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ABSTRACT
Because bones are often enveloped by soft tissues, their visibility in X-ray images is
compromised, resulting in a lack of clarity. Addressing this challenge, our article
introduces an innovative approach to virtually decompose an X-ray image into
distinct components: one representing soft tissues and the other, the bone structure.
To achieve this separation, we have formulated a novel mathematical model. With
proper assumptions, the model is reduced to a standard Laplace equation, which has
fast numerical solvers. Our method has two important properties. First, the bone
image derived from this process is theoretically guaranteed to have enhanced
contrast relative to the original, thereby accentuating the visibility of bony details.
Second, our method is computationally fast. Our method can process a 2,044� 1,514
resolution image within 0.35 s on a laptop (8.8 million pixels per second). Our
methodology has been validated through a series of numerical experiments,
demonstrating its efficacy and efficiency. With such performance, this technique
holds promise for a broad spectrum of X-ray imaging applications, including but not
limited to clinical diagnostics, surgical planning, pattern recognition, and advanced
deep learning applications.
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INTRODUCTION
X-ray has been widely used in the field of biomedical imaging and clinical diagnosis,
particularly in bone research and human body diagnosis (Chapman et al., 1997;
Sakdinawat & Attwood, 2010; Gong et al., 2019; Ou et al., 2021; Huang, Wu & Gong, 2023;
Ataei et al., 2024). Since its discovery and development in 1895, X-ray imaging technology
has become immensely popular and is now extensively used in various research and
industry domains. In present times, it has become an essential tool for diagnosing
bone-related conditions in clinical applications.

The skeletal system, comprising of bones, acts as a central pillar in maintaining the
structure of mammalian bodies. These bones provide a framework that supports the body
and protects the organs they encase. The health, shape, and integrity of these bones play an
incredibly vital role in the overall health, functionality, and well-being of an individual,
enabling a wide array of activities such as walking, running, dancing, and even the simple
task of standing upright. Due to the pivotal role bones play in overall health, bone studies
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and research into their health, structure, and function have become a significant and
rapidly growing area of research.

In mammals, bones are commonly wrapped and enshrined in a variety of soft tissues
that provide both support and protection. These tissues not only help in the protection of
bones but also supply the necessary nutrients and stimuli for bone growth, regeneration,
and remodeling. Additionally, they act as a crucial barrier against external forces, shocks,
and injuries, further enhancing the bone’s ability to perform its functions effectively.

Bones can be distinguished from these surrounding soft tissues by various
characteristics or factors such as their shape, thickness, hardness, and density-attributes
that make them unique in their structure and function. However, when these bones are
covered or obscured by soft tissue, it can pose a significant challenge for medical
professionals to see the details on bones.

Notably, X-ray imaging, a modality utilizing electromagnetic radiation, enables the
critical differentiation of bones and soft tissue structures. The fundamental physical basis
of this technique lies in the differential attenuation of X-ray photons as they traverse
anatomical structures. During radiography examination, incident X-rays penetrate the
body and undergo varying degrees of absorption and scatter contingent upon the density
and atomic composition of the intervening tissues. Bone structures, characterized by
significantly higher density and effective atomic number compared to soft tissues, induce
substantially greater attenuation of the incident radiation. Consequently, the radiation flux
reaching the detector (e.g., film or digital sensor) exhibits pronounced spatial variation.
This differential attenuation is manifested in the resultant image as distinct contrast
gradients, clearly delineating the boundaries and relative radio-densities of skeletal
elements against the surrounding soft tissue matrix. Figure 1 provides two examples of this
phenomenon in the left column.

X-ray images
Dense structures like bones block more X-rays, making them appear darker on the sensor
compared to other areas. On the other hand, less dense and thinner soft tissue allows more
X-rays to pass through, resulting in brighter areas on the sensor.

To improve the visibility of bone regions, modern X-ray images often use a subtraction
process. This involves subtracting a constant maximum value, caused by the X-ray dose,
from the original image. This operation makes bone regions appear brighter and soft tissue
regions appear darker, making the bone region more distinguishable.

In clinical applications, the window technique is commonly used to limit the intensity of
bone within a specific range. This effectively removes soft tissue regions that do not overlap
with bones. However, this method cannot remove soft tissue that overlaps with bone
regions.

