main goal of this study was to functionally characterize 30 CYP2C19
variants in citalopram metabolism, most of which were rare or novel variants
identified in the Chinese Han population.

Methods: An in vitro incubation system was set up using recombinant human
CYP2C109 variants expressed in Sf21 insect cell microsomes to simulate the
citalopram metabolic environment. A high-performance liquid chromatography
with fluorescence detection method (HPLC-FLD) was established to quantitatively
determine both citalopram and demethylcitalopram.

Results: In this study, compared to the wild-type enzyme (CYP2C19*1), 73% (22/
30) of the CYP2C19 variants showed significantly different metabolic activities in
citalopram metabolism. Among them, two variants, CYP2C19*29 and L16F, showed
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significantly increased intrinsic clearance (nearly 5-fold and 1.5-fold, respectively).
Eighteen variants—CYP2C19*2C, *2F, *2G, *2J, *6, *18, *30, *31, *32, *33,
N231T, R124Q, R261W, 1327T, A430V, R125G, M255T, and 1331V—exhibited
significantly decreased intrinsic clearance (18.02—63.16%). Two variants,
CYP2C19*3 and 35FS, demonstrated weak or no activity. Moreover, the remaining
27% (8/30) of the CYP2C19 variants showed similar metabolic activities to that of
the wild-type enzyme.

Conclusion: These CYP2C19 variants require specific attention from physicians and
researchers, as their altered metabolic activities may influence the safety and efficacy
of citalopram treatment. This work greatly expands the previously underexplored
knowledge about the metabolic activities of rare or novel CYP2C19 variants in
relation to citalopram medication. These findings may further facilitate the precision
use of citalopram in personalized medicine.
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INTRODUCTION

Depressive disorders are a major public health concern worldwide, characterized by high
incidence, high recurrence, and high disability rates, which puts a serious burden on
families and society (Global Burden of Disease Study 2013 Collaborators, 2015; Malhi ¢
Mann, 2018; National Institute for Health and Care Excellence: Guidelines, 2022). In
particular, in China, depressive disorders have become an increasingly important public
health priority due to the large population and the increasing incidence (Meng et al., 2020;
Tang, Jiang & Tang, 2022; Bai et al., 2022). Antidepressant medication is an important
clinical intervention that can decrease suicidal ideation along with other symptoms (Malhi
e Mann, 2018; Simon, Moise ¢ Mohr, 2024). However, there are substantial
inter-individual discrepancies in the therapeutic response and adverse reactions of
antidepressant medications, which may be related to gene polymorphisms (Milosavljevic
et al., 2021; Murphy et al., 2022; Bousman et al., 2023). A growing body of research has
reported that pharmacogenomic testing can improve clinical outcomes in antidepressant
medication treatment (Bahar et al., 2020; Murphy et al., 2022). In order to guide clinical
practice, the Clinical Pharmacogenetics Implementation Consortium (CPIC), a globally
influential academic organization, has issued a guideline on using gene polymorphisms
results to inform the prescribing of serotonin reuptake inhibitor antidepressants (Bousman
et al., 2023). This guideline is widely recognized by medical and healthcare professionals to
assist clinical decision-making and optimize healthcare policies. Therefore, precision
medication therapy on the basis of individual genetic information is an inevitable trend to
deal with the public health challenges posed by depression.

CYP2CI19 is one of the most commonly studied members of the cytochrome P450
superfamily of enzymes. It exhibits functionally relevant polymorphisms, resulting in
significant individual differences in response to antidepressant treatments. There is
considerable evidence that CYP2C19 pharmacogenetic tests can optimize antidepressant
treatment by improving response rate and identifying potential adverse reactions
(Bousman et al., 2023). However, the use of routine tests for the most common CYP2C19
variants has been shown to enhance the safety and efficacy of antidepressant medication in
only 36% of patients (Kee et al., 2023). This indicates that many patients do not derive the
benefits of antidepressant treatment, even after routine genotyping. The CPIC guideline
also acknowledges in the limitations that selective CYP2CI9 allelic screening may miss
novel or other clinically significant variants (Bousman et al., 2023). Meanwhile, a growing
number of researchers suggest that integration of common, rare and individual variants
could further enhance the potential for personalized antidepressant treatment (Borczyk
et al., 2022). Therefore, it is essential to investigate the effects of CYP2CI9 genetic variants
on antidepressant efficacy, particularly in diverse ethnic groups and for rare variants.