To achieve better visualization of bones, other methods aim to enhance image contrast
through techniques like histogram equalization, Contrast Limited Adaptive Histogram
Equalization (CLAHE), and more (Gong et al., 2019; Aldoury et al., 2023; Yan et al., 2023).
However, these methods often enhance both bone and soft tissue simultaneously, resulting
in visually improved images but introducing a complex or unknown relationship between
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image intensity and the actual X-ray dose. Such a complex or unknown relationship causes
artifacts and makes the results more difficult to interpret.

To address these challenges, this article proposes a method to separate an X-ray image
into a soft tissue image and a bone image. This decomposition technique maintains the
linear relationship between image intensity and the physical properties of the objects being
imaged. Figure 1 showcases two examples of our method, demonstrating the guaranteed
bone enhancement. Further details about our method will be explained in subsequent
sections.

Scattered light in physics
As shown in the left column of Fig. 1, bones are usually surrounded by soft tissue, which is
similar to many natural scenes. One example is foggy weather, as depicted in Fig. 2A,
where the fog can be considered as “soft tissue” (low density) and the buildings as “bone”
(high density).

The phenomenon behind this is called light scattering (Van de Hulst, 1958), which
occurs in different situations, including X-ray images in clinics, foggy weather in natural
scenes, and fluorescence images in biological imaging (Gong & Sbalzarini, 2016; Gong,
2015). Scattered light can affect the quality of an image, such as when soft tissue scatters
X-rays, making bone details less clear.

The study of light scattering dates back to 1871 when Rayleigh examined this
phenomenon for light wavelengths larger than the particles’ radius in the medium

Figure 1 We propose to decompose one X-ray image (A, C) into one soft tissue image (B, D, orange) and one bone image (B, D, blue). The
estimated bones are theoretically guaranteed to have larger image contrast than the input image. Therefore, the details on bones are enhanced and
becomes much clearer. Full-size DOI: 10.7717/peerj.20016/fig-1
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(Van de Hulst, 1958). Mie scattering, which involves spherical particles, was later studied
by Mie and has been named after him. These fundamental principles of physics form the
basis for modern image dehazing techniques.

Scattered light in natural images
A typical example of scattering light in nature is the fog. As a result, the image from foggy
natural scene is not clear. Image processing algorithms that virtually remove the fog are
called dehazing (as shown in the top row of Fig. 2).

For natural images, the dehazing mathematical model is Fattal (2008), He, Sun & Tang
(2011)

f ðx; yÞ ¼ Jðx; yÞtðx; yÞ þ Að1� tðx; yÞÞ; (1)

where f is the observed image, J is the unknown clear image to be estimated, t is the
transmission map to be estimated, and A is the global atmospheric light to be estimated.

In recent years, there has been significant progress in improving the visibility of hazy
images. These methods can be divided into three categories: simple contrast enhancement
methods (Tan, 2008; Fattal, 2008), dark channel based methods (He, Sun & Tang, 2011)
and deep learning methods (Cai et al., 2016).

Initially, the focus was on enhancing the contrast of foggy images, assuming that they
lacked sufficient contrast (Tan, 2008; Fattal, 2008). However, these methods often require
extensive computation and may result in noticeable artifacts.

Figure 2 The scattered light in X-ray images share the same physics as the natural images. (A) The
building is surrounded by the fog. (B) The fog can be removed by computation algorithms. (C) The bone
is surrounded by the soft tissue. (D) The soft tissue can be removed by our method.

Full-size DOI: 10.7717/peerj.20016/fig-2
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A significant breakthrough came with the introduction of the dark channel prior in
dehazing methods (He, Sun & Tang, 2011). The dark channel prior assumes the existence
of a region with low-intensity values in the local neighborhood. This prior can be
efficiently solved using the guided image filter, which has popularized the use of the dark
channel prior in dehazing.

Deep learning is another approach for reducing scattering light in images (Cai et al.,
2016; Engin, Genc & Ekenel, 2018). It assumes the availability of paired clear and foggy
images, and a neural network can be trained to learn the mapping from foggy images to
their corresponding clear images. However, in practical applications, acquiring paired
images can often be challenging.