Citalopram is a first-line pharmacotherapy for depression, exerting antidepressant
effects mainly through the inhibition of serotonin reuptake from the synaptic cleft
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(Simon, Moise ¢» Mohr, 2024). It is mainly metabolized in the liver to demethylcitalopram,
with CYP2C19 being a key enzyme involved in the demethylation metabolism (Brosen ¢
Naranjo, 2001). Studies have shown that CYP2C19 polymorphisms significantly affect
citalopram exposure in vivo and the clinically relevant effect (Chang et al., 2014; Zastrozhin
et al., 2021; Wong et al., 2023). Specifically, CYP2CI9 poor metabolizers exhibit elevated
plasma concentrations of citalopram, which may increase the probability of dose-related
side effects such as QT prolongation and Torsade de Pointes. Conversely, the CYP2C19
ultrarapid metabolizers have lower plasma concentrations, which may lead to treatment
failure. These differences in therapeutic efficacy and toxicity associated with CYP2C19
polymorphisms have also been confirmed in the Chinese population (Yin et al., 2006;
Huang et al., 2021). Therefore, it is crucial to investigate the impact of CYP2C19 variants,
including rare and novel variants, on citalopram metabolism.

The distribution frequencies of CYP2CI9 polymorphisms exhibit considerable
interethnic differences (Zhou, Ingelman-Sundberg & Lauschke, 2017). Currently, a
plethora of studies have explored the effect of CYP2CI9 polymorphisms on citalopram
metabolism, focusing mainly on these alleles with known functional properties, such as
CYP2C19*2, *3 and *17, in populations of European genetic ancestry. However, few
studies have investigated the impact of critical or rare CYP2CI9 variants on citalopram
metabolism in Chinese populations. In our previous study, we systematically investigated
the genetic polymorphisms of the CYP2C19 gene in the Chinese Han population by
amplifying all nine exons in 2,127 unrelated healthy subjects using direct sequencing (Hu
et al., 2012). In this population, we identified 30 variants that theoretically result in the
substitution of amino acid residues, which may influence enzyme activity. Among them,
16 variants have been named (CYP2C19*2C, *2E—*2H, *2]J, *3, *3C, *6, *18, *23, and
*20-*33), and the remaining 14 variants are not well-studied and their functional impacts
remain unknown (Table 1). The majority of these variants (28/30) were rare (frequencies
typically below 0.1%), and have not been included in current CPIC guidelines. According
to the PharmGKB database (PharmGKB, 2025), except for CYP2C19*3, which is classified
as no-function variant, the functions of the remaining 29 variants are either uncertain or
supported by limited evidence. Therefore, the current study systematically analyzes the
enzymatic characteristics of 30 CYP2C19 variants toward citalopram metabolism and
offers valuable information relevant for global pharmacogenomics research and clinical
practice.

MATERIALS AND METHODS

Chemicals and materials

Citalopram (purity 98.0%) and venlafaxine (purity 98.0%, internal standard, IS) were
obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Demethylcitalopram
(purity 98.0%) was purchased from Toronto Research Chemicals Inc. (TRC, Pickering,
Ontario, Canada). Cytochrome b5 microsomes and recombinant human CYP2C19
(expressed in Spodoptera frugiperda (Sf) 21 insect cells microsomes) were provided by the
Beijing Institute of Geriatrics, National Health Commission (Beijing, China). Reduced
nicotinamide adenine dinucleotide phosphate (NADPH) was obtained from Sigma
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Table 1 Enzyme kinetic parameters of citalopram demethylation activity of recombinant CYP2C19 enzyme wild-type and 30 variants.