Bone suppression or enhancement
Instead of interested by bones, some applications focus on the soft tissue such as
pneumonia. For these applications, they try to reduce the visualization of bones. Such task
is called bone suppression (Suzuki et al., 2006; Chen & Suzuki, 2014; Li et al., 2020).

In such bone suppression, previous approaches assume that the observed image f is
linearly composed by soft tissue ftissue and fbone as Von Berg et al. (2016)

f ¼ ftissue þ fbone: (2)

Surely, such linear composition is fundamentally different from the nonlinear model in
Eq. (1).

Moreover, such methods require strong geometric prior information about the imaging
objects, such as the rib shapes for chest X-ray images. And they usually require to exactly
find the bone boundaries (bone segmentation). Due to such geometric prior and accurate
segmenation requirements, these methods are difficult to be extended from one imaging
object to another. For example, the methods developed for ribs can not easily be used for
feet or knees.

Even with the accurate bone segmentation, the resulting soft tissue images may have
obvious artifacts because their linear composition assumption, Eq. (2), is not always valid.
In contrast, the nonlinear model Eq. (1) has been shown effective in removing the haze in
natural images.

These limitations motivate us to develop a new and generic mathematical model.
Instead of suppressing bones or soft tissue, our model decompose one X-ray image into
one soft tissue image and one bone image. These two images have exactly the same imaging
domain. Therefore, our task is fundamentally different from bone enhancement task and
bone suppression task.

Motivation and contributions
The soft tissue in human body usually scatters the X-ray, severely reducing the quality of
bone details in the resulting images. This fact motivates us to construct a novel
mathematical model that can decompose bones and the soft tissue in X-ray images. The
decomposed soft tissue image can be used for its related study such as pneumonia. The
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bone image can be adopted for its related research such as bone fracture and bone age
estimation.

The scattering light in X-ray images by the soft tissue shares the same physical law as the
fog in natural images (Gong & Sbalzarini, 2016; Gong, 2015). Thus, the dehazing methods
that have been developed for natural foggy images must be also valid on X-ray images
(Gong et al., 2019). We transform the dehazing model into a new form for X-ray images
with proper assumptions.

Different from the bone enhancement or suppression, we propose to decompose the
input X-ray image into one bone image and one soft tissue image. Such task is named as
bone and tissue decomposition (BTD). We construct a new mathematical model that can
effectively decompose a single X-ray image into one soft tissues image and one bone image.
Be aware the difference between our model and the bone segmentation task. Bone
segmentation separates the imaging domain into bone region and background region
(without overlap). However, our background and bone images share the same imaging
domain (exactly overlapped with the same imaging domain). Such difference is illustrated
in Fig. 3.

Our contributions are in the following folds:

. We propose a new image processing task named BTD.

. We propose a new mathematical model for BTD. This model is based on the well known
image dehazing model, but with proper improvements for X-ray images.

. With proper assumptions, the BTD model leads to a standard Laplace equation, which
can be efficiently solved.

. The resulting bone image is theoretically guaranteed to have larger image contrast than
the original image.

Portions of this text were previously published as part of a preprint (https://arxiv.org/
abs/2007.14510).

BONE TISSUE DECOMPOSITION MODEL
In this section, we first show the novel mathematical model that decomposes the soft tissue
and the bones. Then, we analyze its parameter. Finally, we show its connection with the
previous dehazing model and other related models.

Mathematical equation
In this article, we propose a new mathematical model for X-ray image decomposition. Our
model is mathematically rooted in the scatted light physics and the dehazing model for
natural images in Eq. (1). More specifically, we propose following model for X-ray images:

f ðx; yÞ ¼ 1
a
Bðx; yÞð1� Tðx; yÞÞ þ Tðx; yÞ; (3)

where f ðx; yÞ 2 ½0; 1� is the observed image, B is the unknown bone image, Tðx; yÞ is the
soft tissue image, a � 0 is a scalar parameter.
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When f ðx; yÞ ¼ Tðx; yÞ, it would force Bðx; yÞ ¼ 0. It means that the observation only
comes from the soft tissue and there is no bones in the image. When f ðx; yÞ ¼ 1

aBðx; yÞ, it
would force Tðx; yÞ ¼ 0, which indicates that the observation only comes from bones.
Otherwise, the observation is composed by the tissue and bones images as the similar way
in scattered light.