Variants c¢DNA Change Main effect rs ID Region Naming  Frequencies Vmax Km (M) CLint (Vmax/ Relative
status (%) (pmol/min/ Km) clearance (%
pmol P450) (LL/min/nmol of wild type)
P450)
2C19%1 19.10 + 0.45 122,67 £ 9.67 156.14 + 8.87  100.00
2C19"2C 481G > C A161P rs181297724 Exon 4 Named 0.05 5.39 + 0.09" 115.87 + 828 46.67 + 251"  29.93"
2C19%2E 813G > A M2711 rs778258371 Exon 5 Named 0.02 12.84 + 0.38" 129.20 +20.15 100.85 + 14.28 64.29
2C19"2F 1021G > A D34IN rs770829708 Exon 7 Named 0.05 8.86 + 0.10" 96.92 323  91.54 + 415° 58.79"
2C19"2G 1079A > T D360V rs550527959 Exon 7 Named 0.05 13.19 + 0.13* 147.30 + 8.61  89.70 + 451" 57.59"
2C19%2H 1186C > G H396D rs1564686367 Exon 8 Named 0.02 16.85 + 0.28 138.83 £9.38 121.78 £+ 9.42  78.15
2C19%2] 1261A > C K421Q / Exon 8 Named 0.02 12.99 + 0.09* 154.13 + 10.31 84.50 + 549"  54.14"
2C19%3 636G > A W212X 154986893 Exon 4 Named 5.34 ND ND ND ND
2C19"3C 407T > A M136K rs763625282 Exon 3 Named 0.07 21.36 + 0.57 171.10 + 13.05 125.15 + 6.68  80.14
2C19%6 395G > A R132Q rs72552267  Exon 3 Named 0.09 423 +0.14* 151.33 £ 17.61 28.13 £ 242" 18.06"
2C19%18 986G > A R329H rs138142612 Exon 7 Named 0.02 6.45 + 0.00" 12297 £ 1.10 5243 +0.47° 33.64"
2C19"23 271G > G; GI1R rs118203756 Exon 2 Named 0.05 23.81 £ 0.77" 126.10 + 8.11  189.05 + 597 121.15
2C19%29 83A>T K281 rs1564656981 Exon 1 Named 0.02 46.31 + 0.59* 60.39 +2.57  767.55 492.31%
23.24%
2C19"30 217C>T R73C rs145328984 Exon 2 Named 0.02 7.48 £ 0.17" 132.50 £ 9.51  56.55 £ 2.76°  36.23"
2C19"31 232C>T H78Y rs1564660997 Exon 2 Named 0.02 10.25 + 0.15* 15293 +2.17 67.02 + 0.08°  43.03"
2C19"32 296A > G H99R rs1288601658 Exon 2 Named 0.02 11.43 + 0.14" 11627 + 7.37  98.62 + 7.42"  63.30"
2C19%33 562G > A D188N rs370803989 Exon 4 Named 0.02 10.98 + 0.21* 131.93 £ 0.99 8321 +2.16° 5343"
35FS 101- 35 frameshift / Exon 1 Novel 0.02 ND ND ND ND
102insCCTAC
N231T  692A >C N231T / Exon 5 Novel 0.02 11.37 + 0.22* 13733 £ 500 8292 + 440" 53.24"
R124Q 371G> A R124Q rs200346442 Exon 3 Novel 0.02 9.81 +0.11% 100.13 +9.17  98.50 + 8.03°  63.10"
R261W  781C>T R261W / Exon 5 Novel 0.02 7.62 +0.29" 110.10 + 462  69.32 + 3.83"  44.48"
S303N 908G > A S303N / Exon 6 Novel 0.02 13.16 + 0.12* 7024 222 18745+ 446 120.28
1327T 980T > C 1327T / Exon 7 Novel 0.02 6.48 + 0.04* 112.00 + 6.06 57.93 +2.84" 37.18"
A430V  1289C>T A430V / Exon 8 Novel 0.02 9.85 + 0.02" 113.90 + 436  86.52 + 3.13"  55.54"
R125G  373C>G R125G / Exon 3 Novel 0.02 10.65 + 0.47* 178.40 + 22.07 60.07 + 474"  38.46"
N277K  831C> A N277K / Exon 6 Novel 0.07 18.46 + 0.23 119.30 + 6.38  154.96 + 6.38  99.41
N4031 1208A > T N4031 / Exon 8 Novel 0.05 8.03 £ 0.07" 7628 +1.65 10532 +3.14 67.60
M255T  764T > C M255T / Exon 5 Novel 0.02 10.90 + 0.12* 159.63 £3.90 6831 +1.81° 43.87"
T130M  389C>T T130M rs150152656 Exon 3 Novel 0.05 35.47 + 047" 135.77 £ 11.96 262.58 + 22.41 168.10
L16F 46C>T L16F / Exon 1 Novel 0.02 4429 + 2.33" 184.90 + 4.11  239.45 + 7.46% 153.62"
1331V 91A > G 1331V rs3758581 Exon 7 Novel 90.16 7.79 + 0.14" 91.68 +7.30 8527 + 547" 54.68"
Notes:

P < 0.05 (vs. wild-type).
“Named” refers to variants officially designated as star alleles in the PharmVar database; “Novel” indicates newly identified variants not yet named by PharmVar; “ND”
indicates not determined. For named variants, only the main substitution was analyzed.

(St. Louis, MO, USA). All other chemicals and solvents used were of analytical grade and
were obtained from Beijing Chemical Factory Co., Ltd. (Beijing, China).

In vitro enzymatic activity assay
According to the previously reported method (Dai et al., 2015), all of the CYP2C19
variants were amplified by overlap extension polymerase chain reaction (PCR) using
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wild-type cDNA as the template. The mutant sequences were ligated into the
dual-expression baculovirus vector (pFastBac-OR-CYP2C19) and verified by gene
sequencing. After infection of Sf21 cells, protein levels were measured by immunoblotting,
and the concentration of CYP2C19 active holoproteins in microsomal proteins was
determined by reduced carbon monoxide difference spectroscopy. The total volume of the
enzyme catalytic reaction system was 200 pL. The system contained 5 pmol recombinant
human CYP2C19 enzyme (wild-type or 30 other variants), 5 pmol cytochrome b5, a
gradient of citalopram concentration (10-1,000 pM), and 0.1 M PBS buffer (pH 7.4). After
thorough mixing, the reaction mixture was pre-incubated at 37 °C for 5 min. The reaction
was initiated by adding 10 pL NADPH solution (20 mM), and the mixture was incubated
at 37 °C for 30 min. The reaction was terminated by transferring the mixture to —80 °C for
15 min. After retrieving the sample from —80 °C, 50 pL of 0.1 M hydrochloric acid, 0.8 mL
of ethyl acetate, and 30 pL of 10 ng/mL venlafaxine solution (internal standard) were
added. The sample was thawed and vortexed for 2 min, followed by centrifugation at
12,000 r/min for 10 min at 4 °C. 0.7 mL of supernatant was collected and evaporated under
nitrogen. The residue was redissolved in the mobile phase, and a 2 pL aliquot was used for
quantitative determination. Three parallel samples were prepared for each variant at each
citalopram concentration (10-1,000 pM).

Chromatographic conditions and method

This study established an high-performance liquid chromatography with fluorescence
detection method (HPLC-FLD) method to quantitatively determine both citalopram and
demethylcitalopram quickly and accurately. An Agilent 1260 HPLC instrument coupled to
an Agilent 1260 FLD Spectra (G1321B) fluorescence detector (Santa Clara, CA, USA) was
used in the study. An Agilent RRHD Eclipse Plus C18 column (3.0*100 mm, 1.8 um) was
used for separation. The mobile phase consisted of acetonitrile (A) and 0.05%
trifluoroacetic acid (B). The flow rate was controlled at 0.3 mL/min. The elution occurred
in gradient mode with the following conditions: 30-28% (A) and 70-72% (B) in the first
5 min; 28-30% (A) and 72—-70% (B) between 5 and 9 min; and 30% (A) and 70%

(B) maintained for 2 min. The column temperature was maintained at 30 °C. The excitation
and emission wavelengths were set at 245 nm and 306 nm, respectively. The total run time
was 11 min.

Statistical analysis

The Michaelis-Menten curves for CYP2C19 variants were fitted with citalopram
concentration (X-axis) versus demethylcitalopram formation rate (Y-axis) using GraphPad
Prism 6 (GraphPad Software, La Jolla, CA, USA). The Michaelis constant (Km) and
maximum velocity (Vmax) values were calculated by curve fitting. Intrinsic clearance
(CLint) was determined as the Vmax/Km ratio. Differences in the metabolic parameters of
citalopram between the wild-type enzyme and 30 other variants were analyzed using
Dunnett’s T3 multiple comparison in SPSS Statistics version 24 software (IBM
Corporation, Armonk, NY, USA). The data were presented as meantstandard deviation.
Statistical significance was denoted at P < 0.05.
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RESULTS

The HPLC-FLD method was validated according to conventional requirements. As shown
in Fig.1, the retention times of venlafaxine, demethylcitalopram, and citalopram were 3.8,
7.2, and 8.1 min, respectively. The analytes were well separated with no interference. The
linear regression curve for demethylcitalopram was established using the ratio of peak area
to concentration. The linear concentration range was determined to be 50 to 2,500 ng/mL,
with a coefficient of determination of 0.9998, which indicated excellent linearity. The lower
limit of quantification for demethylcitalopram was 50 ng/mL. The precision, accuracy,
recovery, matrix effect, and stability of the method were adequate.

The demethylation activity of the CYP2C19 wild-type enzyme and 30 other variants
toward citalopram were evaluated in this experiment. The fitted Michaelis-Menten curves
for all CYP2C19 variants are presented in Fig.2, and the corresponding enzyme kinetic
parameters are summarized in Table 1. The results indicated that demethylcitalopram was
not detected in the CYP2C19*3 and 35FS enzyme incubation systems, so their kinetic
parameters could not be evaluated. This suggested that they had completely lost catalytic
activity. Furthermore, the kinetic parameters of almost all CYP2C19 variants were
significantly altered compared to the wild-type. Specifically, the Vmax value of four
variants (CYP2C19*23, *29, T130M, and L16F) was significantly increased, achieving
1.25- to 2.42-fold that of the wild-type, whereas the Vmax of three variants
(CYP2C19*2H, *3C, and N277K) did not differ significantly from the wild-type. The
remaining 21 variants exhibited significantly decreased Vmax, ranging from 22.15% to
69.06% of the wild-type. The Km value showed no significant difference among the
variants.