Parameter a analysis
We use a as global constant variable, instead of spatially varying aðx; yÞ. Although aðx; yÞ
might achieve better visual result, it could introduce artifacts and it would lose the
relationship between actual dose and image intensity in X-ray image. But when we use
spatially constant a, such linear scaling will keep such relationship between the actual
physics and the intensity in X-ray images.

In later section, we will prove that a � 1 (Eq. (11)), which theoretically guarantees to
increase the image contrast. This property becomes clear when we set the background
Tðx; yÞ ¼ 0. That is f ðx; yÞ ¼ 1

aBðx; yÞ. It means rBðx; yÞ ¼ arf ðx; yÞ, where r is the
standard gradient operator. Since a � 1, the contrast in bone image Bðx; yÞ is theoretically
larger than the contrast in the input image f ðx; yÞ. This theoretical property is numerically
confirmed by all our experiments.

Relationship with the dehazing model
Our model is different from Eq. (1) with two important changes. First, we define the soft
tissue image (also called background image in this article) as

Tðx; yÞ ¼ Að1� tðx; yÞÞ; whereA ¼ 1: (4)

Here, we assume A ¼ 1. The reason is that only X-ray can reach the sensors (there is no
other light resource). Second, we define the unknown bone image Bðx; yÞ as a linear scaling
of Jðx; yÞ

Bðx; yÞ ¼ 1
a
Jðx; yÞ; (5)

where a � 0 is a scalar parameter. Such linear scaling keeps the physical meaning of the
image intensity in X-ray images.

Decomposition Task
input

Segmentation Task

p

Figure 3 Our task is different from the segmentation task.
Full-size DOI: 10.7717/peerj.20016/fig-3
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Comparison with the linear model
Our model is nonlinear and inspired by scattered light models in physics and dehazing
models for natural images. Once input X-ray image and its bone image are given, the soft
tissue image can be computed as

Tðx; yÞ ¼ f � B
a

1� B
a

; (6)

which is fundamentally different from the linear model, Eq. (2), in bone suppression
(Von Berg et al., 2016)

ftissue ¼ f � fbone: (7)

To quantitatively demonstrate this differential performance, we implement both the
nonlinear formulation (Eq. (6)) and its linear counterpart (Eq. (7)) using identical input
radiographs f and standardized bone images (fbone ¼ B

a). The experimental validation
employs a publicly accessible benchmark dataset (https://www.kaggle.com/raddar/
digitally-reconstructed-radiographs-drr-bones) comprising 193 paired X-ray projections
and their corresponding osseous segmentation maps. Subsequent soft tissue
reconstructions derived from Eqs. (6) and (7) exhibit marked qualitative differences, as
exemplified in Fig. 4. Critical evaluation of the resultant images, as annotated by
directional indicators (red/green arrows), reveals that the nonlinear paradigm achieves
significantly superior bone suppression efficacy relative to the linear approximation model.

Since the linear model and our model take the same input X-ray image and the same
bone image, the difference in the estimated soft tissue images can only come from the
models themselves. Therefore, the results in Fig. 4 numerically confirm that our model is
better than the linear model Eq. (2).

OUR NUMERICAL SOLVER
Now, our task is to numerically solve this model. In our nonlinear model, there are three
unknown variables, a, Bðx; yÞ and Tðx; yÞ. We notice that the bone image Bðx; yÞ can be
easily computed if the background image Tðx; yÞ is known. Therefore, we can solve our
model by first finding the Tðx; yÞ and a. We introduce some proper assumptions to solve
our model. With these assumptions, our model leads to a standard Laplace equation,
which has an efficient numerical solver.

Assumptions
Since our model, Eq. (3), is ill-posed, we have to make some assumptions to solve this
model. We make the following four assumptions to simplify the solving process.

. First of all, we assume Tðx; yÞ � f ðx; yÞ. This assumption makes sure that Uðx; yÞ � 0.