The CLint was used as an index to evaluate the demethylation metabolism of the
CYP2C19 enzyme toward citalopram in our experiment. The relative clearance rate was
used to display differences in citalopram metabolic capacity among CYP2C19 variants and
the wild-type. It was expressed as the ratio of the CLint of each variant to that of the wild-
type, as shown in Fig. 3. The CYP2C19*29 and L16F variants showed significant increases
in CLint, nearly 5-fold and 1.5-fold, respectively, compared to the wild-type. Meanwhile,
the CLint of eighteen variants (CYP2C19*2C, *2F, *2G, *2J, *6, *18, *30, *31, *32, *33,
N231T, R124Q, R261W, 1327T, A430V, R125G, M255T, and 1331V) was significantly
lower than that of the wild-type, ranging from 18.02% to 63.16%. The remaining eight
variants showed no significant difference in CLint.

The 30 variants were manually classified into six groups according to the degree of
change in CLint compared to the wild-type. The CYP2C19*3 and 35FS variants, which
had no enzymatic activity, were classified as the poor metabolism variants. Nine variants
(CYP2C19*2C, *6, *18, *30, *31, R261W, 1327T, R125G, M255T) exhibited 10-50% of
the wild-type CLint and were regarded as the intermediate metabolism variants. Another
nine variants (CYP2C19*2F, *2@G, *2J, *32, *33, N231T, R124Q, A430V, I1331V) showed
50-70% of wild-type and were regarded as the mild reduction variants. The L16F variant,
which showed a 130% to 200% increase compared to wild-type, was regarded as the rapid
metabolism variant, while the CYP2C19*29 variant, with more than a 200% increase, was
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Figure 1 Structural and HPLC characterization of citalopram metabolism by CYP2C19 in liver
microsomes. (A) Chemical structures and CYP2C19-mediated biotransformation pathway of citalo-
pram; (B) HPLC chromatograms of the blank in recombinant liver microsomes; (C) HPLC chromato-
grams of the blank from inactivated recombinant liver microsomes containing standard drug solution-
venlafaxine, demethylcitalopram and citalopram; (D) HPLC chromatograms of incubation sample of
citalopram in recombinant liver microsomes.1: venlafaxine; 2: demethylcitalopram; 3: citalopram.
Full-size K&l DOT: 10.7717/peerj.20027/fig-1
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Figure 2 Michaelis-Menten plots of kinetics formation for citalopram demethylation metabolism by recombinant wild-type and 30 CYP2C19
variants. Each point corresponded to the Mean + SD from three parallel samples. The variants have been manually arranged into seven different
groups. Full-size k&l DOL: 10.7717/peerj.20027/fig-2

regarded as the ultrarapid metabolism variant. The remaining variants, which showed
70-130% of wild-type CLint, or no statistically significant difference in metabolic activity
were classified as the normal metabolism variants.
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Figure 3 Comparison of the metabolic activity of 30 CYP2C19 variants on citalopram, fluoxetine, and clomipramine. *P < 0.05 compared with
wild-type CYP2C19*1. Data are presented as the Mean + SD of three independent experiments. Full-size K] DOI: 10.7717/peerj.20027/fig-3

DISCUSSION

The frequencies of some CYP2C19 variant alleles in our study are relatively low. However,
research on these low-frequency variants remains clinically significant in the context of
precision medicine, as these variants may still have an important effect on individualized
treatments. Notably, there is a large population of 1.4 billion people in China. Therefore,
even rare variants may have a large number of carriers. In addition, conducting clinical
studies on these low-frequency CYP2C19 variants presents some challenges, such as
difficulties in recruitment and the complexity of variable control. Therefore, this study
employs an in vitro incubation system using recombinant human CYP2CI9 expressed in
Spodoptera frugiperda (Sf) 21 insect cells to systematically evaluate the functional impact of
30 CYP2C19 variants on citalopram metabolism. Since CYP2C19*1 is a high-frequency
genotype and exhibits normal enzyme activity, it served as the control group. Finally, the
results exhibited that most of the CYP2C19 variants significantly changed the kinetic
parameters and influenced the metabolic activity of citalopram.
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Based on our in vitro findings, we hypothesize that these CYP2C19 variants may show
similar enzyme activity in vivo and thus have potential implications for the individualized
use of citalopram in clinical practice. Specifically, compared with individuals with normal
metabolic activity, patients carrying poor or intermediate metabolizer variants may have
slower metabolism of citalopram, potentially leading to increased drug concentrations and
a higher risk of dose-related adverse reactions, such as neurotoxicity and cardiotoxicity.
These individuals may require a slower titration process and lower maintenance doses.
Conversely, patients carrying rapid or ultrarapid metabolism variants may metabolize
citalopram more quickly, making it difficult to achieve therapeutic drug levels and
resulting in inadequate efficacy. These patients may be considered for higher initial and
maintenance doses. Nonetheless, these hypotheses require further validation through in
vivo and real-world clinical studies.

CYP2C19 belongs to the subfamily CYP2C. Its gene is mapped to chromosome 10g23.33
and its enzyme is composed of 490 amino acids. The tertiary structure of CYP2C19 consists
of 12 a-helices and three B-sheets. It exhibits two internal cavities: one cavity is positioned
above the surface of the heme cofactor, where drug biotransformation occurs; and the other
may form part of the substrate access/egress channel, which is connected to the active site
(Reynald et al., 2012). The helices F, F’, G’, and G and their turns, the turn in p-hairpin 1,
and the B-C loop region may be essential for the structural and functional stability of the
CYP2C19 enzyme, and mutated residues in these regions may affect substrate binding and
catalytic efficiency (Reynald et al., 2012; Mustafa et al., 2019). In addition, mutated residues
located within the active pocket or substrate recognition sites (SRS) may also directly affect
the enzyme’s substrate affinity and catalytic efficiency. We hypothesize that these CYP2C19
variants showing significant changes in enzyme activity in our study are likely located in, or
near, these functionally important regions.

CYP2C19*2 and CYP2C19*3 have been extensively studied in different ethnic
populations as the most clinically significant defective alleles. CYP2C19*3, which is most
commonly found in East Asians and Oceanians, exhibits allele frequencies of 7% in East
Asians and 15% in Oceanians (Botton et al., 2021). The loss of function of CYP2CI19*3 is
caused primarily by a G to A transition at position 636 in exon 4, leading to a codon change
from a tryptophan at position 212 to an early stop codon. This mutation produces a
truncated protein missing the heme and substrate binding region, causing it to become
nonfunctional. CYP2C19*2 is most prevalent among Asians (29-35%) and
African-Americans (15%) (Scott et al., 2012). In CYP2C19*2, a synonymous G > A
transition at position 681 in exon five creates an aberrant splice site, which alters the
messenger RNA (mRNA) reading frame and results in the production of a truncated,
nonfunctional protein. In vitro studies have shown that CYP2C19*2 and *3 variants
almost completely lose their metabolic capacity due to impaired protein function, leading
to little or no formation of the corresponding metabolites (Dai et al., 2015; Lee et al., 2009;
Shirasaka et al., 2016). Our results also confirm that the CYP2C19*3 variant is inactive, as
no citalopram metabolites were detected. Similar to the CYP2C19*3 variant, we observed
that the 35FS variant also exhibits no enzymatic activity. The 35FS variant consists of the
insertion of five nucleotides (CCTAC) at position 101 in exon 1 (Hu et al., 2012), which
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may cause a frameshift and disruption to amino acid sequences, resulting in the
production of an inactive protein. Furthermore, immunoblotting assays showed that
CYP2C19 protein expression was absent for the allelic variants CYP2C19*3 and 35FS (Dai
et al., 2015). These findings further indicate that CYP2C19*3 and 35FS are loss-of-function
alleles. Research has shown that CYP2C19*2 and CYP2C19*3 variants can result in
increased in vivo exposure to citalopram, thereby increasing the risk of intolerable side
effects (Chang et al., 2014; Wong et al., 2023). According to CPIC guidelines, individuals
carrying the CYP2C19*3 or CYP2C19*2 variants are classified as poor metabolizers who
may need citalopram dose adjustments, such as a lower starting dose, a slower titration
schedule, and a 50% reduction in the standard maintenance dose (Bousman et al., 2023).
Given the same loss of enzyme activity observed in the 35FS variant, we speculate that
patients carrying this mutation might also require similar dose adjustments. However, this
hypothesis requires further validation in clinical research.

A published study on the structural characterization of CYP2C19 protein has found that
residues within and adjacent to the helix B-C loop may play a critical role in substrate
binding and enzyme activity (Reynald et al., 2012). In our study, we found six mutants,
including CYP2C19*6 (R132Q), *30 (R73C), *31 (H78Y), *32 (H99R), R124Q), and
R125G, whose mutation sites are located within or near the helix B-C loop. These variants
showed a significant reduction in catalytic efficiency towards citalopram, ranging from
18.06% to 63.30% of wild-type. Our findings further support the notion that mutations in
the helix B-C loop can impact CYP2C19 enzyme function. Characterization of the
chimeric enzymes suggests that these mutations may alter the shape and chemical
properties of the substrate-binding site by influencing the conformation and dynamics of
the B-C loop. In addition, we found that residues R73, H99, R124, R125, and R132 are
located in the reported SRS regions of CYP2C subfamily proteins (Zawaira et al., 2011).
The SRS regions are involved in substrate recognition and binding, and contribute to
positioning the substrate in the active site. Notably, Arg132 shows good conservation in
the CYP2 family, and its positively charged side chain could stabilize the structure of the
protein (Lewis, 1998). The R132Q variant may disrupt this stabilization, leading to altered
enzyme activity. Furthermore, changes in the residues at position 125 in the CYP2C19
crystal structure have been reported to affect the active site and SRS 4 region (Seo ef al.,
2023). The R73C and H99R mutations may significantly influence the orientation and
interactions of the CYP2C19-membrane system and affect the substrate access tunnels
(Mustafa et al., 2019). These changes may impede substrate passage through the channel
and slow down enzyme activity. Similar to our findings with citalopram, these six variants
also showed impaired catalytic activity compared to wild-type enzyme towards
mephenytoin and omeprazole (Wang et al., 2011; Dai et al., 2015). Therefore, the amino
acid substitutions at key residues in the substrate recognition sites (SRS) regions of
CYP2C19 may alter protein conformation and stability, and ultimately impair
catalytic activity.