. Second, we assume 0 � Tðx; yÞ < 1, which avoids the denominator to be zero. As a result,
1

1�Tðx;yÞ > 1, which helps in improving the bone image contrast as shown in later sections
(Eq. (11)).
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. Third, we assume that Tðx; yÞ is second order differentiable (Gong & Goksel, 2019; Gong
& Sbalzarini, 2017). Such smoothness assumption is reasonable because the physical
configuration of soft tissue is smooth.

. Fourth, we assume that the maximum value in Bðx; yÞ is one. Such assumption is used to
determine the value of a. In later section, based on this assumption, we can prove that
a � 1. Such theoretical result guarantees the bone image contrast enhancement as
shown in later section.

A flexible bone mask
Now, we have enough assumptions to find Tðx; yÞ. We estimate the Tðx; yÞ by a two-step
strategy. First, we roughly estimate a mask Mðx; yÞ that covers bones. Be aware that the
maskMðx; yÞ only needs to cover the bones. It does not necessarily be exactly aligned with
bone boundaries as the image segmentation task.

Therefore, there are several ways to obtain such mask. First, it can be easily obtained by
a simple threshold method followed by morphology operations. Second, it can also be
estimated by active contour methods. Third, it can even be given interactively by users’
input. In short, the way of obtaining this mask is flexible.

Figure 4 Our nonlinear model Eq. (6) (right in each panel) leads to less visible bones than the linear model Eq. (2) (left in each panel) on chest
X-ray images, as indicated by the arrows. In each case, the soft tissue image is computed from the given input X-ray image and its related bone
image. Our model keeps less bones than the linear model, especially at the region indicated by the red and green arrows. This fact indicates that our
model is better than the linear model in terms of bone suppression. Full-size DOI: 10.7717/peerj.20016/fig-4
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Moreover, the mask Mðx; yÞ itself is also flexible. We use three different masks for the
same input image, as shown in each row of Fig. 5. Although the masks are varying, the
resulting soft tissue images and bone images are similar. Be aware that our mask only needs
to cover the bones. Its boundary is not necessarily aligned with the bone boundary (the
image segmentation task).

Soft tissue image
With a bone mask Mðx; yÞ, we can find the soft tissue image Tðx; yÞ by solving a Laplace
equation. Let Mðx; yÞ denote our mask. Now, we need to estimate the soft tissue intensity
in this mask. This problem can be modeled as following minimization task

min
Z Z

M
jjrTjj2dxdy ; s:t:TqM ¼ fqM; (8)

where q denotes the boundary. The optimal solution of this energy is the standard Laplace
equation

DTM ¼ 0 ; s:t:TqM ¼ fqM: (9)

There are several efficient Poisson solvers available for this equation. We summarize
these solvers in Table 1, where each algorithm’s computational complexity is also shown.

We use the convolution pyramid method (Farbman, Fattal & Lischinski, 2011) to solve
the this equation for two reasons. First, it is a direct method and so we do not have to
iterate. Second, the pyramid method has linear computational complexity.

Thanks to the efficiency of Pyramid method, the solution of Eq. (9) can be easily
obtained. The estimated soft tissue image is shown in Fig. 5C. The running time is 0.1 s in
MATLAB on a ThinkPad P1 laptop with Intel Xeon E2176 CPU with 2.70 GHz. The image
resolution is 1,022� 757. Such performance (7.7 Mpixel/second) is fast enough for clinical
applications in practice.

Bone image
After estimating Tðx; yÞ, we need to estimate a for bone image Bðx; yÞ estimation. As
mentioned, we assume the maximum value in Bðx; yÞ is one. Therefore, we define

a � 1

max
ðx;yÞ

f ðx;yÞ�Tðx;yÞ
1�Tðx;yÞ

n o : (10)

Since 0 � f ðx; yÞ � 1, we have f ðx;yÞ�Tðx;yÞ
1�Tðx;yÞ � 1. As a result, we can prove

a � 1: (11)

This parameter linearly increases the contrast in the bone image. As mentioned, such
linearity can keep the physical meaning of intensity in X-ray images.