In addition, CYP2C19*2C, *18, R261W, I327T, and M255T variants demonstrated a
dramatic decrease in CLint for citalopram in our study. Of these, CYP2C19*2C and *18
variants showed the most significant reductions in activity. Their CLint decreased to
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approximately 30% of the wild-type enzyme level, mainly due to a comparable decrease in
Vmax. The CYP2C19*2C variant carries an Alal61Pro substitution. Consistent with our
findings, the Alal61Pro variant also exhibited only 30% of the wild-type enzyme activity
for S-mephenytoin and omeprazole, two commonly used CYP2C19 probe substrates
(Wang et al., 2011). These findings indicate that the Alal61Pro variant reduces catalytic
efficiency. Sequence alignment analysis suggests that Alal61 is conserved in the human
CYP2C subfamily (Lewis, 2003). It is located in the loop between the D-helix and the
E-helix. It may contribute to stabilizing the helical structure of the D-E loop. Given the
helix breaking property of proline, the Alal61Pro may change the conformation of the D-E
loop and prevent substrate accessibility to the active site, thereby reducing the activity of
the enzyme (Wang et al., 2011). However, a previous study reported that CYP2C19*18
(Arg329His) variant exhibited similar CLint compared to the wild-type enzyme when
catalyzing S-mephenytoin and omeprazole, suggesting that this variant hardly alters
metabolic activity for these substrates (Wang et al., 2011). This finding is in contradiction
to our results. One possible reason is the substrate-dependent effect of this variant. The
potential effects of Arg329His mutation on CYP2C19 enzymatic activity should be further
studied. Moreover, the R261W, I327T, and M255T variants exhibited lower CLint than the
wild-type enzyme (37.18-44.48%) for citalopram. Similar results were observed for both
S-mephenytoin and omeprazole, where the value decreased by more than 50% (Dai ef al.,
2015). Our previous research has found that these variants show lower protein expression
levels than that in the wild-type (Dai et al., 2015). We hypothesize that these substitutions
interfere with the synthesis, folding, or stability of CYP2C19 protein by an uncertain
mechanism, thus leading to the reduced catalytic activity.

CYP2C19*17 is one of the few known allelic variants associated with increased
metabolic activity. It has been widely studied for its role in guiding the individualized use
of citalopram. The enhanced activity of CYP2C19*17 is primarily attributed toa C > T
transition at the —806 site in the promoter region, which enhances the binding affinity for
specific transcription factors, resulting in increased CYP2C19 expression and activity (Sim
et al., 2006). In this study, the CYP2C19*29 (K28I) and L16F variants also showed
increased metabolic activity, with CYP2C19*29 showing particularly marked effects.
Specifically, CYP2C19*29 exhibited approximately a 5-fold increase in CLint relative to
wild-type, due to a 2.5-fold increase in Vmax and a 50% reduction in Km. However, unlike
CYP2C19*17, which increases activity via increased protein expression, the CYP2C19*29
variant shows a relatively lower protein expression level than wild-type (Dai et al., 2015).
This suggests that the protein expression level is not the only factor affecting enzyme
activity. Structurally, the K28 residue is located in the linker region that connects the
globular domain to the N-terminal transmembrane-helix. We speculate that the
substitution of positively charged lysine at position 28 with hydrophobic isoleucine could
change the polarity of the linker region. This change may significantly influence the
orientation and interactions of CYP2C19 within the membrane environment (Mustafa
et al., 2019). The optimized membrane orientation of CYP2C19 proteins may facilitate
access of the hydrophobic drug citalopram to the active-site tunnels. This may be one
possible reason for the observed increase in the metabolic activity of the K28I variant.
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Clinically, individuals carrying the CYP2C19*17 gain-of-function allele exhibit increased
metabolism of citalopram to less active compounds when compared with normal
metabolizers, leading to lower plasma concentrations and a potential reduction in clinical
efficacy (Chang et al., 2014). Therefore, CPIC guidelines recommend that ultrarapid
metabolizers be prescribed a higher maintenance dose (Bousman et al., 2023). If the gain-
of-function effect of CYP2C19%*29 is confirmed in clinical settings, individuals carrying
this variant may similarly require careful monitoring of the therapeutic response to
citalopram and dose individualization, akin to CYP2CI19*17 carriers.

Fluoxetine and clomipramine are commonly used antidepressants, metabolized via
CYP2C19 just like citalopram. Previously, we employed the same in vitro incubation
method to evaluate the metabolic impact of these 30 CYP2C19 variants on fluoxetine and
clomipramine metabolism (Fang et al., 2017; Lan et al., 2021). For comparison, we
combined the citalopram data with those of the other two antidepressants and analyzed the
relative clearance of all three drugs across different CYP2C19 variants (Fig. 3). Our results
indicate that most variants have a consistent trend of enzyme activity across the three
antidepressants. For example, CYP2C19*3 and 35FS variants completely lacked
enzymatic catalytic activity for all three antidepressants. However, eighteen CYP2C19
variants demonstrated significantly reduced CLint toward all three antidepressants
compared to wild-type enzyme, with nine of them (CYP2C19*2C, *6, *18, *30, *31,
R261W, 1327T, R125G, and M255T) showing more than a 50% reduction. However, some
variants (CYP2C19%23, *29, L16F, S303N, and T130M) exhibit different trends of
enzyme activity among the antidepressants, especially CYP2C19*29 and L16F. The
CYP2C19%*29 variant displayed remarkable enhanced CLint toward citalopram (5-fold)
and clomipramine (2-fold) compared with wild-type, yet showed reduced activity for
fluoxetine (43.04% of the wild-type). Similarly, the L16F variant increased the CLint of
citalopram and clomipramine to 1.5-fold and 1.7-fold relative to wild-type, respectively,
while reducing fluoxetine metabolism to 74.14%. Mechanistically, we found that the same
CYP2C19 variant can exhibit different metabolic tendencies depending on the substrate.
Such substrate-specific metabolic behavior appears to be common among CYP2C19
variants. Structures and physicochemical differences of substrates may affect their binding
modes and interactions with CYP2C19. Moreover, mutations may induce changes in
enzyme conformation or structure, potentially reducing the enzyme’s ability to
accommodate certain substrates. These may collectively contribute to the
substrate-dependent metabolic behavior of CYP2C19 variants (Ibeanu et al., 1996; Derayea
et al., 2019). From a clinical perspective, these findings suggest that individuals carrying
CYP2C19*29 or L16F variants may need higher-than-standard therapeutic doses for
clinical effectiveness with citalopram (or clomipramine), but lower-than-standard doses
for avoiding toxic accumulation with fluoxetine. Therefore, clinicians should pay special
attention to the differential metabolism of antidepressants caused by the same CYP2C19
variant, particularly during antidepressant switching.

Several limitations should be noted in our study. First, the functional characterization of
the 30 CYP2C19 variants was assessed using a single substrate-citalopram. Therefore, the
observed enzymatic activities should not be directly extrapolated to other substrates, as the
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metabolic activity of CYP2C19 variants is known to be substrate-dependent. Second,
although the in-vitro incubation method could efficiently and accurately assess the
intrinsic metabolic capacity by minimizing confounding variables, it cannot completely
simulate the complexity of the in vivo environment. Specifically, these in vitro systems may
lack certain physiological cofactors and fail to reflect the actual expression levels of
different variants. Moreover, most antidepressant drugs, such as citalopram and
fluoxetine, are involved in metabolism through multiple pathways in vivo. We therefore
remain interested in further validating the activity of variants in vivo. Third, we only
constructed the key amino acid substitutions in the sixteen named variants, without
introducing additional mutations found in complete haplotypes. Nevertheless, the current
in vitro results can still provide a valuable reference for understanding their actual
functions. In the future, in vitro-in vivo extrapolation (IVIVE) and pharmacokinetic
modeling methods could be used to translate these in vitro results into clinical guidance.

CONCLUSIONS

In this study, we functionally characterized the metabolic differences of 30 CYP2C19
variants in the N-demethylation of citalopram using an in vitro incubation system. Our
findings showed that most of these variants exhibited significantly altered metabolic
efficiency toward citalopram compared to the wild-type. These rare defective variants may
partly contribute to interindividual variability in citalopram metabolism, which could
potentially affect clinical response. Although most of the variants are not mentioned in
pharmacogenetic guidelines, their potential functional effects are worth confirming
through clinical and in vivo studies. Overall, these results provide foundational preclinical
evidence for further genotype—phenotype correlation studies regarding the interindividual
differences in citalopram metabolism.
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