Finally, the bone image can be computed as (shown in Fig. 5D)

Bðx; yÞ ¼ a
f ðx; yÞ � Tðx; yÞ

1� Tðx; yÞ : (12)
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Figure 5 Original X-ray image (A), our mask (B, E ,H), estimated background (C, F, I) and estimated bones (D, G, J). The soft tissue image T(x, y)
is obtained by solving a Laplace equation from the mask. Each row contains different mask, showing the flexibility of the mask. In all cases, the bone
image B(x, y) has better contrast than the input image. Full-size DOI: 10.7717/peerj.20016/fig-5

Wei et al. (2025), PeerJ, DOI 10.7717/peerj.20016 11/23

http://dx.doi.org/10.7717/peerj.20016/fig-5
http://dx.doi.org/10.7717/peerj.20016
https://peerj.com/


One example is shown in the first row of Fig. 5. And the middle line intensity profiles of
original and our results are shown in Fig. 6. In this case, a ¼ 1:44 and the image contrast is
enhanced. As shown in Eq. (11), a � 1 and the enhancement is theoretically guaranteed.
All our experiments also confirm this property.

Guaranteed contrast enhancement
With our model, we can prove the following theorem
Theorem 1. The bone image Bðx; yÞ has larger image contrast than the input image f ðx; yÞ
for most pixels.

Proof. To show the image contrast enhancement, we need to study the gradient of the
resulting bone image. From Eq. (12), we can get the gradient of B

rB ¼ a
rf

1� T
� 1� f

ð1� TÞ2rT

" #
: (13)

Table 1 Summary of Laplace solvers for N samples.

Solver Cholesky Jacobi GaussSeidel SOR

Type Direct Iterative Iterative Iterative

OðN3Þ OðN2Þ OðN2Þ OðN3=2Þ
Solver FFT Multigrid Wavelet Pyramid

Type Direct Iterative Direct Direct

OðN logNÞ OðNÞ OðNÞ OðNÞ

Figure 6 Original image (A), the line intensity profile from the input (blue) and our result (red) (B), our estimated bone image (C). In this case,
α = 1.44 and the contrast (gradient) is increased, although the intensity might be lower. Full-size DOI: 10.7717/peerj.20016/fig-6
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Since we assume Tðx; yÞ is smooth, we know that rTðx; yÞ � 0 for most locations (Gong
& Sbalzarini, 2016) (also see the gradient statistics in Fig. 5 from Gong & Goksel (2019)).
Therefore, we have

rB � a
rf

1� T
� arf � rf : (14)

The last inequality comes from the a � 1 in Eq. (11). This result indicates that the bone
image has better image contrast than the input image for most of pixels.

Such theoretical guarantee is important for practical applications, where the robustness
of the method is concerned. Our method makes sure that the bone image is clearer than the
original input. Moreover, the larger a, the better bone image contrast. The a depends on
the X-ray source and the imaging objects.

The complete algorithm
In summary, our model in Eq. (3) can be efficiently solved by Algorithm 1.

EXPERIMENTS
We performed four experiments for our method. First, we perform our method on several
X-ray images that contain different types of bones, showing our method is not restricted by
specific imaging objects. Second, we compared our method with image enhancement
method and dehazing method, showing that our model works better than simple image
enhancement and dehazing model. Third, we compared our method with bone
suppression and enhancement methods, showing that our method works better in both
cases. Fourth, we perform our method on a hand X-ray image dataset, showing its
effectiveness and efficiency on high resolution images in practical applications.

Different imaging objects
Our model is not restricted by any imaging object. It can work on various bone X-ray
images. Several results from our method are shown in Fig. 7, including knees, arm, hand,
etc. The left column is the original input image. The right two columns are the resulting
soft tissue and bone image from our method, respectively. It can be told that the soft tissue
image is smooth as we assumed. Meanwhile, the bone image has better image contrast as
desired.

Moreover, our method can reach real-time performance on these X-ray images. The
running time of our method on these images is reported in Table 2. Our method is fast

Algorithm 1 Bone and tissue decomposition.

Require: input X-ray image f(x,y)
(1) obtain the mask M(x,y) by active contour or user input
(2) compute T(x,y) by solving Eq. (9)
(3) compute a by Eq. (10)
(4) compute B(x,y) by Eq. (12)

Ensure: T(x,y), B(x,y)
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Figure 7 Our method works well on different imaging objects. Input X-ray images (A, D, G, J), our estimated soft tissue (B, E, H, K) and estimated
bone image (C, F, I, L). Full-size DOI: 10.7717/peerj.20016/fig-7
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enough for these low resolution images. For high resolution images, the running time will
be shown in later section. The experiments are performed in MATLAB 2022b (The
MathWorks, Natick, MA, USA) on a laptop with Intel Xeon E2176 CPU with 2.70 GHz.

Comparison with dehazing and enhancement
We further compare our method with a classical image enhancement method and a
dehazing method for natural images (He, Sun & Tang, 2011), which uses dark channel
prior. We tested on ten images and two of them are shown in Fig. 8. The classical image

Table 2 The running time in seconds of our algorithm.

Image a Resolution Time (seconds) Performance

Figure 7A 1:34 319 � 442 0.031 4.5 MP/s

Figure 7D 1:08 193 � 382 0.019 3.9 MP/s

Figure 7G 1:42 514 � 711 0.094 3.9 MP/s

Figure 7J 1:49 336 � 471 0.041 3.9 MP/s

Figure 8 Compare our method with other enhancement methods. Left to right: original images, image enhancement by histogram equalization
(Gonzalez & Woods, 2006), results from dehazing method with dark channel prior (He, Sun & Tang, 2011), and results from our method. The
conventional methods can not completely remove the soft tissue (red arrows). Our method removes the soft tissue (green arrows) and has better
contrast. Full-size DOI: 10.7717/peerj.20016/fig-8
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enhancement method (histogram equalization) enhances both the soft tissue and bones.
Such nonlinear process losses the relationship between image intensity and physical X-ray
dose.

Our model is also different from the dehazing model. The dehazing method for natural
images can not completely remove the soft tissue in X-ray image, as shown by the red
arrows in Fig. 8. In contrast, our method does not have this issue. This is because we
estimate a better soft tissue image. Moreover, our bone image has better image contrast,
which is theoretically guaranteed as described.

Comparison with bone suppression and bone enhancement
We compare our soft image with a bone suppression method (Gozes & Greenspan, 2020)
and compare our bone image with a bone enhancement method (Dougherty & Lotufo,
2003). We tested them on ten images and three results are shown in Fig. 9, where the left
column is the original input image.

Figure 9 From left to right: original, bone suppression (Gozes & Greenspan, 2020), our soft tissue and bone image, bone enhancement
(Dougherty & Lotufo, 2003). The images with the same color frame are comparable. These results confirm that our method works better for
both tasks. Full-size DOI: 10.7717/peerj.20016/fig-9
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Figure 10 From left to right in each panel: input X-ray images (left), our estimated soft tissue (middle) and estimated bone image (right). The
resolution, running time of our algorithm and parameter a are provided. For these practical images, our method requires about half second to
achieve the bone and soft tissue decomposition task in MATLAB language on a laptop with Intel Xeon E2176 CPU with 2.70 GHz.

Full-size DOI: 10.7717/peerj.20016/fig-10
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For the soft tissue image, our method obtains a result which does not have obvious
bones on various X-ray images, including knees, humerus, and hands. In contrast, the
method from Gozes & Greenspan (2020) does not suppress the bone much.

For the bone image, our method gives an image that only contains bones. In contrast,
the bone enhancement method (Dougherty & Lotufo, 2003) enhances the bones but still
keeps some soft tissue in the result.

High resolution images
Finally, we applied our method on a hand X-ray image data set (RSNA), which contains
more than 10,000 hand X-ray images. The image has high resolution (usually larger than
1,514� 2,044). These images are collected from clinical applications. Therefore, we can
test the performance of our method on practical images, showing its efficiency and
effectiveness.

In each panel of Fig. 10, the input image (left) is decomposed into soft tissue (middle)
and bone image (right) by our method. Although we only show several images from the
data set, the results for the rest images are similar.

The bone images have better image contrast since the parameter a � 1 is theoretically
guaranteed. Since details on bones become clear, such enhancement can benefit the bone
diagnosis in practice.

Moreover, the running time of our method on such high resolution images is less than
half second in the MATLAB language on a laptop. Therefore, it can be easily deployed in
real applications. If higher performance is required, our model can be solved by the parallel
Laplace equation solver on a modern graphic process unit (GPU), which usually has
thousands of cores.

We believe that such bone and soft tissue decomposition model is important for X-ray
images, bone study, soft tissue diagnosis, etc. Despite the nice mathematical properties of
the model, it can be very efficiently solved by solving a standard Laplace equation.

CONCLUSION
In this article, we propose to decompose one X-ray image into a soft tissue image and a
bone image. We name this task bone and tissue decomposition, for which a novel
mathematical model is developed. Our mathematical model is inspired by the natural
dehazing model, but with proper extension for X-ray images.

With several assumptions, our model leads to a Laplace equation, which can be
efficiently solved. Solving the 2D Laplace equation is a classical problem. And we use the
wavelet solver developed in Farbman, Fattal & Lischinski (2011) to solve this equation.
After solving this equation, we obtain the soft tissue image. With the soft tissue image and
the original input image, we can compute the bone image with a close form solution
expression. The bone image is uniquely determined by the soft tissue image.

The resulting bone images are theoretically guaranteed to have better image contrast
(larger gradient) because of a � 1. Several numerical experiments have confirmed this
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property. Better image contrast is important for clinical diagnosis, such as bone fracture
and surgery planning.

Our method can enhance the details on bones in X-ray images, without losing the
relationship between the intensity and actual physical X-ray received on the sensor. This
property is different from the conventional image enhancement methods. Our result can
improve other bone related tasks, such as bone segmentation, recognition, diagnosis,
surgery planning, etc.

Moreover, our method is numerically fast. It can process 8.8 million pixels per second in
MATLAB software on a ThinkPad P1 laptop with Intel Xeon E2176 CPU. For real X-ray
images with resolution 2,044� 1,514, our method only requires 0.35 s to finish the bone
and soft tissue decomposition task. In practice, this performance can be further improved
by C++ language on a better hardware. If higher performance is required, our model can be
solved by parallel algorithms on modern graphic processing unit (GPU), which usually
contains thousands of cores.

Our method can be applied in a large range of applications. It can be used for bone
study, for example, bone fracture diagnosis. It can also be used in bone age assessment,
reducing the influence of soft tissue. Our method can also be used for applications where
the soft tissue is the main concern, for example, pneumonia in chest X-ray images. Our
method can be used as a pre-processing approach for deep learning training data set
preparation.

Our method assumes the homogeneity inside the mask, which is not always valid. When
the mask contains complex geometries, our method might not generate the accurate soft
tissue image, and thus lead to artifacts in the bone image. This issue can be tackled by
recent deep learning methods.

In the future, we plan to solve our mathematical model by modern convolution neural
networks (CNN). Thanks to their excellent achievements in the past few years, CNN have
been used in many different image processing and computer vision tasks. There are several
advantages to use CNN in this task. First, CNN can handle complex objects without
knowing the mask. Second, the CNN can be robust with the noise. Third, the CNN can be
trained to be adaptive to the input dataset. In the CNN, the loss function can be
constructed from our mathematical model proposed in this article. And the training
ground truth for the CNN can be our results from X-ray images. More specifically, the
network can be trained on the paired data ðfi;Ti;BiÞ, where fi is the input image and Si, Ui

are results from our method. Thanks to the power of neural networks, the CNN will
achieve higher accuracy in generating the soft tissue and bone images from a single input
X-ray image (Gong, Paul & Sbalzarini, 2012; Yu &Orchard, 2019;Gong & Sbalzarini, 2013;
Yin, Gong & Qiu, 2019a; Gong, 2015; Yu et al., 2022; Gong & Sbalzarini, 2017; Zong et al.,
2021; Gong et al., 2018a, 2018b; Gong & Goksel, 2019; Yin, Gong & Qiu, 2019b; Gong &
Chen, 2019; Gong et al., 2019; Gong, 2019, 2022; Yin, Gong & Qiu, 2020; Gong & Chen,
2020; Gong et al., 2021b; Tang, Gong & Qiu, 2023; Gong, 2024; Gong et al., 2021a; Gong &
Lin, 2024; Wei, Tang & Gong, 2024; Gong, 2025a, 2025b).
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